xref: /linux/drivers/firmware/arm_scmi/driver.c (revision e995f5dd9a9cef818af32ec60fc38d68614afd12)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Message Protocol driver
4  *
5  * SCMI Message Protocol is used between the System Control Processor(SCP)
6  * and the Application Processors(AP). The Message Handling Unit(MHU)
7  * provides a mechanism for inter-processor communication between SCP's
8  * Cortex M3 and AP.
9  *
10  * SCP offers control and management of the core/cluster power states,
11  * various power domain DVFS including the core/cluster, certain system
12  * clocks configuration, thermal sensors and many others.
13  *
14  * Copyright (C) 2018-2021 ARM Ltd.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/hashtable.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of.h>
32 #include <linux/platform_device.h>
33 #include <linux/processor.h>
34 #include <linux/refcount.h>
35 #include <linux/slab.h>
36 
37 #include "common.h"
38 #include "notify.h"
39 
40 #include "raw_mode.h"
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/scmi.h>
44 
45 static DEFINE_IDA(scmi_id);
46 
47 static DEFINE_IDR(scmi_protocols);
48 static DEFINE_SPINLOCK(protocol_lock);
49 
50 /* List of all SCMI devices active in system */
51 static LIST_HEAD(scmi_list);
52 /* Protection for the entire list */
53 static DEFINE_MUTEX(scmi_list_mutex);
54 /* Track the unique id for the transfers for debug & profiling purpose */
55 static atomic_t transfer_last_id;
56 
57 static struct dentry *scmi_top_dentry;
58 
59 /**
60  * struct scmi_xfers_info - Structure to manage transfer information
61  *
62  * @xfer_alloc_table: Bitmap table for allocated messages.
63  *	Index of this bitmap table is also used for message
64  *	sequence identifier.
65  * @xfer_lock: Protection for message allocation
66  * @max_msg: Maximum number of messages that can be pending
67  * @free_xfers: A free list for available to use xfers. It is initialized with
68  *		a number of xfers equal to the maximum allowed in-flight
69  *		messages.
70  * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
71  *		   currently in-flight messages.
72  */
73 struct scmi_xfers_info {
74 	unsigned long *xfer_alloc_table;
75 	spinlock_t xfer_lock;
76 	int max_msg;
77 	struct hlist_head free_xfers;
78 	DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
79 };
80 
81 /**
82  * struct scmi_protocol_instance  - Describe an initialized protocol instance.
83  * @handle: Reference to the SCMI handle associated to this protocol instance.
84  * @proto: A reference to the protocol descriptor.
85  * @gid: A reference for per-protocol devres management.
86  * @users: A refcount to track effective users of this protocol.
87  * @priv: Reference for optional protocol private data.
88  * @version: Protocol version supported by the platform as detected at runtime.
89  * @negotiated_version: When the platform supports a newer protocol version,
90  *			the agent will try to negotiate with the platform the
91  *			usage of the newest version known to it, since
92  *			backward compatibility is NOT automatically assured.
93  *			This field is NON-zero when a successful negotiation
94  *			has completed.
95  * @ph: An embedded protocol handle that will be passed down to protocol
96  *	initialization code to identify this instance.
97  *
98  * Each protocol is initialized independently once for each SCMI platform in
99  * which is defined by DT and implemented by the SCMI server fw.
100  */
101 struct scmi_protocol_instance {
102 	const struct scmi_handle	*handle;
103 	const struct scmi_protocol	*proto;
104 	void				*gid;
105 	refcount_t			users;
106 	void				*priv;
107 	unsigned int			version;
108 	unsigned int			negotiated_version;
109 	struct scmi_protocol_handle	ph;
110 };
111 
112 #define ph_to_pi(h)	container_of(h, struct scmi_protocol_instance, ph)
113 
114 /**
115  * struct scmi_debug_info  - Debug common info
116  * @top_dentry: A reference to the top debugfs dentry
117  * @name: Name of this SCMI instance
118  * @type: Type of this SCMI instance
119  * @is_atomic: Flag to state if the transport of this instance is atomic
120  */
121 struct scmi_debug_info {
122 	struct dentry *top_dentry;
123 	const char *name;
124 	const char *type;
125 	bool is_atomic;
126 };
127 
128 /**
129  * struct scmi_info - Structure representing a SCMI instance
130  *
131  * @id: A sequence number starting from zero identifying this instance
132  * @dev: Device pointer
133  * @desc: SoC description for this instance
134  * @version: SCMI revision information containing protocol version,
135  *	implementation version and (sub-)vendor identification.
136  * @handle: Instance of SCMI handle to send to clients
137  * @tx_minfo: Universal Transmit Message management info
138  * @rx_minfo: Universal Receive Message management info
139  * @tx_idr: IDR object to map protocol id to Tx channel info pointer
140  * @rx_idr: IDR object to map protocol id to Rx channel info pointer
141  * @protocols: IDR for protocols' instance descriptors initialized for
142  *	       this SCMI instance: populated on protocol's first attempted
143  *	       usage.
144  * @protocols_mtx: A mutex to protect protocols instances initialization.
145  * @protocols_imp: List of protocols implemented, currently maximum of
146  *		   scmi_revision_info.num_protocols elements allocated by the
147  *		   base protocol
148  * @active_protocols: IDR storing device_nodes for protocols actually defined
149  *		      in the DT and confirmed as implemented by fw.
150  * @atomic_threshold: Optional system wide DT-configured threshold, expressed
151  *		      in microseconds, for atomic operations.
152  *		      Only SCMI synchronous commands reported by the platform
153  *		      to have an execution latency lesser-equal to the threshold
154  *		      should be considered for atomic mode operation: such
155  *		      decision is finally left up to the SCMI drivers.
156  * @notify_priv: Pointer to private data structure specific to notifications.
157  * @node: List head
158  * @users: Number of users of this instance
159  * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
160  * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
161  *		bus
162  * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
163  * @dbg: A pointer to debugfs related data (if any)
164  * @raw: An opaque reference handle used by SCMI Raw mode.
165  */
166 struct scmi_info {
167 	int id;
168 	struct device *dev;
169 	const struct scmi_desc *desc;
170 	struct scmi_revision_info version;
171 	struct scmi_handle handle;
172 	struct scmi_xfers_info tx_minfo;
173 	struct scmi_xfers_info rx_minfo;
174 	struct idr tx_idr;
175 	struct idr rx_idr;
176 	struct idr protocols;
177 	/* Ensure mutual exclusive access to protocols instance array */
178 	struct mutex protocols_mtx;
179 	u8 *protocols_imp;
180 	struct idr active_protocols;
181 	unsigned int atomic_threshold;
182 	void *notify_priv;
183 	struct list_head node;
184 	int users;
185 	struct notifier_block bus_nb;
186 	struct notifier_block dev_req_nb;
187 	/* Serialize device creation process for this instance */
188 	struct mutex devreq_mtx;
189 	struct scmi_debug_info *dbg;
190 	void *raw;
191 };
192 
193 #define handle_to_scmi_info(h)	container_of(h, struct scmi_info, handle)
194 #define bus_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, bus_nb)
195 #define req_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, dev_req_nb)
196 
197 static const struct scmi_protocol *scmi_protocol_get(int protocol_id)
198 {
199 	const struct scmi_protocol *proto;
200 
201 	proto = idr_find(&scmi_protocols, protocol_id);
202 	if (!proto || !try_module_get(proto->owner)) {
203 		pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
204 		return NULL;
205 	}
206 
207 	pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
208 
209 	return proto;
210 }
211 
212 static void scmi_protocol_put(int protocol_id)
213 {
214 	const struct scmi_protocol *proto;
215 
216 	proto = idr_find(&scmi_protocols, protocol_id);
217 	if (proto)
218 		module_put(proto->owner);
219 }
220 
221 int scmi_protocol_register(const struct scmi_protocol *proto)
222 {
223 	int ret;
224 
225 	if (!proto) {
226 		pr_err("invalid protocol\n");
227 		return -EINVAL;
228 	}
229 
230 	if (!proto->instance_init) {
231 		pr_err("missing init for protocol 0x%x\n", proto->id);
232 		return -EINVAL;
233 	}
234 
235 	spin_lock(&protocol_lock);
236 	ret = idr_alloc(&scmi_protocols, (void *)proto,
237 			proto->id, proto->id + 1, GFP_ATOMIC);
238 	spin_unlock(&protocol_lock);
239 	if (ret != proto->id) {
240 		pr_err("unable to allocate SCMI idr slot for 0x%x - err %d\n",
241 		       proto->id, ret);
242 		return ret;
243 	}
244 
245 	pr_debug("Registered SCMI Protocol 0x%x\n", proto->id);
246 
247 	return 0;
248 }
249 EXPORT_SYMBOL_GPL(scmi_protocol_register);
250 
251 void scmi_protocol_unregister(const struct scmi_protocol *proto)
252 {
253 	spin_lock(&protocol_lock);
254 	idr_remove(&scmi_protocols, proto->id);
255 	spin_unlock(&protocol_lock);
256 
257 	pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
258 }
259 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
260 
261 /**
262  * scmi_create_protocol_devices  - Create devices for all pending requests for
263  * this SCMI instance.
264  *
265  * @np: The device node describing the protocol
266  * @info: The SCMI instance descriptor
267  * @prot_id: The protocol ID
268  * @name: The optional name of the device to be created: if not provided this
269  *	  call will lead to the creation of all the devices currently requested
270  *	  for the specified protocol.
271  */
272 static void scmi_create_protocol_devices(struct device_node *np,
273 					 struct scmi_info *info,
274 					 int prot_id, const char *name)
275 {
276 	struct scmi_device *sdev;
277 
278 	mutex_lock(&info->devreq_mtx);
279 	sdev = scmi_device_create(np, info->dev, prot_id, name);
280 	if (name && !sdev)
281 		dev_err(info->dev,
282 			"failed to create device for protocol 0x%X (%s)\n",
283 			prot_id, name);
284 	mutex_unlock(&info->devreq_mtx);
285 }
286 
287 static void scmi_destroy_protocol_devices(struct scmi_info *info,
288 					  int prot_id, const char *name)
289 {
290 	mutex_lock(&info->devreq_mtx);
291 	scmi_device_destroy(info->dev, prot_id, name);
292 	mutex_unlock(&info->devreq_mtx);
293 }
294 
295 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
296 					 void *priv)
297 {
298 	struct scmi_info *info = handle_to_scmi_info(handle);
299 
300 	info->notify_priv = priv;
301 	/* Ensure updated protocol private date are visible */
302 	smp_wmb();
303 }
304 
305 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
306 {
307 	struct scmi_info *info = handle_to_scmi_info(handle);
308 
309 	/* Ensure protocols_private_data has been updated */
310 	smp_rmb();
311 	return info->notify_priv;
312 }
313 
314 /**
315  * scmi_xfer_token_set  - Reserve and set new token for the xfer at hand
316  *
317  * @minfo: Pointer to Tx/Rx Message management info based on channel type
318  * @xfer: The xfer to act upon
319  *
320  * Pick the next unused monotonically increasing token and set it into
321  * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
322  * reuse of freshly completed or timed-out xfers, thus mitigating the risk
323  * of incorrect association of a late and expired xfer with a live in-flight
324  * transaction, both happening to re-use the same token identifier.
325  *
326  * Since platform is NOT required to answer our request in-order we should
327  * account for a few rare but possible scenarios:
328  *
329  *  - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
330  *    using find_next_zero_bit() starting from candidate next_token bit
331  *
332  *  - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
333  *    are plenty of free tokens at start, so try a second pass using
334  *    find_next_zero_bit() and starting from 0.
335  *
336  *  X = used in-flight
337  *
338  * Normal
339  * ------
340  *
341  *		|- xfer_id picked
342  *   -----------+----------------------------------------------------------
343  *   | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
344  *   ----------------------------------------------------------------------
345  *		^
346  *		|- next_token
347  *
348  * Out-of-order pending at start
349  * -----------------------------
350  *
351  *	  |- xfer_id picked, last_token fixed
352  *   -----+----------------------------------------------------------------
353  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
354  *   ----------------------------------------------------------------------
355  *    ^
356  *    |- next_token
357  *
358  *
359  * Out-of-order pending at end
360  * ---------------------------
361  *
362  *	  |- xfer_id picked, last_token fixed
363  *   -----+----------------------------------------------------------------
364  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
365  *   ----------------------------------------------------------------------
366  *								^
367  *								|- next_token
368  *
369  * Context: Assumes to be called with @xfer_lock already acquired.
370  *
371  * Return: 0 on Success or error
372  */
373 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
374 			       struct scmi_xfer *xfer)
375 {
376 	unsigned long xfer_id, next_token;
377 
378 	/*
379 	 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
380 	 * using the pre-allocated transfer_id as a base.
381 	 * Note that the global transfer_id is shared across all message types
382 	 * so there could be holes in the allocated set of monotonic sequence
383 	 * numbers, but that is going to limit the effectiveness of the
384 	 * mitigation only in very rare limit conditions.
385 	 */
386 	next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
387 
388 	/* Pick the next available xfer_id >= next_token */
389 	xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
390 				     MSG_TOKEN_MAX, next_token);
391 	if (xfer_id == MSG_TOKEN_MAX) {
392 		/*
393 		 * After heavily out-of-order responses, there are no free
394 		 * tokens ahead, but only at start of xfer_alloc_table so
395 		 * try again from the beginning.
396 		 */
397 		xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
398 					     MSG_TOKEN_MAX, 0);
399 		/*
400 		 * Something is wrong if we got here since there can be a
401 		 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
402 		 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
403 		 */
404 		if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
405 			return -ENOMEM;
406 	}
407 
408 	/* Update +/- last_token accordingly if we skipped some hole */
409 	if (xfer_id != next_token)
410 		atomic_add((int)(xfer_id - next_token), &transfer_last_id);
411 
412 	xfer->hdr.seq = (u16)xfer_id;
413 
414 	return 0;
415 }
416 
417 /**
418  * scmi_xfer_token_clear  - Release the token
419  *
420  * @minfo: Pointer to Tx/Rx Message management info based on channel type
421  * @xfer: The xfer to act upon
422  */
423 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
424 					 struct scmi_xfer *xfer)
425 {
426 	clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
427 }
428 
429 /**
430  * scmi_xfer_inflight_register_unlocked  - Register the xfer as in-flight
431  *
432  * @xfer: The xfer to register
433  * @minfo: Pointer to Tx/Rx Message management info based on channel type
434  *
435  * Note that this helper assumes that the xfer to be registered as in-flight
436  * had been built using an xfer sequence number which still corresponds to a
437  * free slot in the xfer_alloc_table.
438  *
439  * Context: Assumes to be called with @xfer_lock already acquired.
440  */
441 static inline void
442 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
443 				     struct scmi_xfers_info *minfo)
444 {
445 	/* Set in-flight */
446 	set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
447 	hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
448 	xfer->pending = true;
449 }
450 
451 /**
452  * scmi_xfer_inflight_register  - Try to register an xfer as in-flight
453  *
454  * @xfer: The xfer to register
455  * @minfo: Pointer to Tx/Rx Message management info based on channel type
456  *
457  * Note that this helper does NOT assume anything about the sequence number
458  * that was baked into the provided xfer, so it checks at first if it can
459  * be mapped to a free slot and fails with an error if another xfer with the
460  * same sequence number is currently still registered as in-flight.
461  *
462  * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
463  *	   could not rbe mapped to a free slot in the xfer_alloc_table.
464  */
465 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
466 				       struct scmi_xfers_info *minfo)
467 {
468 	int ret = 0;
469 	unsigned long flags;
470 
471 	spin_lock_irqsave(&minfo->xfer_lock, flags);
472 	if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
473 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
474 	else
475 		ret = -EBUSY;
476 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
477 
478 	return ret;
479 }
480 
481 /**
482  * scmi_xfer_raw_inflight_register  - An helper to register the given xfer as in
483  * flight on the TX channel, if possible.
484  *
485  * @handle: Pointer to SCMI entity handle
486  * @xfer: The xfer to register
487  *
488  * Return: 0 on Success, error otherwise
489  */
490 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
491 				    struct scmi_xfer *xfer)
492 {
493 	struct scmi_info *info = handle_to_scmi_info(handle);
494 
495 	return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
496 }
497 
498 /**
499  * scmi_xfer_pending_set  - Pick a proper sequence number and mark the xfer
500  * as pending in-flight
501  *
502  * @xfer: The xfer to act upon
503  * @minfo: Pointer to Tx/Rx Message management info based on channel type
504  *
505  * Return: 0 on Success or error otherwise
506  */
507 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
508 					struct scmi_xfers_info *minfo)
509 {
510 	int ret;
511 	unsigned long flags;
512 
513 	spin_lock_irqsave(&minfo->xfer_lock, flags);
514 	/* Set a new monotonic token as the xfer sequence number */
515 	ret = scmi_xfer_token_set(minfo, xfer);
516 	if (!ret)
517 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
518 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
519 
520 	return ret;
521 }
522 
523 /**
524  * scmi_xfer_get() - Allocate one message
525  *
526  * @handle: Pointer to SCMI entity handle
527  * @minfo: Pointer to Tx/Rx Message management info based on channel type
528  *
529  * Helper function which is used by various message functions that are
530  * exposed to clients of this driver for allocating a message traffic event.
531  *
532  * Picks an xfer from the free list @free_xfers (if any available) and perform
533  * a basic initialization.
534  *
535  * Note that, at this point, still no sequence number is assigned to the
536  * allocated xfer, nor it is registered as a pending transaction.
537  *
538  * The successfully initialized xfer is refcounted.
539  *
540  * Context: Holds @xfer_lock while manipulating @free_xfers.
541  *
542  * Return: An initialized xfer if all went fine, else pointer error.
543  */
544 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
545 				       struct scmi_xfers_info *minfo)
546 {
547 	unsigned long flags;
548 	struct scmi_xfer *xfer;
549 
550 	spin_lock_irqsave(&minfo->xfer_lock, flags);
551 	if (hlist_empty(&minfo->free_xfers)) {
552 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
553 		return ERR_PTR(-ENOMEM);
554 	}
555 
556 	/* grab an xfer from the free_list */
557 	xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
558 	hlist_del_init(&xfer->node);
559 
560 	/*
561 	 * Allocate transfer_id early so that can be used also as base for
562 	 * monotonic sequence number generation if needed.
563 	 */
564 	xfer->transfer_id = atomic_inc_return(&transfer_last_id);
565 
566 	refcount_set(&xfer->users, 1);
567 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
568 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
569 
570 	return xfer;
571 }
572 
573 /**
574  * scmi_xfer_raw_get  - Helper to get a bare free xfer from the TX channel
575  *
576  * @handle: Pointer to SCMI entity handle
577  *
578  * Note that xfer is taken from the TX channel structures.
579  *
580  * Return: A valid xfer on Success, or an error-pointer otherwise
581  */
582 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
583 {
584 	struct scmi_xfer *xfer;
585 	struct scmi_info *info = handle_to_scmi_info(handle);
586 
587 	xfer = scmi_xfer_get(handle, &info->tx_minfo);
588 	if (!IS_ERR(xfer))
589 		xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
590 
591 	return xfer;
592 }
593 
594 /**
595  * scmi_xfer_raw_channel_get  - Helper to get a reference to the proper channel
596  * to use for a specific protocol_id Raw transaction.
597  *
598  * @handle: Pointer to SCMI entity handle
599  * @protocol_id: Identifier of the protocol
600  *
601  * Note that in a regular SCMI stack, usually, a protocol has to be defined in
602  * the DT to have an associated channel and be usable; but in Raw mode any
603  * protocol in range is allowed, re-using the Base channel, so as to enable
604  * fuzzing on any protocol without the need of a fully compiled DT.
605  *
606  * Return: A reference to the channel to use, or an ERR_PTR
607  */
608 struct scmi_chan_info *
609 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
610 {
611 	struct scmi_chan_info *cinfo;
612 	struct scmi_info *info = handle_to_scmi_info(handle);
613 
614 	cinfo = idr_find(&info->tx_idr, protocol_id);
615 	if (!cinfo) {
616 		if (protocol_id == SCMI_PROTOCOL_BASE)
617 			return ERR_PTR(-EINVAL);
618 		/* Use Base channel for protocols not defined for DT */
619 		cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
620 		if (!cinfo)
621 			return ERR_PTR(-EINVAL);
622 		dev_warn_once(handle->dev,
623 			      "Using Base channel for protocol 0x%X\n",
624 			      protocol_id);
625 	}
626 
627 	return cinfo;
628 }
629 
630 /**
631  * __scmi_xfer_put() - Release a message
632  *
633  * @minfo: Pointer to Tx/Rx Message management info based on channel type
634  * @xfer: message that was reserved by scmi_xfer_get
635  *
636  * After refcount check, possibly release an xfer, clearing the token slot,
637  * removing xfer from @pending_xfers and putting it back into free_xfers.
638  *
639  * This holds a spinlock to maintain integrity of internal data structures.
640  */
641 static void
642 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
643 {
644 	unsigned long flags;
645 
646 	spin_lock_irqsave(&minfo->xfer_lock, flags);
647 	if (refcount_dec_and_test(&xfer->users)) {
648 		if (xfer->pending) {
649 			scmi_xfer_token_clear(minfo, xfer);
650 			hash_del(&xfer->node);
651 			xfer->pending = false;
652 		}
653 		hlist_add_head(&xfer->node, &minfo->free_xfers);
654 	}
655 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
656 }
657 
658 /**
659  * scmi_xfer_raw_put  - Release an xfer that was taken by @scmi_xfer_raw_get
660  *
661  * @handle: Pointer to SCMI entity handle
662  * @xfer: A reference to the xfer to put
663  *
664  * Note that as with other xfer_put() handlers the xfer is really effectively
665  * released only if there are no more users on the system.
666  */
667 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
668 {
669 	struct scmi_info *info = handle_to_scmi_info(handle);
670 
671 	xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
672 	xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
673 	return __scmi_xfer_put(&info->tx_minfo, xfer);
674 }
675 
676 /**
677  * scmi_xfer_lookup_unlocked  -  Helper to lookup an xfer_id
678  *
679  * @minfo: Pointer to Tx/Rx Message management info based on channel type
680  * @xfer_id: Token ID to lookup in @pending_xfers
681  *
682  * Refcounting is untouched.
683  *
684  * Context: Assumes to be called with @xfer_lock already acquired.
685  *
686  * Return: A valid xfer on Success or error otherwise
687  */
688 static struct scmi_xfer *
689 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
690 {
691 	struct scmi_xfer *xfer = NULL;
692 
693 	if (test_bit(xfer_id, minfo->xfer_alloc_table))
694 		xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
695 
696 	return xfer ?: ERR_PTR(-EINVAL);
697 }
698 
699 /**
700  * scmi_msg_response_validate  - Validate message type against state of related
701  * xfer
702  *
703  * @cinfo: A reference to the channel descriptor.
704  * @msg_type: Message type to check
705  * @xfer: A reference to the xfer to validate against @msg_type
706  *
707  * This function checks if @msg_type is congruent with the current state of
708  * a pending @xfer; if an asynchronous delayed response is received before the
709  * related synchronous response (Out-of-Order Delayed Response) the missing
710  * synchronous response is assumed to be OK and completed, carrying on with the
711  * Delayed Response: this is done to address the case in which the underlying
712  * SCMI transport can deliver such out-of-order responses.
713  *
714  * Context: Assumes to be called with xfer->lock already acquired.
715  *
716  * Return: 0 on Success, error otherwise
717  */
718 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
719 					     u8 msg_type,
720 					     struct scmi_xfer *xfer)
721 {
722 	/*
723 	 * Even if a response was indeed expected on this slot at this point,
724 	 * a buggy platform could wrongly reply feeding us an unexpected
725 	 * delayed response we're not prepared to handle: bail-out safely
726 	 * blaming firmware.
727 	 */
728 	if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
729 		dev_err(cinfo->dev,
730 			"Delayed Response for %d not expected! Buggy F/W ?\n",
731 			xfer->hdr.seq);
732 		return -EINVAL;
733 	}
734 
735 	switch (xfer->state) {
736 	case SCMI_XFER_SENT_OK:
737 		if (msg_type == MSG_TYPE_DELAYED_RESP) {
738 			/*
739 			 * Delayed Response expected but delivered earlier.
740 			 * Assume message RESPONSE was OK and skip state.
741 			 */
742 			xfer->hdr.status = SCMI_SUCCESS;
743 			xfer->state = SCMI_XFER_RESP_OK;
744 			complete(&xfer->done);
745 			dev_warn(cinfo->dev,
746 				 "Received valid OoO Delayed Response for %d\n",
747 				 xfer->hdr.seq);
748 		}
749 		break;
750 	case SCMI_XFER_RESP_OK:
751 		if (msg_type != MSG_TYPE_DELAYED_RESP)
752 			return -EINVAL;
753 		break;
754 	case SCMI_XFER_DRESP_OK:
755 		/* No further message expected once in SCMI_XFER_DRESP_OK */
756 		return -EINVAL;
757 	}
758 
759 	return 0;
760 }
761 
762 /**
763  * scmi_xfer_state_update  - Update xfer state
764  *
765  * @xfer: A reference to the xfer to update
766  * @msg_type: Type of message being processed.
767  *
768  * Note that this message is assumed to have been already successfully validated
769  * by @scmi_msg_response_validate(), so here we just update the state.
770  *
771  * Context: Assumes to be called on an xfer exclusively acquired using the
772  *	    busy flag.
773  */
774 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
775 {
776 	xfer->hdr.type = msg_type;
777 
778 	/* Unknown command types were already discarded earlier */
779 	if (xfer->hdr.type == MSG_TYPE_COMMAND)
780 		xfer->state = SCMI_XFER_RESP_OK;
781 	else
782 		xfer->state = SCMI_XFER_DRESP_OK;
783 }
784 
785 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
786 {
787 	int ret;
788 
789 	ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
790 
791 	return ret == SCMI_XFER_FREE;
792 }
793 
794 /**
795  * scmi_xfer_command_acquire  -  Helper to lookup and acquire a command xfer
796  *
797  * @cinfo: A reference to the channel descriptor.
798  * @msg_hdr: A message header to use as lookup key
799  *
800  * When a valid xfer is found for the sequence number embedded in the provided
801  * msg_hdr, reference counting is properly updated and exclusive access to this
802  * xfer is granted till released with @scmi_xfer_command_release.
803  *
804  * Return: A valid @xfer on Success or error otherwise.
805  */
806 static inline struct scmi_xfer *
807 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
808 {
809 	int ret;
810 	unsigned long flags;
811 	struct scmi_xfer *xfer;
812 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
813 	struct scmi_xfers_info *minfo = &info->tx_minfo;
814 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
815 	u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
816 
817 	/* Are we even expecting this? */
818 	spin_lock_irqsave(&minfo->xfer_lock, flags);
819 	xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
820 	if (IS_ERR(xfer)) {
821 		dev_err(cinfo->dev,
822 			"Message for %d type %d is not expected!\n",
823 			xfer_id, msg_type);
824 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
825 		return xfer;
826 	}
827 	refcount_inc(&xfer->users);
828 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
829 
830 	spin_lock_irqsave(&xfer->lock, flags);
831 	ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
832 	/*
833 	 * If a pending xfer was found which was also in a congruent state with
834 	 * the received message, acquire exclusive access to it setting the busy
835 	 * flag.
836 	 * Spins only on the rare limit condition of concurrent reception of
837 	 * RESP and DRESP for the same xfer.
838 	 */
839 	if (!ret) {
840 		spin_until_cond(scmi_xfer_acquired(xfer));
841 		scmi_xfer_state_update(xfer, msg_type);
842 	}
843 	spin_unlock_irqrestore(&xfer->lock, flags);
844 
845 	if (ret) {
846 		dev_err(cinfo->dev,
847 			"Invalid message type:%d for %d - HDR:0x%X  state:%d\n",
848 			msg_type, xfer_id, msg_hdr, xfer->state);
849 		/* On error the refcount incremented above has to be dropped */
850 		__scmi_xfer_put(minfo, xfer);
851 		xfer = ERR_PTR(-EINVAL);
852 	}
853 
854 	return xfer;
855 }
856 
857 static inline void scmi_xfer_command_release(struct scmi_info *info,
858 					     struct scmi_xfer *xfer)
859 {
860 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
861 	__scmi_xfer_put(&info->tx_minfo, xfer);
862 }
863 
864 static inline void scmi_clear_channel(struct scmi_info *info,
865 				      struct scmi_chan_info *cinfo)
866 {
867 	if (info->desc->ops->clear_channel)
868 		info->desc->ops->clear_channel(cinfo);
869 }
870 
871 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
872 				     u32 msg_hdr, void *priv)
873 {
874 	struct scmi_xfer *xfer;
875 	struct device *dev = cinfo->dev;
876 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
877 	struct scmi_xfers_info *minfo = &info->rx_minfo;
878 	ktime_t ts;
879 
880 	ts = ktime_get_boottime();
881 	xfer = scmi_xfer_get(cinfo->handle, minfo);
882 	if (IS_ERR(xfer)) {
883 		dev_err(dev, "failed to get free message slot (%ld)\n",
884 			PTR_ERR(xfer));
885 		scmi_clear_channel(info, cinfo);
886 		return;
887 	}
888 
889 	unpack_scmi_header(msg_hdr, &xfer->hdr);
890 	if (priv)
891 		/* Ensure order between xfer->priv store and following ops */
892 		smp_store_mb(xfer->priv, priv);
893 	info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
894 					    xfer);
895 
896 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
897 			    xfer->hdr.id, "NOTI", xfer->hdr.seq,
898 			    xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
899 
900 	scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
901 		    xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
902 
903 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
904 			   xfer->hdr.protocol_id, xfer->hdr.seq,
905 			   MSG_TYPE_NOTIFICATION);
906 
907 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
908 		xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
909 		scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
910 					cinfo->id);
911 	}
912 
913 	__scmi_xfer_put(minfo, xfer);
914 
915 	scmi_clear_channel(info, cinfo);
916 }
917 
918 static void scmi_handle_response(struct scmi_chan_info *cinfo,
919 				 u32 msg_hdr, void *priv)
920 {
921 	struct scmi_xfer *xfer;
922 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
923 
924 	xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
925 	if (IS_ERR(xfer)) {
926 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
927 			scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
928 
929 		if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
930 			scmi_clear_channel(info, cinfo);
931 		return;
932 	}
933 
934 	/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
935 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
936 		xfer->rx.len = info->desc->max_msg_size;
937 
938 	if (priv)
939 		/* Ensure order between xfer->priv store and following ops */
940 		smp_store_mb(xfer->priv, priv);
941 	info->desc->ops->fetch_response(cinfo, xfer);
942 
943 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
944 			    xfer->hdr.id,
945 			    xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
946 			    (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
947 			    (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
948 			    xfer->hdr.seq, xfer->hdr.status,
949 			    xfer->rx.buf, xfer->rx.len);
950 
951 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
952 			   xfer->hdr.protocol_id, xfer->hdr.seq,
953 			   xfer->hdr.type);
954 
955 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
956 		scmi_clear_channel(info, cinfo);
957 		complete(xfer->async_done);
958 	} else {
959 		complete(&xfer->done);
960 	}
961 
962 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
963 		/*
964 		 * When in polling mode avoid to queue the Raw xfer on the IRQ
965 		 * RX path since it will be already queued at the end of the TX
966 		 * poll loop.
967 		 */
968 		if (!xfer->hdr.poll_completion)
969 			scmi_raw_message_report(info->raw, xfer,
970 						SCMI_RAW_REPLY_QUEUE,
971 						cinfo->id);
972 	}
973 
974 	scmi_xfer_command_release(info, xfer);
975 }
976 
977 /**
978  * scmi_rx_callback() - callback for receiving messages
979  *
980  * @cinfo: SCMI channel info
981  * @msg_hdr: Message header
982  * @priv: Transport specific private data.
983  *
984  * Processes one received message to appropriate transfer information and
985  * signals completion of the transfer.
986  *
987  * NOTE: This function will be invoked in IRQ context, hence should be
988  * as optimal as possible.
989  */
990 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
991 {
992 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
993 
994 	switch (msg_type) {
995 	case MSG_TYPE_NOTIFICATION:
996 		scmi_handle_notification(cinfo, msg_hdr, priv);
997 		break;
998 	case MSG_TYPE_COMMAND:
999 	case MSG_TYPE_DELAYED_RESP:
1000 		scmi_handle_response(cinfo, msg_hdr, priv);
1001 		break;
1002 	default:
1003 		WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
1004 		break;
1005 	}
1006 }
1007 
1008 /**
1009  * xfer_put() - Release a transmit message
1010  *
1011  * @ph: Pointer to SCMI protocol handle
1012  * @xfer: message that was reserved by xfer_get_init
1013  */
1014 static void xfer_put(const struct scmi_protocol_handle *ph,
1015 		     struct scmi_xfer *xfer)
1016 {
1017 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1018 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1019 
1020 	__scmi_xfer_put(&info->tx_minfo, xfer);
1021 }
1022 
1023 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1024 				      struct scmi_xfer *xfer, ktime_t stop)
1025 {
1026 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1027 
1028 	/*
1029 	 * Poll also on xfer->done so that polling can be forcibly terminated
1030 	 * in case of out-of-order receptions of delayed responses
1031 	 */
1032 	return info->desc->ops->poll_done(cinfo, xfer) ||
1033 	       try_wait_for_completion(&xfer->done) ||
1034 	       ktime_after(ktime_get(), stop);
1035 }
1036 
1037 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1038 			       struct scmi_chan_info *cinfo,
1039 			       struct scmi_xfer *xfer, unsigned int timeout_ms)
1040 {
1041 	int ret = 0;
1042 
1043 	if (xfer->hdr.poll_completion) {
1044 		/*
1045 		 * Real polling is needed only if transport has NOT declared
1046 		 * itself to support synchronous commands replies.
1047 		 */
1048 		if (!desc->sync_cmds_completed_on_ret) {
1049 			/*
1050 			 * Poll on xfer using transport provided .poll_done();
1051 			 * assumes no completion interrupt was available.
1052 			 */
1053 			ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1054 
1055 			spin_until_cond(scmi_xfer_done_no_timeout(cinfo,
1056 								  xfer, stop));
1057 			if (ktime_after(ktime_get(), stop)) {
1058 				dev_err(dev,
1059 					"timed out in resp(caller: %pS) - polling\n",
1060 					(void *)_RET_IP_);
1061 				ret = -ETIMEDOUT;
1062 			}
1063 		}
1064 
1065 		if (!ret) {
1066 			unsigned long flags;
1067 			struct scmi_info *info =
1068 				handle_to_scmi_info(cinfo->handle);
1069 
1070 			/*
1071 			 * Do not fetch_response if an out-of-order delayed
1072 			 * response is being processed.
1073 			 */
1074 			spin_lock_irqsave(&xfer->lock, flags);
1075 			if (xfer->state == SCMI_XFER_SENT_OK) {
1076 				desc->ops->fetch_response(cinfo, xfer);
1077 				xfer->state = SCMI_XFER_RESP_OK;
1078 			}
1079 			spin_unlock_irqrestore(&xfer->lock, flags);
1080 
1081 			/* Trace polled replies. */
1082 			trace_scmi_msg_dump(info->id, cinfo->id,
1083 					    xfer->hdr.protocol_id, xfer->hdr.id,
1084 					    !SCMI_XFER_IS_RAW(xfer) ?
1085 					    "RESP" : "resp",
1086 					    xfer->hdr.seq, xfer->hdr.status,
1087 					    xfer->rx.buf, xfer->rx.len);
1088 
1089 			if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1090 				struct scmi_info *info =
1091 					handle_to_scmi_info(cinfo->handle);
1092 
1093 				scmi_raw_message_report(info->raw, xfer,
1094 							SCMI_RAW_REPLY_QUEUE,
1095 							cinfo->id);
1096 			}
1097 		}
1098 	} else {
1099 		/* And we wait for the response. */
1100 		if (!wait_for_completion_timeout(&xfer->done,
1101 						 msecs_to_jiffies(timeout_ms))) {
1102 			dev_err(dev, "timed out in resp(caller: %pS)\n",
1103 				(void *)_RET_IP_);
1104 			ret = -ETIMEDOUT;
1105 		}
1106 	}
1107 
1108 	return ret;
1109 }
1110 
1111 /**
1112  * scmi_wait_for_message_response  - An helper to group all the possible ways of
1113  * waiting for a synchronous message response.
1114  *
1115  * @cinfo: SCMI channel info
1116  * @xfer: Reference to the transfer being waited for.
1117  *
1118  * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1119  * configuration flags like xfer->hdr.poll_completion.
1120  *
1121  * Return: 0 on Success, error otherwise.
1122  */
1123 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1124 					  struct scmi_xfer *xfer)
1125 {
1126 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1127 	struct device *dev = info->dev;
1128 
1129 	trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1130 				      xfer->hdr.protocol_id, xfer->hdr.seq,
1131 				      info->desc->max_rx_timeout_ms,
1132 				      xfer->hdr.poll_completion);
1133 
1134 	return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1135 				   info->desc->max_rx_timeout_ms);
1136 }
1137 
1138 /**
1139  * scmi_xfer_raw_wait_for_message_response  - An helper to wait for a message
1140  * reply to an xfer raw request on a specific channel for the required timeout.
1141  *
1142  * @cinfo: SCMI channel info
1143  * @xfer: Reference to the transfer being waited for.
1144  * @timeout_ms: The maximum timeout in milliseconds
1145  *
1146  * Return: 0 on Success, error otherwise.
1147  */
1148 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1149 					    struct scmi_xfer *xfer,
1150 					    unsigned int timeout_ms)
1151 {
1152 	int ret;
1153 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1154 	struct device *dev = info->dev;
1155 
1156 	ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1157 	if (ret)
1158 		dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1159 			pack_scmi_header(&xfer->hdr));
1160 
1161 	return ret;
1162 }
1163 
1164 /**
1165  * do_xfer() - Do one transfer
1166  *
1167  * @ph: Pointer to SCMI protocol handle
1168  * @xfer: Transfer to initiate and wait for response
1169  *
1170  * Return: -ETIMEDOUT in case of no response, if transmit error,
1171  *	return corresponding error, else if all goes well,
1172  *	return 0.
1173  */
1174 static int do_xfer(const struct scmi_protocol_handle *ph,
1175 		   struct scmi_xfer *xfer)
1176 {
1177 	int ret;
1178 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1179 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1180 	struct device *dev = info->dev;
1181 	struct scmi_chan_info *cinfo;
1182 
1183 	/* Check for polling request on custom command xfers at first */
1184 	if (xfer->hdr.poll_completion &&
1185 	    !is_transport_polling_capable(info->desc)) {
1186 		dev_warn_once(dev,
1187 			      "Polling mode is not supported by transport.\n");
1188 		return -EINVAL;
1189 	}
1190 
1191 	cinfo = idr_find(&info->tx_idr, pi->proto->id);
1192 	if (unlikely(!cinfo))
1193 		return -EINVAL;
1194 
1195 	/* True ONLY if also supported by transport. */
1196 	if (is_polling_enabled(cinfo, info->desc))
1197 		xfer->hdr.poll_completion = true;
1198 
1199 	/*
1200 	 * Initialise protocol id now from protocol handle to avoid it being
1201 	 * overridden by mistake (or malice) by the protocol code mangling with
1202 	 * the scmi_xfer structure prior to this.
1203 	 */
1204 	xfer->hdr.protocol_id = pi->proto->id;
1205 	reinit_completion(&xfer->done);
1206 
1207 	trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1208 			      xfer->hdr.protocol_id, xfer->hdr.seq,
1209 			      xfer->hdr.poll_completion);
1210 
1211 	/* Clear any stale status */
1212 	xfer->hdr.status = SCMI_SUCCESS;
1213 	xfer->state = SCMI_XFER_SENT_OK;
1214 	/*
1215 	 * Even though spinlocking is not needed here since no race is possible
1216 	 * on xfer->state due to the monotonically increasing tokens allocation,
1217 	 * we must anyway ensure xfer->state initialization is not re-ordered
1218 	 * after the .send_message() to be sure that on the RX path an early
1219 	 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1220 	 */
1221 	smp_mb();
1222 
1223 	ret = info->desc->ops->send_message(cinfo, xfer);
1224 	if (ret < 0) {
1225 		dev_dbg(dev, "Failed to send message %d\n", ret);
1226 		return ret;
1227 	}
1228 
1229 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1230 			    xfer->hdr.id, "CMND", xfer->hdr.seq,
1231 			    xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1232 
1233 	ret = scmi_wait_for_message_response(cinfo, xfer);
1234 	if (!ret && xfer->hdr.status)
1235 		ret = scmi_to_linux_errno(xfer->hdr.status);
1236 
1237 	if (info->desc->ops->mark_txdone)
1238 		info->desc->ops->mark_txdone(cinfo, ret, xfer);
1239 
1240 	trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1241 			    xfer->hdr.protocol_id, xfer->hdr.seq, ret);
1242 
1243 	return ret;
1244 }
1245 
1246 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1247 			      struct scmi_xfer *xfer)
1248 {
1249 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1250 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1251 
1252 	xfer->rx.len = info->desc->max_msg_size;
1253 }
1254 
1255 /**
1256  * do_xfer_with_response() - Do one transfer and wait until the delayed
1257  *	response is received
1258  *
1259  * @ph: Pointer to SCMI protocol handle
1260  * @xfer: Transfer to initiate and wait for response
1261  *
1262  * Using asynchronous commands in atomic/polling mode should be avoided since
1263  * it could cause long busy-waiting here, so ignore polling for the delayed
1264  * response and WARN if it was requested for this command transaction since
1265  * upper layers should refrain from issuing such kind of requests.
1266  *
1267  * The only other option would have been to refrain from using any asynchronous
1268  * command even if made available, when an atomic transport is detected, and
1269  * instead forcibly use the synchronous version (thing that can be easily
1270  * attained at the protocol layer), but this would also have led to longer
1271  * stalls of the channel for synchronous commands and possibly timeouts.
1272  * (in other words there is usually a good reason if a platform provides an
1273  *  asynchronous version of a command and we should prefer to use it...just not
1274  *  when using atomic/polling mode)
1275  *
1276  * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1277  *	return corresponding error, else if all goes well, return 0.
1278  */
1279 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1280 				 struct scmi_xfer *xfer)
1281 {
1282 	int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1283 	DECLARE_COMPLETION_ONSTACK(async_response);
1284 
1285 	xfer->async_done = &async_response;
1286 
1287 	/*
1288 	 * Delayed responses should not be polled, so an async command should
1289 	 * not have been used when requiring an atomic/poll context; WARN and
1290 	 * perform instead a sleeping wait.
1291 	 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1292 	 */
1293 	WARN_ON_ONCE(xfer->hdr.poll_completion);
1294 
1295 	ret = do_xfer(ph, xfer);
1296 	if (!ret) {
1297 		if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1298 			dev_err(ph->dev,
1299 				"timed out in delayed resp(caller: %pS)\n",
1300 				(void *)_RET_IP_);
1301 			ret = -ETIMEDOUT;
1302 		} else if (xfer->hdr.status) {
1303 			ret = scmi_to_linux_errno(xfer->hdr.status);
1304 		}
1305 	}
1306 
1307 	xfer->async_done = NULL;
1308 	return ret;
1309 }
1310 
1311 /**
1312  * xfer_get_init() - Allocate and initialise one message for transmit
1313  *
1314  * @ph: Pointer to SCMI protocol handle
1315  * @msg_id: Message identifier
1316  * @tx_size: transmit message size
1317  * @rx_size: receive message size
1318  * @p: pointer to the allocated and initialised message
1319  *
1320  * This function allocates the message using @scmi_xfer_get and
1321  * initialise the header.
1322  *
1323  * Return: 0 if all went fine with @p pointing to message, else
1324  *	corresponding error.
1325  */
1326 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1327 			 u8 msg_id, size_t tx_size, size_t rx_size,
1328 			 struct scmi_xfer **p)
1329 {
1330 	int ret;
1331 	struct scmi_xfer *xfer;
1332 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1333 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1334 	struct scmi_xfers_info *minfo = &info->tx_minfo;
1335 	struct device *dev = info->dev;
1336 
1337 	/* Ensure we have sane transfer sizes */
1338 	if (rx_size > info->desc->max_msg_size ||
1339 	    tx_size > info->desc->max_msg_size)
1340 		return -ERANGE;
1341 
1342 	xfer = scmi_xfer_get(pi->handle, minfo);
1343 	if (IS_ERR(xfer)) {
1344 		ret = PTR_ERR(xfer);
1345 		dev_err(dev, "failed to get free message slot(%d)\n", ret);
1346 		return ret;
1347 	}
1348 
1349 	/* Pick a sequence number and register this xfer as in-flight */
1350 	ret = scmi_xfer_pending_set(xfer, minfo);
1351 	if (ret) {
1352 		dev_err(pi->handle->dev,
1353 			"Failed to get monotonic token %d\n", ret);
1354 		__scmi_xfer_put(minfo, xfer);
1355 		return ret;
1356 	}
1357 
1358 	xfer->tx.len = tx_size;
1359 	xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1360 	xfer->hdr.type = MSG_TYPE_COMMAND;
1361 	xfer->hdr.id = msg_id;
1362 	xfer->hdr.poll_completion = false;
1363 
1364 	*p = xfer;
1365 
1366 	return 0;
1367 }
1368 
1369 /**
1370  * version_get() - command to get the revision of the SCMI entity
1371  *
1372  * @ph: Pointer to SCMI protocol handle
1373  * @version: Holds returned version of protocol.
1374  *
1375  * Updates the SCMI information in the internal data structure.
1376  *
1377  * Return: 0 if all went fine, else return appropriate error.
1378  */
1379 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1380 {
1381 	int ret;
1382 	__le32 *rev_info;
1383 	struct scmi_xfer *t;
1384 
1385 	ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1386 	if (ret)
1387 		return ret;
1388 
1389 	ret = do_xfer(ph, t);
1390 	if (!ret) {
1391 		rev_info = t->rx.buf;
1392 		*version = le32_to_cpu(*rev_info);
1393 	}
1394 
1395 	xfer_put(ph, t);
1396 	return ret;
1397 }
1398 
1399 /**
1400  * scmi_set_protocol_priv  - Set protocol specific data at init time
1401  *
1402  * @ph: A reference to the protocol handle.
1403  * @priv: The private data to set.
1404  * @version: The detected protocol version for the core to register.
1405  *
1406  * Return: 0 on Success
1407  */
1408 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1409 				  void *priv, u32 version)
1410 {
1411 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
1412 
1413 	pi->priv = priv;
1414 	pi->version = version;
1415 
1416 	return 0;
1417 }
1418 
1419 /**
1420  * scmi_get_protocol_priv  - Set protocol specific data at init time
1421  *
1422  * @ph: A reference to the protocol handle.
1423  *
1424  * Return: Protocol private data if any was set.
1425  */
1426 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1427 {
1428 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1429 
1430 	return pi->priv;
1431 }
1432 
1433 static const struct scmi_xfer_ops xfer_ops = {
1434 	.version_get = version_get,
1435 	.xfer_get_init = xfer_get_init,
1436 	.reset_rx_to_maxsz = reset_rx_to_maxsz,
1437 	.do_xfer = do_xfer,
1438 	.do_xfer_with_response = do_xfer_with_response,
1439 	.xfer_put = xfer_put,
1440 };
1441 
1442 struct scmi_msg_resp_domain_name_get {
1443 	__le32 flags;
1444 	u8 name[SCMI_MAX_STR_SIZE];
1445 };
1446 
1447 /**
1448  * scmi_common_extended_name_get  - Common helper to get extended resources name
1449  * @ph: A protocol handle reference.
1450  * @cmd_id: The specific command ID to use.
1451  * @res_id: The specific resource ID to use.
1452  * @flags: A pointer to specific flags to use, if any.
1453  * @name: A pointer to the preallocated area where the retrieved name will be
1454  *	  stored as a NULL terminated string.
1455  * @len: The len in bytes of the @name char array.
1456  *
1457  * Return: 0 on Succcess
1458  */
1459 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1460 					 u8 cmd_id, u32 res_id, u32 *flags,
1461 					 char *name, size_t len)
1462 {
1463 	int ret;
1464 	size_t txlen;
1465 	struct scmi_xfer *t;
1466 	struct scmi_msg_resp_domain_name_get *resp;
1467 
1468 	txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags);
1469 	ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t);
1470 	if (ret)
1471 		goto out;
1472 
1473 	put_unaligned_le32(res_id, t->tx.buf);
1474 	if (flags)
1475 		put_unaligned_le32(*flags, t->tx.buf + sizeof(res_id));
1476 	resp = t->rx.buf;
1477 
1478 	ret = ph->xops->do_xfer(ph, t);
1479 	if (!ret)
1480 		strscpy(name, resp->name, len);
1481 
1482 	ph->xops->xfer_put(ph, t);
1483 out:
1484 	if (ret)
1485 		dev_warn(ph->dev,
1486 			 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1487 			 res_id, ret, name);
1488 	return ret;
1489 }
1490 
1491 /**
1492  * struct scmi_iterator  - Iterator descriptor
1493  * @msg: A reference to the message TX buffer; filled by @prepare_message with
1494  *	 a proper custom command payload for each multi-part command request.
1495  * @resp: A reference to the response RX buffer; used by @update_state and
1496  *	  @process_response to parse the multi-part replies.
1497  * @t: A reference to the underlying xfer initialized and used transparently by
1498  *     the iterator internal routines.
1499  * @ph: A reference to the associated protocol handle to be used.
1500  * @ops: A reference to the custom provided iterator operations.
1501  * @state: The current iterator state; used and updated in turn by the iterators
1502  *	   internal routines and by the caller-provided @scmi_iterator_ops.
1503  * @priv: A reference to optional private data as provided by the caller and
1504  *	  passed back to the @@scmi_iterator_ops.
1505  */
1506 struct scmi_iterator {
1507 	void *msg;
1508 	void *resp;
1509 	struct scmi_xfer *t;
1510 	const struct scmi_protocol_handle *ph;
1511 	struct scmi_iterator_ops *ops;
1512 	struct scmi_iterator_state state;
1513 	void *priv;
1514 };
1515 
1516 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1517 				struct scmi_iterator_ops *ops,
1518 				unsigned int max_resources, u8 msg_id,
1519 				size_t tx_size, void *priv)
1520 {
1521 	int ret;
1522 	struct scmi_iterator *i;
1523 
1524 	i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1525 	if (!i)
1526 		return ERR_PTR(-ENOMEM);
1527 
1528 	i->ph = ph;
1529 	i->ops = ops;
1530 	i->priv = priv;
1531 
1532 	ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1533 	if (ret) {
1534 		devm_kfree(ph->dev, i);
1535 		return ERR_PTR(ret);
1536 	}
1537 
1538 	i->state.max_resources = max_resources;
1539 	i->msg = i->t->tx.buf;
1540 	i->resp = i->t->rx.buf;
1541 
1542 	return i;
1543 }
1544 
1545 static int scmi_iterator_run(void *iter)
1546 {
1547 	int ret = -EINVAL;
1548 	struct scmi_iterator_ops *iops;
1549 	const struct scmi_protocol_handle *ph;
1550 	struct scmi_iterator_state *st;
1551 	struct scmi_iterator *i = iter;
1552 
1553 	if (!i || !i->ops || !i->ph)
1554 		return ret;
1555 
1556 	iops = i->ops;
1557 	ph = i->ph;
1558 	st = &i->state;
1559 
1560 	do {
1561 		iops->prepare_message(i->msg, st->desc_index, i->priv);
1562 		ret = ph->xops->do_xfer(ph, i->t);
1563 		if (ret)
1564 			break;
1565 
1566 		st->rx_len = i->t->rx.len;
1567 		ret = iops->update_state(st, i->resp, i->priv);
1568 		if (ret)
1569 			break;
1570 
1571 		if (st->num_returned > st->max_resources - st->desc_index) {
1572 			dev_err(ph->dev,
1573 				"No. of resources can't exceed %d\n",
1574 				st->max_resources);
1575 			ret = -EINVAL;
1576 			break;
1577 		}
1578 
1579 		for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1580 		     st->loop_idx++) {
1581 			ret = iops->process_response(ph, i->resp, st, i->priv);
1582 			if (ret)
1583 				goto out;
1584 		}
1585 
1586 		st->desc_index += st->num_returned;
1587 		ph->xops->reset_rx_to_maxsz(ph, i->t);
1588 		/*
1589 		 * check for both returned and remaining to avoid infinite
1590 		 * loop due to buggy firmware
1591 		 */
1592 	} while (st->num_returned && st->num_remaining);
1593 
1594 out:
1595 	/* Finalize and destroy iterator */
1596 	ph->xops->xfer_put(ph, i->t);
1597 	devm_kfree(ph->dev, i);
1598 
1599 	return ret;
1600 }
1601 
1602 struct scmi_msg_get_fc_info {
1603 	__le32 domain;
1604 	__le32 message_id;
1605 };
1606 
1607 struct scmi_msg_resp_desc_fc {
1608 	__le32 attr;
1609 #define SUPPORTS_DOORBELL(x)		((x) & BIT(0))
1610 #define DOORBELL_REG_WIDTH(x)		FIELD_GET(GENMASK(2, 1), (x))
1611 	__le32 rate_limit;
1612 	__le32 chan_addr_low;
1613 	__le32 chan_addr_high;
1614 	__le32 chan_size;
1615 	__le32 db_addr_low;
1616 	__le32 db_addr_high;
1617 	__le32 db_set_lmask;
1618 	__le32 db_set_hmask;
1619 	__le32 db_preserve_lmask;
1620 	__le32 db_preserve_hmask;
1621 };
1622 
1623 static void
1624 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1625 			     u8 describe_id, u32 message_id, u32 valid_size,
1626 			     u32 domain, void __iomem **p_addr,
1627 			     struct scmi_fc_db_info **p_db)
1628 {
1629 	int ret;
1630 	u32 flags;
1631 	u64 phys_addr;
1632 	u8 size;
1633 	void __iomem *addr;
1634 	struct scmi_xfer *t;
1635 	struct scmi_fc_db_info *db = NULL;
1636 	struct scmi_msg_get_fc_info *info;
1637 	struct scmi_msg_resp_desc_fc *resp;
1638 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1639 
1640 	if (!p_addr) {
1641 		ret = -EINVAL;
1642 		goto err_out;
1643 	}
1644 
1645 	ret = ph->xops->xfer_get_init(ph, describe_id,
1646 				      sizeof(*info), sizeof(*resp), &t);
1647 	if (ret)
1648 		goto err_out;
1649 
1650 	info = t->tx.buf;
1651 	info->domain = cpu_to_le32(domain);
1652 	info->message_id = cpu_to_le32(message_id);
1653 
1654 	/*
1655 	 * Bail out on error leaving fc_info addresses zeroed; this includes
1656 	 * the case in which the requested domain/message_id does NOT support
1657 	 * fastchannels at all.
1658 	 */
1659 	ret = ph->xops->do_xfer(ph, t);
1660 	if (ret)
1661 		goto err_xfer;
1662 
1663 	resp = t->rx.buf;
1664 	flags = le32_to_cpu(resp->attr);
1665 	size = le32_to_cpu(resp->chan_size);
1666 	if (size != valid_size) {
1667 		ret = -EINVAL;
1668 		goto err_xfer;
1669 	}
1670 
1671 	phys_addr = le32_to_cpu(resp->chan_addr_low);
1672 	phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1673 	addr = devm_ioremap(ph->dev, phys_addr, size);
1674 	if (!addr) {
1675 		ret = -EADDRNOTAVAIL;
1676 		goto err_xfer;
1677 	}
1678 
1679 	*p_addr = addr;
1680 
1681 	if (p_db && SUPPORTS_DOORBELL(flags)) {
1682 		db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1683 		if (!db) {
1684 			ret = -ENOMEM;
1685 			goto err_db;
1686 		}
1687 
1688 		size = 1 << DOORBELL_REG_WIDTH(flags);
1689 		phys_addr = le32_to_cpu(resp->db_addr_low);
1690 		phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1691 		addr = devm_ioremap(ph->dev, phys_addr, size);
1692 		if (!addr) {
1693 			ret = -EADDRNOTAVAIL;
1694 			goto err_db_mem;
1695 		}
1696 
1697 		db->addr = addr;
1698 		db->width = size;
1699 		db->set = le32_to_cpu(resp->db_set_lmask);
1700 		db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1701 		db->mask = le32_to_cpu(resp->db_preserve_lmask);
1702 		db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1703 
1704 		*p_db = db;
1705 	}
1706 
1707 	ph->xops->xfer_put(ph, t);
1708 
1709 	dev_dbg(ph->dev,
1710 		"Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
1711 		pi->proto->id, message_id, domain);
1712 
1713 	return;
1714 
1715 err_db_mem:
1716 	devm_kfree(ph->dev, db);
1717 
1718 err_db:
1719 	*p_addr = NULL;
1720 
1721 err_xfer:
1722 	ph->xops->xfer_put(ph, t);
1723 
1724 err_out:
1725 	dev_warn(ph->dev,
1726 		 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
1727 		 pi->proto->id, message_id, domain, ret);
1728 }
1729 
1730 #define SCMI_PROTO_FC_RING_DB(w)			\
1731 do {							\
1732 	u##w val = 0;					\
1733 							\
1734 	if (db->mask)					\
1735 		val = ioread##w(db->addr) & db->mask;	\
1736 	iowrite##w((u##w)db->set | val, db->addr);	\
1737 } while (0)
1738 
1739 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
1740 {
1741 	if (!db || !db->addr)
1742 		return;
1743 
1744 	if (db->width == 1)
1745 		SCMI_PROTO_FC_RING_DB(8);
1746 	else if (db->width == 2)
1747 		SCMI_PROTO_FC_RING_DB(16);
1748 	else if (db->width == 4)
1749 		SCMI_PROTO_FC_RING_DB(32);
1750 	else /* db->width == 8 */
1751 #ifdef CONFIG_64BIT
1752 		SCMI_PROTO_FC_RING_DB(64);
1753 #else
1754 	{
1755 		u64 val = 0;
1756 
1757 		if (db->mask)
1758 			val = ioread64_hi_lo(db->addr) & db->mask;
1759 		iowrite64_hi_lo(db->set | val, db->addr);
1760 	}
1761 #endif
1762 }
1763 
1764 /**
1765  * scmi_protocol_msg_check  - Check protocol message attributes
1766  *
1767  * @ph: A reference to the protocol handle.
1768  * @message_id: The ID of the message to check.
1769  * @attributes: A parameter to optionally return the retrieved message
1770  *		attributes, in case of Success.
1771  *
1772  * An helper to check protocol message attributes for a specific protocol
1773  * and message pair.
1774  *
1775  * Return: 0 on SUCCESS
1776  */
1777 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph,
1778 				   u32 message_id, u32 *attributes)
1779 {
1780 	int ret;
1781 	struct scmi_xfer *t;
1782 
1783 	ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES,
1784 			    sizeof(__le32), 0, &t);
1785 	if (ret)
1786 		return ret;
1787 
1788 	put_unaligned_le32(message_id, t->tx.buf);
1789 	ret = do_xfer(ph, t);
1790 	if (!ret && attributes)
1791 		*attributes = get_unaligned_le32(t->rx.buf);
1792 	xfer_put(ph, t);
1793 
1794 	return ret;
1795 }
1796 
1797 static const struct scmi_proto_helpers_ops helpers_ops = {
1798 	.extended_name_get = scmi_common_extended_name_get,
1799 	.iter_response_init = scmi_iterator_init,
1800 	.iter_response_run = scmi_iterator_run,
1801 	.protocol_msg_check = scmi_protocol_msg_check,
1802 	.fastchannel_init = scmi_common_fastchannel_init,
1803 	.fastchannel_db_ring = scmi_common_fastchannel_db_ring,
1804 };
1805 
1806 /**
1807  * scmi_revision_area_get  - Retrieve version memory area.
1808  *
1809  * @ph: A reference to the protocol handle.
1810  *
1811  * A helper to grab the version memory area reference during SCMI Base protocol
1812  * initialization.
1813  *
1814  * Return: A reference to the version memory area associated to the SCMI
1815  *	   instance underlying this protocol handle.
1816  */
1817 struct scmi_revision_info *
1818 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1819 {
1820 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1821 
1822 	return pi->handle->version;
1823 }
1824 
1825 /**
1826  * scmi_protocol_version_negotiate  - Negotiate protocol version
1827  *
1828  * @ph: A reference to the protocol handle.
1829  *
1830  * An helper to negotiate a protocol version different from the latest
1831  * advertised as supported from the platform: on Success backward
1832  * compatibility is assured by the platform.
1833  *
1834  * Return: 0 on Success
1835  */
1836 static int scmi_protocol_version_negotiate(struct scmi_protocol_handle *ph)
1837 {
1838 	int ret;
1839 	struct scmi_xfer *t;
1840 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
1841 
1842 	/* At first check if NEGOTIATE_PROTOCOL_VERSION is supported ... */
1843 	ret = scmi_protocol_msg_check(ph, NEGOTIATE_PROTOCOL_VERSION, NULL);
1844 	if (ret)
1845 		return ret;
1846 
1847 	/* ... then attempt protocol version negotiation */
1848 	ret = xfer_get_init(ph, NEGOTIATE_PROTOCOL_VERSION,
1849 			    sizeof(__le32), 0, &t);
1850 	if (ret)
1851 		return ret;
1852 
1853 	put_unaligned_le32(pi->proto->supported_version, t->tx.buf);
1854 	ret = do_xfer(ph, t);
1855 	if (!ret)
1856 		pi->negotiated_version = pi->proto->supported_version;
1857 
1858 	xfer_put(ph, t);
1859 
1860 	return ret;
1861 }
1862 
1863 /**
1864  * scmi_alloc_init_protocol_instance  - Allocate and initialize a protocol
1865  * instance descriptor.
1866  * @info: The reference to the related SCMI instance.
1867  * @proto: The protocol descriptor.
1868  *
1869  * Allocate a new protocol instance descriptor, using the provided @proto
1870  * description, against the specified SCMI instance @info, and initialize it;
1871  * all resources management is handled via a dedicated per-protocol devres
1872  * group.
1873  *
1874  * Context: Assumes to be called with @protocols_mtx already acquired.
1875  * Return: A reference to a freshly allocated and initialized protocol instance
1876  *	   or ERR_PTR on failure. On failure the @proto reference is at first
1877  *	   put using @scmi_protocol_put() before releasing all the devres group.
1878  */
1879 static struct scmi_protocol_instance *
1880 scmi_alloc_init_protocol_instance(struct scmi_info *info,
1881 				  const struct scmi_protocol *proto)
1882 {
1883 	int ret = -ENOMEM;
1884 	void *gid;
1885 	struct scmi_protocol_instance *pi;
1886 	const struct scmi_handle *handle = &info->handle;
1887 
1888 	/* Protocol specific devres group */
1889 	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1890 	if (!gid) {
1891 		scmi_protocol_put(proto->id);
1892 		goto out;
1893 	}
1894 
1895 	pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
1896 	if (!pi)
1897 		goto clean;
1898 
1899 	pi->gid = gid;
1900 	pi->proto = proto;
1901 	pi->handle = handle;
1902 	pi->ph.dev = handle->dev;
1903 	pi->ph.xops = &xfer_ops;
1904 	pi->ph.hops = &helpers_ops;
1905 	pi->ph.set_priv = scmi_set_protocol_priv;
1906 	pi->ph.get_priv = scmi_get_protocol_priv;
1907 	refcount_set(&pi->users, 1);
1908 	/* proto->init is assured NON NULL by scmi_protocol_register */
1909 	ret = pi->proto->instance_init(&pi->ph);
1910 	if (ret)
1911 		goto clean;
1912 
1913 	ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
1914 			GFP_KERNEL);
1915 	if (ret != proto->id)
1916 		goto clean;
1917 
1918 	/*
1919 	 * Warn but ignore events registration errors since we do not want
1920 	 * to skip whole protocols if their notifications are messed up.
1921 	 */
1922 	if (pi->proto->events) {
1923 		ret = scmi_register_protocol_events(handle, pi->proto->id,
1924 						    &pi->ph,
1925 						    pi->proto->events);
1926 		if (ret)
1927 			dev_warn(handle->dev,
1928 				 "Protocol:%X - Events Registration Failed - err:%d\n",
1929 				 pi->proto->id, ret);
1930 	}
1931 
1932 	devres_close_group(handle->dev, pi->gid);
1933 	dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1934 
1935 	if (pi->version > proto->supported_version) {
1936 		ret = scmi_protocol_version_negotiate(&pi->ph);
1937 		if (!ret) {
1938 			dev_info(handle->dev,
1939 				 "Protocol 0x%X successfully negotiated version 0x%X\n",
1940 				 proto->id, pi->negotiated_version);
1941 		} else {
1942 			dev_warn(handle->dev,
1943 				 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X.\n",
1944 				 pi->version, pi->proto->id);
1945 			dev_warn(handle->dev,
1946 				 "Trying version 0x%X. Backward compatibility is NOT assured.\n",
1947 				 pi->proto->supported_version);
1948 		}
1949 	}
1950 
1951 	return pi;
1952 
1953 clean:
1954 	/* Take care to put the protocol module's owner before releasing all */
1955 	scmi_protocol_put(proto->id);
1956 	devres_release_group(handle->dev, gid);
1957 out:
1958 	return ERR_PTR(ret);
1959 }
1960 
1961 /**
1962  * scmi_get_protocol_instance  - Protocol initialization helper.
1963  * @handle: A reference to the SCMI platform instance.
1964  * @protocol_id: The protocol being requested.
1965  *
1966  * In case the required protocol has never been requested before for this
1967  * instance, allocate and initialize all the needed structures while handling
1968  * resource allocation with a dedicated per-protocol devres subgroup.
1969  *
1970  * Return: A reference to an initialized protocol instance or error on failure:
1971  *	   in particular returns -EPROBE_DEFER when the desired protocol could
1972  *	   NOT be found.
1973  */
1974 static struct scmi_protocol_instance * __must_check
1975 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1976 {
1977 	struct scmi_protocol_instance *pi;
1978 	struct scmi_info *info = handle_to_scmi_info(handle);
1979 
1980 	mutex_lock(&info->protocols_mtx);
1981 	pi = idr_find(&info->protocols, protocol_id);
1982 
1983 	if (pi) {
1984 		refcount_inc(&pi->users);
1985 	} else {
1986 		const struct scmi_protocol *proto;
1987 
1988 		/* Fails if protocol not registered on bus */
1989 		proto = scmi_protocol_get(protocol_id);
1990 		if (proto)
1991 			pi = scmi_alloc_init_protocol_instance(info, proto);
1992 		else
1993 			pi = ERR_PTR(-EPROBE_DEFER);
1994 	}
1995 	mutex_unlock(&info->protocols_mtx);
1996 
1997 	return pi;
1998 }
1999 
2000 /**
2001  * scmi_protocol_acquire  - Protocol acquire
2002  * @handle: A reference to the SCMI platform instance.
2003  * @protocol_id: The protocol being requested.
2004  *
2005  * Register a new user for the requested protocol on the specified SCMI
2006  * platform instance, possibly triggering its initialization on first user.
2007  *
2008  * Return: 0 if protocol was acquired successfully.
2009  */
2010 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
2011 {
2012 	return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
2013 }
2014 
2015 /**
2016  * scmi_protocol_release  - Protocol de-initialization helper.
2017  * @handle: A reference to the SCMI platform instance.
2018  * @protocol_id: The protocol being requested.
2019  *
2020  * Remove one user for the specified protocol and triggers de-initialization
2021  * and resources de-allocation once the last user has gone.
2022  */
2023 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
2024 {
2025 	struct scmi_info *info = handle_to_scmi_info(handle);
2026 	struct scmi_protocol_instance *pi;
2027 
2028 	mutex_lock(&info->protocols_mtx);
2029 	pi = idr_find(&info->protocols, protocol_id);
2030 	if (WARN_ON(!pi))
2031 		goto out;
2032 
2033 	if (refcount_dec_and_test(&pi->users)) {
2034 		void *gid = pi->gid;
2035 
2036 		if (pi->proto->events)
2037 			scmi_deregister_protocol_events(handle, protocol_id);
2038 
2039 		if (pi->proto->instance_deinit)
2040 			pi->proto->instance_deinit(&pi->ph);
2041 
2042 		idr_remove(&info->protocols, protocol_id);
2043 
2044 		scmi_protocol_put(protocol_id);
2045 
2046 		devres_release_group(handle->dev, gid);
2047 		dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
2048 			protocol_id);
2049 	}
2050 
2051 out:
2052 	mutex_unlock(&info->protocols_mtx);
2053 }
2054 
2055 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
2056 				     u8 *prot_imp)
2057 {
2058 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2059 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
2060 
2061 	info->protocols_imp = prot_imp;
2062 }
2063 
2064 static bool
2065 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
2066 {
2067 	int i;
2068 	struct scmi_info *info = handle_to_scmi_info(handle);
2069 	struct scmi_revision_info *rev = handle->version;
2070 
2071 	if (!info->protocols_imp)
2072 		return false;
2073 
2074 	for (i = 0; i < rev->num_protocols; i++)
2075 		if (info->protocols_imp[i] == prot_id)
2076 			return true;
2077 	return false;
2078 }
2079 
2080 struct scmi_protocol_devres {
2081 	const struct scmi_handle *handle;
2082 	u8 protocol_id;
2083 };
2084 
2085 static void scmi_devm_release_protocol(struct device *dev, void *res)
2086 {
2087 	struct scmi_protocol_devres *dres = res;
2088 
2089 	scmi_protocol_release(dres->handle, dres->protocol_id);
2090 }
2091 
2092 static struct scmi_protocol_instance __must_check *
2093 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
2094 {
2095 	struct scmi_protocol_instance *pi;
2096 	struct scmi_protocol_devres *dres;
2097 
2098 	dres = devres_alloc(scmi_devm_release_protocol,
2099 			    sizeof(*dres), GFP_KERNEL);
2100 	if (!dres)
2101 		return ERR_PTR(-ENOMEM);
2102 
2103 	pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2104 	if (IS_ERR(pi)) {
2105 		devres_free(dres);
2106 		return pi;
2107 	}
2108 
2109 	dres->handle = sdev->handle;
2110 	dres->protocol_id = protocol_id;
2111 	devres_add(&sdev->dev, dres);
2112 
2113 	return pi;
2114 }
2115 
2116 /**
2117  * scmi_devm_protocol_get  - Devres managed get protocol operations and handle
2118  * @sdev: A reference to an scmi_device whose embedded struct device is to
2119  *	  be used for devres accounting.
2120  * @protocol_id: The protocol being requested.
2121  * @ph: A pointer reference used to pass back the associated protocol handle.
2122  *
2123  * Get hold of a protocol accounting for its usage, eventually triggering its
2124  * initialization, and returning the protocol specific operations and related
2125  * protocol handle which will be used as first argument in most of the
2126  * protocols operations methods.
2127  * Being a devres based managed method, protocol hold will be automatically
2128  * released, and possibly de-initialized on last user, once the SCMI driver
2129  * owning the scmi_device is unbound from it.
2130  *
2131  * Return: A reference to the requested protocol operations or error.
2132  *	   Must be checked for errors by caller.
2133  */
2134 static const void __must_check *
2135 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2136 		       struct scmi_protocol_handle **ph)
2137 {
2138 	struct scmi_protocol_instance *pi;
2139 
2140 	if (!ph)
2141 		return ERR_PTR(-EINVAL);
2142 
2143 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2144 	if (IS_ERR(pi))
2145 		return pi;
2146 
2147 	*ph = &pi->ph;
2148 
2149 	return pi->proto->ops;
2150 }
2151 
2152 /**
2153  * scmi_devm_protocol_acquire  - Devres managed helper to get hold of a protocol
2154  * @sdev: A reference to an scmi_device whose embedded struct device is to
2155  *	  be used for devres accounting.
2156  * @protocol_id: The protocol being requested.
2157  *
2158  * Get hold of a protocol accounting for its usage, possibly triggering its
2159  * initialization but without getting access to its protocol specific operations
2160  * and handle.
2161  *
2162  * Being a devres based managed method, protocol hold will be automatically
2163  * released, and possibly de-initialized on last user, once the SCMI driver
2164  * owning the scmi_device is unbound from it.
2165  *
2166  * Return: 0 on SUCCESS
2167  */
2168 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2169 						   u8 protocol_id)
2170 {
2171 	struct scmi_protocol_instance *pi;
2172 
2173 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2174 	if (IS_ERR(pi))
2175 		return PTR_ERR(pi);
2176 
2177 	return 0;
2178 }
2179 
2180 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2181 {
2182 	struct scmi_protocol_devres *dres = res;
2183 
2184 	if (WARN_ON(!dres || !data))
2185 		return 0;
2186 
2187 	return dres->protocol_id == *((u8 *)data);
2188 }
2189 
2190 /**
2191  * scmi_devm_protocol_put  - Devres managed put protocol operations and handle
2192  * @sdev: A reference to an scmi_device whose embedded struct device is to
2193  *	  be used for devres accounting.
2194  * @protocol_id: The protocol being requested.
2195  *
2196  * Explicitly release a protocol hold previously obtained calling the above
2197  * @scmi_devm_protocol_get.
2198  */
2199 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2200 {
2201 	int ret;
2202 
2203 	ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2204 			     scmi_devm_protocol_match, &protocol_id);
2205 	WARN_ON(ret);
2206 }
2207 
2208 /**
2209  * scmi_is_transport_atomic  - Method to check if underlying transport for an
2210  * SCMI instance is configured as atomic.
2211  *
2212  * @handle: A reference to the SCMI platform instance.
2213  * @atomic_threshold: An optional return value for the system wide currently
2214  *		      configured threshold for atomic operations.
2215  *
2216  * Return: True if transport is configured as atomic
2217  */
2218 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2219 				     unsigned int *atomic_threshold)
2220 {
2221 	bool ret;
2222 	struct scmi_info *info = handle_to_scmi_info(handle);
2223 
2224 	ret = info->desc->atomic_enabled &&
2225 		is_transport_polling_capable(info->desc);
2226 	if (ret && atomic_threshold)
2227 		*atomic_threshold = info->atomic_threshold;
2228 
2229 	return ret;
2230 }
2231 
2232 /**
2233  * scmi_handle_get() - Get the SCMI handle for a device
2234  *
2235  * @dev: pointer to device for which we want SCMI handle
2236  *
2237  * NOTE: The function does not track individual clients of the framework
2238  * and is expected to be maintained by caller of SCMI protocol library.
2239  * scmi_handle_put must be balanced with successful scmi_handle_get
2240  *
2241  * Return: pointer to handle if successful, NULL on error
2242  */
2243 static struct scmi_handle *scmi_handle_get(struct device *dev)
2244 {
2245 	struct list_head *p;
2246 	struct scmi_info *info;
2247 	struct scmi_handle *handle = NULL;
2248 
2249 	mutex_lock(&scmi_list_mutex);
2250 	list_for_each(p, &scmi_list) {
2251 		info = list_entry(p, struct scmi_info, node);
2252 		if (dev->parent == info->dev) {
2253 			info->users++;
2254 			handle = &info->handle;
2255 			break;
2256 		}
2257 	}
2258 	mutex_unlock(&scmi_list_mutex);
2259 
2260 	return handle;
2261 }
2262 
2263 /**
2264  * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2265  *
2266  * @handle: handle acquired by scmi_handle_get
2267  *
2268  * NOTE: The function does not track individual clients of the framework
2269  * and is expected to be maintained by caller of SCMI protocol library.
2270  * scmi_handle_put must be balanced with successful scmi_handle_get
2271  *
2272  * Return: 0 is successfully released
2273  *	if null was passed, it returns -EINVAL;
2274  */
2275 static int scmi_handle_put(const struct scmi_handle *handle)
2276 {
2277 	struct scmi_info *info;
2278 
2279 	if (!handle)
2280 		return -EINVAL;
2281 
2282 	info = handle_to_scmi_info(handle);
2283 	mutex_lock(&scmi_list_mutex);
2284 	if (!WARN_ON(!info->users))
2285 		info->users--;
2286 	mutex_unlock(&scmi_list_mutex);
2287 
2288 	return 0;
2289 }
2290 
2291 static void scmi_device_link_add(struct device *consumer,
2292 				 struct device *supplier)
2293 {
2294 	struct device_link *link;
2295 
2296 	link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2297 
2298 	WARN_ON(!link);
2299 }
2300 
2301 static void scmi_set_handle(struct scmi_device *scmi_dev)
2302 {
2303 	scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2304 	if (scmi_dev->handle)
2305 		scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2306 }
2307 
2308 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2309 				 struct scmi_xfers_info *info)
2310 {
2311 	int i;
2312 	struct scmi_xfer *xfer;
2313 	struct device *dev = sinfo->dev;
2314 	const struct scmi_desc *desc = sinfo->desc;
2315 
2316 	/* Pre-allocated messages, no more than what hdr.seq can support */
2317 	if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2318 		dev_err(dev,
2319 			"Invalid maximum messages %d, not in range [1 - %lu]\n",
2320 			info->max_msg, MSG_TOKEN_MAX);
2321 		return -EINVAL;
2322 	}
2323 
2324 	hash_init(info->pending_xfers);
2325 
2326 	/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2327 	info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2328 						    GFP_KERNEL);
2329 	if (!info->xfer_alloc_table)
2330 		return -ENOMEM;
2331 
2332 	/*
2333 	 * Preallocate a number of xfers equal to max inflight messages,
2334 	 * pre-initialize the buffer pointer to pre-allocated buffers and
2335 	 * attach all of them to the free list
2336 	 */
2337 	INIT_HLIST_HEAD(&info->free_xfers);
2338 	for (i = 0; i < info->max_msg; i++) {
2339 		xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2340 		if (!xfer)
2341 			return -ENOMEM;
2342 
2343 		xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2344 					    GFP_KERNEL);
2345 		if (!xfer->rx.buf)
2346 			return -ENOMEM;
2347 
2348 		xfer->tx.buf = xfer->rx.buf;
2349 		init_completion(&xfer->done);
2350 		spin_lock_init(&xfer->lock);
2351 
2352 		/* Add initialized xfer to the free list */
2353 		hlist_add_head(&xfer->node, &info->free_xfers);
2354 	}
2355 
2356 	spin_lock_init(&info->xfer_lock);
2357 
2358 	return 0;
2359 }
2360 
2361 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2362 {
2363 	const struct scmi_desc *desc = sinfo->desc;
2364 
2365 	if (!desc->ops->get_max_msg) {
2366 		sinfo->tx_minfo.max_msg = desc->max_msg;
2367 		sinfo->rx_minfo.max_msg = desc->max_msg;
2368 	} else {
2369 		struct scmi_chan_info *base_cinfo;
2370 
2371 		base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2372 		if (!base_cinfo)
2373 			return -EINVAL;
2374 		sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2375 
2376 		/* RX channel is optional so can be skipped */
2377 		base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2378 		if (base_cinfo)
2379 			sinfo->rx_minfo.max_msg =
2380 				desc->ops->get_max_msg(base_cinfo);
2381 	}
2382 
2383 	return 0;
2384 }
2385 
2386 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2387 {
2388 	int ret;
2389 
2390 	ret = scmi_channels_max_msg_configure(sinfo);
2391 	if (ret)
2392 		return ret;
2393 
2394 	ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2395 	if (!ret && !idr_is_empty(&sinfo->rx_idr))
2396 		ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2397 
2398 	return ret;
2399 }
2400 
2401 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2402 			   int prot_id, bool tx)
2403 {
2404 	int ret, idx;
2405 	char name[32];
2406 	struct scmi_chan_info *cinfo;
2407 	struct idr *idr;
2408 	struct scmi_device *tdev = NULL;
2409 
2410 	/* Transmit channel is first entry i.e. index 0 */
2411 	idx = tx ? 0 : 1;
2412 	idr = tx ? &info->tx_idr : &info->rx_idr;
2413 
2414 	if (!info->desc->ops->chan_available(of_node, idx)) {
2415 		cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2416 		if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2417 			return -EINVAL;
2418 		goto idr_alloc;
2419 	}
2420 
2421 	cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2422 	if (!cinfo)
2423 		return -ENOMEM;
2424 
2425 	cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2426 
2427 	/* Create a unique name for this transport device */
2428 	snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2429 		 idx ? "rx" : "tx", prot_id);
2430 	/* Create a uniquely named, dedicated transport device for this chan */
2431 	tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2432 	if (!tdev) {
2433 		dev_err(info->dev,
2434 			"failed to create transport device (%s)\n", name);
2435 		devm_kfree(info->dev, cinfo);
2436 		return -EINVAL;
2437 	}
2438 	of_node_get(of_node);
2439 
2440 	cinfo->id = prot_id;
2441 	cinfo->dev = &tdev->dev;
2442 	ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2443 	if (ret) {
2444 		of_node_put(of_node);
2445 		scmi_device_destroy(info->dev, prot_id, name);
2446 		devm_kfree(info->dev, cinfo);
2447 		return ret;
2448 	}
2449 
2450 	if (tx && is_polling_required(cinfo, info->desc)) {
2451 		if (is_transport_polling_capable(info->desc))
2452 			dev_info(&tdev->dev,
2453 				 "Enabled polling mode TX channel - prot_id:%d\n",
2454 				 prot_id);
2455 		else
2456 			dev_warn(&tdev->dev,
2457 				 "Polling mode NOT supported by transport.\n");
2458 	}
2459 
2460 idr_alloc:
2461 	ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2462 	if (ret != prot_id) {
2463 		dev_err(info->dev,
2464 			"unable to allocate SCMI idr slot err %d\n", ret);
2465 		/* Destroy channel and device only if created by this call. */
2466 		if (tdev) {
2467 			of_node_put(of_node);
2468 			scmi_device_destroy(info->dev, prot_id, name);
2469 			devm_kfree(info->dev, cinfo);
2470 		}
2471 		return ret;
2472 	}
2473 
2474 	cinfo->handle = &info->handle;
2475 	return 0;
2476 }
2477 
2478 static inline int
2479 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2480 		int prot_id)
2481 {
2482 	int ret = scmi_chan_setup(info, of_node, prot_id, true);
2483 
2484 	if (!ret) {
2485 		/* Rx is optional, report only memory errors */
2486 		ret = scmi_chan_setup(info, of_node, prot_id, false);
2487 		if (ret && ret != -ENOMEM)
2488 			ret = 0;
2489 	}
2490 
2491 	return ret;
2492 }
2493 
2494 /**
2495  * scmi_channels_setup  - Helper to initialize all required channels
2496  *
2497  * @info: The SCMI instance descriptor.
2498  *
2499  * Initialize all the channels found described in the DT against the underlying
2500  * configured transport using custom defined dedicated devices instead of
2501  * borrowing devices from the SCMI drivers; this way channels are initialized
2502  * upfront during core SCMI stack probing and are no more coupled with SCMI
2503  * devices used by SCMI drivers.
2504  *
2505  * Note that, even though a pair of TX/RX channels is associated to each
2506  * protocol defined in the DT, a distinct freshly initialized channel is
2507  * created only if the DT node for the protocol at hand describes a dedicated
2508  * channel: in all the other cases the common BASE protocol channel is reused.
2509  *
2510  * Return: 0 on Success
2511  */
2512 static int scmi_channels_setup(struct scmi_info *info)
2513 {
2514 	int ret;
2515 	struct device_node *child, *top_np = info->dev->of_node;
2516 
2517 	/* Initialize a common generic channel at first */
2518 	ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2519 	if (ret)
2520 		return ret;
2521 
2522 	for_each_available_child_of_node(top_np, child) {
2523 		u32 prot_id;
2524 
2525 		if (of_property_read_u32(child, "reg", &prot_id))
2526 			continue;
2527 
2528 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2529 			dev_err(info->dev,
2530 				"Out of range protocol %d\n", prot_id);
2531 
2532 		ret = scmi_txrx_setup(info, child, prot_id);
2533 		if (ret) {
2534 			of_node_put(child);
2535 			return ret;
2536 		}
2537 	}
2538 
2539 	return 0;
2540 }
2541 
2542 static int scmi_chan_destroy(int id, void *p, void *idr)
2543 {
2544 	struct scmi_chan_info *cinfo = p;
2545 
2546 	if (cinfo->dev) {
2547 		struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2548 		struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2549 
2550 		of_node_put(cinfo->dev->of_node);
2551 		scmi_device_destroy(info->dev, id, sdev->name);
2552 		cinfo->dev = NULL;
2553 	}
2554 
2555 	idr_remove(idr, id);
2556 
2557 	return 0;
2558 }
2559 
2560 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2561 {
2562 	/* At first free all channels at the transport layer ... */
2563 	idr_for_each(idr, info->desc->ops->chan_free, idr);
2564 
2565 	/* ...then destroy all underlying devices */
2566 	idr_for_each(idr, scmi_chan_destroy, idr);
2567 
2568 	idr_destroy(idr);
2569 }
2570 
2571 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2572 {
2573 	scmi_cleanup_channels(info, &info->tx_idr);
2574 
2575 	scmi_cleanup_channels(info, &info->rx_idr);
2576 }
2577 
2578 static int scmi_bus_notifier(struct notifier_block *nb,
2579 			     unsigned long action, void *data)
2580 {
2581 	struct scmi_info *info = bus_nb_to_scmi_info(nb);
2582 	struct scmi_device *sdev = to_scmi_dev(data);
2583 
2584 	/* Skip transport devices and devices of different SCMI instances */
2585 	if (!strncmp(sdev->name, "__scmi_transport_device", 23) ||
2586 	    sdev->dev.parent != info->dev)
2587 		return NOTIFY_DONE;
2588 
2589 	switch (action) {
2590 	case BUS_NOTIFY_BIND_DRIVER:
2591 		/* setup handle now as the transport is ready */
2592 		scmi_set_handle(sdev);
2593 		break;
2594 	case BUS_NOTIFY_UNBOUND_DRIVER:
2595 		scmi_handle_put(sdev->handle);
2596 		sdev->handle = NULL;
2597 		break;
2598 	default:
2599 		return NOTIFY_DONE;
2600 	}
2601 
2602 	dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2603 		sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2604 		"about to be BOUND." : "UNBOUND.");
2605 
2606 	return NOTIFY_OK;
2607 }
2608 
2609 static int scmi_device_request_notifier(struct notifier_block *nb,
2610 					unsigned long action, void *data)
2611 {
2612 	struct device_node *np;
2613 	struct scmi_device_id *id_table = data;
2614 	struct scmi_info *info = req_nb_to_scmi_info(nb);
2615 
2616 	np = idr_find(&info->active_protocols, id_table->protocol_id);
2617 	if (!np)
2618 		return NOTIFY_DONE;
2619 
2620 	dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2621 		action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2622 		id_table->name, id_table->protocol_id);
2623 
2624 	switch (action) {
2625 	case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2626 		scmi_create_protocol_devices(np, info, id_table->protocol_id,
2627 					     id_table->name);
2628 		break;
2629 	case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2630 		scmi_destroy_protocol_devices(info, id_table->protocol_id,
2631 					      id_table->name);
2632 		break;
2633 	default:
2634 		return NOTIFY_DONE;
2635 	}
2636 
2637 	return NOTIFY_OK;
2638 }
2639 
2640 static void scmi_debugfs_common_cleanup(void *d)
2641 {
2642 	struct scmi_debug_info *dbg = d;
2643 
2644 	if (!dbg)
2645 		return;
2646 
2647 	debugfs_remove_recursive(dbg->top_dentry);
2648 	kfree(dbg->name);
2649 	kfree(dbg->type);
2650 }
2651 
2652 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2653 {
2654 	char top_dir[16];
2655 	struct dentry *trans, *top_dentry;
2656 	struct scmi_debug_info *dbg;
2657 	const char *c_ptr = NULL;
2658 
2659 	dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2660 	if (!dbg)
2661 		return NULL;
2662 
2663 	dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2664 	if (!dbg->name) {
2665 		devm_kfree(info->dev, dbg);
2666 		return NULL;
2667 	}
2668 
2669 	of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2670 	dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2671 	if (!dbg->type) {
2672 		kfree(dbg->name);
2673 		devm_kfree(info->dev, dbg);
2674 		return NULL;
2675 	}
2676 
2677 	snprintf(top_dir, 16, "%d", info->id);
2678 	top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2679 	trans = debugfs_create_dir("transport", top_dentry);
2680 
2681 	dbg->is_atomic = info->desc->atomic_enabled &&
2682 				is_transport_polling_capable(info->desc);
2683 
2684 	debugfs_create_str("instance_name", 0400, top_dentry,
2685 			   (char **)&dbg->name);
2686 
2687 	debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2688 			   &info->atomic_threshold);
2689 
2690 	debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
2691 
2692 	debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
2693 
2694 	debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
2695 			   (u32 *)&info->desc->max_rx_timeout_ms);
2696 
2697 	debugfs_create_u32("max_msg_size", 0400, trans,
2698 			   (u32 *)&info->desc->max_msg_size);
2699 
2700 	debugfs_create_u32("tx_max_msg", 0400, trans,
2701 			   (u32 *)&info->tx_minfo.max_msg);
2702 
2703 	debugfs_create_u32("rx_max_msg", 0400, trans,
2704 			   (u32 *)&info->rx_minfo.max_msg);
2705 
2706 	dbg->top_dentry = top_dentry;
2707 
2708 	if (devm_add_action_or_reset(info->dev,
2709 				     scmi_debugfs_common_cleanup, dbg)) {
2710 		scmi_debugfs_common_cleanup(dbg);
2711 		return NULL;
2712 	}
2713 
2714 	return dbg;
2715 }
2716 
2717 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
2718 {
2719 	int id, num_chans = 0, ret = 0;
2720 	struct scmi_chan_info *cinfo;
2721 	u8 channels[SCMI_MAX_CHANNELS] = {};
2722 	DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
2723 
2724 	if (!info->dbg)
2725 		return -EINVAL;
2726 
2727 	/* Enumerate all channels to collect their ids */
2728 	idr_for_each_entry(&info->tx_idr, cinfo, id) {
2729 		/*
2730 		 * Cannot happen, but be defensive.
2731 		 * Zero as num_chans is ok, warn and carry on.
2732 		 */
2733 		if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
2734 			dev_warn(info->dev,
2735 				 "SCMI RAW - Error enumerating channels\n");
2736 			break;
2737 		}
2738 
2739 		if (!test_bit(cinfo->id, protos)) {
2740 			channels[num_chans++] = cinfo->id;
2741 			set_bit(cinfo->id, protos);
2742 		}
2743 	}
2744 
2745 	info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
2746 				       info->id, channels, num_chans,
2747 				       info->desc, info->tx_minfo.max_msg);
2748 	if (IS_ERR(info->raw)) {
2749 		dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
2750 		ret = PTR_ERR(info->raw);
2751 		info->raw = NULL;
2752 	}
2753 
2754 	return ret;
2755 }
2756 
2757 static int scmi_probe(struct platform_device *pdev)
2758 {
2759 	int ret;
2760 	struct scmi_handle *handle;
2761 	const struct scmi_desc *desc;
2762 	struct scmi_info *info;
2763 	bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
2764 	struct device *dev = &pdev->dev;
2765 	struct device_node *child, *np = dev->of_node;
2766 
2767 	desc = of_device_get_match_data(dev);
2768 	if (!desc)
2769 		return -EINVAL;
2770 
2771 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2772 	if (!info)
2773 		return -ENOMEM;
2774 
2775 	info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
2776 	if (info->id < 0)
2777 		return info->id;
2778 
2779 	info->dev = dev;
2780 	info->desc = desc;
2781 	info->bus_nb.notifier_call = scmi_bus_notifier;
2782 	info->dev_req_nb.notifier_call = scmi_device_request_notifier;
2783 	INIT_LIST_HEAD(&info->node);
2784 	idr_init(&info->protocols);
2785 	mutex_init(&info->protocols_mtx);
2786 	idr_init(&info->active_protocols);
2787 	mutex_init(&info->devreq_mtx);
2788 
2789 	platform_set_drvdata(pdev, info);
2790 	idr_init(&info->tx_idr);
2791 	idr_init(&info->rx_idr);
2792 
2793 	handle = &info->handle;
2794 	handle->dev = info->dev;
2795 	handle->version = &info->version;
2796 	handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
2797 	handle->devm_protocol_get = scmi_devm_protocol_get;
2798 	handle->devm_protocol_put = scmi_devm_protocol_put;
2799 
2800 	/* System wide atomic threshold for atomic ops .. if any */
2801 	if (!of_property_read_u32(np, "atomic-threshold-us",
2802 				  &info->atomic_threshold))
2803 		dev_info(dev,
2804 			 "SCMI System wide atomic threshold set to %d us\n",
2805 			 info->atomic_threshold);
2806 	handle->is_transport_atomic = scmi_is_transport_atomic;
2807 
2808 	if (desc->ops->link_supplier) {
2809 		ret = desc->ops->link_supplier(dev);
2810 		if (ret)
2811 			goto clear_ida;
2812 	}
2813 
2814 	/* Setup all channels described in the DT at first */
2815 	ret = scmi_channels_setup(info);
2816 	if (ret)
2817 		goto clear_ida;
2818 
2819 	ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
2820 	if (ret)
2821 		goto clear_txrx_setup;
2822 
2823 	ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
2824 					       &info->dev_req_nb);
2825 	if (ret)
2826 		goto clear_bus_notifier;
2827 
2828 	ret = scmi_xfer_info_init(info);
2829 	if (ret)
2830 		goto clear_dev_req_notifier;
2831 
2832 	if (scmi_top_dentry) {
2833 		info->dbg = scmi_debugfs_common_setup(info);
2834 		if (!info->dbg)
2835 			dev_warn(dev, "Failed to setup SCMI debugfs.\n");
2836 
2837 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
2838 			ret = scmi_debugfs_raw_mode_setup(info);
2839 			if (!coex) {
2840 				if (ret)
2841 					goto clear_dev_req_notifier;
2842 
2843 				/* Bail out anyway when coex disabled. */
2844 				return 0;
2845 			}
2846 
2847 			/* Coex enabled, carry on in any case. */
2848 			dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
2849 		}
2850 	}
2851 
2852 	if (scmi_notification_init(handle))
2853 		dev_err(dev, "SCMI Notifications NOT available.\n");
2854 
2855 	if (info->desc->atomic_enabled &&
2856 	    !is_transport_polling_capable(info->desc))
2857 		dev_err(dev,
2858 			"Transport is not polling capable. Atomic mode not supported.\n");
2859 
2860 	/*
2861 	 * Trigger SCMI Base protocol initialization.
2862 	 * It's mandatory and won't be ever released/deinit until the
2863 	 * SCMI stack is shutdown/unloaded as a whole.
2864 	 */
2865 	ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
2866 	if (ret) {
2867 		dev_err(dev, "unable to communicate with SCMI\n");
2868 		if (coex)
2869 			return 0;
2870 		goto notification_exit;
2871 	}
2872 
2873 	mutex_lock(&scmi_list_mutex);
2874 	list_add_tail(&info->node, &scmi_list);
2875 	mutex_unlock(&scmi_list_mutex);
2876 
2877 	for_each_available_child_of_node(np, child) {
2878 		u32 prot_id;
2879 
2880 		if (of_property_read_u32(child, "reg", &prot_id))
2881 			continue;
2882 
2883 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2884 			dev_err(dev, "Out of range protocol %d\n", prot_id);
2885 
2886 		if (!scmi_is_protocol_implemented(handle, prot_id)) {
2887 			dev_err(dev, "SCMI protocol %d not implemented\n",
2888 				prot_id);
2889 			continue;
2890 		}
2891 
2892 		/*
2893 		 * Save this valid DT protocol descriptor amongst
2894 		 * @active_protocols for this SCMI instance/
2895 		 */
2896 		ret = idr_alloc(&info->active_protocols, child,
2897 				prot_id, prot_id + 1, GFP_KERNEL);
2898 		if (ret != prot_id) {
2899 			dev_err(dev, "SCMI protocol %d already activated. Skip\n",
2900 				prot_id);
2901 			continue;
2902 		}
2903 
2904 		of_node_get(child);
2905 		scmi_create_protocol_devices(child, info, prot_id, NULL);
2906 	}
2907 
2908 	return 0;
2909 
2910 notification_exit:
2911 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2912 		scmi_raw_mode_cleanup(info->raw);
2913 	scmi_notification_exit(&info->handle);
2914 clear_dev_req_notifier:
2915 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2916 					   &info->dev_req_nb);
2917 clear_bus_notifier:
2918 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2919 clear_txrx_setup:
2920 	scmi_cleanup_txrx_channels(info);
2921 clear_ida:
2922 	ida_free(&scmi_id, info->id);
2923 	return ret;
2924 }
2925 
2926 static void scmi_remove(struct platform_device *pdev)
2927 {
2928 	int id;
2929 	struct scmi_info *info = platform_get_drvdata(pdev);
2930 	struct device_node *child;
2931 
2932 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2933 		scmi_raw_mode_cleanup(info->raw);
2934 
2935 	mutex_lock(&scmi_list_mutex);
2936 	if (info->users)
2937 		dev_warn(&pdev->dev,
2938 			 "Still active SCMI users will be forcibly unbound.\n");
2939 	list_del(&info->node);
2940 	mutex_unlock(&scmi_list_mutex);
2941 
2942 	scmi_notification_exit(&info->handle);
2943 
2944 	mutex_lock(&info->protocols_mtx);
2945 	idr_destroy(&info->protocols);
2946 	mutex_unlock(&info->protocols_mtx);
2947 
2948 	idr_for_each_entry(&info->active_protocols, child, id)
2949 		of_node_put(child);
2950 	idr_destroy(&info->active_protocols);
2951 
2952 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2953 					   &info->dev_req_nb);
2954 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2955 
2956 	/* Safe to free channels since no more users */
2957 	scmi_cleanup_txrx_channels(info);
2958 
2959 	ida_free(&scmi_id, info->id);
2960 }
2961 
2962 static ssize_t protocol_version_show(struct device *dev,
2963 				     struct device_attribute *attr, char *buf)
2964 {
2965 	struct scmi_info *info = dev_get_drvdata(dev);
2966 
2967 	return sprintf(buf, "%u.%u\n", info->version.major_ver,
2968 		       info->version.minor_ver);
2969 }
2970 static DEVICE_ATTR_RO(protocol_version);
2971 
2972 static ssize_t firmware_version_show(struct device *dev,
2973 				     struct device_attribute *attr, char *buf)
2974 {
2975 	struct scmi_info *info = dev_get_drvdata(dev);
2976 
2977 	return sprintf(buf, "0x%x\n", info->version.impl_ver);
2978 }
2979 static DEVICE_ATTR_RO(firmware_version);
2980 
2981 static ssize_t vendor_id_show(struct device *dev,
2982 			      struct device_attribute *attr, char *buf)
2983 {
2984 	struct scmi_info *info = dev_get_drvdata(dev);
2985 
2986 	return sprintf(buf, "%s\n", info->version.vendor_id);
2987 }
2988 static DEVICE_ATTR_RO(vendor_id);
2989 
2990 static ssize_t sub_vendor_id_show(struct device *dev,
2991 				  struct device_attribute *attr, char *buf)
2992 {
2993 	struct scmi_info *info = dev_get_drvdata(dev);
2994 
2995 	return sprintf(buf, "%s\n", info->version.sub_vendor_id);
2996 }
2997 static DEVICE_ATTR_RO(sub_vendor_id);
2998 
2999 static struct attribute *versions_attrs[] = {
3000 	&dev_attr_firmware_version.attr,
3001 	&dev_attr_protocol_version.attr,
3002 	&dev_attr_vendor_id.attr,
3003 	&dev_attr_sub_vendor_id.attr,
3004 	NULL,
3005 };
3006 ATTRIBUTE_GROUPS(versions);
3007 
3008 /* Each compatible listed below must have descriptor associated with it */
3009 static const struct of_device_id scmi_of_match[] = {
3010 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
3011 	{ .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
3012 #endif
3013 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE
3014 	{ .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc },
3015 #endif
3016 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
3017 	{ .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
3018 	{ .compatible = "arm,scmi-smc-param", .data = &scmi_smc_desc},
3019 	{ .compatible = "qcom,scmi-smc", .data = &scmi_smc_desc},
3020 #endif
3021 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
3022 	{ .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
3023 #endif
3024 	{ /* Sentinel */ },
3025 };
3026 
3027 MODULE_DEVICE_TABLE(of, scmi_of_match);
3028 
3029 static struct platform_driver scmi_driver = {
3030 	.driver = {
3031 		   .name = "arm-scmi",
3032 		   .suppress_bind_attrs = true,
3033 		   .of_match_table = scmi_of_match,
3034 		   .dev_groups = versions_groups,
3035 		   },
3036 	.probe = scmi_probe,
3037 	.remove_new = scmi_remove,
3038 };
3039 
3040 /**
3041  * __scmi_transports_setup  - Common helper to call transport-specific
3042  * .init/.exit code if provided.
3043  *
3044  * @init: A flag to distinguish between init and exit.
3045  *
3046  * Note that, if provided, we invoke .init/.exit functions for all the
3047  * transports currently compiled in.
3048  *
3049  * Return: 0 on Success.
3050  */
3051 static inline int __scmi_transports_setup(bool init)
3052 {
3053 	int ret = 0;
3054 	const struct of_device_id *trans;
3055 
3056 	for (trans = scmi_of_match; trans->data; trans++) {
3057 		const struct scmi_desc *tdesc = trans->data;
3058 
3059 		if ((init && !tdesc->transport_init) ||
3060 		    (!init && !tdesc->transport_exit))
3061 			continue;
3062 
3063 		if (init)
3064 			ret = tdesc->transport_init();
3065 		else
3066 			tdesc->transport_exit();
3067 
3068 		if (ret) {
3069 			pr_err("SCMI transport %s FAILED initialization!\n",
3070 			       trans->compatible);
3071 			break;
3072 		}
3073 	}
3074 
3075 	return ret;
3076 }
3077 
3078 static int __init scmi_transports_init(void)
3079 {
3080 	return __scmi_transports_setup(true);
3081 }
3082 
3083 static void __exit scmi_transports_exit(void)
3084 {
3085 	__scmi_transports_setup(false);
3086 }
3087 
3088 static struct dentry *scmi_debugfs_init(void)
3089 {
3090 	struct dentry *d;
3091 
3092 	d = debugfs_create_dir("scmi", NULL);
3093 	if (IS_ERR(d)) {
3094 		pr_err("Could NOT create SCMI top dentry.\n");
3095 		return NULL;
3096 	}
3097 
3098 	return d;
3099 }
3100 
3101 static int __init scmi_driver_init(void)
3102 {
3103 	int ret;
3104 
3105 	/* Bail out if no SCMI transport was configured */
3106 	if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3107 		return -EINVAL;
3108 
3109 	/* Initialize any compiled-in transport which provided an init/exit */
3110 	ret = scmi_transports_init();
3111 	if (ret)
3112 		return ret;
3113 
3114 	if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3115 		scmi_top_dentry = scmi_debugfs_init();
3116 
3117 	scmi_base_register();
3118 
3119 	scmi_clock_register();
3120 	scmi_perf_register();
3121 	scmi_power_register();
3122 	scmi_reset_register();
3123 	scmi_sensors_register();
3124 	scmi_voltage_register();
3125 	scmi_system_register();
3126 	scmi_powercap_register();
3127 
3128 	return platform_driver_register(&scmi_driver);
3129 }
3130 module_init(scmi_driver_init);
3131 
3132 static void __exit scmi_driver_exit(void)
3133 {
3134 	scmi_base_unregister();
3135 
3136 	scmi_clock_unregister();
3137 	scmi_perf_unregister();
3138 	scmi_power_unregister();
3139 	scmi_reset_unregister();
3140 	scmi_sensors_unregister();
3141 	scmi_voltage_unregister();
3142 	scmi_system_unregister();
3143 	scmi_powercap_unregister();
3144 
3145 	scmi_transports_exit();
3146 
3147 	platform_driver_unregister(&scmi_driver);
3148 
3149 	debugfs_remove_recursive(scmi_top_dentry);
3150 }
3151 module_exit(scmi_driver_exit);
3152 
3153 MODULE_ALIAS("platform:arm-scmi");
3154 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3155 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3156 MODULE_LICENSE("GPL v2");
3157