xref: /linux/drivers/firmware/arm_scmi/sensors.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Sensor Protocol
4  *
5  * Copyright (C) 2018-2020 ARM Ltd.
6  */
7 
8 #define pr_fmt(fmt) "SCMI Notifications SENSOR - " fmt
9 
10 #include <linux/bitfield.h>
11 #include <linux/scmi_protocol.h>
12 
13 #include "common.h"
14 #include "notify.h"
15 
16 #define SCMI_MAX_NUM_SENSOR_AXIS	63
17 #define	SCMIv2_SENSOR_PROTOCOL		0x10000
18 
19 enum scmi_sensor_protocol_cmd {
20 	SENSOR_DESCRIPTION_GET = 0x3,
21 	SENSOR_TRIP_POINT_NOTIFY = 0x4,
22 	SENSOR_TRIP_POINT_CONFIG = 0x5,
23 	SENSOR_READING_GET = 0x6,
24 	SENSOR_AXIS_DESCRIPTION_GET = 0x7,
25 	SENSOR_LIST_UPDATE_INTERVALS = 0x8,
26 	SENSOR_CONFIG_GET = 0x9,
27 	SENSOR_CONFIG_SET = 0xA,
28 	SENSOR_CONTINUOUS_UPDATE_NOTIFY = 0xB,
29 };
30 
31 struct scmi_msg_resp_sensor_attributes {
32 	__le16 num_sensors;
33 	u8 max_requests;
34 	u8 reserved;
35 	__le32 reg_addr_low;
36 	__le32 reg_addr_high;
37 	__le32 reg_size;
38 };
39 
40 /* v3 attributes_low macros */
41 #define SUPPORTS_UPDATE_NOTIFY(x)	FIELD_GET(BIT(30), (x))
42 #define SENSOR_TSTAMP_EXP(x)		FIELD_GET(GENMASK(14, 10), (x))
43 #define SUPPORTS_TIMESTAMP(x)		FIELD_GET(BIT(9), (x))
44 #define SUPPORTS_EXTEND_ATTRS(x)	FIELD_GET(BIT(8), (x))
45 
46 /* v2 attributes_high macros */
47 #define SENSOR_UPDATE_BASE(x)		FIELD_GET(GENMASK(31, 27), (x))
48 #define SENSOR_UPDATE_SCALE(x)		FIELD_GET(GENMASK(26, 22), (x))
49 
50 /* v3 attributes_high macros */
51 #define SENSOR_AXIS_NUMBER(x)		FIELD_GET(GENMASK(21, 16), (x))
52 #define SUPPORTS_AXIS(x)		FIELD_GET(BIT(8), (x))
53 
54 /* v3 resolution macros */
55 #define SENSOR_RES(x)			FIELD_GET(GENMASK(26, 0), (x))
56 #define SENSOR_RES_EXP(x)		FIELD_GET(GENMASK(31, 27), (x))
57 
58 struct scmi_msg_resp_attrs {
59 	__le32 min_range_low;
60 	__le32 min_range_high;
61 	__le32 max_range_low;
62 	__le32 max_range_high;
63 };
64 
65 struct scmi_msg_resp_sensor_description {
66 	__le16 num_returned;
67 	__le16 num_remaining;
68 	struct scmi_sensor_descriptor {
69 		__le32 id;
70 		__le32 attributes_low;
71 /* Common attributes_low macros */
72 #define SUPPORTS_ASYNC_READ(x)		FIELD_GET(BIT(31), (x))
73 #define NUM_TRIP_POINTS(x)		FIELD_GET(GENMASK(7, 0), (x))
74 		__le32 attributes_high;
75 /* Common attributes_high macros */
76 #define SENSOR_SCALE(x)			FIELD_GET(GENMASK(15, 11), (x))
77 #define SENSOR_SCALE_SIGN		BIT(4)
78 #define SENSOR_SCALE_EXTEND		GENMASK(31, 5)
79 #define SENSOR_TYPE(x)			FIELD_GET(GENMASK(7, 0), (x))
80 		u8 name[SCMI_MAX_STR_SIZE];
81 		/* only for version > 2.0 */
82 		__le32 power;
83 		__le32 resolution;
84 		struct scmi_msg_resp_attrs scalar_attrs;
85 	} desc[];
86 };
87 
88 /* Base scmi_sensor_descriptor size excluding extended attrs after name */
89 #define SCMI_MSG_RESP_SENS_DESCR_BASE_SZ	28
90 
91 /* Sign extend to a full s32 */
92 #define	S32_EXT(v)							\
93 	({								\
94 		int __v = (v);						\
95 									\
96 		if (__v & SENSOR_SCALE_SIGN)				\
97 			__v |= SENSOR_SCALE_EXTEND;			\
98 		__v;							\
99 	})
100 
101 struct scmi_msg_sensor_axis_description_get {
102 	__le32 id;
103 	__le32 axis_desc_index;
104 };
105 
106 struct scmi_msg_resp_sensor_axis_description {
107 	__le32 num_axis_flags;
108 #define NUM_AXIS_RETURNED(x)		FIELD_GET(GENMASK(5, 0), (x))
109 #define NUM_AXIS_REMAINING(x)		FIELD_GET(GENMASK(31, 26), (x))
110 	struct scmi_axis_descriptor {
111 		__le32 id;
112 		__le32 attributes_low;
113 		__le32 attributes_high;
114 		u8 name[SCMI_MAX_STR_SIZE];
115 		__le32 resolution;
116 		struct scmi_msg_resp_attrs attrs;
117 	} desc[];
118 };
119 
120 /* Base scmi_axis_descriptor size excluding extended attrs after name */
121 #define SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ	28
122 
123 struct scmi_msg_sensor_list_update_intervals {
124 	__le32 id;
125 	__le32 index;
126 };
127 
128 struct scmi_msg_resp_sensor_list_update_intervals {
129 	__le32 num_intervals_flags;
130 #define NUM_INTERVALS_RETURNED(x)	FIELD_GET(GENMASK(11, 0), (x))
131 #define SEGMENTED_INTVL_FORMAT(x)	FIELD_GET(BIT(12), (x))
132 #define NUM_INTERVALS_REMAINING(x)	FIELD_GET(GENMASK(31, 16), (x))
133 	__le32 intervals[];
134 };
135 
136 struct scmi_msg_sensor_request_notify {
137 	__le32 id;
138 	__le32 event_control;
139 #define SENSOR_NOTIFY_ALL	BIT(0)
140 };
141 
142 struct scmi_msg_set_sensor_trip_point {
143 	__le32 id;
144 	__le32 event_control;
145 #define SENSOR_TP_EVENT_MASK	(0x3)
146 #define SENSOR_TP_DISABLED	0x0
147 #define SENSOR_TP_POSITIVE	0x1
148 #define SENSOR_TP_NEGATIVE	0x2
149 #define SENSOR_TP_BOTH		0x3
150 #define SENSOR_TP_ID(x)		(((x) & 0xff) << 4)
151 	__le32 value_low;
152 	__le32 value_high;
153 };
154 
155 struct scmi_msg_sensor_config_set {
156 	__le32 id;
157 	__le32 sensor_config;
158 };
159 
160 struct scmi_msg_sensor_reading_get {
161 	__le32 id;
162 	__le32 flags;
163 #define SENSOR_READ_ASYNC	BIT(0)
164 };
165 
166 struct scmi_resp_sensor_reading_complete {
167 	__le32 id;
168 	__le64 readings;
169 };
170 
171 struct scmi_sensor_reading_resp {
172 	__le32 sensor_value_low;
173 	__le32 sensor_value_high;
174 	__le32 timestamp_low;
175 	__le32 timestamp_high;
176 };
177 
178 struct scmi_resp_sensor_reading_complete_v3 {
179 	__le32 id;
180 	struct scmi_sensor_reading_resp readings[];
181 };
182 
183 struct scmi_sensor_trip_notify_payld {
184 	__le32 agent_id;
185 	__le32 sensor_id;
186 	__le32 trip_point_desc;
187 };
188 
189 struct scmi_sensor_update_notify_payld {
190 	__le32 agent_id;
191 	__le32 sensor_id;
192 	struct scmi_sensor_reading_resp readings[];
193 };
194 
195 struct sensors_info {
196 	u32 version;
197 	int num_sensors;
198 	int max_requests;
199 	u64 reg_addr;
200 	u32 reg_size;
201 	struct scmi_sensor_info *sensors;
202 };
203 
204 static int scmi_sensor_attributes_get(const struct scmi_handle *handle,
205 				      struct sensors_info *si)
206 {
207 	int ret;
208 	struct scmi_xfer *t;
209 	struct scmi_msg_resp_sensor_attributes *attr;
210 
211 	ret = scmi_xfer_get_init(handle, PROTOCOL_ATTRIBUTES,
212 				 SCMI_PROTOCOL_SENSOR, 0, sizeof(*attr), &t);
213 	if (ret)
214 		return ret;
215 
216 	attr = t->rx.buf;
217 
218 	ret = scmi_do_xfer(handle, t);
219 	if (!ret) {
220 		si->num_sensors = le16_to_cpu(attr->num_sensors);
221 		si->max_requests = attr->max_requests;
222 		si->reg_addr = le32_to_cpu(attr->reg_addr_low) |
223 				(u64)le32_to_cpu(attr->reg_addr_high) << 32;
224 		si->reg_size = le32_to_cpu(attr->reg_size);
225 	}
226 
227 	scmi_xfer_put(handle, t);
228 	return ret;
229 }
230 
231 static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
232 					  struct scmi_msg_resp_attrs *in)
233 {
234 	out->min_range = get_unaligned_le64((void *)&in->min_range_low);
235 	out->max_range = get_unaligned_le64((void *)&in->max_range_low);
236 }
237 
238 static int scmi_sensor_update_intervals(const struct scmi_handle *handle,
239 					struct scmi_sensor_info *s)
240 {
241 	int ret, cnt;
242 	u32 desc_index = 0;
243 	u16 num_returned, num_remaining;
244 	struct scmi_xfer *ti;
245 	struct scmi_msg_resp_sensor_list_update_intervals *buf;
246 	struct scmi_msg_sensor_list_update_intervals *msg;
247 
248 	ret = scmi_xfer_get_init(handle, SENSOR_LIST_UPDATE_INTERVALS,
249 				 SCMI_PROTOCOL_SENSOR, sizeof(*msg), 0, &ti);
250 	if (ret)
251 		return ret;
252 
253 	buf = ti->rx.buf;
254 	do {
255 		u32 flags;
256 
257 		msg = ti->tx.buf;
258 		/* Set the number of sensors to be skipped/already read */
259 		msg->id = cpu_to_le32(s->id);
260 		msg->index = cpu_to_le32(desc_index);
261 
262 		ret = scmi_do_xfer(handle, ti);
263 		if (ret)
264 			break;
265 
266 		flags = le32_to_cpu(buf->num_intervals_flags);
267 		num_returned = NUM_INTERVALS_RETURNED(flags);
268 		num_remaining = NUM_INTERVALS_REMAINING(flags);
269 
270 		/*
271 		 * Max intervals is not declared previously anywhere so we
272 		 * assume it's returned+remaining.
273 		 */
274 		if (!s->intervals.count) {
275 			s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
276 			s->intervals.count = num_returned + num_remaining;
277 			/* segmented intervals are reported in one triplet */
278 			if (s->intervals.segmented &&
279 			    (num_remaining || num_returned != 3)) {
280 				dev_err(handle->dev,
281 					"Sensor ID:%d advertises an invalid segmented interval (%d)\n",
282 					s->id, s->intervals.count);
283 				s->intervals.segmented = false;
284 				s->intervals.count = 0;
285 				ret = -EINVAL;
286 				break;
287 			}
288 			/* Direct allocation when exceeding pre-allocated */
289 			if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
290 				s->intervals.desc =
291 					devm_kcalloc(handle->dev,
292 						     s->intervals.count,
293 						     sizeof(*s->intervals.desc),
294 						     GFP_KERNEL);
295 				if (!s->intervals.desc) {
296 					s->intervals.segmented = false;
297 					s->intervals.count = 0;
298 					ret = -ENOMEM;
299 					break;
300 				}
301 			}
302 		} else if (desc_index + num_returned > s->intervals.count) {
303 			dev_err(handle->dev,
304 				"No. of update intervals can't exceed %d\n",
305 				s->intervals.count);
306 			ret = -EINVAL;
307 			break;
308 		}
309 
310 		for (cnt = 0; cnt < num_returned; cnt++)
311 			s->intervals.desc[desc_index + cnt] =
312 					le32_to_cpu(buf->intervals[cnt]);
313 
314 		desc_index += num_returned;
315 
316 		scmi_reset_rx_to_maxsz(handle, ti);
317 		/*
318 		 * check for both returned and remaining to avoid infinite
319 		 * loop due to buggy firmware
320 		 */
321 	} while (num_returned && num_remaining);
322 
323 	scmi_xfer_put(handle, ti);
324 	return ret;
325 }
326 
327 static int scmi_sensor_axis_description(const struct scmi_handle *handle,
328 					struct scmi_sensor_info *s)
329 {
330 	int ret, cnt;
331 	u32 desc_index = 0;
332 	u16 num_returned, num_remaining;
333 	struct scmi_xfer *te;
334 	struct scmi_msg_resp_sensor_axis_description *buf;
335 	struct scmi_msg_sensor_axis_description_get *msg;
336 
337 	s->axis = devm_kcalloc(handle->dev, s->num_axis,
338 			       sizeof(*s->axis), GFP_KERNEL);
339 	if (!s->axis)
340 		return -ENOMEM;
341 
342 	ret = scmi_xfer_get_init(handle, SENSOR_AXIS_DESCRIPTION_GET,
343 				 SCMI_PROTOCOL_SENSOR, sizeof(*msg), 0, &te);
344 	if (ret)
345 		return ret;
346 
347 	buf = te->rx.buf;
348 	do {
349 		u32 flags;
350 		struct scmi_axis_descriptor *adesc;
351 
352 		msg = te->tx.buf;
353 		/* Set the number of sensors to be skipped/already read */
354 		msg->id = cpu_to_le32(s->id);
355 		msg->axis_desc_index = cpu_to_le32(desc_index);
356 
357 		ret = scmi_do_xfer(handle, te);
358 		if (ret)
359 			break;
360 
361 		flags = le32_to_cpu(buf->num_axis_flags);
362 		num_returned = NUM_AXIS_RETURNED(flags);
363 		num_remaining = NUM_AXIS_REMAINING(flags);
364 
365 		if (desc_index + num_returned > s->num_axis) {
366 			dev_err(handle->dev, "No. of axis can't exceed %d\n",
367 				s->num_axis);
368 			break;
369 		}
370 
371 		adesc = &buf->desc[0];
372 		for (cnt = 0; cnt < num_returned; cnt++) {
373 			u32 attrh, attrl;
374 			struct scmi_sensor_axis_info *a;
375 			size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
376 
377 			attrl = le32_to_cpu(adesc->attributes_low);
378 
379 			a = &s->axis[desc_index + cnt];
380 
381 			a->id = le32_to_cpu(adesc->id);
382 			a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
383 
384 			attrh = le32_to_cpu(adesc->attributes_high);
385 			a->scale = S32_EXT(SENSOR_SCALE(attrh));
386 			a->type = SENSOR_TYPE(attrh);
387 			strlcpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
388 
389 			if (a->extended_attrs) {
390 				unsigned int ares =
391 					le32_to_cpu(adesc->resolution);
392 
393 				a->resolution = SENSOR_RES(ares);
394 				a->exponent =
395 					S32_EXT(SENSOR_RES_EXP(ares));
396 				dsize += sizeof(adesc->resolution);
397 
398 				scmi_parse_range_attrs(&a->attrs,
399 						       &adesc->attrs);
400 				dsize += sizeof(adesc->attrs);
401 			}
402 
403 			adesc = (typeof(adesc))((u8 *)adesc + dsize);
404 		}
405 
406 		desc_index += num_returned;
407 
408 		scmi_reset_rx_to_maxsz(handle, te);
409 		/*
410 		 * check for both returned and remaining to avoid infinite
411 		 * loop due to buggy firmware
412 		 */
413 	} while (num_returned && num_remaining);
414 
415 	scmi_xfer_put(handle, te);
416 	return ret;
417 }
418 
419 static int scmi_sensor_description_get(const struct scmi_handle *handle,
420 				       struct sensors_info *si)
421 {
422 	int ret, cnt;
423 	u32 desc_index = 0;
424 	u16 num_returned, num_remaining;
425 	struct scmi_xfer *t;
426 	struct scmi_msg_resp_sensor_description *buf;
427 
428 	ret = scmi_xfer_get_init(handle, SENSOR_DESCRIPTION_GET,
429 				 SCMI_PROTOCOL_SENSOR, sizeof(__le32), 0, &t);
430 	if (ret)
431 		return ret;
432 
433 	buf = t->rx.buf;
434 
435 	do {
436 		struct scmi_sensor_descriptor *sdesc;
437 
438 		/* Set the number of sensors to be skipped/already read */
439 		put_unaligned_le32(desc_index, t->tx.buf);
440 		ret = scmi_do_xfer(handle, t);
441 		if (ret)
442 			break;
443 
444 		num_returned = le16_to_cpu(buf->num_returned);
445 		num_remaining = le16_to_cpu(buf->num_remaining);
446 
447 		if (desc_index + num_returned > si->num_sensors) {
448 			dev_err(handle->dev, "No. of sensors can't exceed %d",
449 				si->num_sensors);
450 			break;
451 		}
452 
453 		sdesc = &buf->desc[0];
454 		for (cnt = 0; cnt < num_returned; cnt++) {
455 			u32 attrh, attrl;
456 			struct scmi_sensor_info *s;
457 			size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
458 
459 			s = &si->sensors[desc_index + cnt];
460 			s->id = le32_to_cpu(sdesc->id);
461 
462 			attrl = le32_to_cpu(sdesc->attributes_low);
463 			/* common bitfields parsing */
464 			s->async = SUPPORTS_ASYNC_READ(attrl);
465 			s->num_trip_points = NUM_TRIP_POINTS(attrl);
466 			/**
467 			 * only SCMIv3.0 specific bitfield below.
468 			 * Such bitfields are assumed to be zeroed on non
469 			 * relevant fw versions...assuming fw not buggy !
470 			 */
471 			s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
472 			s->timestamped = SUPPORTS_TIMESTAMP(attrl);
473 			if (s->timestamped)
474 				s->tstamp_scale =
475 					S32_EXT(SENSOR_TSTAMP_EXP(attrl));
476 			s->extended_scalar_attrs =
477 				SUPPORTS_EXTEND_ATTRS(attrl);
478 
479 			attrh = le32_to_cpu(sdesc->attributes_high);
480 			/* common bitfields parsing */
481 			s->scale = S32_EXT(SENSOR_SCALE(attrh));
482 			s->type = SENSOR_TYPE(attrh);
483 			/* Use pre-allocated pool wherever possible */
484 			s->intervals.desc = s->intervals.prealloc_pool;
485 			if (si->version == SCMIv2_SENSOR_PROTOCOL) {
486 				s->intervals.segmented = false;
487 				s->intervals.count = 1;
488 				/*
489 				 * Convert SCMIv2.0 update interval format to
490 				 * SCMIv3.0 to be used as the common exposed
491 				 * descriptor, accessible via common macros.
492 				 */
493 				s->intervals.desc[0] =
494 					(SENSOR_UPDATE_BASE(attrh) << 5) |
495 					 SENSOR_UPDATE_SCALE(attrh);
496 			} else {
497 				/*
498 				 * From SCMIv3.0 update intervals are retrieved
499 				 * via a dedicated (optional) command.
500 				 * Since the command is optional, on error carry
501 				 * on without any update interval.
502 				 */
503 				if (scmi_sensor_update_intervals(handle, s))
504 					dev_dbg(handle->dev,
505 						"Update Intervals not available for sensor ID:%d\n",
506 						s->id);
507 			}
508 			/**
509 			 * only > SCMIv2.0 specific bitfield below.
510 			 * Such bitfields are assumed to be zeroed on non
511 			 * relevant fw versions...assuming fw not buggy !
512 			 */
513 			s->num_axis = min_t(unsigned int,
514 					    SUPPORTS_AXIS(attrh) ?
515 					    SENSOR_AXIS_NUMBER(attrh) : 0,
516 					    SCMI_MAX_NUM_SENSOR_AXIS);
517 			strlcpy(s->name, sdesc->name, SCMI_MAX_STR_SIZE);
518 
519 			if (s->extended_scalar_attrs) {
520 				s->sensor_power = le32_to_cpu(sdesc->power);
521 				dsize += sizeof(sdesc->power);
522 				/* Only for sensors reporting scalar values */
523 				if (s->num_axis == 0) {
524 					unsigned int sres =
525 						le32_to_cpu(sdesc->resolution);
526 
527 					s->resolution = SENSOR_RES(sres);
528 					s->exponent =
529 						S32_EXT(SENSOR_RES_EXP(sres));
530 					dsize += sizeof(sdesc->resolution);
531 
532 					scmi_parse_range_attrs(&s->scalar_attrs,
533 							       &sdesc->scalar_attrs);
534 					dsize += sizeof(sdesc->scalar_attrs);
535 				}
536 			}
537 			if (s->num_axis > 0) {
538 				ret = scmi_sensor_axis_description(handle, s);
539 				if (ret)
540 					goto out;
541 			}
542 
543 			sdesc = (typeof(sdesc))((u8 *)sdesc + dsize);
544 		}
545 
546 		desc_index += num_returned;
547 
548 		scmi_reset_rx_to_maxsz(handle, t);
549 		/*
550 		 * check for both returned and remaining to avoid infinite
551 		 * loop due to buggy firmware
552 		 */
553 	} while (num_returned && num_remaining);
554 
555 out:
556 	scmi_xfer_put(handle, t);
557 	return ret;
558 }
559 
560 static inline int
561 scmi_sensor_request_notify(const struct scmi_handle *handle, u32 sensor_id,
562 			   u8 message_id, bool enable)
563 {
564 	int ret;
565 	u32 evt_cntl = enable ? SENSOR_NOTIFY_ALL : 0;
566 	struct scmi_xfer *t;
567 	struct scmi_msg_sensor_request_notify *cfg;
568 
569 	ret = scmi_xfer_get_init(handle, message_id,
570 				 SCMI_PROTOCOL_SENSOR, sizeof(*cfg), 0, &t);
571 	if (ret)
572 		return ret;
573 
574 	cfg = t->tx.buf;
575 	cfg->id = cpu_to_le32(sensor_id);
576 	cfg->event_control = cpu_to_le32(evt_cntl);
577 
578 	ret = scmi_do_xfer(handle, t);
579 
580 	scmi_xfer_put(handle, t);
581 	return ret;
582 }
583 
584 static int scmi_sensor_trip_point_notify(const struct scmi_handle *handle,
585 					 u32 sensor_id, bool enable)
586 {
587 	return scmi_sensor_request_notify(handle, sensor_id,
588 					  SENSOR_TRIP_POINT_NOTIFY,
589 					  enable);
590 }
591 
592 static int
593 scmi_sensor_continuous_update_notify(const struct scmi_handle *handle,
594 				     u32 sensor_id, bool enable)
595 {
596 	return scmi_sensor_request_notify(handle, sensor_id,
597 					  SENSOR_CONTINUOUS_UPDATE_NOTIFY,
598 					  enable);
599 }
600 
601 static int
602 scmi_sensor_trip_point_config(const struct scmi_handle *handle, u32 sensor_id,
603 			      u8 trip_id, u64 trip_value)
604 {
605 	int ret;
606 	u32 evt_cntl = SENSOR_TP_BOTH;
607 	struct scmi_xfer *t;
608 	struct scmi_msg_set_sensor_trip_point *trip;
609 
610 	ret = scmi_xfer_get_init(handle, SENSOR_TRIP_POINT_CONFIG,
611 				 SCMI_PROTOCOL_SENSOR, sizeof(*trip), 0, &t);
612 	if (ret)
613 		return ret;
614 
615 	trip = t->tx.buf;
616 	trip->id = cpu_to_le32(sensor_id);
617 	trip->event_control = cpu_to_le32(evt_cntl | SENSOR_TP_ID(trip_id));
618 	trip->value_low = cpu_to_le32(trip_value & 0xffffffff);
619 	trip->value_high = cpu_to_le32(trip_value >> 32);
620 
621 	ret = scmi_do_xfer(handle, t);
622 
623 	scmi_xfer_put(handle, t);
624 	return ret;
625 }
626 
627 static int scmi_sensor_config_get(const struct scmi_handle *handle,
628 				  u32 sensor_id, u32 *sensor_config)
629 {
630 	int ret;
631 	struct scmi_xfer *t;
632 
633 	ret = scmi_xfer_get_init(handle, SENSOR_CONFIG_GET,
634 				 SCMI_PROTOCOL_SENSOR, sizeof(__le32),
635 				 sizeof(__le32), &t);
636 	if (ret)
637 		return ret;
638 
639 	put_unaligned_le32(cpu_to_le32(sensor_id), t->tx.buf);
640 	ret = scmi_do_xfer(handle, t);
641 	if (!ret) {
642 		struct sensors_info *si = handle->sensor_priv;
643 		struct scmi_sensor_info *s = si->sensors + sensor_id;
644 
645 		*sensor_config = get_unaligned_le64(t->rx.buf);
646 		s->sensor_config = *sensor_config;
647 	}
648 
649 	scmi_xfer_put(handle, t);
650 	return ret;
651 }
652 
653 static int scmi_sensor_config_set(const struct scmi_handle *handle,
654 				  u32 sensor_id, u32 sensor_config)
655 {
656 	int ret;
657 	struct scmi_xfer *t;
658 	struct scmi_msg_sensor_config_set *msg;
659 
660 	ret = scmi_xfer_get_init(handle, SENSOR_CONFIG_SET,
661 				 SCMI_PROTOCOL_SENSOR, sizeof(*msg), 0, &t);
662 	if (ret)
663 		return ret;
664 
665 	msg = t->tx.buf;
666 	msg->id = cpu_to_le32(sensor_id);
667 	msg->sensor_config = cpu_to_le32(sensor_config);
668 
669 	ret = scmi_do_xfer(handle, t);
670 	if (!ret) {
671 		struct sensors_info *si = handle->sensor_priv;
672 		struct scmi_sensor_info *s = si->sensors + sensor_id;
673 
674 		s->sensor_config = sensor_config;
675 	}
676 
677 	scmi_xfer_put(handle, t);
678 	return ret;
679 }
680 
681 /**
682  * scmi_sensor_reading_get  - Read scalar sensor value
683  * @handle: Platform handle
684  * @sensor_id: Sensor ID
685  * @value: The 64bit value sensor reading
686  *
687  * This function returns a single 64 bit reading value representing the sensor
688  * value; if the platform SCMI Protocol implementation and the sensor support
689  * multiple axis and timestamped-reads, this just returns the first axis while
690  * dropping the timestamp value.
691  * Use instead the @scmi_sensor_reading_get_timestamped to retrieve the array of
692  * timestamped multi-axis values.
693  *
694  * Return: 0 on Success
695  */
696 static int scmi_sensor_reading_get(const struct scmi_handle *handle,
697 				   u32 sensor_id, u64 *value)
698 {
699 	int ret;
700 	struct scmi_xfer *t;
701 	struct scmi_msg_sensor_reading_get *sensor;
702 	struct sensors_info *si = handle->sensor_priv;
703 	struct scmi_sensor_info *s = si->sensors + sensor_id;
704 
705 	ret = scmi_xfer_get_init(handle, SENSOR_READING_GET,
706 				 SCMI_PROTOCOL_SENSOR, sizeof(*sensor), 0, &t);
707 	if (ret)
708 		return ret;
709 
710 	sensor = t->tx.buf;
711 	sensor->id = cpu_to_le32(sensor_id);
712 	if (s->async) {
713 		sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
714 		ret = scmi_do_xfer_with_response(handle, t);
715 		if (!ret) {
716 			struct scmi_resp_sensor_reading_complete *resp;
717 
718 			resp = t->rx.buf;
719 			if (le32_to_cpu(resp->id) == sensor_id)
720 				*value = get_unaligned_le64(&resp->readings);
721 			else
722 				ret = -EPROTO;
723 		}
724 	} else {
725 		sensor->flags = cpu_to_le32(0);
726 		ret = scmi_do_xfer(handle, t);
727 		if (!ret)
728 			*value = get_unaligned_le64(t->rx.buf);
729 	}
730 
731 	scmi_xfer_put(handle, t);
732 	return ret;
733 }
734 
735 static inline void
736 scmi_parse_sensor_readings(struct scmi_sensor_reading *out,
737 			   const struct scmi_sensor_reading_resp *in)
738 {
739 	out->value = get_unaligned_le64((void *)&in->sensor_value_low);
740 	out->timestamp = get_unaligned_le64((void *)&in->timestamp_low);
741 }
742 
743 /**
744  * scmi_sensor_reading_get_timestamped  - Read multiple-axis timestamped values
745  * @handle: Platform handle
746  * @sensor_id: Sensor ID
747  * @count: The length of the provided @readings array
748  * @readings: An array of elements each representing a timestamped per-axis
749  *	      reading of type @struct scmi_sensor_reading.
750  *	      Returned readings are ordered as the @axis descriptors array
751  *	      included in @struct scmi_sensor_info and the max number of
752  *	      returned elements is min(@count, @num_axis); ideally the provided
753  *	      array should be of length @count equal to @num_axis.
754  *
755  * Return: 0 on Success
756  */
757 static int
758 scmi_sensor_reading_get_timestamped(const struct scmi_handle *handle,
759 				    u32 sensor_id, u8 count,
760 				    struct scmi_sensor_reading *readings)
761 {
762 	int ret;
763 	struct scmi_xfer *t;
764 	struct scmi_msg_sensor_reading_get *sensor;
765 	struct sensors_info *si = handle->sensor_priv;
766 	struct scmi_sensor_info *s = si->sensors + sensor_id;
767 
768 	if (!count || !readings ||
769 	    (!s->num_axis && count > 1) || (s->num_axis && count > s->num_axis))
770 		return -EINVAL;
771 
772 	ret = scmi_xfer_get_init(handle, SENSOR_READING_GET,
773 				 SCMI_PROTOCOL_SENSOR, sizeof(*sensor), 0, &t);
774 	if (ret)
775 		return ret;
776 
777 	sensor = t->tx.buf;
778 	sensor->id = cpu_to_le32(sensor_id);
779 	if (s->async) {
780 		sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
781 		ret = scmi_do_xfer_with_response(handle, t);
782 		if (!ret) {
783 			int i;
784 			struct scmi_resp_sensor_reading_complete_v3 *resp;
785 
786 			resp = t->rx.buf;
787 			/* Retrieve only the number of requested axis anyway */
788 			if (le32_to_cpu(resp->id) == sensor_id)
789 				for (i = 0; i < count; i++)
790 					scmi_parse_sensor_readings(&readings[i],
791 								   &resp->readings[i]);
792 			else
793 				ret = -EPROTO;
794 		}
795 	} else {
796 		sensor->flags = cpu_to_le32(0);
797 		ret = scmi_do_xfer(handle, t);
798 		if (!ret) {
799 			int i;
800 			struct scmi_sensor_reading_resp *resp_readings;
801 
802 			resp_readings = t->rx.buf;
803 			for (i = 0; i < count; i++)
804 				scmi_parse_sensor_readings(&readings[i],
805 							   &resp_readings[i]);
806 		}
807 	}
808 
809 	scmi_xfer_put(handle, t);
810 	return ret;
811 }
812 
813 static const struct scmi_sensor_info *
814 scmi_sensor_info_get(const struct scmi_handle *handle, u32 sensor_id)
815 {
816 	struct sensors_info *si = handle->sensor_priv;
817 
818 	return si->sensors + sensor_id;
819 }
820 
821 static int scmi_sensor_count_get(const struct scmi_handle *handle)
822 {
823 	struct sensors_info *si = handle->sensor_priv;
824 
825 	return si->num_sensors;
826 }
827 
828 static const struct scmi_sensor_ops sensor_ops = {
829 	.count_get = scmi_sensor_count_get,
830 	.info_get = scmi_sensor_info_get,
831 	.trip_point_config = scmi_sensor_trip_point_config,
832 	.reading_get = scmi_sensor_reading_get,
833 	.reading_get_timestamped = scmi_sensor_reading_get_timestamped,
834 	.config_get = scmi_sensor_config_get,
835 	.config_set = scmi_sensor_config_set,
836 };
837 
838 static int scmi_sensor_set_notify_enabled(const struct scmi_handle *handle,
839 					  u8 evt_id, u32 src_id, bool enable)
840 {
841 	int ret;
842 
843 	switch (evt_id) {
844 	case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
845 		ret = scmi_sensor_trip_point_notify(handle, src_id, enable);
846 		break;
847 	case SCMI_EVENT_SENSOR_UPDATE:
848 		ret = scmi_sensor_continuous_update_notify(handle, src_id,
849 							   enable);
850 		break;
851 	default:
852 		ret = -EINVAL;
853 		break;
854 	}
855 
856 	if (ret)
857 		pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n",
858 			 evt_id, src_id, ret);
859 
860 	return ret;
861 }
862 
863 static void *scmi_sensor_fill_custom_report(const struct scmi_handle *handle,
864 					    u8 evt_id, ktime_t timestamp,
865 					    const void *payld, size_t payld_sz,
866 					    void *report, u32 *src_id)
867 {
868 	void *rep = NULL;
869 
870 	switch (evt_id) {
871 	case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
872 	{
873 		const struct scmi_sensor_trip_notify_payld *p = payld;
874 		struct scmi_sensor_trip_point_report *r = report;
875 
876 		if (sizeof(*p) != payld_sz)
877 			break;
878 
879 		r->timestamp = timestamp;
880 		r->agent_id = le32_to_cpu(p->agent_id);
881 		r->sensor_id = le32_to_cpu(p->sensor_id);
882 		r->trip_point_desc = le32_to_cpu(p->trip_point_desc);
883 		*src_id = r->sensor_id;
884 		rep = r;
885 		break;
886 	}
887 	case SCMI_EVENT_SENSOR_UPDATE:
888 	{
889 		int i;
890 		struct scmi_sensor_info *s;
891 		const struct scmi_sensor_update_notify_payld *p = payld;
892 		struct scmi_sensor_update_report *r = report;
893 		struct sensors_info *sinfo = handle->sensor_priv;
894 
895 		/* payld_sz is variable for this event */
896 		r->sensor_id = le32_to_cpu(p->sensor_id);
897 		if (r->sensor_id >= sinfo->num_sensors)
898 			break;
899 		r->timestamp = timestamp;
900 		r->agent_id = le32_to_cpu(p->agent_id);
901 		s = &sinfo->sensors[r->sensor_id];
902 		/*
903 		 * The generated report r (@struct scmi_sensor_update_report)
904 		 * was pre-allocated to contain up to SCMI_MAX_NUM_SENSOR_AXIS
905 		 * readings: here it is filled with the effective @num_axis
906 		 * readings defined for this sensor or 1 for scalar sensors.
907 		 */
908 		r->readings_count = s->num_axis ?: 1;
909 		for (i = 0; i < r->readings_count; i++)
910 			scmi_parse_sensor_readings(&r->readings[i],
911 						   &p->readings[i]);
912 		*src_id = r->sensor_id;
913 		rep = r;
914 		break;
915 	}
916 	default:
917 		break;
918 	}
919 
920 	return rep;
921 }
922 
923 static const struct scmi_event sensor_events[] = {
924 	{
925 		.id = SCMI_EVENT_SENSOR_TRIP_POINT_EVENT,
926 		.max_payld_sz = sizeof(struct scmi_sensor_trip_notify_payld),
927 		.max_report_sz = sizeof(struct scmi_sensor_trip_point_report),
928 	},
929 	{
930 		.id = SCMI_EVENT_SENSOR_UPDATE,
931 		.max_payld_sz =
932 			sizeof(struct scmi_sensor_update_notify_payld) +
933 			 SCMI_MAX_NUM_SENSOR_AXIS *
934 			 sizeof(struct scmi_sensor_reading_resp),
935 		.max_report_sz = sizeof(struct scmi_sensor_update_report) +
936 				  SCMI_MAX_NUM_SENSOR_AXIS *
937 				  sizeof(struct scmi_sensor_reading),
938 	},
939 };
940 
941 static const struct scmi_event_ops sensor_event_ops = {
942 	.set_notify_enabled = scmi_sensor_set_notify_enabled,
943 	.fill_custom_report = scmi_sensor_fill_custom_report,
944 };
945 
946 static int scmi_sensors_protocol_init(struct scmi_handle *handle)
947 {
948 	u32 version;
949 	int ret;
950 	struct sensors_info *sinfo;
951 
952 	scmi_version_get(handle, SCMI_PROTOCOL_SENSOR, &version);
953 
954 	dev_dbg(handle->dev, "Sensor Version %d.%d\n",
955 		PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
956 
957 	sinfo = devm_kzalloc(handle->dev, sizeof(*sinfo), GFP_KERNEL);
958 	if (!sinfo)
959 		return -ENOMEM;
960 	sinfo->version = version;
961 
962 	ret = scmi_sensor_attributes_get(handle, sinfo);
963 	if (ret)
964 		return ret;
965 	sinfo->sensors = devm_kcalloc(handle->dev, sinfo->num_sensors,
966 				      sizeof(*sinfo->sensors), GFP_KERNEL);
967 	if (!sinfo->sensors)
968 		return -ENOMEM;
969 
970 	ret = scmi_sensor_description_get(handle, sinfo);
971 	if (ret)
972 		return ret;
973 
974 	scmi_register_protocol_events(handle,
975 				      SCMI_PROTOCOL_SENSOR, SCMI_PROTO_QUEUE_SZ,
976 				      &sensor_event_ops, sensor_events,
977 				      ARRAY_SIZE(sensor_events),
978 				      sinfo->num_sensors);
979 
980 	handle->sensor_priv = sinfo;
981 	handle->sensor_ops = &sensor_ops;
982 
983 	return 0;
984 }
985 
986 DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(SCMI_PROTOCOL_SENSOR, sensors)
987