1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Control and Management Interface (SCMI) Message Protocol driver 4 * 5 * SCMI Message Protocol is used between the System Control Processor(SCP) 6 * and the Application Processors(AP). The Message Handling Unit(MHU) 7 * provides a mechanism for inter-processor communication between SCP's 8 * Cortex M3 and AP. 9 * 10 * SCP offers control and management of the core/cluster power states, 11 * various power domain DVFS including the core/cluster, certain system 12 * clocks configuration, thermal sensors and many others. 13 * 14 * Copyright (C) 2018-2021 ARM Ltd. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/debugfs.h> 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/idr.h> 24 #include <linux/io.h> 25 #include <linux/io-64-nonatomic-hi-lo.h> 26 #include <linux/kernel.h> 27 #include <linux/ktime.h> 28 #include <linux/hashtable.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/of.h> 32 #include <linux/platform_device.h> 33 #include <linux/processor.h> 34 #include <linux/refcount.h> 35 #include <linux/slab.h> 36 37 #include "common.h" 38 #include "notify.h" 39 40 #include "raw_mode.h" 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/scmi.h> 44 45 static DEFINE_IDA(scmi_id); 46 47 static DEFINE_IDR(scmi_protocols); 48 static DEFINE_SPINLOCK(protocol_lock); 49 50 /* List of all SCMI devices active in system */ 51 static LIST_HEAD(scmi_list); 52 /* Protection for the entire list */ 53 static DEFINE_MUTEX(scmi_list_mutex); 54 /* Track the unique id for the transfers for debug & profiling purpose */ 55 static atomic_t transfer_last_id; 56 57 static struct dentry *scmi_top_dentry; 58 59 /** 60 * struct scmi_xfers_info - Structure to manage transfer information 61 * 62 * @xfer_alloc_table: Bitmap table for allocated messages. 63 * Index of this bitmap table is also used for message 64 * sequence identifier. 65 * @xfer_lock: Protection for message allocation 66 * @max_msg: Maximum number of messages that can be pending 67 * @free_xfers: A free list for available to use xfers. It is initialized with 68 * a number of xfers equal to the maximum allowed in-flight 69 * messages. 70 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the 71 * currently in-flight messages. 72 */ 73 struct scmi_xfers_info { 74 unsigned long *xfer_alloc_table; 75 spinlock_t xfer_lock; 76 int max_msg; 77 struct hlist_head free_xfers; 78 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ); 79 }; 80 81 /** 82 * struct scmi_protocol_instance - Describe an initialized protocol instance. 83 * @handle: Reference to the SCMI handle associated to this protocol instance. 84 * @proto: A reference to the protocol descriptor. 85 * @gid: A reference for per-protocol devres management. 86 * @users: A refcount to track effective users of this protocol. 87 * @priv: Reference for optional protocol private data. 88 * @version: Protocol version supported by the platform as detected at runtime. 89 * @negotiated_version: When the platform supports a newer protocol version, 90 * the agent will try to negotiate with the platform the 91 * usage of the newest version known to it, since 92 * backward compatibility is NOT automatically assured. 93 * This field is NON-zero when a successful negotiation 94 * has completed. 95 * @ph: An embedded protocol handle that will be passed down to protocol 96 * initialization code to identify this instance. 97 * 98 * Each protocol is initialized independently once for each SCMI platform in 99 * which is defined by DT and implemented by the SCMI server fw. 100 */ 101 struct scmi_protocol_instance { 102 const struct scmi_handle *handle; 103 const struct scmi_protocol *proto; 104 void *gid; 105 refcount_t users; 106 void *priv; 107 unsigned int version; 108 unsigned int negotiated_version; 109 struct scmi_protocol_handle ph; 110 }; 111 112 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph) 113 114 /** 115 * struct scmi_debug_info - Debug common info 116 * @top_dentry: A reference to the top debugfs dentry 117 * @name: Name of this SCMI instance 118 * @type: Type of this SCMI instance 119 * @is_atomic: Flag to state if the transport of this instance is atomic 120 */ 121 struct scmi_debug_info { 122 struct dentry *top_dentry; 123 const char *name; 124 const char *type; 125 bool is_atomic; 126 }; 127 128 /** 129 * struct scmi_info - Structure representing a SCMI instance 130 * 131 * @id: A sequence number starting from zero identifying this instance 132 * @dev: Device pointer 133 * @desc: SoC description for this instance 134 * @version: SCMI revision information containing protocol version, 135 * implementation version and (sub-)vendor identification. 136 * @handle: Instance of SCMI handle to send to clients 137 * @tx_minfo: Universal Transmit Message management info 138 * @rx_minfo: Universal Receive Message management info 139 * @tx_idr: IDR object to map protocol id to Tx channel info pointer 140 * @rx_idr: IDR object to map protocol id to Rx channel info pointer 141 * @protocols: IDR for protocols' instance descriptors initialized for 142 * this SCMI instance: populated on protocol's first attempted 143 * usage. 144 * @protocols_mtx: A mutex to protect protocols instances initialization. 145 * @protocols_imp: List of protocols implemented, currently maximum of 146 * scmi_revision_info.num_protocols elements allocated by the 147 * base protocol 148 * @active_protocols: IDR storing device_nodes for protocols actually defined 149 * in the DT and confirmed as implemented by fw. 150 * @atomic_threshold: Optional system wide DT-configured threshold, expressed 151 * in microseconds, for atomic operations. 152 * Only SCMI synchronous commands reported by the platform 153 * to have an execution latency lesser-equal to the threshold 154 * should be considered for atomic mode operation: such 155 * decision is finally left up to the SCMI drivers. 156 * @notify_priv: Pointer to private data structure specific to notifications. 157 * @node: List head 158 * @users: Number of users of this instance 159 * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus 160 * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi 161 * bus 162 * @devreq_mtx: A mutex to serialize device creation for this SCMI instance 163 * @dbg: A pointer to debugfs related data (if any) 164 * @raw: An opaque reference handle used by SCMI Raw mode. 165 */ 166 struct scmi_info { 167 int id; 168 struct device *dev; 169 const struct scmi_desc *desc; 170 struct scmi_revision_info version; 171 struct scmi_handle handle; 172 struct scmi_xfers_info tx_minfo; 173 struct scmi_xfers_info rx_minfo; 174 struct idr tx_idr; 175 struct idr rx_idr; 176 struct idr protocols; 177 /* Ensure mutual exclusive access to protocols instance array */ 178 struct mutex protocols_mtx; 179 u8 *protocols_imp; 180 struct idr active_protocols; 181 unsigned int atomic_threshold; 182 void *notify_priv; 183 struct list_head node; 184 int users; 185 struct notifier_block bus_nb; 186 struct notifier_block dev_req_nb; 187 /* Serialize device creation process for this instance */ 188 struct mutex devreq_mtx; 189 struct scmi_debug_info *dbg; 190 void *raw; 191 }; 192 193 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle) 194 #define bus_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, bus_nb) 195 #define req_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, dev_req_nb) 196 197 static const struct scmi_protocol *scmi_protocol_get(int protocol_id) 198 { 199 const struct scmi_protocol *proto; 200 201 proto = idr_find(&scmi_protocols, protocol_id); 202 if (!proto || !try_module_get(proto->owner)) { 203 pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id); 204 return NULL; 205 } 206 207 pr_debug("Found SCMI Protocol 0x%x\n", protocol_id); 208 209 return proto; 210 } 211 212 static void scmi_protocol_put(int protocol_id) 213 { 214 const struct scmi_protocol *proto; 215 216 proto = idr_find(&scmi_protocols, protocol_id); 217 if (proto) 218 module_put(proto->owner); 219 } 220 221 int scmi_protocol_register(const struct scmi_protocol *proto) 222 { 223 int ret; 224 225 if (!proto) { 226 pr_err("invalid protocol\n"); 227 return -EINVAL; 228 } 229 230 if (!proto->instance_init) { 231 pr_err("missing init for protocol 0x%x\n", proto->id); 232 return -EINVAL; 233 } 234 235 spin_lock(&protocol_lock); 236 ret = idr_alloc(&scmi_protocols, (void *)proto, 237 proto->id, proto->id + 1, GFP_ATOMIC); 238 spin_unlock(&protocol_lock); 239 if (ret != proto->id) { 240 pr_err("unable to allocate SCMI idr slot for 0x%x - err %d\n", 241 proto->id, ret); 242 return ret; 243 } 244 245 pr_debug("Registered SCMI Protocol 0x%x\n", proto->id); 246 247 return 0; 248 } 249 EXPORT_SYMBOL_GPL(scmi_protocol_register); 250 251 void scmi_protocol_unregister(const struct scmi_protocol *proto) 252 { 253 spin_lock(&protocol_lock); 254 idr_remove(&scmi_protocols, proto->id); 255 spin_unlock(&protocol_lock); 256 257 pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id); 258 } 259 EXPORT_SYMBOL_GPL(scmi_protocol_unregister); 260 261 /** 262 * scmi_create_protocol_devices - Create devices for all pending requests for 263 * this SCMI instance. 264 * 265 * @np: The device node describing the protocol 266 * @info: The SCMI instance descriptor 267 * @prot_id: The protocol ID 268 * @name: The optional name of the device to be created: if not provided this 269 * call will lead to the creation of all the devices currently requested 270 * for the specified protocol. 271 */ 272 static void scmi_create_protocol_devices(struct device_node *np, 273 struct scmi_info *info, 274 int prot_id, const char *name) 275 { 276 struct scmi_device *sdev; 277 278 mutex_lock(&info->devreq_mtx); 279 sdev = scmi_device_create(np, info->dev, prot_id, name); 280 if (name && !sdev) 281 dev_err(info->dev, 282 "failed to create device for protocol 0x%X (%s)\n", 283 prot_id, name); 284 mutex_unlock(&info->devreq_mtx); 285 } 286 287 static void scmi_destroy_protocol_devices(struct scmi_info *info, 288 int prot_id, const char *name) 289 { 290 mutex_lock(&info->devreq_mtx); 291 scmi_device_destroy(info->dev, prot_id, name); 292 mutex_unlock(&info->devreq_mtx); 293 } 294 295 void scmi_notification_instance_data_set(const struct scmi_handle *handle, 296 void *priv) 297 { 298 struct scmi_info *info = handle_to_scmi_info(handle); 299 300 info->notify_priv = priv; 301 /* Ensure updated protocol private date are visible */ 302 smp_wmb(); 303 } 304 305 void *scmi_notification_instance_data_get(const struct scmi_handle *handle) 306 { 307 struct scmi_info *info = handle_to_scmi_info(handle); 308 309 /* Ensure protocols_private_data has been updated */ 310 smp_rmb(); 311 return info->notify_priv; 312 } 313 314 /** 315 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand 316 * 317 * @minfo: Pointer to Tx/Rx Message management info based on channel type 318 * @xfer: The xfer to act upon 319 * 320 * Pick the next unused monotonically increasing token and set it into 321 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate 322 * reuse of freshly completed or timed-out xfers, thus mitigating the risk 323 * of incorrect association of a late and expired xfer with a live in-flight 324 * transaction, both happening to re-use the same token identifier. 325 * 326 * Since platform is NOT required to answer our request in-order we should 327 * account for a few rare but possible scenarios: 328 * 329 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token 330 * using find_next_zero_bit() starting from candidate next_token bit 331 * 332 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we 333 * are plenty of free tokens at start, so try a second pass using 334 * find_next_zero_bit() and starting from 0. 335 * 336 * X = used in-flight 337 * 338 * Normal 339 * ------ 340 * 341 * |- xfer_id picked 342 * -----------+---------------------------------------------------------- 343 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X| 344 * ---------------------------------------------------------------------- 345 * ^ 346 * |- next_token 347 * 348 * Out-of-order pending at start 349 * ----------------------------- 350 * 351 * |- xfer_id picked, last_token fixed 352 * -----+---------------------------------------------------------------- 353 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| | 354 * ---------------------------------------------------------------------- 355 * ^ 356 * |- next_token 357 * 358 * 359 * Out-of-order pending at end 360 * --------------------------- 361 * 362 * |- xfer_id picked, last_token fixed 363 * -----+---------------------------------------------------------------- 364 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X| 365 * ---------------------------------------------------------------------- 366 * ^ 367 * |- next_token 368 * 369 * Context: Assumes to be called with @xfer_lock already acquired. 370 * 371 * Return: 0 on Success or error 372 */ 373 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo, 374 struct scmi_xfer *xfer) 375 { 376 unsigned long xfer_id, next_token; 377 378 /* 379 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1] 380 * using the pre-allocated transfer_id as a base. 381 * Note that the global transfer_id is shared across all message types 382 * so there could be holes in the allocated set of monotonic sequence 383 * numbers, but that is going to limit the effectiveness of the 384 * mitigation only in very rare limit conditions. 385 */ 386 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1)); 387 388 /* Pick the next available xfer_id >= next_token */ 389 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 390 MSG_TOKEN_MAX, next_token); 391 if (xfer_id == MSG_TOKEN_MAX) { 392 /* 393 * After heavily out-of-order responses, there are no free 394 * tokens ahead, but only at start of xfer_alloc_table so 395 * try again from the beginning. 396 */ 397 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 398 MSG_TOKEN_MAX, 0); 399 /* 400 * Something is wrong if we got here since there can be a 401 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages 402 * but we have not found any free token [0, MSG_TOKEN_MAX - 1]. 403 */ 404 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX)) 405 return -ENOMEM; 406 } 407 408 /* Update +/- last_token accordingly if we skipped some hole */ 409 if (xfer_id != next_token) 410 atomic_add((int)(xfer_id - next_token), &transfer_last_id); 411 412 xfer->hdr.seq = (u16)xfer_id; 413 414 return 0; 415 } 416 417 /** 418 * scmi_xfer_token_clear - Release the token 419 * 420 * @minfo: Pointer to Tx/Rx Message management info based on channel type 421 * @xfer: The xfer to act upon 422 */ 423 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo, 424 struct scmi_xfer *xfer) 425 { 426 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 427 } 428 429 /** 430 * scmi_xfer_inflight_register_unlocked - Register the xfer as in-flight 431 * 432 * @xfer: The xfer to register 433 * @minfo: Pointer to Tx/Rx Message management info based on channel type 434 * 435 * Note that this helper assumes that the xfer to be registered as in-flight 436 * had been built using an xfer sequence number which still corresponds to a 437 * free slot in the xfer_alloc_table. 438 * 439 * Context: Assumes to be called with @xfer_lock already acquired. 440 */ 441 static inline void 442 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer, 443 struct scmi_xfers_info *minfo) 444 { 445 /* Set in-flight */ 446 set_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 447 hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq); 448 xfer->pending = true; 449 } 450 451 /** 452 * scmi_xfer_inflight_register - Try to register an xfer as in-flight 453 * 454 * @xfer: The xfer to register 455 * @minfo: Pointer to Tx/Rx Message management info based on channel type 456 * 457 * Note that this helper does NOT assume anything about the sequence number 458 * that was baked into the provided xfer, so it checks at first if it can 459 * be mapped to a free slot and fails with an error if another xfer with the 460 * same sequence number is currently still registered as in-flight. 461 * 462 * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer 463 * could not rbe mapped to a free slot in the xfer_alloc_table. 464 */ 465 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer, 466 struct scmi_xfers_info *minfo) 467 { 468 int ret = 0; 469 unsigned long flags; 470 471 spin_lock_irqsave(&minfo->xfer_lock, flags); 472 if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table)) 473 scmi_xfer_inflight_register_unlocked(xfer, minfo); 474 else 475 ret = -EBUSY; 476 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 477 478 return ret; 479 } 480 481 /** 482 * scmi_xfer_raw_inflight_register - An helper to register the given xfer as in 483 * flight on the TX channel, if possible. 484 * 485 * @handle: Pointer to SCMI entity handle 486 * @xfer: The xfer to register 487 * 488 * Return: 0 on Success, error otherwise 489 */ 490 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle, 491 struct scmi_xfer *xfer) 492 { 493 struct scmi_info *info = handle_to_scmi_info(handle); 494 495 return scmi_xfer_inflight_register(xfer, &info->tx_minfo); 496 } 497 498 /** 499 * scmi_xfer_pending_set - Pick a proper sequence number and mark the xfer 500 * as pending in-flight 501 * 502 * @xfer: The xfer to act upon 503 * @minfo: Pointer to Tx/Rx Message management info based on channel type 504 * 505 * Return: 0 on Success or error otherwise 506 */ 507 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer, 508 struct scmi_xfers_info *minfo) 509 { 510 int ret; 511 unsigned long flags; 512 513 spin_lock_irqsave(&minfo->xfer_lock, flags); 514 /* Set a new monotonic token as the xfer sequence number */ 515 ret = scmi_xfer_token_set(minfo, xfer); 516 if (!ret) 517 scmi_xfer_inflight_register_unlocked(xfer, minfo); 518 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 519 520 return ret; 521 } 522 523 /** 524 * scmi_xfer_get() - Allocate one message 525 * 526 * @handle: Pointer to SCMI entity handle 527 * @minfo: Pointer to Tx/Rx Message management info based on channel type 528 * 529 * Helper function which is used by various message functions that are 530 * exposed to clients of this driver for allocating a message traffic event. 531 * 532 * Picks an xfer from the free list @free_xfers (if any available) and perform 533 * a basic initialization. 534 * 535 * Note that, at this point, still no sequence number is assigned to the 536 * allocated xfer, nor it is registered as a pending transaction. 537 * 538 * The successfully initialized xfer is refcounted. 539 * 540 * Context: Holds @xfer_lock while manipulating @free_xfers. 541 * 542 * Return: An initialized xfer if all went fine, else pointer error. 543 */ 544 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle, 545 struct scmi_xfers_info *minfo) 546 { 547 unsigned long flags; 548 struct scmi_xfer *xfer; 549 550 spin_lock_irqsave(&minfo->xfer_lock, flags); 551 if (hlist_empty(&minfo->free_xfers)) { 552 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 553 return ERR_PTR(-ENOMEM); 554 } 555 556 /* grab an xfer from the free_list */ 557 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node); 558 hlist_del_init(&xfer->node); 559 560 /* 561 * Allocate transfer_id early so that can be used also as base for 562 * monotonic sequence number generation if needed. 563 */ 564 xfer->transfer_id = atomic_inc_return(&transfer_last_id); 565 566 refcount_set(&xfer->users, 1); 567 atomic_set(&xfer->busy, SCMI_XFER_FREE); 568 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 569 570 return xfer; 571 } 572 573 /** 574 * scmi_xfer_raw_get - Helper to get a bare free xfer from the TX channel 575 * 576 * @handle: Pointer to SCMI entity handle 577 * 578 * Note that xfer is taken from the TX channel structures. 579 * 580 * Return: A valid xfer on Success, or an error-pointer otherwise 581 */ 582 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle) 583 { 584 struct scmi_xfer *xfer; 585 struct scmi_info *info = handle_to_scmi_info(handle); 586 587 xfer = scmi_xfer_get(handle, &info->tx_minfo); 588 if (!IS_ERR(xfer)) 589 xfer->flags |= SCMI_XFER_FLAG_IS_RAW; 590 591 return xfer; 592 } 593 594 /** 595 * scmi_xfer_raw_channel_get - Helper to get a reference to the proper channel 596 * to use for a specific protocol_id Raw transaction. 597 * 598 * @handle: Pointer to SCMI entity handle 599 * @protocol_id: Identifier of the protocol 600 * 601 * Note that in a regular SCMI stack, usually, a protocol has to be defined in 602 * the DT to have an associated channel and be usable; but in Raw mode any 603 * protocol in range is allowed, re-using the Base channel, so as to enable 604 * fuzzing on any protocol without the need of a fully compiled DT. 605 * 606 * Return: A reference to the channel to use, or an ERR_PTR 607 */ 608 struct scmi_chan_info * 609 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id) 610 { 611 struct scmi_chan_info *cinfo; 612 struct scmi_info *info = handle_to_scmi_info(handle); 613 614 cinfo = idr_find(&info->tx_idr, protocol_id); 615 if (!cinfo) { 616 if (protocol_id == SCMI_PROTOCOL_BASE) 617 return ERR_PTR(-EINVAL); 618 /* Use Base channel for protocols not defined for DT */ 619 cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE); 620 if (!cinfo) 621 return ERR_PTR(-EINVAL); 622 dev_warn_once(handle->dev, 623 "Using Base channel for protocol 0x%X\n", 624 protocol_id); 625 } 626 627 return cinfo; 628 } 629 630 /** 631 * __scmi_xfer_put() - Release a message 632 * 633 * @minfo: Pointer to Tx/Rx Message management info based on channel type 634 * @xfer: message that was reserved by scmi_xfer_get 635 * 636 * After refcount check, possibly release an xfer, clearing the token slot, 637 * removing xfer from @pending_xfers and putting it back into free_xfers. 638 * 639 * This holds a spinlock to maintain integrity of internal data structures. 640 */ 641 static void 642 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer) 643 { 644 unsigned long flags; 645 646 spin_lock_irqsave(&minfo->xfer_lock, flags); 647 if (refcount_dec_and_test(&xfer->users)) { 648 if (xfer->pending) { 649 scmi_xfer_token_clear(minfo, xfer); 650 hash_del(&xfer->node); 651 xfer->pending = false; 652 } 653 hlist_add_head(&xfer->node, &minfo->free_xfers); 654 } 655 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 656 } 657 658 /** 659 * scmi_xfer_raw_put - Release an xfer that was taken by @scmi_xfer_raw_get 660 * 661 * @handle: Pointer to SCMI entity handle 662 * @xfer: A reference to the xfer to put 663 * 664 * Note that as with other xfer_put() handlers the xfer is really effectively 665 * released only if there are no more users on the system. 666 */ 667 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer) 668 { 669 struct scmi_info *info = handle_to_scmi_info(handle); 670 671 xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW; 672 xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET; 673 return __scmi_xfer_put(&info->tx_minfo, xfer); 674 } 675 676 /** 677 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id 678 * 679 * @minfo: Pointer to Tx/Rx Message management info based on channel type 680 * @xfer_id: Token ID to lookup in @pending_xfers 681 * 682 * Refcounting is untouched. 683 * 684 * Context: Assumes to be called with @xfer_lock already acquired. 685 * 686 * Return: A valid xfer on Success or error otherwise 687 */ 688 static struct scmi_xfer * 689 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id) 690 { 691 struct scmi_xfer *xfer = NULL; 692 693 if (test_bit(xfer_id, minfo->xfer_alloc_table)) 694 xfer = XFER_FIND(minfo->pending_xfers, xfer_id); 695 696 return xfer ?: ERR_PTR(-EINVAL); 697 } 698 699 /** 700 * scmi_msg_response_validate - Validate message type against state of related 701 * xfer 702 * 703 * @cinfo: A reference to the channel descriptor. 704 * @msg_type: Message type to check 705 * @xfer: A reference to the xfer to validate against @msg_type 706 * 707 * This function checks if @msg_type is congruent with the current state of 708 * a pending @xfer; if an asynchronous delayed response is received before the 709 * related synchronous response (Out-of-Order Delayed Response) the missing 710 * synchronous response is assumed to be OK and completed, carrying on with the 711 * Delayed Response: this is done to address the case in which the underlying 712 * SCMI transport can deliver such out-of-order responses. 713 * 714 * Context: Assumes to be called with xfer->lock already acquired. 715 * 716 * Return: 0 on Success, error otherwise 717 */ 718 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo, 719 u8 msg_type, 720 struct scmi_xfer *xfer) 721 { 722 /* 723 * Even if a response was indeed expected on this slot at this point, 724 * a buggy platform could wrongly reply feeding us an unexpected 725 * delayed response we're not prepared to handle: bail-out safely 726 * blaming firmware. 727 */ 728 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) { 729 dev_err(cinfo->dev, 730 "Delayed Response for %d not expected! Buggy F/W ?\n", 731 xfer->hdr.seq); 732 return -EINVAL; 733 } 734 735 switch (xfer->state) { 736 case SCMI_XFER_SENT_OK: 737 if (msg_type == MSG_TYPE_DELAYED_RESP) { 738 /* 739 * Delayed Response expected but delivered earlier. 740 * Assume message RESPONSE was OK and skip state. 741 */ 742 xfer->hdr.status = SCMI_SUCCESS; 743 xfer->state = SCMI_XFER_RESP_OK; 744 complete(&xfer->done); 745 dev_warn(cinfo->dev, 746 "Received valid OoO Delayed Response for %d\n", 747 xfer->hdr.seq); 748 } 749 break; 750 case SCMI_XFER_RESP_OK: 751 if (msg_type != MSG_TYPE_DELAYED_RESP) 752 return -EINVAL; 753 break; 754 case SCMI_XFER_DRESP_OK: 755 /* No further message expected once in SCMI_XFER_DRESP_OK */ 756 return -EINVAL; 757 } 758 759 return 0; 760 } 761 762 /** 763 * scmi_xfer_state_update - Update xfer state 764 * 765 * @xfer: A reference to the xfer to update 766 * @msg_type: Type of message being processed. 767 * 768 * Note that this message is assumed to have been already successfully validated 769 * by @scmi_msg_response_validate(), so here we just update the state. 770 * 771 * Context: Assumes to be called on an xfer exclusively acquired using the 772 * busy flag. 773 */ 774 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type) 775 { 776 xfer->hdr.type = msg_type; 777 778 /* Unknown command types were already discarded earlier */ 779 if (xfer->hdr.type == MSG_TYPE_COMMAND) 780 xfer->state = SCMI_XFER_RESP_OK; 781 else 782 xfer->state = SCMI_XFER_DRESP_OK; 783 } 784 785 static bool scmi_xfer_acquired(struct scmi_xfer *xfer) 786 { 787 int ret; 788 789 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY); 790 791 return ret == SCMI_XFER_FREE; 792 } 793 794 /** 795 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer 796 * 797 * @cinfo: A reference to the channel descriptor. 798 * @msg_hdr: A message header to use as lookup key 799 * 800 * When a valid xfer is found for the sequence number embedded in the provided 801 * msg_hdr, reference counting is properly updated and exclusive access to this 802 * xfer is granted till released with @scmi_xfer_command_release. 803 * 804 * Return: A valid @xfer on Success or error otherwise. 805 */ 806 static inline struct scmi_xfer * 807 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr) 808 { 809 int ret; 810 unsigned long flags; 811 struct scmi_xfer *xfer; 812 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 813 struct scmi_xfers_info *minfo = &info->tx_minfo; 814 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 815 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr); 816 817 /* Are we even expecting this? */ 818 spin_lock_irqsave(&minfo->xfer_lock, flags); 819 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id); 820 if (IS_ERR(xfer)) { 821 dev_err(cinfo->dev, 822 "Message for %d type %d is not expected!\n", 823 xfer_id, msg_type); 824 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 825 return xfer; 826 } 827 refcount_inc(&xfer->users); 828 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 829 830 spin_lock_irqsave(&xfer->lock, flags); 831 ret = scmi_msg_response_validate(cinfo, msg_type, xfer); 832 /* 833 * If a pending xfer was found which was also in a congruent state with 834 * the received message, acquire exclusive access to it setting the busy 835 * flag. 836 * Spins only on the rare limit condition of concurrent reception of 837 * RESP and DRESP for the same xfer. 838 */ 839 if (!ret) { 840 spin_until_cond(scmi_xfer_acquired(xfer)); 841 scmi_xfer_state_update(xfer, msg_type); 842 } 843 spin_unlock_irqrestore(&xfer->lock, flags); 844 845 if (ret) { 846 dev_err(cinfo->dev, 847 "Invalid message type:%d for %d - HDR:0x%X state:%d\n", 848 msg_type, xfer_id, msg_hdr, xfer->state); 849 /* On error the refcount incremented above has to be dropped */ 850 __scmi_xfer_put(minfo, xfer); 851 xfer = ERR_PTR(-EINVAL); 852 } 853 854 return xfer; 855 } 856 857 static inline void scmi_xfer_command_release(struct scmi_info *info, 858 struct scmi_xfer *xfer) 859 { 860 atomic_set(&xfer->busy, SCMI_XFER_FREE); 861 __scmi_xfer_put(&info->tx_minfo, xfer); 862 } 863 864 static inline void scmi_clear_channel(struct scmi_info *info, 865 struct scmi_chan_info *cinfo) 866 { 867 if (info->desc->ops->clear_channel) 868 info->desc->ops->clear_channel(cinfo); 869 } 870 871 static void scmi_handle_notification(struct scmi_chan_info *cinfo, 872 u32 msg_hdr, void *priv) 873 { 874 struct scmi_xfer *xfer; 875 struct device *dev = cinfo->dev; 876 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 877 struct scmi_xfers_info *minfo = &info->rx_minfo; 878 ktime_t ts; 879 880 ts = ktime_get_boottime(); 881 xfer = scmi_xfer_get(cinfo->handle, minfo); 882 if (IS_ERR(xfer)) { 883 dev_err(dev, "failed to get free message slot (%ld)\n", 884 PTR_ERR(xfer)); 885 scmi_clear_channel(info, cinfo); 886 return; 887 } 888 889 unpack_scmi_header(msg_hdr, &xfer->hdr); 890 if (priv) 891 /* Ensure order between xfer->priv store and following ops */ 892 smp_store_mb(xfer->priv, priv); 893 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size, 894 xfer); 895 896 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 897 xfer->hdr.id, "NOTI", xfer->hdr.seq, 898 xfer->hdr.status, xfer->rx.buf, xfer->rx.len); 899 900 scmi_notify(cinfo->handle, xfer->hdr.protocol_id, 901 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts); 902 903 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 904 xfer->hdr.protocol_id, xfer->hdr.seq, 905 MSG_TYPE_NOTIFICATION); 906 907 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 908 xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr); 909 scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE, 910 cinfo->id); 911 } 912 913 __scmi_xfer_put(minfo, xfer); 914 915 scmi_clear_channel(info, cinfo); 916 } 917 918 static void scmi_handle_response(struct scmi_chan_info *cinfo, 919 u32 msg_hdr, void *priv) 920 { 921 struct scmi_xfer *xfer; 922 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 923 924 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr); 925 if (IS_ERR(xfer)) { 926 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 927 scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv); 928 929 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP) 930 scmi_clear_channel(info, cinfo); 931 return; 932 } 933 934 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */ 935 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) 936 xfer->rx.len = info->desc->max_msg_size; 937 938 if (priv) 939 /* Ensure order between xfer->priv store and following ops */ 940 smp_store_mb(xfer->priv, priv); 941 info->desc->ops->fetch_response(cinfo, xfer); 942 943 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 944 xfer->hdr.id, 945 xfer->hdr.type == MSG_TYPE_DELAYED_RESP ? 946 (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") : 947 (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"), 948 xfer->hdr.seq, xfer->hdr.status, 949 xfer->rx.buf, xfer->rx.len); 950 951 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 952 xfer->hdr.protocol_id, xfer->hdr.seq, 953 xfer->hdr.type); 954 955 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) { 956 scmi_clear_channel(info, cinfo); 957 complete(xfer->async_done); 958 } else { 959 complete(&xfer->done); 960 } 961 962 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 963 /* 964 * When in polling mode avoid to queue the Raw xfer on the IRQ 965 * RX path since it will be already queued at the end of the TX 966 * poll loop. 967 */ 968 if (!xfer->hdr.poll_completion) 969 scmi_raw_message_report(info->raw, xfer, 970 SCMI_RAW_REPLY_QUEUE, 971 cinfo->id); 972 } 973 974 scmi_xfer_command_release(info, xfer); 975 } 976 977 /** 978 * scmi_rx_callback() - callback for receiving messages 979 * 980 * @cinfo: SCMI channel info 981 * @msg_hdr: Message header 982 * @priv: Transport specific private data. 983 * 984 * Processes one received message to appropriate transfer information and 985 * signals completion of the transfer. 986 * 987 * NOTE: This function will be invoked in IRQ context, hence should be 988 * as optimal as possible. 989 */ 990 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv) 991 { 992 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 993 994 switch (msg_type) { 995 case MSG_TYPE_NOTIFICATION: 996 scmi_handle_notification(cinfo, msg_hdr, priv); 997 break; 998 case MSG_TYPE_COMMAND: 999 case MSG_TYPE_DELAYED_RESP: 1000 scmi_handle_response(cinfo, msg_hdr, priv); 1001 break; 1002 default: 1003 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type); 1004 break; 1005 } 1006 } 1007 1008 /** 1009 * xfer_put() - Release a transmit message 1010 * 1011 * @ph: Pointer to SCMI protocol handle 1012 * @xfer: message that was reserved by xfer_get_init 1013 */ 1014 static void xfer_put(const struct scmi_protocol_handle *ph, 1015 struct scmi_xfer *xfer) 1016 { 1017 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1018 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1019 1020 __scmi_xfer_put(&info->tx_minfo, xfer); 1021 } 1022 1023 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo, 1024 struct scmi_xfer *xfer, ktime_t stop) 1025 { 1026 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1027 1028 /* 1029 * Poll also on xfer->done so that polling can be forcibly terminated 1030 * in case of out-of-order receptions of delayed responses 1031 */ 1032 return info->desc->ops->poll_done(cinfo, xfer) || 1033 try_wait_for_completion(&xfer->done) || 1034 ktime_after(ktime_get(), stop); 1035 } 1036 1037 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc, 1038 struct scmi_chan_info *cinfo, 1039 struct scmi_xfer *xfer, unsigned int timeout_ms) 1040 { 1041 int ret = 0; 1042 1043 if (xfer->hdr.poll_completion) { 1044 /* 1045 * Real polling is needed only if transport has NOT declared 1046 * itself to support synchronous commands replies. 1047 */ 1048 if (!desc->sync_cmds_completed_on_ret) { 1049 /* 1050 * Poll on xfer using transport provided .poll_done(); 1051 * assumes no completion interrupt was available. 1052 */ 1053 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms); 1054 1055 spin_until_cond(scmi_xfer_done_no_timeout(cinfo, 1056 xfer, stop)); 1057 if (ktime_after(ktime_get(), stop)) { 1058 dev_err(dev, 1059 "timed out in resp(caller: %pS) - polling\n", 1060 (void *)_RET_IP_); 1061 ret = -ETIMEDOUT; 1062 } 1063 } 1064 1065 if (!ret) { 1066 unsigned long flags; 1067 struct scmi_info *info = 1068 handle_to_scmi_info(cinfo->handle); 1069 1070 /* 1071 * Do not fetch_response if an out-of-order delayed 1072 * response is being processed. 1073 */ 1074 spin_lock_irqsave(&xfer->lock, flags); 1075 if (xfer->state == SCMI_XFER_SENT_OK) { 1076 desc->ops->fetch_response(cinfo, xfer); 1077 xfer->state = SCMI_XFER_RESP_OK; 1078 } 1079 spin_unlock_irqrestore(&xfer->lock, flags); 1080 1081 /* Trace polled replies. */ 1082 trace_scmi_msg_dump(info->id, cinfo->id, 1083 xfer->hdr.protocol_id, xfer->hdr.id, 1084 !SCMI_XFER_IS_RAW(xfer) ? 1085 "RESP" : "resp", 1086 xfer->hdr.seq, xfer->hdr.status, 1087 xfer->rx.buf, xfer->rx.len); 1088 1089 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 1090 struct scmi_info *info = 1091 handle_to_scmi_info(cinfo->handle); 1092 1093 scmi_raw_message_report(info->raw, xfer, 1094 SCMI_RAW_REPLY_QUEUE, 1095 cinfo->id); 1096 } 1097 } 1098 } else { 1099 /* And we wait for the response. */ 1100 if (!wait_for_completion_timeout(&xfer->done, 1101 msecs_to_jiffies(timeout_ms))) { 1102 dev_err(dev, "timed out in resp(caller: %pS)\n", 1103 (void *)_RET_IP_); 1104 ret = -ETIMEDOUT; 1105 } 1106 } 1107 1108 return ret; 1109 } 1110 1111 /** 1112 * scmi_wait_for_message_response - An helper to group all the possible ways of 1113 * waiting for a synchronous message response. 1114 * 1115 * @cinfo: SCMI channel info 1116 * @xfer: Reference to the transfer being waited for. 1117 * 1118 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on 1119 * configuration flags like xfer->hdr.poll_completion. 1120 * 1121 * Return: 0 on Success, error otherwise. 1122 */ 1123 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo, 1124 struct scmi_xfer *xfer) 1125 { 1126 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1127 struct device *dev = info->dev; 1128 1129 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id, 1130 xfer->hdr.protocol_id, xfer->hdr.seq, 1131 info->desc->max_rx_timeout_ms, 1132 xfer->hdr.poll_completion); 1133 1134 return scmi_wait_for_reply(dev, info->desc, cinfo, xfer, 1135 info->desc->max_rx_timeout_ms); 1136 } 1137 1138 /** 1139 * scmi_xfer_raw_wait_for_message_response - An helper to wait for a message 1140 * reply to an xfer raw request on a specific channel for the required timeout. 1141 * 1142 * @cinfo: SCMI channel info 1143 * @xfer: Reference to the transfer being waited for. 1144 * @timeout_ms: The maximum timeout in milliseconds 1145 * 1146 * Return: 0 on Success, error otherwise. 1147 */ 1148 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo, 1149 struct scmi_xfer *xfer, 1150 unsigned int timeout_ms) 1151 { 1152 int ret; 1153 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1154 struct device *dev = info->dev; 1155 1156 ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms); 1157 if (ret) 1158 dev_dbg(dev, "timed out in RAW response - HDR:%08X\n", 1159 pack_scmi_header(&xfer->hdr)); 1160 1161 return ret; 1162 } 1163 1164 /** 1165 * do_xfer() - Do one transfer 1166 * 1167 * @ph: Pointer to SCMI protocol handle 1168 * @xfer: Transfer to initiate and wait for response 1169 * 1170 * Return: -ETIMEDOUT in case of no response, if transmit error, 1171 * return corresponding error, else if all goes well, 1172 * return 0. 1173 */ 1174 static int do_xfer(const struct scmi_protocol_handle *ph, 1175 struct scmi_xfer *xfer) 1176 { 1177 int ret; 1178 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1179 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1180 struct device *dev = info->dev; 1181 struct scmi_chan_info *cinfo; 1182 1183 /* Check for polling request on custom command xfers at first */ 1184 if (xfer->hdr.poll_completion && 1185 !is_transport_polling_capable(info->desc)) { 1186 dev_warn_once(dev, 1187 "Polling mode is not supported by transport.\n"); 1188 return -EINVAL; 1189 } 1190 1191 cinfo = idr_find(&info->tx_idr, pi->proto->id); 1192 if (unlikely(!cinfo)) 1193 return -EINVAL; 1194 1195 /* True ONLY if also supported by transport. */ 1196 if (is_polling_enabled(cinfo, info->desc)) 1197 xfer->hdr.poll_completion = true; 1198 1199 /* 1200 * Initialise protocol id now from protocol handle to avoid it being 1201 * overridden by mistake (or malice) by the protocol code mangling with 1202 * the scmi_xfer structure prior to this. 1203 */ 1204 xfer->hdr.protocol_id = pi->proto->id; 1205 reinit_completion(&xfer->done); 1206 1207 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id, 1208 xfer->hdr.protocol_id, xfer->hdr.seq, 1209 xfer->hdr.poll_completion); 1210 1211 /* Clear any stale status */ 1212 xfer->hdr.status = SCMI_SUCCESS; 1213 xfer->state = SCMI_XFER_SENT_OK; 1214 /* 1215 * Even though spinlocking is not needed here since no race is possible 1216 * on xfer->state due to the monotonically increasing tokens allocation, 1217 * we must anyway ensure xfer->state initialization is not re-ordered 1218 * after the .send_message() to be sure that on the RX path an early 1219 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state. 1220 */ 1221 smp_mb(); 1222 1223 ret = info->desc->ops->send_message(cinfo, xfer); 1224 if (ret < 0) { 1225 dev_dbg(dev, "Failed to send message %d\n", ret); 1226 return ret; 1227 } 1228 1229 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 1230 xfer->hdr.id, "CMND", xfer->hdr.seq, 1231 xfer->hdr.status, xfer->tx.buf, xfer->tx.len); 1232 1233 ret = scmi_wait_for_message_response(cinfo, xfer); 1234 if (!ret && xfer->hdr.status) 1235 ret = scmi_to_linux_errno(xfer->hdr.status); 1236 1237 if (info->desc->ops->mark_txdone) 1238 info->desc->ops->mark_txdone(cinfo, ret, xfer); 1239 1240 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id, 1241 xfer->hdr.protocol_id, xfer->hdr.seq, ret); 1242 1243 return ret; 1244 } 1245 1246 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph, 1247 struct scmi_xfer *xfer) 1248 { 1249 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1250 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1251 1252 xfer->rx.len = info->desc->max_msg_size; 1253 } 1254 1255 /** 1256 * do_xfer_with_response() - Do one transfer and wait until the delayed 1257 * response is received 1258 * 1259 * @ph: Pointer to SCMI protocol handle 1260 * @xfer: Transfer to initiate and wait for response 1261 * 1262 * Using asynchronous commands in atomic/polling mode should be avoided since 1263 * it could cause long busy-waiting here, so ignore polling for the delayed 1264 * response and WARN if it was requested for this command transaction since 1265 * upper layers should refrain from issuing such kind of requests. 1266 * 1267 * The only other option would have been to refrain from using any asynchronous 1268 * command even if made available, when an atomic transport is detected, and 1269 * instead forcibly use the synchronous version (thing that can be easily 1270 * attained at the protocol layer), but this would also have led to longer 1271 * stalls of the channel for synchronous commands and possibly timeouts. 1272 * (in other words there is usually a good reason if a platform provides an 1273 * asynchronous version of a command and we should prefer to use it...just not 1274 * when using atomic/polling mode) 1275 * 1276 * Return: -ETIMEDOUT in case of no delayed response, if transmit error, 1277 * return corresponding error, else if all goes well, return 0. 1278 */ 1279 static int do_xfer_with_response(const struct scmi_protocol_handle *ph, 1280 struct scmi_xfer *xfer) 1281 { 1282 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT); 1283 DECLARE_COMPLETION_ONSTACK(async_response); 1284 1285 xfer->async_done = &async_response; 1286 1287 /* 1288 * Delayed responses should not be polled, so an async command should 1289 * not have been used when requiring an atomic/poll context; WARN and 1290 * perform instead a sleeping wait. 1291 * (Note Async + IgnoreDelayedResponses are sent via do_xfer) 1292 */ 1293 WARN_ON_ONCE(xfer->hdr.poll_completion); 1294 1295 ret = do_xfer(ph, xfer); 1296 if (!ret) { 1297 if (!wait_for_completion_timeout(xfer->async_done, timeout)) { 1298 dev_err(ph->dev, 1299 "timed out in delayed resp(caller: %pS)\n", 1300 (void *)_RET_IP_); 1301 ret = -ETIMEDOUT; 1302 } else if (xfer->hdr.status) { 1303 ret = scmi_to_linux_errno(xfer->hdr.status); 1304 } 1305 } 1306 1307 xfer->async_done = NULL; 1308 return ret; 1309 } 1310 1311 /** 1312 * xfer_get_init() - Allocate and initialise one message for transmit 1313 * 1314 * @ph: Pointer to SCMI protocol handle 1315 * @msg_id: Message identifier 1316 * @tx_size: transmit message size 1317 * @rx_size: receive message size 1318 * @p: pointer to the allocated and initialised message 1319 * 1320 * This function allocates the message using @scmi_xfer_get and 1321 * initialise the header. 1322 * 1323 * Return: 0 if all went fine with @p pointing to message, else 1324 * corresponding error. 1325 */ 1326 static int xfer_get_init(const struct scmi_protocol_handle *ph, 1327 u8 msg_id, size_t tx_size, size_t rx_size, 1328 struct scmi_xfer **p) 1329 { 1330 int ret; 1331 struct scmi_xfer *xfer; 1332 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1333 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1334 struct scmi_xfers_info *minfo = &info->tx_minfo; 1335 struct device *dev = info->dev; 1336 1337 /* Ensure we have sane transfer sizes */ 1338 if (rx_size > info->desc->max_msg_size || 1339 tx_size > info->desc->max_msg_size) 1340 return -ERANGE; 1341 1342 xfer = scmi_xfer_get(pi->handle, minfo); 1343 if (IS_ERR(xfer)) { 1344 ret = PTR_ERR(xfer); 1345 dev_err(dev, "failed to get free message slot(%d)\n", ret); 1346 return ret; 1347 } 1348 1349 /* Pick a sequence number and register this xfer as in-flight */ 1350 ret = scmi_xfer_pending_set(xfer, minfo); 1351 if (ret) { 1352 dev_err(pi->handle->dev, 1353 "Failed to get monotonic token %d\n", ret); 1354 __scmi_xfer_put(minfo, xfer); 1355 return ret; 1356 } 1357 1358 xfer->tx.len = tx_size; 1359 xfer->rx.len = rx_size ? : info->desc->max_msg_size; 1360 xfer->hdr.type = MSG_TYPE_COMMAND; 1361 xfer->hdr.id = msg_id; 1362 xfer->hdr.poll_completion = false; 1363 1364 *p = xfer; 1365 1366 return 0; 1367 } 1368 1369 /** 1370 * version_get() - command to get the revision of the SCMI entity 1371 * 1372 * @ph: Pointer to SCMI protocol handle 1373 * @version: Holds returned version of protocol. 1374 * 1375 * Updates the SCMI information in the internal data structure. 1376 * 1377 * Return: 0 if all went fine, else return appropriate error. 1378 */ 1379 static int version_get(const struct scmi_protocol_handle *ph, u32 *version) 1380 { 1381 int ret; 1382 __le32 *rev_info; 1383 struct scmi_xfer *t; 1384 1385 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t); 1386 if (ret) 1387 return ret; 1388 1389 ret = do_xfer(ph, t); 1390 if (!ret) { 1391 rev_info = t->rx.buf; 1392 *version = le32_to_cpu(*rev_info); 1393 } 1394 1395 xfer_put(ph, t); 1396 return ret; 1397 } 1398 1399 /** 1400 * scmi_set_protocol_priv - Set protocol specific data at init time 1401 * 1402 * @ph: A reference to the protocol handle. 1403 * @priv: The private data to set. 1404 * @version: The detected protocol version for the core to register. 1405 * 1406 * Return: 0 on Success 1407 */ 1408 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph, 1409 void *priv, u32 version) 1410 { 1411 struct scmi_protocol_instance *pi = ph_to_pi(ph); 1412 1413 pi->priv = priv; 1414 pi->version = version; 1415 1416 return 0; 1417 } 1418 1419 /** 1420 * scmi_get_protocol_priv - Set protocol specific data at init time 1421 * 1422 * @ph: A reference to the protocol handle. 1423 * 1424 * Return: Protocol private data if any was set. 1425 */ 1426 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph) 1427 { 1428 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1429 1430 return pi->priv; 1431 } 1432 1433 static const struct scmi_xfer_ops xfer_ops = { 1434 .version_get = version_get, 1435 .xfer_get_init = xfer_get_init, 1436 .reset_rx_to_maxsz = reset_rx_to_maxsz, 1437 .do_xfer = do_xfer, 1438 .do_xfer_with_response = do_xfer_with_response, 1439 .xfer_put = xfer_put, 1440 }; 1441 1442 struct scmi_msg_resp_domain_name_get { 1443 __le32 flags; 1444 u8 name[SCMI_MAX_STR_SIZE]; 1445 }; 1446 1447 /** 1448 * scmi_common_extended_name_get - Common helper to get extended resources name 1449 * @ph: A protocol handle reference. 1450 * @cmd_id: The specific command ID to use. 1451 * @res_id: The specific resource ID to use. 1452 * @flags: A pointer to specific flags to use, if any. 1453 * @name: A pointer to the preallocated area where the retrieved name will be 1454 * stored as a NULL terminated string. 1455 * @len: The len in bytes of the @name char array. 1456 * 1457 * Return: 0 on Succcess 1458 */ 1459 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph, 1460 u8 cmd_id, u32 res_id, u32 *flags, 1461 char *name, size_t len) 1462 { 1463 int ret; 1464 size_t txlen; 1465 struct scmi_xfer *t; 1466 struct scmi_msg_resp_domain_name_get *resp; 1467 1468 txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags); 1469 ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t); 1470 if (ret) 1471 goto out; 1472 1473 put_unaligned_le32(res_id, t->tx.buf); 1474 if (flags) 1475 put_unaligned_le32(*flags, t->tx.buf + sizeof(res_id)); 1476 resp = t->rx.buf; 1477 1478 ret = ph->xops->do_xfer(ph, t); 1479 if (!ret) 1480 strscpy(name, resp->name, len); 1481 1482 ph->xops->xfer_put(ph, t); 1483 out: 1484 if (ret) 1485 dev_warn(ph->dev, 1486 "Failed to get extended name - id:%u (ret:%d). Using %s\n", 1487 res_id, ret, name); 1488 return ret; 1489 } 1490 1491 /** 1492 * struct scmi_iterator - Iterator descriptor 1493 * @msg: A reference to the message TX buffer; filled by @prepare_message with 1494 * a proper custom command payload for each multi-part command request. 1495 * @resp: A reference to the response RX buffer; used by @update_state and 1496 * @process_response to parse the multi-part replies. 1497 * @t: A reference to the underlying xfer initialized and used transparently by 1498 * the iterator internal routines. 1499 * @ph: A reference to the associated protocol handle to be used. 1500 * @ops: A reference to the custom provided iterator operations. 1501 * @state: The current iterator state; used and updated in turn by the iterators 1502 * internal routines and by the caller-provided @scmi_iterator_ops. 1503 * @priv: A reference to optional private data as provided by the caller and 1504 * passed back to the @@scmi_iterator_ops. 1505 */ 1506 struct scmi_iterator { 1507 void *msg; 1508 void *resp; 1509 struct scmi_xfer *t; 1510 const struct scmi_protocol_handle *ph; 1511 struct scmi_iterator_ops *ops; 1512 struct scmi_iterator_state state; 1513 void *priv; 1514 }; 1515 1516 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph, 1517 struct scmi_iterator_ops *ops, 1518 unsigned int max_resources, u8 msg_id, 1519 size_t tx_size, void *priv) 1520 { 1521 int ret; 1522 struct scmi_iterator *i; 1523 1524 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL); 1525 if (!i) 1526 return ERR_PTR(-ENOMEM); 1527 1528 i->ph = ph; 1529 i->ops = ops; 1530 i->priv = priv; 1531 1532 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t); 1533 if (ret) { 1534 devm_kfree(ph->dev, i); 1535 return ERR_PTR(ret); 1536 } 1537 1538 i->state.max_resources = max_resources; 1539 i->msg = i->t->tx.buf; 1540 i->resp = i->t->rx.buf; 1541 1542 return i; 1543 } 1544 1545 static int scmi_iterator_run(void *iter) 1546 { 1547 int ret = -EINVAL; 1548 struct scmi_iterator_ops *iops; 1549 const struct scmi_protocol_handle *ph; 1550 struct scmi_iterator_state *st; 1551 struct scmi_iterator *i = iter; 1552 1553 if (!i || !i->ops || !i->ph) 1554 return ret; 1555 1556 iops = i->ops; 1557 ph = i->ph; 1558 st = &i->state; 1559 1560 do { 1561 iops->prepare_message(i->msg, st->desc_index, i->priv); 1562 ret = ph->xops->do_xfer(ph, i->t); 1563 if (ret) 1564 break; 1565 1566 st->rx_len = i->t->rx.len; 1567 ret = iops->update_state(st, i->resp, i->priv); 1568 if (ret) 1569 break; 1570 1571 if (st->num_returned > st->max_resources - st->desc_index) { 1572 dev_err(ph->dev, 1573 "No. of resources can't exceed %d\n", 1574 st->max_resources); 1575 ret = -EINVAL; 1576 break; 1577 } 1578 1579 for (st->loop_idx = 0; st->loop_idx < st->num_returned; 1580 st->loop_idx++) { 1581 ret = iops->process_response(ph, i->resp, st, i->priv); 1582 if (ret) 1583 goto out; 1584 } 1585 1586 st->desc_index += st->num_returned; 1587 ph->xops->reset_rx_to_maxsz(ph, i->t); 1588 /* 1589 * check for both returned and remaining to avoid infinite 1590 * loop due to buggy firmware 1591 */ 1592 } while (st->num_returned && st->num_remaining); 1593 1594 out: 1595 /* Finalize and destroy iterator */ 1596 ph->xops->xfer_put(ph, i->t); 1597 devm_kfree(ph->dev, i); 1598 1599 return ret; 1600 } 1601 1602 struct scmi_msg_get_fc_info { 1603 __le32 domain; 1604 __le32 message_id; 1605 }; 1606 1607 struct scmi_msg_resp_desc_fc { 1608 __le32 attr; 1609 #define SUPPORTS_DOORBELL(x) ((x) & BIT(0)) 1610 #define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x)) 1611 __le32 rate_limit; 1612 __le32 chan_addr_low; 1613 __le32 chan_addr_high; 1614 __le32 chan_size; 1615 __le32 db_addr_low; 1616 __le32 db_addr_high; 1617 __le32 db_set_lmask; 1618 __le32 db_set_hmask; 1619 __le32 db_preserve_lmask; 1620 __le32 db_preserve_hmask; 1621 }; 1622 1623 static void 1624 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph, 1625 u8 describe_id, u32 message_id, u32 valid_size, 1626 u32 domain, void __iomem **p_addr, 1627 struct scmi_fc_db_info **p_db) 1628 { 1629 int ret; 1630 u32 flags; 1631 u64 phys_addr; 1632 u8 size; 1633 void __iomem *addr; 1634 struct scmi_xfer *t; 1635 struct scmi_fc_db_info *db = NULL; 1636 struct scmi_msg_get_fc_info *info; 1637 struct scmi_msg_resp_desc_fc *resp; 1638 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1639 1640 if (!p_addr) { 1641 ret = -EINVAL; 1642 goto err_out; 1643 } 1644 1645 ret = ph->xops->xfer_get_init(ph, describe_id, 1646 sizeof(*info), sizeof(*resp), &t); 1647 if (ret) 1648 goto err_out; 1649 1650 info = t->tx.buf; 1651 info->domain = cpu_to_le32(domain); 1652 info->message_id = cpu_to_le32(message_id); 1653 1654 /* 1655 * Bail out on error leaving fc_info addresses zeroed; this includes 1656 * the case in which the requested domain/message_id does NOT support 1657 * fastchannels at all. 1658 */ 1659 ret = ph->xops->do_xfer(ph, t); 1660 if (ret) 1661 goto err_xfer; 1662 1663 resp = t->rx.buf; 1664 flags = le32_to_cpu(resp->attr); 1665 size = le32_to_cpu(resp->chan_size); 1666 if (size != valid_size) { 1667 ret = -EINVAL; 1668 goto err_xfer; 1669 } 1670 1671 phys_addr = le32_to_cpu(resp->chan_addr_low); 1672 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32; 1673 addr = devm_ioremap(ph->dev, phys_addr, size); 1674 if (!addr) { 1675 ret = -EADDRNOTAVAIL; 1676 goto err_xfer; 1677 } 1678 1679 *p_addr = addr; 1680 1681 if (p_db && SUPPORTS_DOORBELL(flags)) { 1682 db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL); 1683 if (!db) { 1684 ret = -ENOMEM; 1685 goto err_db; 1686 } 1687 1688 size = 1 << DOORBELL_REG_WIDTH(flags); 1689 phys_addr = le32_to_cpu(resp->db_addr_low); 1690 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32; 1691 addr = devm_ioremap(ph->dev, phys_addr, size); 1692 if (!addr) { 1693 ret = -EADDRNOTAVAIL; 1694 goto err_db_mem; 1695 } 1696 1697 db->addr = addr; 1698 db->width = size; 1699 db->set = le32_to_cpu(resp->db_set_lmask); 1700 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32; 1701 db->mask = le32_to_cpu(resp->db_preserve_lmask); 1702 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32; 1703 1704 *p_db = db; 1705 } 1706 1707 ph->xops->xfer_put(ph, t); 1708 1709 dev_dbg(ph->dev, 1710 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n", 1711 pi->proto->id, message_id, domain); 1712 1713 return; 1714 1715 err_db_mem: 1716 devm_kfree(ph->dev, db); 1717 1718 err_db: 1719 *p_addr = NULL; 1720 1721 err_xfer: 1722 ph->xops->xfer_put(ph, t); 1723 1724 err_out: 1725 dev_warn(ph->dev, 1726 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n", 1727 pi->proto->id, message_id, domain, ret); 1728 } 1729 1730 #define SCMI_PROTO_FC_RING_DB(w) \ 1731 do { \ 1732 u##w val = 0; \ 1733 \ 1734 if (db->mask) \ 1735 val = ioread##w(db->addr) & db->mask; \ 1736 iowrite##w((u##w)db->set | val, db->addr); \ 1737 } while (0) 1738 1739 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db) 1740 { 1741 if (!db || !db->addr) 1742 return; 1743 1744 if (db->width == 1) 1745 SCMI_PROTO_FC_RING_DB(8); 1746 else if (db->width == 2) 1747 SCMI_PROTO_FC_RING_DB(16); 1748 else if (db->width == 4) 1749 SCMI_PROTO_FC_RING_DB(32); 1750 else /* db->width == 8 */ 1751 #ifdef CONFIG_64BIT 1752 SCMI_PROTO_FC_RING_DB(64); 1753 #else 1754 { 1755 u64 val = 0; 1756 1757 if (db->mask) 1758 val = ioread64_hi_lo(db->addr) & db->mask; 1759 iowrite64_hi_lo(db->set | val, db->addr); 1760 } 1761 #endif 1762 } 1763 1764 /** 1765 * scmi_protocol_msg_check - Check protocol message attributes 1766 * 1767 * @ph: A reference to the protocol handle. 1768 * @message_id: The ID of the message to check. 1769 * @attributes: A parameter to optionally return the retrieved message 1770 * attributes, in case of Success. 1771 * 1772 * An helper to check protocol message attributes for a specific protocol 1773 * and message pair. 1774 * 1775 * Return: 0 on SUCCESS 1776 */ 1777 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph, 1778 u32 message_id, u32 *attributes) 1779 { 1780 int ret; 1781 struct scmi_xfer *t; 1782 1783 ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES, 1784 sizeof(__le32), 0, &t); 1785 if (ret) 1786 return ret; 1787 1788 put_unaligned_le32(message_id, t->tx.buf); 1789 ret = do_xfer(ph, t); 1790 if (!ret && attributes) 1791 *attributes = get_unaligned_le32(t->rx.buf); 1792 xfer_put(ph, t); 1793 1794 return ret; 1795 } 1796 1797 static const struct scmi_proto_helpers_ops helpers_ops = { 1798 .extended_name_get = scmi_common_extended_name_get, 1799 .iter_response_init = scmi_iterator_init, 1800 .iter_response_run = scmi_iterator_run, 1801 .protocol_msg_check = scmi_protocol_msg_check, 1802 .fastchannel_init = scmi_common_fastchannel_init, 1803 .fastchannel_db_ring = scmi_common_fastchannel_db_ring, 1804 }; 1805 1806 /** 1807 * scmi_revision_area_get - Retrieve version memory area. 1808 * 1809 * @ph: A reference to the protocol handle. 1810 * 1811 * A helper to grab the version memory area reference during SCMI Base protocol 1812 * initialization. 1813 * 1814 * Return: A reference to the version memory area associated to the SCMI 1815 * instance underlying this protocol handle. 1816 */ 1817 struct scmi_revision_info * 1818 scmi_revision_area_get(const struct scmi_protocol_handle *ph) 1819 { 1820 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1821 1822 return pi->handle->version; 1823 } 1824 1825 /** 1826 * scmi_protocol_version_negotiate - Negotiate protocol version 1827 * 1828 * @ph: A reference to the protocol handle. 1829 * 1830 * An helper to negotiate a protocol version different from the latest 1831 * advertised as supported from the platform: on Success backward 1832 * compatibility is assured by the platform. 1833 * 1834 * Return: 0 on Success 1835 */ 1836 static int scmi_protocol_version_negotiate(struct scmi_protocol_handle *ph) 1837 { 1838 int ret; 1839 struct scmi_xfer *t; 1840 struct scmi_protocol_instance *pi = ph_to_pi(ph); 1841 1842 /* At first check if NEGOTIATE_PROTOCOL_VERSION is supported ... */ 1843 ret = scmi_protocol_msg_check(ph, NEGOTIATE_PROTOCOL_VERSION, NULL); 1844 if (ret) 1845 return ret; 1846 1847 /* ... then attempt protocol version negotiation */ 1848 ret = xfer_get_init(ph, NEGOTIATE_PROTOCOL_VERSION, 1849 sizeof(__le32), 0, &t); 1850 if (ret) 1851 return ret; 1852 1853 put_unaligned_le32(pi->proto->supported_version, t->tx.buf); 1854 ret = do_xfer(ph, t); 1855 if (!ret) 1856 pi->negotiated_version = pi->proto->supported_version; 1857 1858 xfer_put(ph, t); 1859 1860 return ret; 1861 } 1862 1863 /** 1864 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol 1865 * instance descriptor. 1866 * @info: The reference to the related SCMI instance. 1867 * @proto: The protocol descriptor. 1868 * 1869 * Allocate a new protocol instance descriptor, using the provided @proto 1870 * description, against the specified SCMI instance @info, and initialize it; 1871 * all resources management is handled via a dedicated per-protocol devres 1872 * group. 1873 * 1874 * Context: Assumes to be called with @protocols_mtx already acquired. 1875 * Return: A reference to a freshly allocated and initialized protocol instance 1876 * or ERR_PTR on failure. On failure the @proto reference is at first 1877 * put using @scmi_protocol_put() before releasing all the devres group. 1878 */ 1879 static struct scmi_protocol_instance * 1880 scmi_alloc_init_protocol_instance(struct scmi_info *info, 1881 const struct scmi_protocol *proto) 1882 { 1883 int ret = -ENOMEM; 1884 void *gid; 1885 struct scmi_protocol_instance *pi; 1886 const struct scmi_handle *handle = &info->handle; 1887 1888 /* Protocol specific devres group */ 1889 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL); 1890 if (!gid) { 1891 scmi_protocol_put(proto->id); 1892 goto out; 1893 } 1894 1895 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL); 1896 if (!pi) 1897 goto clean; 1898 1899 pi->gid = gid; 1900 pi->proto = proto; 1901 pi->handle = handle; 1902 pi->ph.dev = handle->dev; 1903 pi->ph.xops = &xfer_ops; 1904 pi->ph.hops = &helpers_ops; 1905 pi->ph.set_priv = scmi_set_protocol_priv; 1906 pi->ph.get_priv = scmi_get_protocol_priv; 1907 refcount_set(&pi->users, 1); 1908 /* proto->init is assured NON NULL by scmi_protocol_register */ 1909 ret = pi->proto->instance_init(&pi->ph); 1910 if (ret) 1911 goto clean; 1912 1913 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1, 1914 GFP_KERNEL); 1915 if (ret != proto->id) 1916 goto clean; 1917 1918 /* 1919 * Warn but ignore events registration errors since we do not want 1920 * to skip whole protocols if their notifications are messed up. 1921 */ 1922 if (pi->proto->events) { 1923 ret = scmi_register_protocol_events(handle, pi->proto->id, 1924 &pi->ph, 1925 pi->proto->events); 1926 if (ret) 1927 dev_warn(handle->dev, 1928 "Protocol:%X - Events Registration Failed - err:%d\n", 1929 pi->proto->id, ret); 1930 } 1931 1932 devres_close_group(handle->dev, pi->gid); 1933 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id); 1934 1935 if (pi->version > proto->supported_version) { 1936 ret = scmi_protocol_version_negotiate(&pi->ph); 1937 if (!ret) { 1938 dev_info(handle->dev, 1939 "Protocol 0x%X successfully negotiated version 0x%X\n", 1940 proto->id, pi->negotiated_version); 1941 } else { 1942 dev_warn(handle->dev, 1943 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X.\n", 1944 pi->version, pi->proto->id); 1945 dev_warn(handle->dev, 1946 "Trying version 0x%X. Backward compatibility is NOT assured.\n", 1947 pi->proto->supported_version); 1948 } 1949 } 1950 1951 return pi; 1952 1953 clean: 1954 /* Take care to put the protocol module's owner before releasing all */ 1955 scmi_protocol_put(proto->id); 1956 devres_release_group(handle->dev, gid); 1957 out: 1958 return ERR_PTR(ret); 1959 } 1960 1961 /** 1962 * scmi_get_protocol_instance - Protocol initialization helper. 1963 * @handle: A reference to the SCMI platform instance. 1964 * @protocol_id: The protocol being requested. 1965 * 1966 * In case the required protocol has never been requested before for this 1967 * instance, allocate and initialize all the needed structures while handling 1968 * resource allocation with a dedicated per-protocol devres subgroup. 1969 * 1970 * Return: A reference to an initialized protocol instance or error on failure: 1971 * in particular returns -EPROBE_DEFER when the desired protocol could 1972 * NOT be found. 1973 */ 1974 static struct scmi_protocol_instance * __must_check 1975 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id) 1976 { 1977 struct scmi_protocol_instance *pi; 1978 struct scmi_info *info = handle_to_scmi_info(handle); 1979 1980 mutex_lock(&info->protocols_mtx); 1981 pi = idr_find(&info->protocols, protocol_id); 1982 1983 if (pi) { 1984 refcount_inc(&pi->users); 1985 } else { 1986 const struct scmi_protocol *proto; 1987 1988 /* Fails if protocol not registered on bus */ 1989 proto = scmi_protocol_get(protocol_id); 1990 if (proto) 1991 pi = scmi_alloc_init_protocol_instance(info, proto); 1992 else 1993 pi = ERR_PTR(-EPROBE_DEFER); 1994 } 1995 mutex_unlock(&info->protocols_mtx); 1996 1997 return pi; 1998 } 1999 2000 /** 2001 * scmi_protocol_acquire - Protocol acquire 2002 * @handle: A reference to the SCMI platform instance. 2003 * @protocol_id: The protocol being requested. 2004 * 2005 * Register a new user for the requested protocol on the specified SCMI 2006 * platform instance, possibly triggering its initialization on first user. 2007 * 2008 * Return: 0 if protocol was acquired successfully. 2009 */ 2010 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id) 2011 { 2012 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id)); 2013 } 2014 2015 /** 2016 * scmi_protocol_release - Protocol de-initialization helper. 2017 * @handle: A reference to the SCMI platform instance. 2018 * @protocol_id: The protocol being requested. 2019 * 2020 * Remove one user for the specified protocol and triggers de-initialization 2021 * and resources de-allocation once the last user has gone. 2022 */ 2023 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id) 2024 { 2025 struct scmi_info *info = handle_to_scmi_info(handle); 2026 struct scmi_protocol_instance *pi; 2027 2028 mutex_lock(&info->protocols_mtx); 2029 pi = idr_find(&info->protocols, protocol_id); 2030 if (WARN_ON(!pi)) 2031 goto out; 2032 2033 if (refcount_dec_and_test(&pi->users)) { 2034 void *gid = pi->gid; 2035 2036 if (pi->proto->events) 2037 scmi_deregister_protocol_events(handle, protocol_id); 2038 2039 if (pi->proto->instance_deinit) 2040 pi->proto->instance_deinit(&pi->ph); 2041 2042 idr_remove(&info->protocols, protocol_id); 2043 2044 scmi_protocol_put(protocol_id); 2045 2046 devres_release_group(handle->dev, gid); 2047 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n", 2048 protocol_id); 2049 } 2050 2051 out: 2052 mutex_unlock(&info->protocols_mtx); 2053 } 2054 2055 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph, 2056 u8 *prot_imp) 2057 { 2058 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 2059 struct scmi_info *info = handle_to_scmi_info(pi->handle); 2060 2061 info->protocols_imp = prot_imp; 2062 } 2063 2064 static bool 2065 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id) 2066 { 2067 int i; 2068 struct scmi_info *info = handle_to_scmi_info(handle); 2069 struct scmi_revision_info *rev = handle->version; 2070 2071 if (!info->protocols_imp) 2072 return false; 2073 2074 for (i = 0; i < rev->num_protocols; i++) 2075 if (info->protocols_imp[i] == prot_id) 2076 return true; 2077 return false; 2078 } 2079 2080 struct scmi_protocol_devres { 2081 const struct scmi_handle *handle; 2082 u8 protocol_id; 2083 }; 2084 2085 static void scmi_devm_release_protocol(struct device *dev, void *res) 2086 { 2087 struct scmi_protocol_devres *dres = res; 2088 2089 scmi_protocol_release(dres->handle, dres->protocol_id); 2090 } 2091 2092 static struct scmi_protocol_instance __must_check * 2093 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id) 2094 { 2095 struct scmi_protocol_instance *pi; 2096 struct scmi_protocol_devres *dres; 2097 2098 dres = devres_alloc(scmi_devm_release_protocol, 2099 sizeof(*dres), GFP_KERNEL); 2100 if (!dres) 2101 return ERR_PTR(-ENOMEM); 2102 2103 pi = scmi_get_protocol_instance(sdev->handle, protocol_id); 2104 if (IS_ERR(pi)) { 2105 devres_free(dres); 2106 return pi; 2107 } 2108 2109 dres->handle = sdev->handle; 2110 dres->protocol_id = protocol_id; 2111 devres_add(&sdev->dev, dres); 2112 2113 return pi; 2114 } 2115 2116 /** 2117 * scmi_devm_protocol_get - Devres managed get protocol operations and handle 2118 * @sdev: A reference to an scmi_device whose embedded struct device is to 2119 * be used for devres accounting. 2120 * @protocol_id: The protocol being requested. 2121 * @ph: A pointer reference used to pass back the associated protocol handle. 2122 * 2123 * Get hold of a protocol accounting for its usage, eventually triggering its 2124 * initialization, and returning the protocol specific operations and related 2125 * protocol handle which will be used as first argument in most of the 2126 * protocols operations methods. 2127 * Being a devres based managed method, protocol hold will be automatically 2128 * released, and possibly de-initialized on last user, once the SCMI driver 2129 * owning the scmi_device is unbound from it. 2130 * 2131 * Return: A reference to the requested protocol operations or error. 2132 * Must be checked for errors by caller. 2133 */ 2134 static const void __must_check * 2135 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id, 2136 struct scmi_protocol_handle **ph) 2137 { 2138 struct scmi_protocol_instance *pi; 2139 2140 if (!ph) 2141 return ERR_PTR(-EINVAL); 2142 2143 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 2144 if (IS_ERR(pi)) 2145 return pi; 2146 2147 *ph = &pi->ph; 2148 2149 return pi->proto->ops; 2150 } 2151 2152 /** 2153 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol 2154 * @sdev: A reference to an scmi_device whose embedded struct device is to 2155 * be used for devres accounting. 2156 * @protocol_id: The protocol being requested. 2157 * 2158 * Get hold of a protocol accounting for its usage, possibly triggering its 2159 * initialization but without getting access to its protocol specific operations 2160 * and handle. 2161 * 2162 * Being a devres based managed method, protocol hold will be automatically 2163 * released, and possibly de-initialized on last user, once the SCMI driver 2164 * owning the scmi_device is unbound from it. 2165 * 2166 * Return: 0 on SUCCESS 2167 */ 2168 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev, 2169 u8 protocol_id) 2170 { 2171 struct scmi_protocol_instance *pi; 2172 2173 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 2174 if (IS_ERR(pi)) 2175 return PTR_ERR(pi); 2176 2177 return 0; 2178 } 2179 2180 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data) 2181 { 2182 struct scmi_protocol_devres *dres = res; 2183 2184 if (WARN_ON(!dres || !data)) 2185 return 0; 2186 2187 return dres->protocol_id == *((u8 *)data); 2188 } 2189 2190 /** 2191 * scmi_devm_protocol_put - Devres managed put protocol operations and handle 2192 * @sdev: A reference to an scmi_device whose embedded struct device is to 2193 * be used for devres accounting. 2194 * @protocol_id: The protocol being requested. 2195 * 2196 * Explicitly release a protocol hold previously obtained calling the above 2197 * @scmi_devm_protocol_get. 2198 */ 2199 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id) 2200 { 2201 int ret; 2202 2203 ret = devres_release(&sdev->dev, scmi_devm_release_protocol, 2204 scmi_devm_protocol_match, &protocol_id); 2205 WARN_ON(ret); 2206 } 2207 2208 /** 2209 * scmi_is_transport_atomic - Method to check if underlying transport for an 2210 * SCMI instance is configured as atomic. 2211 * 2212 * @handle: A reference to the SCMI platform instance. 2213 * @atomic_threshold: An optional return value for the system wide currently 2214 * configured threshold for atomic operations. 2215 * 2216 * Return: True if transport is configured as atomic 2217 */ 2218 static bool scmi_is_transport_atomic(const struct scmi_handle *handle, 2219 unsigned int *atomic_threshold) 2220 { 2221 bool ret; 2222 struct scmi_info *info = handle_to_scmi_info(handle); 2223 2224 ret = info->desc->atomic_enabled && 2225 is_transport_polling_capable(info->desc); 2226 if (ret && atomic_threshold) 2227 *atomic_threshold = info->atomic_threshold; 2228 2229 return ret; 2230 } 2231 2232 /** 2233 * scmi_handle_get() - Get the SCMI handle for a device 2234 * 2235 * @dev: pointer to device for which we want SCMI handle 2236 * 2237 * NOTE: The function does not track individual clients of the framework 2238 * and is expected to be maintained by caller of SCMI protocol library. 2239 * scmi_handle_put must be balanced with successful scmi_handle_get 2240 * 2241 * Return: pointer to handle if successful, NULL on error 2242 */ 2243 static struct scmi_handle *scmi_handle_get(struct device *dev) 2244 { 2245 struct list_head *p; 2246 struct scmi_info *info; 2247 struct scmi_handle *handle = NULL; 2248 2249 mutex_lock(&scmi_list_mutex); 2250 list_for_each(p, &scmi_list) { 2251 info = list_entry(p, struct scmi_info, node); 2252 if (dev->parent == info->dev) { 2253 info->users++; 2254 handle = &info->handle; 2255 break; 2256 } 2257 } 2258 mutex_unlock(&scmi_list_mutex); 2259 2260 return handle; 2261 } 2262 2263 /** 2264 * scmi_handle_put() - Release the handle acquired by scmi_handle_get 2265 * 2266 * @handle: handle acquired by scmi_handle_get 2267 * 2268 * NOTE: The function does not track individual clients of the framework 2269 * and is expected to be maintained by caller of SCMI protocol library. 2270 * scmi_handle_put must be balanced with successful scmi_handle_get 2271 * 2272 * Return: 0 is successfully released 2273 * if null was passed, it returns -EINVAL; 2274 */ 2275 static int scmi_handle_put(const struct scmi_handle *handle) 2276 { 2277 struct scmi_info *info; 2278 2279 if (!handle) 2280 return -EINVAL; 2281 2282 info = handle_to_scmi_info(handle); 2283 mutex_lock(&scmi_list_mutex); 2284 if (!WARN_ON(!info->users)) 2285 info->users--; 2286 mutex_unlock(&scmi_list_mutex); 2287 2288 return 0; 2289 } 2290 2291 static void scmi_device_link_add(struct device *consumer, 2292 struct device *supplier) 2293 { 2294 struct device_link *link; 2295 2296 link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER); 2297 2298 WARN_ON(!link); 2299 } 2300 2301 static void scmi_set_handle(struct scmi_device *scmi_dev) 2302 { 2303 scmi_dev->handle = scmi_handle_get(&scmi_dev->dev); 2304 if (scmi_dev->handle) 2305 scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev); 2306 } 2307 2308 static int __scmi_xfer_info_init(struct scmi_info *sinfo, 2309 struct scmi_xfers_info *info) 2310 { 2311 int i; 2312 struct scmi_xfer *xfer; 2313 struct device *dev = sinfo->dev; 2314 const struct scmi_desc *desc = sinfo->desc; 2315 2316 /* Pre-allocated messages, no more than what hdr.seq can support */ 2317 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) { 2318 dev_err(dev, 2319 "Invalid maximum messages %d, not in range [1 - %lu]\n", 2320 info->max_msg, MSG_TOKEN_MAX); 2321 return -EINVAL; 2322 } 2323 2324 hash_init(info->pending_xfers); 2325 2326 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */ 2327 info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX, 2328 GFP_KERNEL); 2329 if (!info->xfer_alloc_table) 2330 return -ENOMEM; 2331 2332 /* 2333 * Preallocate a number of xfers equal to max inflight messages, 2334 * pre-initialize the buffer pointer to pre-allocated buffers and 2335 * attach all of them to the free list 2336 */ 2337 INIT_HLIST_HEAD(&info->free_xfers); 2338 for (i = 0; i < info->max_msg; i++) { 2339 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL); 2340 if (!xfer) 2341 return -ENOMEM; 2342 2343 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size, 2344 GFP_KERNEL); 2345 if (!xfer->rx.buf) 2346 return -ENOMEM; 2347 2348 xfer->tx.buf = xfer->rx.buf; 2349 init_completion(&xfer->done); 2350 spin_lock_init(&xfer->lock); 2351 2352 /* Add initialized xfer to the free list */ 2353 hlist_add_head(&xfer->node, &info->free_xfers); 2354 } 2355 2356 spin_lock_init(&info->xfer_lock); 2357 2358 return 0; 2359 } 2360 2361 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo) 2362 { 2363 const struct scmi_desc *desc = sinfo->desc; 2364 2365 if (!desc->ops->get_max_msg) { 2366 sinfo->tx_minfo.max_msg = desc->max_msg; 2367 sinfo->rx_minfo.max_msg = desc->max_msg; 2368 } else { 2369 struct scmi_chan_info *base_cinfo; 2370 2371 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE); 2372 if (!base_cinfo) 2373 return -EINVAL; 2374 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo); 2375 2376 /* RX channel is optional so can be skipped */ 2377 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE); 2378 if (base_cinfo) 2379 sinfo->rx_minfo.max_msg = 2380 desc->ops->get_max_msg(base_cinfo); 2381 } 2382 2383 return 0; 2384 } 2385 2386 static int scmi_xfer_info_init(struct scmi_info *sinfo) 2387 { 2388 int ret; 2389 2390 ret = scmi_channels_max_msg_configure(sinfo); 2391 if (ret) 2392 return ret; 2393 2394 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo); 2395 if (!ret && !idr_is_empty(&sinfo->rx_idr)) 2396 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo); 2397 2398 return ret; 2399 } 2400 2401 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node, 2402 int prot_id, bool tx) 2403 { 2404 int ret, idx; 2405 char name[32]; 2406 struct scmi_chan_info *cinfo; 2407 struct idr *idr; 2408 struct scmi_device *tdev = NULL; 2409 2410 /* Transmit channel is first entry i.e. index 0 */ 2411 idx = tx ? 0 : 1; 2412 idr = tx ? &info->tx_idr : &info->rx_idr; 2413 2414 if (!info->desc->ops->chan_available(of_node, idx)) { 2415 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE); 2416 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */ 2417 return -EINVAL; 2418 goto idr_alloc; 2419 } 2420 2421 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL); 2422 if (!cinfo) 2423 return -ENOMEM; 2424 2425 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms; 2426 2427 /* Create a unique name for this transport device */ 2428 snprintf(name, 32, "__scmi_transport_device_%s_%02X", 2429 idx ? "rx" : "tx", prot_id); 2430 /* Create a uniquely named, dedicated transport device for this chan */ 2431 tdev = scmi_device_create(of_node, info->dev, prot_id, name); 2432 if (!tdev) { 2433 dev_err(info->dev, 2434 "failed to create transport device (%s)\n", name); 2435 devm_kfree(info->dev, cinfo); 2436 return -EINVAL; 2437 } 2438 of_node_get(of_node); 2439 2440 cinfo->id = prot_id; 2441 cinfo->dev = &tdev->dev; 2442 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx); 2443 if (ret) { 2444 of_node_put(of_node); 2445 scmi_device_destroy(info->dev, prot_id, name); 2446 devm_kfree(info->dev, cinfo); 2447 return ret; 2448 } 2449 2450 if (tx && is_polling_required(cinfo, info->desc)) { 2451 if (is_transport_polling_capable(info->desc)) 2452 dev_info(&tdev->dev, 2453 "Enabled polling mode TX channel - prot_id:%d\n", 2454 prot_id); 2455 else 2456 dev_warn(&tdev->dev, 2457 "Polling mode NOT supported by transport.\n"); 2458 } 2459 2460 idr_alloc: 2461 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL); 2462 if (ret != prot_id) { 2463 dev_err(info->dev, 2464 "unable to allocate SCMI idr slot err %d\n", ret); 2465 /* Destroy channel and device only if created by this call. */ 2466 if (tdev) { 2467 of_node_put(of_node); 2468 scmi_device_destroy(info->dev, prot_id, name); 2469 devm_kfree(info->dev, cinfo); 2470 } 2471 return ret; 2472 } 2473 2474 cinfo->handle = &info->handle; 2475 return 0; 2476 } 2477 2478 static inline int 2479 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node, 2480 int prot_id) 2481 { 2482 int ret = scmi_chan_setup(info, of_node, prot_id, true); 2483 2484 if (!ret) { 2485 /* Rx is optional, report only memory errors */ 2486 ret = scmi_chan_setup(info, of_node, prot_id, false); 2487 if (ret && ret != -ENOMEM) 2488 ret = 0; 2489 } 2490 2491 return ret; 2492 } 2493 2494 /** 2495 * scmi_channels_setup - Helper to initialize all required channels 2496 * 2497 * @info: The SCMI instance descriptor. 2498 * 2499 * Initialize all the channels found described in the DT against the underlying 2500 * configured transport using custom defined dedicated devices instead of 2501 * borrowing devices from the SCMI drivers; this way channels are initialized 2502 * upfront during core SCMI stack probing and are no more coupled with SCMI 2503 * devices used by SCMI drivers. 2504 * 2505 * Note that, even though a pair of TX/RX channels is associated to each 2506 * protocol defined in the DT, a distinct freshly initialized channel is 2507 * created only if the DT node for the protocol at hand describes a dedicated 2508 * channel: in all the other cases the common BASE protocol channel is reused. 2509 * 2510 * Return: 0 on Success 2511 */ 2512 static int scmi_channels_setup(struct scmi_info *info) 2513 { 2514 int ret; 2515 struct device_node *child, *top_np = info->dev->of_node; 2516 2517 /* Initialize a common generic channel at first */ 2518 ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE); 2519 if (ret) 2520 return ret; 2521 2522 for_each_available_child_of_node(top_np, child) { 2523 u32 prot_id; 2524 2525 if (of_property_read_u32(child, "reg", &prot_id)) 2526 continue; 2527 2528 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 2529 dev_err(info->dev, 2530 "Out of range protocol %d\n", prot_id); 2531 2532 ret = scmi_txrx_setup(info, child, prot_id); 2533 if (ret) { 2534 of_node_put(child); 2535 return ret; 2536 } 2537 } 2538 2539 return 0; 2540 } 2541 2542 static int scmi_chan_destroy(int id, void *p, void *idr) 2543 { 2544 struct scmi_chan_info *cinfo = p; 2545 2546 if (cinfo->dev) { 2547 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 2548 struct scmi_device *sdev = to_scmi_dev(cinfo->dev); 2549 2550 of_node_put(cinfo->dev->of_node); 2551 scmi_device_destroy(info->dev, id, sdev->name); 2552 cinfo->dev = NULL; 2553 } 2554 2555 idr_remove(idr, id); 2556 2557 return 0; 2558 } 2559 2560 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr) 2561 { 2562 /* At first free all channels at the transport layer ... */ 2563 idr_for_each(idr, info->desc->ops->chan_free, idr); 2564 2565 /* ...then destroy all underlying devices */ 2566 idr_for_each(idr, scmi_chan_destroy, idr); 2567 2568 idr_destroy(idr); 2569 } 2570 2571 static void scmi_cleanup_txrx_channels(struct scmi_info *info) 2572 { 2573 scmi_cleanup_channels(info, &info->tx_idr); 2574 2575 scmi_cleanup_channels(info, &info->rx_idr); 2576 } 2577 2578 static int scmi_bus_notifier(struct notifier_block *nb, 2579 unsigned long action, void *data) 2580 { 2581 struct scmi_info *info = bus_nb_to_scmi_info(nb); 2582 struct scmi_device *sdev = to_scmi_dev(data); 2583 2584 /* Skip transport devices and devices of different SCMI instances */ 2585 if (!strncmp(sdev->name, "__scmi_transport_device", 23) || 2586 sdev->dev.parent != info->dev) 2587 return NOTIFY_DONE; 2588 2589 switch (action) { 2590 case BUS_NOTIFY_BIND_DRIVER: 2591 /* setup handle now as the transport is ready */ 2592 scmi_set_handle(sdev); 2593 break; 2594 case BUS_NOTIFY_UNBOUND_DRIVER: 2595 scmi_handle_put(sdev->handle); 2596 sdev->handle = NULL; 2597 break; 2598 default: 2599 return NOTIFY_DONE; 2600 } 2601 2602 dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev), 2603 sdev->name, action == BUS_NOTIFY_BIND_DRIVER ? 2604 "about to be BOUND." : "UNBOUND."); 2605 2606 return NOTIFY_OK; 2607 } 2608 2609 static int scmi_device_request_notifier(struct notifier_block *nb, 2610 unsigned long action, void *data) 2611 { 2612 struct device_node *np; 2613 struct scmi_device_id *id_table = data; 2614 struct scmi_info *info = req_nb_to_scmi_info(nb); 2615 2616 np = idr_find(&info->active_protocols, id_table->protocol_id); 2617 if (!np) 2618 return NOTIFY_DONE; 2619 2620 dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n", 2621 action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-", 2622 id_table->name, id_table->protocol_id); 2623 2624 switch (action) { 2625 case SCMI_BUS_NOTIFY_DEVICE_REQUEST: 2626 scmi_create_protocol_devices(np, info, id_table->protocol_id, 2627 id_table->name); 2628 break; 2629 case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST: 2630 scmi_destroy_protocol_devices(info, id_table->protocol_id, 2631 id_table->name); 2632 break; 2633 default: 2634 return NOTIFY_DONE; 2635 } 2636 2637 return NOTIFY_OK; 2638 } 2639 2640 static void scmi_debugfs_common_cleanup(void *d) 2641 { 2642 struct scmi_debug_info *dbg = d; 2643 2644 if (!dbg) 2645 return; 2646 2647 debugfs_remove_recursive(dbg->top_dentry); 2648 kfree(dbg->name); 2649 kfree(dbg->type); 2650 } 2651 2652 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info) 2653 { 2654 char top_dir[16]; 2655 struct dentry *trans, *top_dentry; 2656 struct scmi_debug_info *dbg; 2657 const char *c_ptr = NULL; 2658 2659 dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL); 2660 if (!dbg) 2661 return NULL; 2662 2663 dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL); 2664 if (!dbg->name) { 2665 devm_kfree(info->dev, dbg); 2666 return NULL; 2667 } 2668 2669 of_property_read_string(info->dev->of_node, "compatible", &c_ptr); 2670 dbg->type = kstrdup(c_ptr, GFP_KERNEL); 2671 if (!dbg->type) { 2672 kfree(dbg->name); 2673 devm_kfree(info->dev, dbg); 2674 return NULL; 2675 } 2676 2677 snprintf(top_dir, 16, "%d", info->id); 2678 top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry); 2679 trans = debugfs_create_dir("transport", top_dentry); 2680 2681 dbg->is_atomic = info->desc->atomic_enabled && 2682 is_transport_polling_capable(info->desc); 2683 2684 debugfs_create_str("instance_name", 0400, top_dentry, 2685 (char **)&dbg->name); 2686 2687 debugfs_create_u32("atomic_threshold_us", 0400, top_dentry, 2688 &info->atomic_threshold); 2689 2690 debugfs_create_str("type", 0400, trans, (char **)&dbg->type); 2691 2692 debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic); 2693 2694 debugfs_create_u32("max_rx_timeout_ms", 0400, trans, 2695 (u32 *)&info->desc->max_rx_timeout_ms); 2696 2697 debugfs_create_u32("max_msg_size", 0400, trans, 2698 (u32 *)&info->desc->max_msg_size); 2699 2700 debugfs_create_u32("tx_max_msg", 0400, trans, 2701 (u32 *)&info->tx_minfo.max_msg); 2702 2703 debugfs_create_u32("rx_max_msg", 0400, trans, 2704 (u32 *)&info->rx_minfo.max_msg); 2705 2706 dbg->top_dentry = top_dentry; 2707 2708 if (devm_add_action_or_reset(info->dev, 2709 scmi_debugfs_common_cleanup, dbg)) { 2710 scmi_debugfs_common_cleanup(dbg); 2711 return NULL; 2712 } 2713 2714 return dbg; 2715 } 2716 2717 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info) 2718 { 2719 int id, num_chans = 0, ret = 0; 2720 struct scmi_chan_info *cinfo; 2721 u8 channels[SCMI_MAX_CHANNELS] = {}; 2722 DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {}; 2723 2724 if (!info->dbg) 2725 return -EINVAL; 2726 2727 /* Enumerate all channels to collect their ids */ 2728 idr_for_each_entry(&info->tx_idr, cinfo, id) { 2729 /* 2730 * Cannot happen, but be defensive. 2731 * Zero as num_chans is ok, warn and carry on. 2732 */ 2733 if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) { 2734 dev_warn(info->dev, 2735 "SCMI RAW - Error enumerating channels\n"); 2736 break; 2737 } 2738 2739 if (!test_bit(cinfo->id, protos)) { 2740 channels[num_chans++] = cinfo->id; 2741 set_bit(cinfo->id, protos); 2742 } 2743 } 2744 2745 info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry, 2746 info->id, channels, num_chans, 2747 info->desc, info->tx_minfo.max_msg); 2748 if (IS_ERR(info->raw)) { 2749 dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n"); 2750 ret = PTR_ERR(info->raw); 2751 info->raw = NULL; 2752 } 2753 2754 return ret; 2755 } 2756 2757 static int scmi_probe(struct platform_device *pdev) 2758 { 2759 int ret; 2760 struct scmi_handle *handle; 2761 const struct scmi_desc *desc; 2762 struct scmi_info *info; 2763 bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX); 2764 struct device *dev = &pdev->dev; 2765 struct device_node *child, *np = dev->of_node; 2766 2767 desc = of_device_get_match_data(dev); 2768 if (!desc) 2769 return -EINVAL; 2770 2771 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); 2772 if (!info) 2773 return -ENOMEM; 2774 2775 info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL); 2776 if (info->id < 0) 2777 return info->id; 2778 2779 info->dev = dev; 2780 info->desc = desc; 2781 info->bus_nb.notifier_call = scmi_bus_notifier; 2782 info->dev_req_nb.notifier_call = scmi_device_request_notifier; 2783 INIT_LIST_HEAD(&info->node); 2784 idr_init(&info->protocols); 2785 mutex_init(&info->protocols_mtx); 2786 idr_init(&info->active_protocols); 2787 mutex_init(&info->devreq_mtx); 2788 2789 platform_set_drvdata(pdev, info); 2790 idr_init(&info->tx_idr); 2791 idr_init(&info->rx_idr); 2792 2793 handle = &info->handle; 2794 handle->dev = info->dev; 2795 handle->version = &info->version; 2796 handle->devm_protocol_acquire = scmi_devm_protocol_acquire; 2797 handle->devm_protocol_get = scmi_devm_protocol_get; 2798 handle->devm_protocol_put = scmi_devm_protocol_put; 2799 2800 /* System wide atomic threshold for atomic ops .. if any */ 2801 if (!of_property_read_u32(np, "atomic-threshold-us", 2802 &info->atomic_threshold)) 2803 dev_info(dev, 2804 "SCMI System wide atomic threshold set to %d us\n", 2805 info->atomic_threshold); 2806 handle->is_transport_atomic = scmi_is_transport_atomic; 2807 2808 if (desc->ops->link_supplier) { 2809 ret = desc->ops->link_supplier(dev); 2810 if (ret) 2811 goto clear_ida; 2812 } 2813 2814 /* Setup all channels described in the DT at first */ 2815 ret = scmi_channels_setup(info); 2816 if (ret) 2817 goto clear_ida; 2818 2819 ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb); 2820 if (ret) 2821 goto clear_txrx_setup; 2822 2823 ret = blocking_notifier_chain_register(&scmi_requested_devices_nh, 2824 &info->dev_req_nb); 2825 if (ret) 2826 goto clear_bus_notifier; 2827 2828 ret = scmi_xfer_info_init(info); 2829 if (ret) 2830 goto clear_dev_req_notifier; 2831 2832 if (scmi_top_dentry) { 2833 info->dbg = scmi_debugfs_common_setup(info); 2834 if (!info->dbg) 2835 dev_warn(dev, "Failed to setup SCMI debugfs.\n"); 2836 2837 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 2838 ret = scmi_debugfs_raw_mode_setup(info); 2839 if (!coex) { 2840 if (ret) 2841 goto clear_dev_req_notifier; 2842 2843 /* Bail out anyway when coex disabled. */ 2844 return 0; 2845 } 2846 2847 /* Coex enabled, carry on in any case. */ 2848 dev_info(dev, "SCMI RAW Mode COEX enabled !\n"); 2849 } 2850 } 2851 2852 if (scmi_notification_init(handle)) 2853 dev_err(dev, "SCMI Notifications NOT available.\n"); 2854 2855 if (info->desc->atomic_enabled && 2856 !is_transport_polling_capable(info->desc)) 2857 dev_err(dev, 2858 "Transport is not polling capable. Atomic mode not supported.\n"); 2859 2860 /* 2861 * Trigger SCMI Base protocol initialization. 2862 * It's mandatory and won't be ever released/deinit until the 2863 * SCMI stack is shutdown/unloaded as a whole. 2864 */ 2865 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE); 2866 if (ret) { 2867 dev_err(dev, "unable to communicate with SCMI\n"); 2868 if (coex) 2869 return 0; 2870 goto notification_exit; 2871 } 2872 2873 mutex_lock(&scmi_list_mutex); 2874 list_add_tail(&info->node, &scmi_list); 2875 mutex_unlock(&scmi_list_mutex); 2876 2877 for_each_available_child_of_node(np, child) { 2878 u32 prot_id; 2879 2880 if (of_property_read_u32(child, "reg", &prot_id)) 2881 continue; 2882 2883 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 2884 dev_err(dev, "Out of range protocol %d\n", prot_id); 2885 2886 if (!scmi_is_protocol_implemented(handle, prot_id)) { 2887 dev_err(dev, "SCMI protocol %d not implemented\n", 2888 prot_id); 2889 continue; 2890 } 2891 2892 /* 2893 * Save this valid DT protocol descriptor amongst 2894 * @active_protocols for this SCMI instance/ 2895 */ 2896 ret = idr_alloc(&info->active_protocols, child, 2897 prot_id, prot_id + 1, GFP_KERNEL); 2898 if (ret != prot_id) { 2899 dev_err(dev, "SCMI protocol %d already activated. Skip\n", 2900 prot_id); 2901 continue; 2902 } 2903 2904 of_node_get(child); 2905 scmi_create_protocol_devices(child, info, prot_id, NULL); 2906 } 2907 2908 return 0; 2909 2910 notification_exit: 2911 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 2912 scmi_raw_mode_cleanup(info->raw); 2913 scmi_notification_exit(&info->handle); 2914 clear_dev_req_notifier: 2915 blocking_notifier_chain_unregister(&scmi_requested_devices_nh, 2916 &info->dev_req_nb); 2917 clear_bus_notifier: 2918 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb); 2919 clear_txrx_setup: 2920 scmi_cleanup_txrx_channels(info); 2921 clear_ida: 2922 ida_free(&scmi_id, info->id); 2923 return ret; 2924 } 2925 2926 static void scmi_remove(struct platform_device *pdev) 2927 { 2928 int id; 2929 struct scmi_info *info = platform_get_drvdata(pdev); 2930 struct device_node *child; 2931 2932 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 2933 scmi_raw_mode_cleanup(info->raw); 2934 2935 mutex_lock(&scmi_list_mutex); 2936 if (info->users) 2937 dev_warn(&pdev->dev, 2938 "Still active SCMI users will be forcibly unbound.\n"); 2939 list_del(&info->node); 2940 mutex_unlock(&scmi_list_mutex); 2941 2942 scmi_notification_exit(&info->handle); 2943 2944 mutex_lock(&info->protocols_mtx); 2945 idr_destroy(&info->protocols); 2946 mutex_unlock(&info->protocols_mtx); 2947 2948 idr_for_each_entry(&info->active_protocols, child, id) 2949 of_node_put(child); 2950 idr_destroy(&info->active_protocols); 2951 2952 blocking_notifier_chain_unregister(&scmi_requested_devices_nh, 2953 &info->dev_req_nb); 2954 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb); 2955 2956 /* Safe to free channels since no more users */ 2957 scmi_cleanup_txrx_channels(info); 2958 2959 ida_free(&scmi_id, info->id); 2960 } 2961 2962 static ssize_t protocol_version_show(struct device *dev, 2963 struct device_attribute *attr, char *buf) 2964 { 2965 struct scmi_info *info = dev_get_drvdata(dev); 2966 2967 return sprintf(buf, "%u.%u\n", info->version.major_ver, 2968 info->version.minor_ver); 2969 } 2970 static DEVICE_ATTR_RO(protocol_version); 2971 2972 static ssize_t firmware_version_show(struct device *dev, 2973 struct device_attribute *attr, char *buf) 2974 { 2975 struct scmi_info *info = dev_get_drvdata(dev); 2976 2977 return sprintf(buf, "0x%x\n", info->version.impl_ver); 2978 } 2979 static DEVICE_ATTR_RO(firmware_version); 2980 2981 static ssize_t vendor_id_show(struct device *dev, 2982 struct device_attribute *attr, char *buf) 2983 { 2984 struct scmi_info *info = dev_get_drvdata(dev); 2985 2986 return sprintf(buf, "%s\n", info->version.vendor_id); 2987 } 2988 static DEVICE_ATTR_RO(vendor_id); 2989 2990 static ssize_t sub_vendor_id_show(struct device *dev, 2991 struct device_attribute *attr, char *buf) 2992 { 2993 struct scmi_info *info = dev_get_drvdata(dev); 2994 2995 return sprintf(buf, "%s\n", info->version.sub_vendor_id); 2996 } 2997 static DEVICE_ATTR_RO(sub_vendor_id); 2998 2999 static struct attribute *versions_attrs[] = { 3000 &dev_attr_firmware_version.attr, 3001 &dev_attr_protocol_version.attr, 3002 &dev_attr_vendor_id.attr, 3003 &dev_attr_sub_vendor_id.attr, 3004 NULL, 3005 }; 3006 ATTRIBUTE_GROUPS(versions); 3007 3008 /* Each compatible listed below must have descriptor associated with it */ 3009 static const struct of_device_id scmi_of_match[] = { 3010 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX 3011 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc }, 3012 #endif 3013 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE 3014 { .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc }, 3015 #endif 3016 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC 3017 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc}, 3018 { .compatible = "arm,scmi-smc-param", .data = &scmi_smc_desc}, 3019 { .compatible = "qcom,scmi-smc", .data = &scmi_smc_desc}, 3020 #endif 3021 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO 3022 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc}, 3023 #endif 3024 { /* Sentinel */ }, 3025 }; 3026 3027 MODULE_DEVICE_TABLE(of, scmi_of_match); 3028 3029 static struct platform_driver scmi_driver = { 3030 .driver = { 3031 .name = "arm-scmi", 3032 .suppress_bind_attrs = true, 3033 .of_match_table = scmi_of_match, 3034 .dev_groups = versions_groups, 3035 }, 3036 .probe = scmi_probe, 3037 .remove_new = scmi_remove, 3038 }; 3039 3040 /** 3041 * __scmi_transports_setup - Common helper to call transport-specific 3042 * .init/.exit code if provided. 3043 * 3044 * @init: A flag to distinguish between init and exit. 3045 * 3046 * Note that, if provided, we invoke .init/.exit functions for all the 3047 * transports currently compiled in. 3048 * 3049 * Return: 0 on Success. 3050 */ 3051 static inline int __scmi_transports_setup(bool init) 3052 { 3053 int ret = 0; 3054 const struct of_device_id *trans; 3055 3056 for (trans = scmi_of_match; trans->data; trans++) { 3057 const struct scmi_desc *tdesc = trans->data; 3058 3059 if ((init && !tdesc->transport_init) || 3060 (!init && !tdesc->transport_exit)) 3061 continue; 3062 3063 if (init) 3064 ret = tdesc->transport_init(); 3065 else 3066 tdesc->transport_exit(); 3067 3068 if (ret) { 3069 pr_err("SCMI transport %s FAILED initialization!\n", 3070 trans->compatible); 3071 break; 3072 } 3073 } 3074 3075 return ret; 3076 } 3077 3078 static int __init scmi_transports_init(void) 3079 { 3080 return __scmi_transports_setup(true); 3081 } 3082 3083 static void __exit scmi_transports_exit(void) 3084 { 3085 __scmi_transports_setup(false); 3086 } 3087 3088 static struct dentry *scmi_debugfs_init(void) 3089 { 3090 struct dentry *d; 3091 3092 d = debugfs_create_dir("scmi", NULL); 3093 if (IS_ERR(d)) { 3094 pr_err("Could NOT create SCMI top dentry.\n"); 3095 return NULL; 3096 } 3097 3098 return d; 3099 } 3100 3101 static int __init scmi_driver_init(void) 3102 { 3103 int ret; 3104 3105 /* Bail out if no SCMI transport was configured */ 3106 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT))) 3107 return -EINVAL; 3108 3109 /* Initialize any compiled-in transport which provided an init/exit */ 3110 ret = scmi_transports_init(); 3111 if (ret) 3112 return ret; 3113 3114 if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS)) 3115 scmi_top_dentry = scmi_debugfs_init(); 3116 3117 scmi_base_register(); 3118 3119 scmi_clock_register(); 3120 scmi_perf_register(); 3121 scmi_power_register(); 3122 scmi_reset_register(); 3123 scmi_sensors_register(); 3124 scmi_voltage_register(); 3125 scmi_system_register(); 3126 scmi_powercap_register(); 3127 3128 return platform_driver_register(&scmi_driver); 3129 } 3130 module_init(scmi_driver_init); 3131 3132 static void __exit scmi_driver_exit(void) 3133 { 3134 scmi_base_unregister(); 3135 3136 scmi_clock_unregister(); 3137 scmi_perf_unregister(); 3138 scmi_power_unregister(); 3139 scmi_reset_unregister(); 3140 scmi_sensors_unregister(); 3141 scmi_voltage_unregister(); 3142 scmi_system_unregister(); 3143 scmi_powercap_unregister(); 3144 3145 scmi_transports_exit(); 3146 3147 platform_driver_unregister(&scmi_driver); 3148 3149 debugfs_remove_recursive(scmi_top_dentry); 3150 } 3151 module_exit(scmi_driver_exit); 3152 3153 MODULE_ALIAS("platform:arm-scmi"); 3154 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 3155 MODULE_DESCRIPTION("ARM SCMI protocol driver"); 3156 MODULE_LICENSE("GPL v2"); 3157