1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Control and Management Interface (SCMI) Sensor Protocol 4 * 5 * Copyright (C) 2018-2022 ARM Ltd. 6 */ 7 8 #define pr_fmt(fmt) "SCMI Notifications SENSOR - " fmt 9 10 #include <linux/bitfield.h> 11 #include <linux/module.h> 12 #include <linux/scmi_protocol.h> 13 14 #include "protocols.h" 15 #include "notify.h" 16 17 /* Updated only after ALL the mandatory features for that version are merged */ 18 #define SCMI_PROTOCOL_SUPPORTED_VERSION 0x30001 19 20 #define SCMI_MAX_NUM_SENSOR_AXIS 63 21 #define SCMIv2_SENSOR_PROTOCOL 0x10000 22 23 enum scmi_sensor_protocol_cmd { 24 SENSOR_DESCRIPTION_GET = 0x3, 25 SENSOR_TRIP_POINT_NOTIFY = 0x4, 26 SENSOR_TRIP_POINT_CONFIG = 0x5, 27 SENSOR_READING_GET = 0x6, 28 SENSOR_AXIS_DESCRIPTION_GET = 0x7, 29 SENSOR_LIST_UPDATE_INTERVALS = 0x8, 30 SENSOR_CONFIG_GET = 0x9, 31 SENSOR_CONFIG_SET = 0xA, 32 SENSOR_CONTINUOUS_UPDATE_NOTIFY = 0xB, 33 SENSOR_NAME_GET = 0xC, 34 SENSOR_AXIS_NAME_GET = 0xD, 35 }; 36 37 struct scmi_msg_resp_sensor_attributes { 38 __le16 num_sensors; 39 u8 max_requests; 40 u8 reserved; 41 __le32 reg_addr_low; 42 __le32 reg_addr_high; 43 __le32 reg_size; 44 }; 45 46 /* v3 attributes_low macros */ 47 #define SUPPORTS_UPDATE_NOTIFY(x) FIELD_GET(BIT(30), (x)) 48 #define SENSOR_TSTAMP_EXP(x) FIELD_GET(GENMASK(14, 10), (x)) 49 #define SUPPORTS_TIMESTAMP(x) FIELD_GET(BIT(9), (x)) 50 #define SUPPORTS_EXTEND_ATTRS(x) FIELD_GET(BIT(8), (x)) 51 52 /* v2 attributes_high macros */ 53 #define SENSOR_UPDATE_BASE(x) FIELD_GET(GENMASK(31, 27), (x)) 54 #define SENSOR_UPDATE_SCALE(x) FIELD_GET(GENMASK(26, 22), (x)) 55 56 /* v3 attributes_high macros */ 57 #define SENSOR_AXIS_NUMBER(x) FIELD_GET(GENMASK(21, 16), (x)) 58 #define SUPPORTS_AXIS(x) FIELD_GET(BIT(8), (x)) 59 60 /* v3 resolution macros */ 61 #define SENSOR_RES(x) FIELD_GET(GENMASK(26, 0), (x)) 62 #define SENSOR_RES_EXP(x) FIELD_GET(GENMASK(31, 27), (x)) 63 64 struct scmi_msg_resp_attrs { 65 __le32 min_range_low; 66 __le32 min_range_high; 67 __le32 max_range_low; 68 __le32 max_range_high; 69 }; 70 71 struct scmi_msg_sensor_description { 72 __le32 desc_index; 73 }; 74 75 struct scmi_msg_resp_sensor_description { 76 __le16 num_returned; 77 __le16 num_remaining; 78 struct scmi_sensor_descriptor { 79 __le32 id; 80 __le32 attributes_low; 81 /* Common attributes_low macros */ 82 #define SUPPORTS_ASYNC_READ(x) FIELD_GET(BIT(31), (x)) 83 #define SUPPORTS_EXTENDED_NAMES(x) FIELD_GET(BIT(29), (x)) 84 #define NUM_TRIP_POINTS(x) FIELD_GET(GENMASK(7, 0), (x)) 85 __le32 attributes_high; 86 /* Common attributes_high macros */ 87 #define SENSOR_SCALE(x) FIELD_GET(GENMASK(15, 11), (x)) 88 #define SENSOR_SCALE_SIGN BIT(4) 89 #define SENSOR_SCALE_EXTEND GENMASK(31, 5) 90 #define SENSOR_TYPE(x) FIELD_GET(GENMASK(7, 0), (x)) 91 u8 name[SCMI_SHORT_NAME_MAX_SIZE]; 92 /* only for version > 2.0 */ 93 __le32 power; 94 __le32 resolution; 95 struct scmi_msg_resp_attrs scalar_attrs; 96 } desc[]; 97 }; 98 99 /* Base scmi_sensor_descriptor size excluding extended attrs after name */ 100 #define SCMI_MSG_RESP_SENS_DESCR_BASE_SZ 28 101 102 /* Sign extend to a full s32 */ 103 #define S32_EXT(v) \ 104 ({ \ 105 int __v = (v); \ 106 \ 107 if (__v & SENSOR_SCALE_SIGN) \ 108 __v |= SENSOR_SCALE_EXTEND; \ 109 __v; \ 110 }) 111 112 struct scmi_msg_sensor_axis_description_get { 113 __le32 id; 114 __le32 axis_desc_index; 115 }; 116 117 struct scmi_msg_resp_sensor_axis_description { 118 __le32 num_axis_flags; 119 #define NUM_AXIS_RETURNED(x) FIELD_GET(GENMASK(5, 0), (x)) 120 #define NUM_AXIS_REMAINING(x) FIELD_GET(GENMASK(31, 26), (x)) 121 struct scmi_axis_descriptor { 122 __le32 id; 123 __le32 attributes_low; 124 #define SUPPORTS_EXTENDED_AXIS_NAMES(x) FIELD_GET(BIT(9), (x)) 125 __le32 attributes_high; 126 u8 name[SCMI_SHORT_NAME_MAX_SIZE]; 127 __le32 resolution; 128 struct scmi_msg_resp_attrs attrs; 129 } desc[]; 130 }; 131 132 struct scmi_msg_resp_sensor_axis_names_description { 133 __le32 num_axis_flags; 134 struct scmi_sensor_axis_name_descriptor { 135 __le32 axis_id; 136 u8 name[SCMI_MAX_STR_SIZE]; 137 } desc[]; 138 }; 139 140 /* Base scmi_axis_descriptor size excluding extended attrs after name */ 141 #define SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ 28 142 143 struct scmi_msg_sensor_list_update_intervals { 144 __le32 id; 145 __le32 index; 146 }; 147 148 struct scmi_msg_resp_sensor_list_update_intervals { 149 __le32 num_intervals_flags; 150 #define NUM_INTERVALS_RETURNED(x) FIELD_GET(GENMASK(11, 0), (x)) 151 #define SEGMENTED_INTVL_FORMAT(x) FIELD_GET(BIT(12), (x)) 152 #define NUM_INTERVALS_REMAINING(x) FIELD_GET(GENMASK(31, 16), (x)) 153 __le32 intervals[]; 154 }; 155 156 struct scmi_msg_sensor_request_notify { 157 __le32 id; 158 __le32 event_control; 159 #define SENSOR_NOTIFY_ALL BIT(0) 160 }; 161 162 struct scmi_msg_set_sensor_trip_point { 163 __le32 id; 164 __le32 event_control; 165 #define SENSOR_TP_EVENT_MASK (0x3) 166 #define SENSOR_TP_DISABLED 0x0 167 #define SENSOR_TP_POSITIVE 0x1 168 #define SENSOR_TP_NEGATIVE 0x2 169 #define SENSOR_TP_BOTH 0x3 170 #define SENSOR_TP_ID(x) (((x) & 0xff) << 4) 171 __le32 value_low; 172 __le32 value_high; 173 }; 174 175 struct scmi_msg_sensor_config_set { 176 __le32 id; 177 __le32 sensor_config; 178 }; 179 180 struct scmi_msg_sensor_reading_get { 181 __le32 id; 182 __le32 flags; 183 #define SENSOR_READ_ASYNC BIT(0) 184 }; 185 186 struct scmi_resp_sensor_reading_complete { 187 __le32 id; 188 __le32 readings_low; 189 __le32 readings_high; 190 }; 191 192 struct scmi_sensor_reading_resp { 193 __le32 sensor_value_low; 194 __le32 sensor_value_high; 195 __le32 timestamp_low; 196 __le32 timestamp_high; 197 }; 198 199 struct scmi_resp_sensor_reading_complete_v3 { 200 __le32 id; 201 struct scmi_sensor_reading_resp readings[]; 202 }; 203 204 struct scmi_sensor_trip_notify_payld { 205 __le32 agent_id; 206 __le32 sensor_id; 207 __le32 trip_point_desc; 208 }; 209 210 struct scmi_sensor_update_notify_payld { 211 __le32 agent_id; 212 __le32 sensor_id; 213 struct scmi_sensor_reading_resp readings[]; 214 }; 215 216 struct sensors_info { 217 u32 version; 218 bool notify_trip_point_cmd; 219 bool notify_continuos_update_cmd; 220 int num_sensors; 221 int max_requests; 222 u64 reg_addr; 223 u32 reg_size; 224 struct scmi_sensor_info *sensors; 225 }; 226 227 static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph, 228 struct sensors_info *si) 229 { 230 int ret; 231 struct scmi_xfer *t; 232 struct scmi_msg_resp_sensor_attributes *attr; 233 234 ret = ph->xops->xfer_get_init(ph, PROTOCOL_ATTRIBUTES, 235 0, sizeof(*attr), &t); 236 if (ret) 237 return ret; 238 239 attr = t->rx.buf; 240 241 ret = ph->xops->do_xfer(ph, t); 242 if (!ret) { 243 si->num_sensors = le16_to_cpu(attr->num_sensors); 244 si->max_requests = attr->max_requests; 245 si->reg_addr = le32_to_cpu(attr->reg_addr_low) | 246 (u64)le32_to_cpu(attr->reg_addr_high) << 32; 247 si->reg_size = le32_to_cpu(attr->reg_size); 248 } 249 250 ph->xops->xfer_put(ph, t); 251 252 if (!ret) { 253 if (!ph->hops->protocol_msg_check(ph, 254 SENSOR_TRIP_POINT_NOTIFY, NULL)) 255 si->notify_trip_point_cmd = true; 256 257 if (!ph->hops->protocol_msg_check(ph, 258 SENSOR_CONTINUOUS_UPDATE_NOTIFY, 259 NULL)) 260 si->notify_continuos_update_cmd = true; 261 } 262 263 return ret; 264 } 265 266 static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out, 267 const struct scmi_msg_resp_attrs *in) 268 { 269 out->min_range = get_unaligned_le64((void *)&in->min_range_low); 270 out->max_range = get_unaligned_le64((void *)&in->max_range_low); 271 } 272 273 struct scmi_sens_ipriv { 274 void *priv; 275 struct device *dev; 276 }; 277 278 static void iter_intervals_prepare_message(void *message, 279 unsigned int desc_index, 280 const void *p) 281 { 282 struct scmi_msg_sensor_list_update_intervals *msg = message; 283 const struct scmi_sensor_info *s; 284 285 s = ((const struct scmi_sens_ipriv *)p)->priv; 286 /* Set the number of sensors to be skipped/already read */ 287 msg->id = cpu_to_le32(s->id); 288 msg->index = cpu_to_le32(desc_index); 289 } 290 291 static int iter_intervals_update_state(struct scmi_iterator_state *st, 292 const void *response, void *p) 293 { 294 u32 flags; 295 struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv; 296 struct device *dev = ((struct scmi_sens_ipriv *)p)->dev; 297 const struct scmi_msg_resp_sensor_list_update_intervals *r = response; 298 299 flags = le32_to_cpu(r->num_intervals_flags); 300 st->num_returned = NUM_INTERVALS_RETURNED(flags); 301 st->num_remaining = NUM_INTERVALS_REMAINING(flags); 302 303 /* 304 * Max intervals is not declared previously anywhere so we 305 * assume it's returned+remaining on first call. 306 */ 307 if (!st->max_resources) { 308 s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags); 309 s->intervals.count = st->num_returned + st->num_remaining; 310 /* segmented intervals are reported in one triplet */ 311 if (s->intervals.segmented && 312 (st->num_remaining || st->num_returned != 3)) { 313 dev_err(dev, 314 "Sensor ID:%d advertises an invalid segmented interval (%d)\n", 315 s->id, s->intervals.count); 316 s->intervals.segmented = false; 317 s->intervals.count = 0; 318 return -EINVAL; 319 } 320 /* Direct allocation when exceeding pre-allocated */ 321 if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) { 322 s->intervals.desc = 323 devm_kcalloc(dev, 324 s->intervals.count, 325 sizeof(*s->intervals.desc), 326 GFP_KERNEL); 327 if (!s->intervals.desc) { 328 s->intervals.segmented = false; 329 s->intervals.count = 0; 330 return -ENOMEM; 331 } 332 } 333 334 st->max_resources = s->intervals.count; 335 } 336 337 return 0; 338 } 339 340 static int 341 iter_intervals_process_response(const struct scmi_protocol_handle *ph, 342 const void *response, 343 struct scmi_iterator_state *st, void *p) 344 { 345 const struct scmi_msg_resp_sensor_list_update_intervals *r = response; 346 struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv; 347 348 s->intervals.desc[st->desc_index + st->loop_idx] = 349 le32_to_cpu(r->intervals[st->loop_idx]); 350 351 return 0; 352 } 353 354 static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph, 355 struct scmi_sensor_info *s) 356 { 357 void *iter; 358 struct scmi_iterator_ops ops = { 359 .prepare_message = iter_intervals_prepare_message, 360 .update_state = iter_intervals_update_state, 361 .process_response = iter_intervals_process_response, 362 }; 363 struct scmi_sens_ipriv upriv = { 364 .priv = s, 365 .dev = ph->dev, 366 }; 367 368 iter = ph->hops->iter_response_init(ph, &ops, s->intervals.count, 369 SENSOR_LIST_UPDATE_INTERVALS, 370 sizeof(struct scmi_msg_sensor_list_update_intervals), 371 &upriv); 372 if (IS_ERR(iter)) 373 return PTR_ERR(iter); 374 375 return ph->hops->iter_response_run(iter); 376 } 377 378 struct scmi_apriv { 379 bool any_axes_support_extended_names; 380 struct scmi_sensor_info *s; 381 }; 382 383 static void iter_axes_desc_prepare_message(void *message, 384 const unsigned int desc_index, 385 const void *priv) 386 { 387 struct scmi_msg_sensor_axis_description_get *msg = message; 388 const struct scmi_apriv *apriv = priv; 389 390 /* Set the number of sensors to be skipped/already read */ 391 msg->id = cpu_to_le32(apriv->s->id); 392 msg->axis_desc_index = cpu_to_le32(desc_index); 393 } 394 395 static int 396 iter_axes_desc_update_state(struct scmi_iterator_state *st, 397 const void *response, void *priv) 398 { 399 u32 flags; 400 const struct scmi_msg_resp_sensor_axis_description *r = response; 401 402 flags = le32_to_cpu(r->num_axis_flags); 403 st->num_returned = NUM_AXIS_RETURNED(flags); 404 st->num_remaining = NUM_AXIS_REMAINING(flags); 405 st->priv = (void *)&r->desc[0]; 406 407 return 0; 408 } 409 410 static int 411 iter_axes_desc_process_response(const struct scmi_protocol_handle *ph, 412 const void *response, 413 struct scmi_iterator_state *st, void *priv) 414 { 415 u32 attrh, attrl; 416 struct scmi_sensor_axis_info *a; 417 size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ; 418 struct scmi_apriv *apriv = priv; 419 const struct scmi_axis_descriptor *adesc = st->priv; 420 421 attrl = le32_to_cpu(adesc->attributes_low); 422 if (SUPPORTS_EXTENDED_AXIS_NAMES(attrl)) 423 apriv->any_axes_support_extended_names = true; 424 425 a = &apriv->s->axis[st->desc_index + st->loop_idx]; 426 a->id = le32_to_cpu(adesc->id); 427 a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl); 428 429 attrh = le32_to_cpu(adesc->attributes_high); 430 a->scale = S32_EXT(SENSOR_SCALE(attrh)); 431 a->type = SENSOR_TYPE(attrh); 432 strscpy(a->name, adesc->name, SCMI_SHORT_NAME_MAX_SIZE); 433 434 if (a->extended_attrs) { 435 unsigned int ares = le32_to_cpu(adesc->resolution); 436 437 a->resolution = SENSOR_RES(ares); 438 a->exponent = S32_EXT(SENSOR_RES_EXP(ares)); 439 dsize += sizeof(adesc->resolution); 440 441 scmi_parse_range_attrs(&a->attrs, &adesc->attrs); 442 dsize += sizeof(adesc->attrs); 443 } 444 st->priv = ((u8 *)adesc + dsize); 445 446 return 0; 447 } 448 449 static int 450 iter_axes_extended_name_update_state(struct scmi_iterator_state *st, 451 const void *response, void *priv) 452 { 453 u32 flags; 454 const struct scmi_msg_resp_sensor_axis_names_description *r = response; 455 456 flags = le32_to_cpu(r->num_axis_flags); 457 st->num_returned = NUM_AXIS_RETURNED(flags); 458 st->num_remaining = NUM_AXIS_REMAINING(flags); 459 st->priv = (void *)&r->desc[0]; 460 461 return 0; 462 } 463 464 static int 465 iter_axes_extended_name_process_response(const struct scmi_protocol_handle *ph, 466 const void *response, 467 struct scmi_iterator_state *st, 468 void *priv) 469 { 470 struct scmi_sensor_axis_info *a; 471 const struct scmi_apriv *apriv = priv; 472 struct scmi_sensor_axis_name_descriptor *adesc = st->priv; 473 u32 axis_id = le32_to_cpu(adesc->axis_id); 474 475 if (axis_id >= st->max_resources) 476 return -EPROTO; 477 478 /* 479 * Pick the corresponding descriptor based on the axis_id embedded 480 * in the reply since the list of axes supporting extended names 481 * can be a subset of all the axes. 482 */ 483 a = &apriv->s->axis[axis_id]; 484 strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE); 485 st->priv = ++adesc; 486 487 return 0; 488 } 489 490 static int 491 scmi_sensor_axis_extended_names_get(const struct scmi_protocol_handle *ph, 492 struct scmi_sensor_info *s) 493 { 494 int ret; 495 void *iter; 496 struct scmi_iterator_ops ops = { 497 .prepare_message = iter_axes_desc_prepare_message, 498 .update_state = iter_axes_extended_name_update_state, 499 .process_response = iter_axes_extended_name_process_response, 500 }; 501 struct scmi_apriv apriv = { 502 .any_axes_support_extended_names = false, 503 .s = s, 504 }; 505 506 iter = ph->hops->iter_response_init(ph, &ops, s->num_axis, 507 SENSOR_AXIS_NAME_GET, 508 sizeof(struct scmi_msg_sensor_axis_description_get), 509 &apriv); 510 if (IS_ERR(iter)) 511 return PTR_ERR(iter); 512 513 /* 514 * Do not cause whole protocol initialization failure when failing to 515 * get extended names for axes. 516 */ 517 ret = ph->hops->iter_response_run(iter); 518 if (ret) 519 dev_warn(ph->dev, 520 "Failed to get axes extended names for %s (ret:%d).\n", 521 s->name, ret); 522 523 return 0; 524 } 525 526 static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph, 527 struct scmi_sensor_info *s, 528 u32 version) 529 { 530 int ret; 531 void *iter; 532 struct scmi_iterator_ops ops = { 533 .prepare_message = iter_axes_desc_prepare_message, 534 .update_state = iter_axes_desc_update_state, 535 .process_response = iter_axes_desc_process_response, 536 }; 537 struct scmi_apriv apriv = { 538 .any_axes_support_extended_names = false, 539 .s = s, 540 }; 541 542 s->axis = devm_kcalloc(ph->dev, s->num_axis, 543 sizeof(*s->axis), GFP_KERNEL); 544 if (!s->axis) 545 return -ENOMEM; 546 547 iter = ph->hops->iter_response_init(ph, &ops, s->num_axis, 548 SENSOR_AXIS_DESCRIPTION_GET, 549 sizeof(struct scmi_msg_sensor_axis_description_get), 550 &apriv); 551 if (IS_ERR(iter)) 552 return PTR_ERR(iter); 553 554 ret = ph->hops->iter_response_run(iter); 555 if (ret) 556 return ret; 557 558 if (PROTOCOL_REV_MAJOR(version) >= 0x3 && 559 apriv.any_axes_support_extended_names) 560 ret = scmi_sensor_axis_extended_names_get(ph, s); 561 562 return ret; 563 } 564 565 static void iter_sens_descr_prepare_message(void *message, 566 unsigned int desc_index, 567 const void *priv) 568 { 569 struct scmi_msg_sensor_description *msg = message; 570 571 msg->desc_index = cpu_to_le32(desc_index); 572 } 573 574 static int iter_sens_descr_update_state(struct scmi_iterator_state *st, 575 const void *response, void *priv) 576 { 577 const struct scmi_msg_resp_sensor_description *r = response; 578 579 st->num_returned = le16_to_cpu(r->num_returned); 580 st->num_remaining = le16_to_cpu(r->num_remaining); 581 st->priv = (void *)&r->desc[0]; 582 583 return 0; 584 } 585 586 static int 587 iter_sens_descr_process_response(const struct scmi_protocol_handle *ph, 588 const void *response, 589 struct scmi_iterator_state *st, void *priv) 590 591 { 592 int ret = 0; 593 u32 attrh, attrl; 594 size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ; 595 struct scmi_sensor_info *s; 596 struct sensors_info *si = priv; 597 const struct scmi_sensor_descriptor *sdesc = st->priv; 598 599 s = &si->sensors[st->desc_index + st->loop_idx]; 600 s->id = le32_to_cpu(sdesc->id); 601 602 attrl = le32_to_cpu(sdesc->attributes_low); 603 /* common bitfields parsing */ 604 s->async = SUPPORTS_ASYNC_READ(attrl); 605 s->num_trip_points = NUM_TRIP_POINTS(attrl); 606 /** 607 * only SCMIv3.0 specific bitfield below. 608 * Such bitfields are assumed to be zeroed on non 609 * relevant fw versions...assuming fw not buggy ! 610 */ 611 if (si->notify_continuos_update_cmd) 612 s->update = SUPPORTS_UPDATE_NOTIFY(attrl); 613 s->timestamped = SUPPORTS_TIMESTAMP(attrl); 614 if (s->timestamped) 615 s->tstamp_scale = S32_EXT(SENSOR_TSTAMP_EXP(attrl)); 616 s->extended_scalar_attrs = SUPPORTS_EXTEND_ATTRS(attrl); 617 618 attrh = le32_to_cpu(sdesc->attributes_high); 619 /* common bitfields parsing */ 620 s->scale = S32_EXT(SENSOR_SCALE(attrh)); 621 s->type = SENSOR_TYPE(attrh); 622 /* Use pre-allocated pool wherever possible */ 623 s->intervals.desc = s->intervals.prealloc_pool; 624 if (si->version == SCMIv2_SENSOR_PROTOCOL) { 625 s->intervals.segmented = false; 626 s->intervals.count = 1; 627 /* 628 * Convert SCMIv2.0 update interval format to 629 * SCMIv3.0 to be used as the common exposed 630 * descriptor, accessible via common macros. 631 */ 632 s->intervals.desc[0] = (SENSOR_UPDATE_BASE(attrh) << 5) | 633 SENSOR_UPDATE_SCALE(attrh); 634 } else { 635 /* 636 * From SCMIv3.0 update intervals are retrieved 637 * via a dedicated (optional) command. 638 * Since the command is optional, on error carry 639 * on without any update interval. 640 */ 641 if (scmi_sensor_update_intervals(ph, s)) 642 dev_dbg(ph->dev, 643 "Update Intervals not available for sensor ID:%d\n", 644 s->id); 645 } 646 /** 647 * only > SCMIv2.0 specific bitfield below. 648 * Such bitfields are assumed to be zeroed on non 649 * relevant fw versions...assuming fw not buggy ! 650 */ 651 s->num_axis = min_t(unsigned int, 652 SUPPORTS_AXIS(attrh) ? 653 SENSOR_AXIS_NUMBER(attrh) : 0, 654 SCMI_MAX_NUM_SENSOR_AXIS); 655 strscpy(s->name, sdesc->name, SCMI_SHORT_NAME_MAX_SIZE); 656 657 /* 658 * If supported overwrite short name with the extended 659 * one; on error just carry on and use already provided 660 * short name. 661 */ 662 if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 && 663 SUPPORTS_EXTENDED_NAMES(attrl)) 664 ph->hops->extended_name_get(ph, SENSOR_NAME_GET, s->id, 665 NULL, s->name, SCMI_MAX_STR_SIZE); 666 667 if (s->extended_scalar_attrs) { 668 s->sensor_power = le32_to_cpu(sdesc->power); 669 dsize += sizeof(sdesc->power); 670 671 /* Only for sensors reporting scalar values */ 672 if (s->num_axis == 0) { 673 unsigned int sres = le32_to_cpu(sdesc->resolution); 674 675 s->resolution = SENSOR_RES(sres); 676 s->exponent = S32_EXT(SENSOR_RES_EXP(sres)); 677 dsize += sizeof(sdesc->resolution); 678 679 scmi_parse_range_attrs(&s->scalar_attrs, 680 &sdesc->scalar_attrs); 681 dsize += sizeof(sdesc->scalar_attrs); 682 } 683 } 684 685 if (s->num_axis > 0) 686 ret = scmi_sensor_axis_description(ph, s, si->version); 687 688 st->priv = ((u8 *)sdesc + dsize); 689 690 return ret; 691 } 692 693 static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph, 694 struct sensors_info *si) 695 { 696 void *iter; 697 struct scmi_iterator_ops ops = { 698 .prepare_message = iter_sens_descr_prepare_message, 699 .update_state = iter_sens_descr_update_state, 700 .process_response = iter_sens_descr_process_response, 701 }; 702 703 iter = ph->hops->iter_response_init(ph, &ops, si->num_sensors, 704 SENSOR_DESCRIPTION_GET, 705 sizeof(__le32), si); 706 if (IS_ERR(iter)) 707 return PTR_ERR(iter); 708 709 return ph->hops->iter_response_run(iter); 710 } 711 712 static inline int 713 scmi_sensor_request_notify(const struct scmi_protocol_handle *ph, u32 sensor_id, 714 u8 message_id, bool enable) 715 { 716 int ret; 717 u32 evt_cntl = enable ? SENSOR_NOTIFY_ALL : 0; 718 struct scmi_xfer *t; 719 struct scmi_msg_sensor_request_notify *cfg; 720 721 ret = ph->xops->xfer_get_init(ph, message_id, sizeof(*cfg), 0, &t); 722 if (ret) 723 return ret; 724 725 cfg = t->tx.buf; 726 cfg->id = cpu_to_le32(sensor_id); 727 cfg->event_control = cpu_to_le32(evt_cntl); 728 729 ret = ph->xops->do_xfer(ph, t); 730 731 ph->xops->xfer_put(ph, t); 732 return ret; 733 } 734 735 static int scmi_sensor_trip_point_notify(const struct scmi_protocol_handle *ph, 736 u32 sensor_id, bool enable) 737 { 738 return scmi_sensor_request_notify(ph, sensor_id, 739 SENSOR_TRIP_POINT_NOTIFY, 740 enable); 741 } 742 743 static int 744 scmi_sensor_continuous_update_notify(const struct scmi_protocol_handle *ph, 745 u32 sensor_id, bool enable) 746 { 747 return scmi_sensor_request_notify(ph, sensor_id, 748 SENSOR_CONTINUOUS_UPDATE_NOTIFY, 749 enable); 750 } 751 752 static int 753 scmi_sensor_trip_point_config(const struct scmi_protocol_handle *ph, 754 u32 sensor_id, u8 trip_id, u64 trip_value) 755 { 756 int ret; 757 u32 evt_cntl = SENSOR_TP_BOTH; 758 struct scmi_xfer *t; 759 struct scmi_msg_set_sensor_trip_point *trip; 760 761 ret = ph->xops->xfer_get_init(ph, SENSOR_TRIP_POINT_CONFIG, 762 sizeof(*trip), 0, &t); 763 if (ret) 764 return ret; 765 766 trip = t->tx.buf; 767 trip->id = cpu_to_le32(sensor_id); 768 trip->event_control = cpu_to_le32(evt_cntl | SENSOR_TP_ID(trip_id)); 769 trip->value_low = cpu_to_le32(trip_value & 0xffffffff); 770 trip->value_high = cpu_to_le32(trip_value >> 32); 771 772 ret = ph->xops->do_xfer(ph, t); 773 774 ph->xops->xfer_put(ph, t); 775 return ret; 776 } 777 778 static int scmi_sensor_config_get(const struct scmi_protocol_handle *ph, 779 u32 sensor_id, u32 *sensor_config) 780 { 781 int ret; 782 struct scmi_xfer *t; 783 struct sensors_info *si = ph->get_priv(ph); 784 785 if (sensor_id >= si->num_sensors) 786 return -EINVAL; 787 788 ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_GET, 789 sizeof(__le32), sizeof(__le32), &t); 790 if (ret) 791 return ret; 792 793 put_unaligned_le32(sensor_id, t->tx.buf); 794 ret = ph->xops->do_xfer(ph, t); 795 if (!ret) { 796 struct scmi_sensor_info *s = si->sensors + sensor_id; 797 798 *sensor_config = get_unaligned_le64(t->rx.buf); 799 s->sensor_config = *sensor_config; 800 } 801 802 ph->xops->xfer_put(ph, t); 803 return ret; 804 } 805 806 static int scmi_sensor_config_set(const struct scmi_protocol_handle *ph, 807 u32 sensor_id, u32 sensor_config) 808 { 809 int ret; 810 struct scmi_xfer *t; 811 struct scmi_msg_sensor_config_set *msg; 812 struct sensors_info *si = ph->get_priv(ph); 813 814 if (sensor_id >= si->num_sensors) 815 return -EINVAL; 816 817 ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_SET, 818 sizeof(*msg), 0, &t); 819 if (ret) 820 return ret; 821 822 msg = t->tx.buf; 823 msg->id = cpu_to_le32(sensor_id); 824 msg->sensor_config = cpu_to_le32(sensor_config); 825 826 ret = ph->xops->do_xfer(ph, t); 827 if (!ret) { 828 struct scmi_sensor_info *s = si->sensors + sensor_id; 829 830 s->sensor_config = sensor_config; 831 } 832 833 ph->xops->xfer_put(ph, t); 834 return ret; 835 } 836 837 /** 838 * scmi_sensor_reading_get - Read scalar sensor value 839 * @ph: Protocol handle 840 * @sensor_id: Sensor ID 841 * @value: The 64bit value sensor reading 842 * 843 * This function returns a single 64 bit reading value representing the sensor 844 * value; if the platform SCMI Protocol implementation and the sensor support 845 * multiple axis and timestamped-reads, this just returns the first axis while 846 * dropping the timestamp value. 847 * Use instead the @scmi_sensor_reading_get_timestamped to retrieve the array of 848 * timestamped multi-axis values. 849 * 850 * Return: 0 on Success 851 */ 852 static int scmi_sensor_reading_get(const struct scmi_protocol_handle *ph, 853 u32 sensor_id, u64 *value) 854 { 855 int ret; 856 struct scmi_xfer *t; 857 struct scmi_msg_sensor_reading_get *sensor; 858 struct scmi_sensor_info *s; 859 struct sensors_info *si = ph->get_priv(ph); 860 861 if (sensor_id >= si->num_sensors) 862 return -EINVAL; 863 864 ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET, 865 sizeof(*sensor), 0, &t); 866 if (ret) 867 return ret; 868 869 sensor = t->tx.buf; 870 sensor->id = cpu_to_le32(sensor_id); 871 s = si->sensors + sensor_id; 872 if (s->async) { 873 sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC); 874 ret = ph->xops->do_xfer_with_response(ph, t); 875 if (!ret) { 876 struct scmi_resp_sensor_reading_complete *resp; 877 878 resp = t->rx.buf; 879 if (le32_to_cpu(resp->id) == sensor_id) 880 *value = 881 get_unaligned_le64(&resp->readings_low); 882 else 883 ret = -EPROTO; 884 } 885 } else { 886 sensor->flags = cpu_to_le32(0); 887 ret = ph->xops->do_xfer(ph, t); 888 if (!ret) 889 *value = get_unaligned_le64(t->rx.buf); 890 } 891 892 ph->xops->xfer_put(ph, t); 893 return ret; 894 } 895 896 static inline void 897 scmi_parse_sensor_readings(struct scmi_sensor_reading *out, 898 const struct scmi_sensor_reading_resp *in) 899 { 900 out->value = get_unaligned_le64((void *)&in->sensor_value_low); 901 out->timestamp = get_unaligned_le64((void *)&in->timestamp_low); 902 } 903 904 /** 905 * scmi_sensor_reading_get_timestamped - Read multiple-axis timestamped values 906 * @ph: Protocol handle 907 * @sensor_id: Sensor ID 908 * @count: The length of the provided @readings array 909 * @readings: An array of elements each representing a timestamped per-axis 910 * reading of type @struct scmi_sensor_reading. 911 * Returned readings are ordered as the @axis descriptors array 912 * included in @struct scmi_sensor_info and the max number of 913 * returned elements is min(@count, @num_axis); ideally the provided 914 * array should be of length @count equal to @num_axis. 915 * 916 * Return: 0 on Success 917 */ 918 static int 919 scmi_sensor_reading_get_timestamped(const struct scmi_protocol_handle *ph, 920 u32 sensor_id, u8 count, 921 struct scmi_sensor_reading *readings) 922 { 923 int ret; 924 struct scmi_xfer *t; 925 struct scmi_msg_sensor_reading_get *sensor; 926 struct scmi_sensor_info *s; 927 struct sensors_info *si = ph->get_priv(ph); 928 929 if (sensor_id >= si->num_sensors) 930 return -EINVAL; 931 932 s = si->sensors + sensor_id; 933 if (!count || !readings || 934 (!s->num_axis && count > 1) || (s->num_axis && count > s->num_axis)) 935 return -EINVAL; 936 937 ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET, 938 sizeof(*sensor), 0, &t); 939 if (ret) 940 return ret; 941 942 sensor = t->tx.buf; 943 sensor->id = cpu_to_le32(sensor_id); 944 if (s->async) { 945 sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC); 946 ret = ph->xops->do_xfer_with_response(ph, t); 947 if (!ret) { 948 int i; 949 struct scmi_resp_sensor_reading_complete_v3 *resp; 950 951 resp = t->rx.buf; 952 /* Retrieve only the number of requested axis anyway */ 953 if (le32_to_cpu(resp->id) == sensor_id) 954 for (i = 0; i < count; i++) 955 scmi_parse_sensor_readings(&readings[i], 956 &resp->readings[i]); 957 else 958 ret = -EPROTO; 959 } 960 } else { 961 sensor->flags = cpu_to_le32(0); 962 ret = ph->xops->do_xfer(ph, t); 963 if (!ret) { 964 int i; 965 struct scmi_sensor_reading_resp *resp_readings; 966 967 resp_readings = t->rx.buf; 968 for (i = 0; i < count; i++) 969 scmi_parse_sensor_readings(&readings[i], 970 &resp_readings[i]); 971 } 972 } 973 974 ph->xops->xfer_put(ph, t); 975 return ret; 976 } 977 978 static const struct scmi_sensor_info * 979 scmi_sensor_info_get(const struct scmi_protocol_handle *ph, u32 sensor_id) 980 { 981 struct sensors_info *si = ph->get_priv(ph); 982 983 if (sensor_id >= si->num_sensors) 984 return NULL; 985 986 return si->sensors + sensor_id; 987 } 988 989 static int scmi_sensor_count_get(const struct scmi_protocol_handle *ph) 990 { 991 struct sensors_info *si = ph->get_priv(ph); 992 993 return si->num_sensors; 994 } 995 996 static const struct scmi_sensor_proto_ops sensor_proto_ops = { 997 .count_get = scmi_sensor_count_get, 998 .info_get = scmi_sensor_info_get, 999 .trip_point_config = scmi_sensor_trip_point_config, 1000 .reading_get = scmi_sensor_reading_get, 1001 .reading_get_timestamped = scmi_sensor_reading_get_timestamped, 1002 .config_get = scmi_sensor_config_get, 1003 .config_set = scmi_sensor_config_set, 1004 }; 1005 1006 static bool scmi_sensor_notify_supported(const struct scmi_protocol_handle *ph, 1007 u8 evt_id, u32 src_id) 1008 { 1009 bool supported = false; 1010 const struct scmi_sensor_info *s; 1011 struct sensors_info *sinfo = ph->get_priv(ph); 1012 1013 s = scmi_sensor_info_get(ph, src_id); 1014 if (!s) 1015 return false; 1016 1017 if (evt_id == SCMI_EVENT_SENSOR_TRIP_POINT_EVENT) 1018 supported = sinfo->notify_trip_point_cmd; 1019 else if (evt_id == SCMI_EVENT_SENSOR_UPDATE) 1020 supported = s->update; 1021 1022 return supported; 1023 } 1024 1025 static int scmi_sensor_set_notify_enabled(const struct scmi_protocol_handle *ph, 1026 u8 evt_id, u32 src_id, bool enable) 1027 { 1028 int ret; 1029 1030 switch (evt_id) { 1031 case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT: 1032 ret = scmi_sensor_trip_point_notify(ph, src_id, enable); 1033 break; 1034 case SCMI_EVENT_SENSOR_UPDATE: 1035 ret = scmi_sensor_continuous_update_notify(ph, src_id, enable); 1036 break; 1037 default: 1038 ret = -EINVAL; 1039 break; 1040 } 1041 1042 if (ret) 1043 pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n", 1044 evt_id, src_id, ret); 1045 1046 return ret; 1047 } 1048 1049 static void * 1050 scmi_sensor_fill_custom_report(const struct scmi_protocol_handle *ph, 1051 u8 evt_id, ktime_t timestamp, 1052 const void *payld, size_t payld_sz, 1053 void *report, u32 *src_id) 1054 { 1055 void *rep = NULL; 1056 1057 switch (evt_id) { 1058 case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT: 1059 { 1060 const struct scmi_sensor_trip_notify_payld *p = payld; 1061 struct scmi_sensor_trip_point_report *r = report; 1062 1063 if (sizeof(*p) != payld_sz) 1064 break; 1065 1066 r->timestamp = timestamp; 1067 r->agent_id = le32_to_cpu(p->agent_id); 1068 r->sensor_id = le32_to_cpu(p->sensor_id); 1069 r->trip_point_desc = le32_to_cpu(p->trip_point_desc); 1070 *src_id = r->sensor_id; 1071 rep = r; 1072 break; 1073 } 1074 case SCMI_EVENT_SENSOR_UPDATE: 1075 { 1076 int i; 1077 struct scmi_sensor_info *s; 1078 const struct scmi_sensor_update_notify_payld *p = payld; 1079 struct scmi_sensor_update_report *r = report; 1080 struct sensors_info *sinfo = ph->get_priv(ph); 1081 1082 /* payld_sz is variable for this event */ 1083 r->sensor_id = le32_to_cpu(p->sensor_id); 1084 if (r->sensor_id >= sinfo->num_sensors) 1085 break; 1086 r->timestamp = timestamp; 1087 r->agent_id = le32_to_cpu(p->agent_id); 1088 s = &sinfo->sensors[r->sensor_id]; 1089 /* 1090 * The generated report r (@struct scmi_sensor_update_report) 1091 * was pre-allocated to contain up to SCMI_MAX_NUM_SENSOR_AXIS 1092 * readings: here it is filled with the effective @num_axis 1093 * readings defined for this sensor or 1 for scalar sensors. 1094 */ 1095 r->readings_count = s->num_axis ?: 1; 1096 for (i = 0; i < r->readings_count; i++) 1097 scmi_parse_sensor_readings(&r->readings[i], 1098 &p->readings[i]); 1099 *src_id = r->sensor_id; 1100 rep = r; 1101 break; 1102 } 1103 default: 1104 break; 1105 } 1106 1107 return rep; 1108 } 1109 1110 static int scmi_sensor_get_num_sources(const struct scmi_protocol_handle *ph) 1111 { 1112 struct sensors_info *si = ph->get_priv(ph); 1113 1114 return si->num_sensors; 1115 } 1116 1117 static const struct scmi_event sensor_events[] = { 1118 { 1119 .id = SCMI_EVENT_SENSOR_TRIP_POINT_EVENT, 1120 .max_payld_sz = sizeof(struct scmi_sensor_trip_notify_payld), 1121 .max_report_sz = sizeof(struct scmi_sensor_trip_point_report), 1122 }, 1123 { 1124 .id = SCMI_EVENT_SENSOR_UPDATE, 1125 .max_payld_sz = 1126 sizeof(struct scmi_sensor_update_notify_payld) + 1127 SCMI_MAX_NUM_SENSOR_AXIS * 1128 sizeof(struct scmi_sensor_reading_resp), 1129 .max_report_sz = sizeof(struct scmi_sensor_update_report) + 1130 SCMI_MAX_NUM_SENSOR_AXIS * 1131 sizeof(struct scmi_sensor_reading), 1132 }, 1133 }; 1134 1135 static const struct scmi_event_ops sensor_event_ops = { 1136 .is_notify_supported = scmi_sensor_notify_supported, 1137 .get_num_sources = scmi_sensor_get_num_sources, 1138 .set_notify_enabled = scmi_sensor_set_notify_enabled, 1139 .fill_custom_report = scmi_sensor_fill_custom_report, 1140 }; 1141 1142 static const struct scmi_protocol_events sensor_protocol_events = { 1143 .queue_sz = SCMI_PROTO_QUEUE_SZ, 1144 .ops = &sensor_event_ops, 1145 .evts = sensor_events, 1146 .num_events = ARRAY_SIZE(sensor_events), 1147 }; 1148 1149 static int scmi_sensors_protocol_init(const struct scmi_protocol_handle *ph) 1150 { 1151 u32 version; 1152 int ret; 1153 struct sensors_info *sinfo; 1154 1155 ret = ph->xops->version_get(ph, &version); 1156 if (ret) 1157 return ret; 1158 1159 dev_dbg(ph->dev, "Sensor Version %d.%d\n", 1160 PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version)); 1161 1162 sinfo = devm_kzalloc(ph->dev, sizeof(*sinfo), GFP_KERNEL); 1163 if (!sinfo) 1164 return -ENOMEM; 1165 sinfo->version = version; 1166 1167 ret = scmi_sensor_attributes_get(ph, sinfo); 1168 if (ret) 1169 return ret; 1170 sinfo->sensors = devm_kcalloc(ph->dev, sinfo->num_sensors, 1171 sizeof(*sinfo->sensors), GFP_KERNEL); 1172 if (!sinfo->sensors) 1173 return -ENOMEM; 1174 1175 ret = scmi_sensor_description_get(ph, sinfo); 1176 if (ret) 1177 return ret; 1178 1179 return ph->set_priv(ph, sinfo, version); 1180 } 1181 1182 static const struct scmi_protocol scmi_sensors = { 1183 .id = SCMI_PROTOCOL_SENSOR, 1184 .owner = THIS_MODULE, 1185 .instance_init = &scmi_sensors_protocol_init, 1186 .ops = &sensor_proto_ops, 1187 .events = &sensor_protocol_events, 1188 .supported_version = SCMI_PROTOCOL_SUPPORTED_VERSION, 1189 }; 1190 1191 DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(sensors, scmi_sensors) 1192