xref: /linux/drivers/firmware/arm_scmi/driver.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Message Protocol driver
4  *
5  * SCMI Message Protocol is used between the System Control Processor(SCP)
6  * and the Application Processors(AP). The Message Handling Unit(MHU)
7  * provides a mechanism for inter-processor communication between SCP's
8  * Cortex M3 and AP.
9  *
10  * SCP offers control and management of the core/cluster power states,
11  * various power domain DVFS including the core/cluster, certain system
12  * clocks configuration, thermal sensors and many others.
13  *
14  * Copyright (C) 2018-2021 ARM Ltd.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/hashtable.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of.h>
32 #include <linux/platform_device.h>
33 #include <linux/processor.h>
34 #include <linux/refcount.h>
35 #include <linux/slab.h>
36 
37 #include "common.h"
38 #include "notify.h"
39 
40 #include "raw_mode.h"
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/scmi.h>
44 
45 static DEFINE_IDA(scmi_id);
46 
47 static DEFINE_IDR(scmi_protocols);
48 static DEFINE_SPINLOCK(protocol_lock);
49 
50 /* List of all SCMI devices active in system */
51 static LIST_HEAD(scmi_list);
52 /* Protection for the entire list */
53 static DEFINE_MUTEX(scmi_list_mutex);
54 /* Track the unique id for the transfers for debug & profiling purpose */
55 static atomic_t transfer_last_id;
56 
57 static struct dentry *scmi_top_dentry;
58 
59 /**
60  * struct scmi_xfers_info - Structure to manage transfer information
61  *
62  * @xfer_alloc_table: Bitmap table for allocated messages.
63  *	Index of this bitmap table is also used for message
64  *	sequence identifier.
65  * @xfer_lock: Protection for message allocation
66  * @max_msg: Maximum number of messages that can be pending
67  * @free_xfers: A free list for available to use xfers. It is initialized with
68  *		a number of xfers equal to the maximum allowed in-flight
69  *		messages.
70  * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
71  *		   currently in-flight messages.
72  */
73 struct scmi_xfers_info {
74 	unsigned long *xfer_alloc_table;
75 	spinlock_t xfer_lock;
76 	int max_msg;
77 	struct hlist_head free_xfers;
78 	DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
79 };
80 
81 /**
82  * struct scmi_protocol_instance  - Describe an initialized protocol instance.
83  * @handle: Reference to the SCMI handle associated to this protocol instance.
84  * @proto: A reference to the protocol descriptor.
85  * @gid: A reference for per-protocol devres management.
86  * @users: A refcount to track effective users of this protocol.
87  * @priv: Reference for optional protocol private data.
88  * @version: Protocol version supported by the platform as detected at runtime.
89  * @negotiated_version: When the platform supports a newer protocol version,
90  *			the agent will try to negotiate with the platform the
91  *			usage of the newest version known to it, since
92  *			backward compatibility is NOT automatically assured.
93  *			This field is NON-zero when a successful negotiation
94  *			has completed.
95  * @ph: An embedded protocol handle that will be passed down to protocol
96  *	initialization code to identify this instance.
97  *
98  * Each protocol is initialized independently once for each SCMI platform in
99  * which is defined by DT and implemented by the SCMI server fw.
100  */
101 struct scmi_protocol_instance {
102 	const struct scmi_handle	*handle;
103 	const struct scmi_protocol	*proto;
104 	void				*gid;
105 	refcount_t			users;
106 	void				*priv;
107 	unsigned int			version;
108 	unsigned int			negotiated_version;
109 	struct scmi_protocol_handle	ph;
110 };
111 
112 #define ph_to_pi(h)	container_of(h, struct scmi_protocol_instance, ph)
113 
114 /**
115  * struct scmi_debug_info  - Debug common info
116  * @top_dentry: A reference to the top debugfs dentry
117  * @name: Name of this SCMI instance
118  * @type: Type of this SCMI instance
119  * @is_atomic: Flag to state if the transport of this instance is atomic
120  */
121 struct scmi_debug_info {
122 	struct dentry *top_dentry;
123 	const char *name;
124 	const char *type;
125 	bool is_atomic;
126 };
127 
128 /**
129  * struct scmi_info - Structure representing a SCMI instance
130  *
131  * @id: A sequence number starting from zero identifying this instance
132  * @dev: Device pointer
133  * @desc: SoC description for this instance
134  * @version: SCMI revision information containing protocol version,
135  *	implementation version and (sub-)vendor identification.
136  * @handle: Instance of SCMI handle to send to clients
137  * @tx_minfo: Universal Transmit Message management info
138  * @rx_minfo: Universal Receive Message management info
139  * @tx_idr: IDR object to map protocol id to Tx channel info pointer
140  * @rx_idr: IDR object to map protocol id to Rx channel info pointer
141  * @protocols: IDR for protocols' instance descriptors initialized for
142  *	       this SCMI instance: populated on protocol's first attempted
143  *	       usage.
144  * @protocols_mtx: A mutex to protect protocols instances initialization.
145  * @protocols_imp: List of protocols implemented, currently maximum of
146  *		   scmi_revision_info.num_protocols elements allocated by the
147  *		   base protocol
148  * @active_protocols: IDR storing device_nodes for protocols actually defined
149  *		      in the DT and confirmed as implemented by fw.
150  * @atomic_threshold: Optional system wide DT-configured threshold, expressed
151  *		      in microseconds, for atomic operations.
152  *		      Only SCMI synchronous commands reported by the platform
153  *		      to have an execution latency lesser-equal to the threshold
154  *		      should be considered for atomic mode operation: such
155  *		      decision is finally left up to the SCMI drivers.
156  * @notify_priv: Pointer to private data structure specific to notifications.
157  * @node: List head
158  * @users: Number of users of this instance
159  * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
160  * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
161  *		bus
162  * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
163  * @dbg: A pointer to debugfs related data (if any)
164  * @raw: An opaque reference handle used by SCMI Raw mode.
165  */
166 struct scmi_info {
167 	int id;
168 	struct device *dev;
169 	const struct scmi_desc *desc;
170 	struct scmi_revision_info version;
171 	struct scmi_handle handle;
172 	struct scmi_xfers_info tx_minfo;
173 	struct scmi_xfers_info rx_minfo;
174 	struct idr tx_idr;
175 	struct idr rx_idr;
176 	struct idr protocols;
177 	/* Ensure mutual exclusive access to protocols instance array */
178 	struct mutex protocols_mtx;
179 	u8 *protocols_imp;
180 	struct idr active_protocols;
181 	unsigned int atomic_threshold;
182 	void *notify_priv;
183 	struct list_head node;
184 	int users;
185 	struct notifier_block bus_nb;
186 	struct notifier_block dev_req_nb;
187 	/* Serialize device creation process for this instance */
188 	struct mutex devreq_mtx;
189 	struct scmi_debug_info *dbg;
190 	void *raw;
191 };
192 
193 #define handle_to_scmi_info(h)	container_of(h, struct scmi_info, handle)
194 #define bus_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, bus_nb)
195 #define req_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, dev_req_nb)
196 
197 static const struct scmi_protocol *scmi_protocol_get(int protocol_id)
198 {
199 	const struct scmi_protocol *proto;
200 
201 	proto = idr_find(&scmi_protocols, protocol_id);
202 	if (!proto || !try_module_get(proto->owner)) {
203 		pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
204 		return NULL;
205 	}
206 
207 	pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
208 
209 	return proto;
210 }
211 
212 static void scmi_protocol_put(int protocol_id)
213 {
214 	const struct scmi_protocol *proto;
215 
216 	proto = idr_find(&scmi_protocols, protocol_id);
217 	if (proto)
218 		module_put(proto->owner);
219 }
220 
221 int scmi_protocol_register(const struct scmi_protocol *proto)
222 {
223 	int ret;
224 
225 	if (!proto) {
226 		pr_err("invalid protocol\n");
227 		return -EINVAL;
228 	}
229 
230 	if (!proto->instance_init) {
231 		pr_err("missing init for protocol 0x%x\n", proto->id);
232 		return -EINVAL;
233 	}
234 
235 	spin_lock(&protocol_lock);
236 	ret = idr_alloc(&scmi_protocols, (void *)proto,
237 			proto->id, proto->id + 1, GFP_ATOMIC);
238 	spin_unlock(&protocol_lock);
239 	if (ret != proto->id) {
240 		pr_err("unable to allocate SCMI idr slot for 0x%x - err %d\n",
241 		       proto->id, ret);
242 		return ret;
243 	}
244 
245 	pr_debug("Registered SCMI Protocol 0x%x\n", proto->id);
246 
247 	return 0;
248 }
249 EXPORT_SYMBOL_GPL(scmi_protocol_register);
250 
251 void scmi_protocol_unregister(const struct scmi_protocol *proto)
252 {
253 	spin_lock(&protocol_lock);
254 	idr_remove(&scmi_protocols, proto->id);
255 	spin_unlock(&protocol_lock);
256 
257 	pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
258 }
259 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
260 
261 /**
262  * scmi_create_protocol_devices  - Create devices for all pending requests for
263  * this SCMI instance.
264  *
265  * @np: The device node describing the protocol
266  * @info: The SCMI instance descriptor
267  * @prot_id: The protocol ID
268  * @name: The optional name of the device to be created: if not provided this
269  *	  call will lead to the creation of all the devices currently requested
270  *	  for the specified protocol.
271  */
272 static void scmi_create_protocol_devices(struct device_node *np,
273 					 struct scmi_info *info,
274 					 int prot_id, const char *name)
275 {
276 	struct scmi_device *sdev;
277 
278 	mutex_lock(&info->devreq_mtx);
279 	sdev = scmi_device_create(np, info->dev, prot_id, name);
280 	if (name && !sdev)
281 		dev_err(info->dev,
282 			"failed to create device for protocol 0x%X (%s)\n",
283 			prot_id, name);
284 	mutex_unlock(&info->devreq_mtx);
285 }
286 
287 static void scmi_destroy_protocol_devices(struct scmi_info *info,
288 					  int prot_id, const char *name)
289 {
290 	mutex_lock(&info->devreq_mtx);
291 	scmi_device_destroy(info->dev, prot_id, name);
292 	mutex_unlock(&info->devreq_mtx);
293 }
294 
295 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
296 					 void *priv)
297 {
298 	struct scmi_info *info = handle_to_scmi_info(handle);
299 
300 	info->notify_priv = priv;
301 	/* Ensure updated protocol private date are visible */
302 	smp_wmb();
303 }
304 
305 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
306 {
307 	struct scmi_info *info = handle_to_scmi_info(handle);
308 
309 	/* Ensure protocols_private_data has been updated */
310 	smp_rmb();
311 	return info->notify_priv;
312 }
313 
314 /**
315  * scmi_xfer_token_set  - Reserve and set new token for the xfer at hand
316  *
317  * @minfo: Pointer to Tx/Rx Message management info based on channel type
318  * @xfer: The xfer to act upon
319  *
320  * Pick the next unused monotonically increasing token and set it into
321  * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
322  * reuse of freshly completed or timed-out xfers, thus mitigating the risk
323  * of incorrect association of a late and expired xfer with a live in-flight
324  * transaction, both happening to re-use the same token identifier.
325  *
326  * Since platform is NOT required to answer our request in-order we should
327  * account for a few rare but possible scenarios:
328  *
329  *  - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
330  *    using find_next_zero_bit() starting from candidate next_token bit
331  *
332  *  - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
333  *    are plenty of free tokens at start, so try a second pass using
334  *    find_next_zero_bit() and starting from 0.
335  *
336  *  X = used in-flight
337  *
338  * Normal
339  * ------
340  *
341  *		|- xfer_id picked
342  *   -----------+----------------------------------------------------------
343  *   | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
344  *   ----------------------------------------------------------------------
345  *		^
346  *		|- next_token
347  *
348  * Out-of-order pending at start
349  * -----------------------------
350  *
351  *	  |- xfer_id picked, last_token fixed
352  *   -----+----------------------------------------------------------------
353  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
354  *   ----------------------------------------------------------------------
355  *    ^
356  *    |- next_token
357  *
358  *
359  * Out-of-order pending at end
360  * ---------------------------
361  *
362  *	  |- xfer_id picked, last_token fixed
363  *   -----+----------------------------------------------------------------
364  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
365  *   ----------------------------------------------------------------------
366  *								^
367  *								|- next_token
368  *
369  * Context: Assumes to be called with @xfer_lock already acquired.
370  *
371  * Return: 0 on Success or error
372  */
373 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
374 			       struct scmi_xfer *xfer)
375 {
376 	unsigned long xfer_id, next_token;
377 
378 	/*
379 	 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
380 	 * using the pre-allocated transfer_id as a base.
381 	 * Note that the global transfer_id is shared across all message types
382 	 * so there could be holes in the allocated set of monotonic sequence
383 	 * numbers, but that is going to limit the effectiveness of the
384 	 * mitigation only in very rare limit conditions.
385 	 */
386 	next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
387 
388 	/* Pick the next available xfer_id >= next_token */
389 	xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
390 				     MSG_TOKEN_MAX, next_token);
391 	if (xfer_id == MSG_TOKEN_MAX) {
392 		/*
393 		 * After heavily out-of-order responses, there are no free
394 		 * tokens ahead, but only at start of xfer_alloc_table so
395 		 * try again from the beginning.
396 		 */
397 		xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
398 					     MSG_TOKEN_MAX, 0);
399 		/*
400 		 * Something is wrong if we got here since there can be a
401 		 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
402 		 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
403 		 */
404 		if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
405 			return -ENOMEM;
406 	}
407 
408 	/* Update +/- last_token accordingly if we skipped some hole */
409 	if (xfer_id != next_token)
410 		atomic_add((int)(xfer_id - next_token), &transfer_last_id);
411 
412 	xfer->hdr.seq = (u16)xfer_id;
413 
414 	return 0;
415 }
416 
417 /**
418  * scmi_xfer_token_clear  - Release the token
419  *
420  * @minfo: Pointer to Tx/Rx Message management info based on channel type
421  * @xfer: The xfer to act upon
422  */
423 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
424 					 struct scmi_xfer *xfer)
425 {
426 	clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
427 }
428 
429 /**
430  * scmi_xfer_inflight_register_unlocked  - Register the xfer as in-flight
431  *
432  * @xfer: The xfer to register
433  * @minfo: Pointer to Tx/Rx Message management info based on channel type
434  *
435  * Note that this helper assumes that the xfer to be registered as in-flight
436  * had been built using an xfer sequence number which still corresponds to a
437  * free slot in the xfer_alloc_table.
438  *
439  * Context: Assumes to be called with @xfer_lock already acquired.
440  */
441 static inline void
442 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
443 				     struct scmi_xfers_info *minfo)
444 {
445 	/* Set in-flight */
446 	set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
447 	hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
448 	xfer->pending = true;
449 }
450 
451 /**
452  * scmi_xfer_inflight_register  - Try to register an xfer as in-flight
453  *
454  * @xfer: The xfer to register
455  * @minfo: Pointer to Tx/Rx Message management info based on channel type
456  *
457  * Note that this helper does NOT assume anything about the sequence number
458  * that was baked into the provided xfer, so it checks at first if it can
459  * be mapped to a free slot and fails with an error if another xfer with the
460  * same sequence number is currently still registered as in-flight.
461  *
462  * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
463  *	   could not rbe mapped to a free slot in the xfer_alloc_table.
464  */
465 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
466 				       struct scmi_xfers_info *minfo)
467 {
468 	int ret = 0;
469 	unsigned long flags;
470 
471 	spin_lock_irqsave(&minfo->xfer_lock, flags);
472 	if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
473 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
474 	else
475 		ret = -EBUSY;
476 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
477 
478 	return ret;
479 }
480 
481 /**
482  * scmi_xfer_raw_inflight_register  - An helper to register the given xfer as in
483  * flight on the TX channel, if possible.
484  *
485  * @handle: Pointer to SCMI entity handle
486  * @xfer: The xfer to register
487  *
488  * Return: 0 on Success, error otherwise
489  */
490 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
491 				    struct scmi_xfer *xfer)
492 {
493 	struct scmi_info *info = handle_to_scmi_info(handle);
494 
495 	return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
496 }
497 
498 /**
499  * scmi_xfer_pending_set  - Pick a proper sequence number and mark the xfer
500  * as pending in-flight
501  *
502  * @xfer: The xfer to act upon
503  * @minfo: Pointer to Tx/Rx Message management info based on channel type
504  *
505  * Return: 0 on Success or error otherwise
506  */
507 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
508 					struct scmi_xfers_info *minfo)
509 {
510 	int ret;
511 	unsigned long flags;
512 
513 	spin_lock_irqsave(&minfo->xfer_lock, flags);
514 	/* Set a new monotonic token as the xfer sequence number */
515 	ret = scmi_xfer_token_set(minfo, xfer);
516 	if (!ret)
517 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
518 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
519 
520 	return ret;
521 }
522 
523 /**
524  * scmi_xfer_get() - Allocate one message
525  *
526  * @handle: Pointer to SCMI entity handle
527  * @minfo: Pointer to Tx/Rx Message management info based on channel type
528  *
529  * Helper function which is used by various message functions that are
530  * exposed to clients of this driver for allocating a message traffic event.
531  *
532  * Picks an xfer from the free list @free_xfers (if any available) and perform
533  * a basic initialization.
534  *
535  * Note that, at this point, still no sequence number is assigned to the
536  * allocated xfer, nor it is registered as a pending transaction.
537  *
538  * The successfully initialized xfer is refcounted.
539  *
540  * Context: Holds @xfer_lock while manipulating @free_xfers.
541  *
542  * Return: An initialized xfer if all went fine, else pointer error.
543  */
544 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
545 				       struct scmi_xfers_info *minfo)
546 {
547 	unsigned long flags;
548 	struct scmi_xfer *xfer;
549 
550 	spin_lock_irqsave(&minfo->xfer_lock, flags);
551 	if (hlist_empty(&minfo->free_xfers)) {
552 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
553 		return ERR_PTR(-ENOMEM);
554 	}
555 
556 	/* grab an xfer from the free_list */
557 	xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
558 	hlist_del_init(&xfer->node);
559 
560 	/*
561 	 * Allocate transfer_id early so that can be used also as base for
562 	 * monotonic sequence number generation if needed.
563 	 */
564 	xfer->transfer_id = atomic_inc_return(&transfer_last_id);
565 
566 	refcount_set(&xfer->users, 1);
567 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
568 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
569 
570 	return xfer;
571 }
572 
573 /**
574  * scmi_xfer_raw_get  - Helper to get a bare free xfer from the TX channel
575  *
576  * @handle: Pointer to SCMI entity handle
577  *
578  * Note that xfer is taken from the TX channel structures.
579  *
580  * Return: A valid xfer on Success, or an error-pointer otherwise
581  */
582 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
583 {
584 	struct scmi_xfer *xfer;
585 	struct scmi_info *info = handle_to_scmi_info(handle);
586 
587 	xfer = scmi_xfer_get(handle, &info->tx_minfo);
588 	if (!IS_ERR(xfer))
589 		xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
590 
591 	return xfer;
592 }
593 
594 /**
595  * scmi_xfer_raw_channel_get  - Helper to get a reference to the proper channel
596  * to use for a specific protocol_id Raw transaction.
597  *
598  * @handle: Pointer to SCMI entity handle
599  * @protocol_id: Identifier of the protocol
600  *
601  * Note that in a regular SCMI stack, usually, a protocol has to be defined in
602  * the DT to have an associated channel and be usable; but in Raw mode any
603  * protocol in range is allowed, re-using the Base channel, so as to enable
604  * fuzzing on any protocol without the need of a fully compiled DT.
605  *
606  * Return: A reference to the channel to use, or an ERR_PTR
607  */
608 struct scmi_chan_info *
609 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
610 {
611 	struct scmi_chan_info *cinfo;
612 	struct scmi_info *info = handle_to_scmi_info(handle);
613 
614 	cinfo = idr_find(&info->tx_idr, protocol_id);
615 	if (!cinfo) {
616 		if (protocol_id == SCMI_PROTOCOL_BASE)
617 			return ERR_PTR(-EINVAL);
618 		/* Use Base channel for protocols not defined for DT */
619 		cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
620 		if (!cinfo)
621 			return ERR_PTR(-EINVAL);
622 		dev_warn_once(handle->dev,
623 			      "Using Base channel for protocol 0x%X\n",
624 			      protocol_id);
625 	}
626 
627 	return cinfo;
628 }
629 
630 /**
631  * __scmi_xfer_put() - Release a message
632  *
633  * @minfo: Pointer to Tx/Rx Message management info based on channel type
634  * @xfer: message that was reserved by scmi_xfer_get
635  *
636  * After refcount check, possibly release an xfer, clearing the token slot,
637  * removing xfer from @pending_xfers and putting it back into free_xfers.
638  *
639  * This holds a spinlock to maintain integrity of internal data structures.
640  */
641 static void
642 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
643 {
644 	unsigned long flags;
645 
646 	spin_lock_irqsave(&minfo->xfer_lock, flags);
647 	if (refcount_dec_and_test(&xfer->users)) {
648 		if (xfer->pending) {
649 			scmi_xfer_token_clear(minfo, xfer);
650 			hash_del(&xfer->node);
651 			xfer->pending = false;
652 		}
653 		hlist_add_head(&xfer->node, &minfo->free_xfers);
654 	}
655 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
656 }
657 
658 /**
659  * scmi_xfer_raw_put  - Release an xfer that was taken by @scmi_xfer_raw_get
660  *
661  * @handle: Pointer to SCMI entity handle
662  * @xfer: A reference to the xfer to put
663  *
664  * Note that as with other xfer_put() handlers the xfer is really effectively
665  * released only if there are no more users on the system.
666  */
667 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
668 {
669 	struct scmi_info *info = handle_to_scmi_info(handle);
670 
671 	xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
672 	xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
673 	return __scmi_xfer_put(&info->tx_minfo, xfer);
674 }
675 
676 /**
677  * scmi_xfer_lookup_unlocked  -  Helper to lookup an xfer_id
678  *
679  * @minfo: Pointer to Tx/Rx Message management info based on channel type
680  * @xfer_id: Token ID to lookup in @pending_xfers
681  *
682  * Refcounting is untouched.
683  *
684  * Context: Assumes to be called with @xfer_lock already acquired.
685  *
686  * Return: A valid xfer on Success or error otherwise
687  */
688 static struct scmi_xfer *
689 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
690 {
691 	struct scmi_xfer *xfer = NULL;
692 
693 	if (test_bit(xfer_id, minfo->xfer_alloc_table))
694 		xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
695 
696 	return xfer ?: ERR_PTR(-EINVAL);
697 }
698 
699 /**
700  * scmi_msg_response_validate  - Validate message type against state of related
701  * xfer
702  *
703  * @cinfo: A reference to the channel descriptor.
704  * @msg_type: Message type to check
705  * @xfer: A reference to the xfer to validate against @msg_type
706  *
707  * This function checks if @msg_type is congruent with the current state of
708  * a pending @xfer; if an asynchronous delayed response is received before the
709  * related synchronous response (Out-of-Order Delayed Response) the missing
710  * synchronous response is assumed to be OK and completed, carrying on with the
711  * Delayed Response: this is done to address the case in which the underlying
712  * SCMI transport can deliver such out-of-order responses.
713  *
714  * Context: Assumes to be called with xfer->lock already acquired.
715  *
716  * Return: 0 on Success, error otherwise
717  */
718 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
719 					     u8 msg_type,
720 					     struct scmi_xfer *xfer)
721 {
722 	/*
723 	 * Even if a response was indeed expected on this slot at this point,
724 	 * a buggy platform could wrongly reply feeding us an unexpected
725 	 * delayed response we're not prepared to handle: bail-out safely
726 	 * blaming firmware.
727 	 */
728 	if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
729 		dev_err(cinfo->dev,
730 			"Delayed Response for %d not expected! Buggy F/W ?\n",
731 			xfer->hdr.seq);
732 		return -EINVAL;
733 	}
734 
735 	switch (xfer->state) {
736 	case SCMI_XFER_SENT_OK:
737 		if (msg_type == MSG_TYPE_DELAYED_RESP) {
738 			/*
739 			 * Delayed Response expected but delivered earlier.
740 			 * Assume message RESPONSE was OK and skip state.
741 			 */
742 			xfer->hdr.status = SCMI_SUCCESS;
743 			xfer->state = SCMI_XFER_RESP_OK;
744 			complete(&xfer->done);
745 			dev_warn(cinfo->dev,
746 				 "Received valid OoO Delayed Response for %d\n",
747 				 xfer->hdr.seq);
748 		}
749 		break;
750 	case SCMI_XFER_RESP_OK:
751 		if (msg_type != MSG_TYPE_DELAYED_RESP)
752 			return -EINVAL;
753 		break;
754 	case SCMI_XFER_DRESP_OK:
755 		/* No further message expected once in SCMI_XFER_DRESP_OK */
756 		return -EINVAL;
757 	}
758 
759 	return 0;
760 }
761 
762 /**
763  * scmi_xfer_state_update  - Update xfer state
764  *
765  * @xfer: A reference to the xfer to update
766  * @msg_type: Type of message being processed.
767  *
768  * Note that this message is assumed to have been already successfully validated
769  * by @scmi_msg_response_validate(), so here we just update the state.
770  *
771  * Context: Assumes to be called on an xfer exclusively acquired using the
772  *	    busy flag.
773  */
774 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
775 {
776 	xfer->hdr.type = msg_type;
777 
778 	/* Unknown command types were already discarded earlier */
779 	if (xfer->hdr.type == MSG_TYPE_COMMAND)
780 		xfer->state = SCMI_XFER_RESP_OK;
781 	else
782 		xfer->state = SCMI_XFER_DRESP_OK;
783 }
784 
785 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
786 {
787 	int ret;
788 
789 	ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
790 
791 	return ret == SCMI_XFER_FREE;
792 }
793 
794 /**
795  * scmi_xfer_command_acquire  -  Helper to lookup and acquire a command xfer
796  *
797  * @cinfo: A reference to the channel descriptor.
798  * @msg_hdr: A message header to use as lookup key
799  *
800  * When a valid xfer is found for the sequence number embedded in the provided
801  * msg_hdr, reference counting is properly updated and exclusive access to this
802  * xfer is granted till released with @scmi_xfer_command_release.
803  *
804  * Return: A valid @xfer on Success or error otherwise.
805  */
806 static inline struct scmi_xfer *
807 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
808 {
809 	int ret;
810 	unsigned long flags;
811 	struct scmi_xfer *xfer;
812 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
813 	struct scmi_xfers_info *minfo = &info->tx_minfo;
814 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
815 	u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
816 
817 	/* Are we even expecting this? */
818 	spin_lock_irqsave(&minfo->xfer_lock, flags);
819 	xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
820 	if (IS_ERR(xfer)) {
821 		dev_err(cinfo->dev,
822 			"Message for %d type %d is not expected!\n",
823 			xfer_id, msg_type);
824 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
825 		return xfer;
826 	}
827 	refcount_inc(&xfer->users);
828 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
829 
830 	spin_lock_irqsave(&xfer->lock, flags);
831 	ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
832 	/*
833 	 * If a pending xfer was found which was also in a congruent state with
834 	 * the received message, acquire exclusive access to it setting the busy
835 	 * flag.
836 	 * Spins only on the rare limit condition of concurrent reception of
837 	 * RESP and DRESP for the same xfer.
838 	 */
839 	if (!ret) {
840 		spin_until_cond(scmi_xfer_acquired(xfer));
841 		scmi_xfer_state_update(xfer, msg_type);
842 	}
843 	spin_unlock_irqrestore(&xfer->lock, flags);
844 
845 	if (ret) {
846 		dev_err(cinfo->dev,
847 			"Invalid message type:%d for %d - HDR:0x%X  state:%d\n",
848 			msg_type, xfer_id, msg_hdr, xfer->state);
849 		/* On error the refcount incremented above has to be dropped */
850 		__scmi_xfer_put(minfo, xfer);
851 		xfer = ERR_PTR(-EINVAL);
852 	}
853 
854 	return xfer;
855 }
856 
857 static inline void scmi_xfer_command_release(struct scmi_info *info,
858 					     struct scmi_xfer *xfer)
859 {
860 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
861 	__scmi_xfer_put(&info->tx_minfo, xfer);
862 }
863 
864 static inline void scmi_clear_channel(struct scmi_info *info,
865 				      struct scmi_chan_info *cinfo)
866 {
867 	if (info->desc->ops->clear_channel)
868 		info->desc->ops->clear_channel(cinfo);
869 }
870 
871 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
872 				     u32 msg_hdr, void *priv)
873 {
874 	struct scmi_xfer *xfer;
875 	struct device *dev = cinfo->dev;
876 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
877 	struct scmi_xfers_info *minfo = &info->rx_minfo;
878 	ktime_t ts;
879 
880 	ts = ktime_get_boottime();
881 	xfer = scmi_xfer_get(cinfo->handle, minfo);
882 	if (IS_ERR(xfer)) {
883 		dev_err(dev, "failed to get free message slot (%ld)\n",
884 			PTR_ERR(xfer));
885 		scmi_clear_channel(info, cinfo);
886 		return;
887 	}
888 
889 	unpack_scmi_header(msg_hdr, &xfer->hdr);
890 	if (priv)
891 		/* Ensure order between xfer->priv store and following ops */
892 		smp_store_mb(xfer->priv, priv);
893 	info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
894 					    xfer);
895 
896 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
897 			    xfer->hdr.id, "NOTI", xfer->hdr.seq,
898 			    xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
899 
900 	scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
901 		    xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
902 
903 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
904 			   xfer->hdr.protocol_id, xfer->hdr.seq,
905 			   MSG_TYPE_NOTIFICATION);
906 
907 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
908 		xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
909 		scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
910 					cinfo->id);
911 	}
912 
913 	__scmi_xfer_put(minfo, xfer);
914 
915 	scmi_clear_channel(info, cinfo);
916 }
917 
918 static void scmi_handle_response(struct scmi_chan_info *cinfo,
919 				 u32 msg_hdr, void *priv)
920 {
921 	struct scmi_xfer *xfer;
922 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
923 
924 	xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
925 	if (IS_ERR(xfer)) {
926 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
927 			scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
928 
929 		if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
930 			scmi_clear_channel(info, cinfo);
931 		return;
932 	}
933 
934 	/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
935 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
936 		xfer->rx.len = info->desc->max_msg_size;
937 
938 	if (priv)
939 		/* Ensure order between xfer->priv store and following ops */
940 		smp_store_mb(xfer->priv, priv);
941 	info->desc->ops->fetch_response(cinfo, xfer);
942 
943 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
944 			    xfer->hdr.id,
945 			    xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
946 			    (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
947 			    (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
948 			    xfer->hdr.seq, xfer->hdr.status,
949 			    xfer->rx.buf, xfer->rx.len);
950 
951 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
952 			   xfer->hdr.protocol_id, xfer->hdr.seq,
953 			   xfer->hdr.type);
954 
955 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
956 		scmi_clear_channel(info, cinfo);
957 		complete(xfer->async_done);
958 	} else {
959 		complete(&xfer->done);
960 	}
961 
962 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
963 		/*
964 		 * When in polling mode avoid to queue the Raw xfer on the IRQ
965 		 * RX path since it will be already queued at the end of the TX
966 		 * poll loop.
967 		 */
968 		if (!xfer->hdr.poll_completion)
969 			scmi_raw_message_report(info->raw, xfer,
970 						SCMI_RAW_REPLY_QUEUE,
971 						cinfo->id);
972 	}
973 
974 	scmi_xfer_command_release(info, xfer);
975 }
976 
977 /**
978  * scmi_rx_callback() - callback for receiving messages
979  *
980  * @cinfo: SCMI channel info
981  * @msg_hdr: Message header
982  * @priv: Transport specific private data.
983  *
984  * Processes one received message to appropriate transfer information and
985  * signals completion of the transfer.
986  *
987  * NOTE: This function will be invoked in IRQ context, hence should be
988  * as optimal as possible.
989  */
990 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
991 {
992 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
993 
994 	switch (msg_type) {
995 	case MSG_TYPE_NOTIFICATION:
996 		scmi_handle_notification(cinfo, msg_hdr, priv);
997 		break;
998 	case MSG_TYPE_COMMAND:
999 	case MSG_TYPE_DELAYED_RESP:
1000 		scmi_handle_response(cinfo, msg_hdr, priv);
1001 		break;
1002 	default:
1003 		WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
1004 		break;
1005 	}
1006 }
1007 
1008 /**
1009  * xfer_put() - Release a transmit message
1010  *
1011  * @ph: Pointer to SCMI protocol handle
1012  * @xfer: message that was reserved by xfer_get_init
1013  */
1014 static void xfer_put(const struct scmi_protocol_handle *ph,
1015 		     struct scmi_xfer *xfer)
1016 {
1017 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1018 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1019 
1020 	__scmi_xfer_put(&info->tx_minfo, xfer);
1021 }
1022 
1023 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1024 				      struct scmi_xfer *xfer, ktime_t stop)
1025 {
1026 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1027 
1028 	/*
1029 	 * Poll also on xfer->done so that polling can be forcibly terminated
1030 	 * in case of out-of-order receptions of delayed responses
1031 	 */
1032 	return info->desc->ops->poll_done(cinfo, xfer) ||
1033 	       try_wait_for_completion(&xfer->done) ||
1034 	       ktime_after(ktime_get(), stop);
1035 }
1036 
1037 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1038 			       struct scmi_chan_info *cinfo,
1039 			       struct scmi_xfer *xfer, unsigned int timeout_ms)
1040 {
1041 	int ret = 0;
1042 
1043 	if (xfer->hdr.poll_completion) {
1044 		/*
1045 		 * Real polling is needed only if transport has NOT declared
1046 		 * itself to support synchronous commands replies.
1047 		 */
1048 		if (!desc->sync_cmds_completed_on_ret) {
1049 			/*
1050 			 * Poll on xfer using transport provided .poll_done();
1051 			 * assumes no completion interrupt was available.
1052 			 */
1053 			ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1054 
1055 			spin_until_cond(scmi_xfer_done_no_timeout(cinfo,
1056 								  xfer, stop));
1057 			if (ktime_after(ktime_get(), stop)) {
1058 				dev_err(dev,
1059 					"timed out in resp(caller: %pS) - polling\n",
1060 					(void *)_RET_IP_);
1061 				ret = -ETIMEDOUT;
1062 			}
1063 		}
1064 
1065 		if (!ret) {
1066 			unsigned long flags;
1067 			struct scmi_info *info =
1068 				handle_to_scmi_info(cinfo->handle);
1069 
1070 			/*
1071 			 * Do not fetch_response if an out-of-order delayed
1072 			 * response is being processed.
1073 			 */
1074 			spin_lock_irqsave(&xfer->lock, flags);
1075 			if (xfer->state == SCMI_XFER_SENT_OK) {
1076 				desc->ops->fetch_response(cinfo, xfer);
1077 				xfer->state = SCMI_XFER_RESP_OK;
1078 			}
1079 			spin_unlock_irqrestore(&xfer->lock, flags);
1080 
1081 			/* Trace polled replies. */
1082 			trace_scmi_msg_dump(info->id, cinfo->id,
1083 					    xfer->hdr.protocol_id, xfer->hdr.id,
1084 					    !SCMI_XFER_IS_RAW(xfer) ?
1085 					    "RESP" : "resp",
1086 					    xfer->hdr.seq, xfer->hdr.status,
1087 					    xfer->rx.buf, xfer->rx.len);
1088 
1089 			if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1090 				struct scmi_info *info =
1091 					handle_to_scmi_info(cinfo->handle);
1092 
1093 				scmi_raw_message_report(info->raw, xfer,
1094 							SCMI_RAW_REPLY_QUEUE,
1095 							cinfo->id);
1096 			}
1097 		}
1098 	} else {
1099 		/* And we wait for the response. */
1100 		if (!wait_for_completion_timeout(&xfer->done,
1101 						 msecs_to_jiffies(timeout_ms))) {
1102 			dev_err(dev, "timed out in resp(caller: %pS)\n",
1103 				(void *)_RET_IP_);
1104 			ret = -ETIMEDOUT;
1105 		}
1106 	}
1107 
1108 	return ret;
1109 }
1110 
1111 /**
1112  * scmi_wait_for_message_response  - An helper to group all the possible ways of
1113  * waiting for a synchronous message response.
1114  *
1115  * @cinfo: SCMI channel info
1116  * @xfer: Reference to the transfer being waited for.
1117  *
1118  * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1119  * configuration flags like xfer->hdr.poll_completion.
1120  *
1121  * Return: 0 on Success, error otherwise.
1122  */
1123 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1124 					  struct scmi_xfer *xfer)
1125 {
1126 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1127 	struct device *dev = info->dev;
1128 
1129 	trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1130 				      xfer->hdr.protocol_id, xfer->hdr.seq,
1131 				      info->desc->max_rx_timeout_ms,
1132 				      xfer->hdr.poll_completion);
1133 
1134 	return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1135 				   info->desc->max_rx_timeout_ms);
1136 }
1137 
1138 /**
1139  * scmi_xfer_raw_wait_for_message_response  - An helper to wait for a message
1140  * reply to an xfer raw request on a specific channel for the required timeout.
1141  *
1142  * @cinfo: SCMI channel info
1143  * @xfer: Reference to the transfer being waited for.
1144  * @timeout_ms: The maximum timeout in milliseconds
1145  *
1146  * Return: 0 on Success, error otherwise.
1147  */
1148 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1149 					    struct scmi_xfer *xfer,
1150 					    unsigned int timeout_ms)
1151 {
1152 	int ret;
1153 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1154 	struct device *dev = info->dev;
1155 
1156 	ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1157 	if (ret)
1158 		dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1159 			pack_scmi_header(&xfer->hdr));
1160 
1161 	return ret;
1162 }
1163 
1164 /**
1165  * do_xfer() - Do one transfer
1166  *
1167  * @ph: Pointer to SCMI protocol handle
1168  * @xfer: Transfer to initiate and wait for response
1169  *
1170  * Return: -ETIMEDOUT in case of no response, if transmit error,
1171  *	return corresponding error, else if all goes well,
1172  *	return 0.
1173  */
1174 static int do_xfer(const struct scmi_protocol_handle *ph,
1175 		   struct scmi_xfer *xfer)
1176 {
1177 	int ret;
1178 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1179 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1180 	struct device *dev = info->dev;
1181 	struct scmi_chan_info *cinfo;
1182 
1183 	/* Check for polling request on custom command xfers at first */
1184 	if (xfer->hdr.poll_completion &&
1185 	    !is_transport_polling_capable(info->desc)) {
1186 		dev_warn_once(dev,
1187 			      "Polling mode is not supported by transport.\n");
1188 		return -EINVAL;
1189 	}
1190 
1191 	cinfo = idr_find(&info->tx_idr, pi->proto->id);
1192 	if (unlikely(!cinfo))
1193 		return -EINVAL;
1194 
1195 	/* True ONLY if also supported by transport. */
1196 	if (is_polling_enabled(cinfo, info->desc))
1197 		xfer->hdr.poll_completion = true;
1198 
1199 	/*
1200 	 * Initialise protocol id now from protocol handle to avoid it being
1201 	 * overridden by mistake (or malice) by the protocol code mangling with
1202 	 * the scmi_xfer structure prior to this.
1203 	 */
1204 	xfer->hdr.protocol_id = pi->proto->id;
1205 	reinit_completion(&xfer->done);
1206 
1207 	trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1208 			      xfer->hdr.protocol_id, xfer->hdr.seq,
1209 			      xfer->hdr.poll_completion);
1210 
1211 	/* Clear any stale status */
1212 	xfer->hdr.status = SCMI_SUCCESS;
1213 	xfer->state = SCMI_XFER_SENT_OK;
1214 	/*
1215 	 * Even though spinlocking is not needed here since no race is possible
1216 	 * on xfer->state due to the monotonically increasing tokens allocation,
1217 	 * we must anyway ensure xfer->state initialization is not re-ordered
1218 	 * after the .send_message() to be sure that on the RX path an early
1219 	 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1220 	 */
1221 	smp_mb();
1222 
1223 	ret = info->desc->ops->send_message(cinfo, xfer);
1224 	if (ret < 0) {
1225 		dev_dbg(dev, "Failed to send message %d\n", ret);
1226 		return ret;
1227 	}
1228 
1229 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1230 			    xfer->hdr.id, "CMND", xfer->hdr.seq,
1231 			    xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1232 
1233 	ret = scmi_wait_for_message_response(cinfo, xfer);
1234 	if (!ret && xfer->hdr.status)
1235 		ret = scmi_to_linux_errno(xfer->hdr.status);
1236 
1237 	if (info->desc->ops->mark_txdone)
1238 		info->desc->ops->mark_txdone(cinfo, ret, xfer);
1239 
1240 	trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1241 			    xfer->hdr.protocol_id, xfer->hdr.seq, ret);
1242 
1243 	return ret;
1244 }
1245 
1246 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1247 			      struct scmi_xfer *xfer)
1248 {
1249 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1250 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1251 
1252 	xfer->rx.len = info->desc->max_msg_size;
1253 }
1254 
1255 /**
1256  * do_xfer_with_response() - Do one transfer and wait until the delayed
1257  *	response is received
1258  *
1259  * @ph: Pointer to SCMI protocol handle
1260  * @xfer: Transfer to initiate and wait for response
1261  *
1262  * Using asynchronous commands in atomic/polling mode should be avoided since
1263  * it could cause long busy-waiting here, so ignore polling for the delayed
1264  * response and WARN if it was requested for this command transaction since
1265  * upper layers should refrain from issuing such kind of requests.
1266  *
1267  * The only other option would have been to refrain from using any asynchronous
1268  * command even if made available, when an atomic transport is detected, and
1269  * instead forcibly use the synchronous version (thing that can be easily
1270  * attained at the protocol layer), but this would also have led to longer
1271  * stalls of the channel for synchronous commands and possibly timeouts.
1272  * (in other words there is usually a good reason if a platform provides an
1273  *  asynchronous version of a command and we should prefer to use it...just not
1274  *  when using atomic/polling mode)
1275  *
1276  * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1277  *	return corresponding error, else if all goes well, return 0.
1278  */
1279 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1280 				 struct scmi_xfer *xfer)
1281 {
1282 	int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1283 	DECLARE_COMPLETION_ONSTACK(async_response);
1284 
1285 	xfer->async_done = &async_response;
1286 
1287 	/*
1288 	 * Delayed responses should not be polled, so an async command should
1289 	 * not have been used when requiring an atomic/poll context; WARN and
1290 	 * perform instead a sleeping wait.
1291 	 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1292 	 */
1293 	WARN_ON_ONCE(xfer->hdr.poll_completion);
1294 
1295 	ret = do_xfer(ph, xfer);
1296 	if (!ret) {
1297 		if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1298 			dev_err(ph->dev,
1299 				"timed out in delayed resp(caller: %pS)\n",
1300 				(void *)_RET_IP_);
1301 			ret = -ETIMEDOUT;
1302 		} else if (xfer->hdr.status) {
1303 			ret = scmi_to_linux_errno(xfer->hdr.status);
1304 		}
1305 	}
1306 
1307 	xfer->async_done = NULL;
1308 	return ret;
1309 }
1310 
1311 /**
1312  * xfer_get_init() - Allocate and initialise one message for transmit
1313  *
1314  * @ph: Pointer to SCMI protocol handle
1315  * @msg_id: Message identifier
1316  * @tx_size: transmit message size
1317  * @rx_size: receive message size
1318  * @p: pointer to the allocated and initialised message
1319  *
1320  * This function allocates the message using @scmi_xfer_get and
1321  * initialise the header.
1322  *
1323  * Return: 0 if all went fine with @p pointing to message, else
1324  *	corresponding error.
1325  */
1326 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1327 			 u8 msg_id, size_t tx_size, size_t rx_size,
1328 			 struct scmi_xfer **p)
1329 {
1330 	int ret;
1331 	struct scmi_xfer *xfer;
1332 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1333 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1334 	struct scmi_xfers_info *minfo = &info->tx_minfo;
1335 	struct device *dev = info->dev;
1336 
1337 	/* Ensure we have sane transfer sizes */
1338 	if (rx_size > info->desc->max_msg_size ||
1339 	    tx_size > info->desc->max_msg_size)
1340 		return -ERANGE;
1341 
1342 	xfer = scmi_xfer_get(pi->handle, minfo);
1343 	if (IS_ERR(xfer)) {
1344 		ret = PTR_ERR(xfer);
1345 		dev_err(dev, "failed to get free message slot(%d)\n", ret);
1346 		return ret;
1347 	}
1348 
1349 	/* Pick a sequence number and register this xfer as in-flight */
1350 	ret = scmi_xfer_pending_set(xfer, minfo);
1351 	if (ret) {
1352 		dev_err(pi->handle->dev,
1353 			"Failed to get monotonic token %d\n", ret);
1354 		__scmi_xfer_put(minfo, xfer);
1355 		return ret;
1356 	}
1357 
1358 	xfer->tx.len = tx_size;
1359 	xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1360 	xfer->hdr.type = MSG_TYPE_COMMAND;
1361 	xfer->hdr.id = msg_id;
1362 	xfer->hdr.poll_completion = false;
1363 
1364 	*p = xfer;
1365 
1366 	return 0;
1367 }
1368 
1369 /**
1370  * version_get() - command to get the revision of the SCMI entity
1371  *
1372  * @ph: Pointer to SCMI protocol handle
1373  * @version: Holds returned version of protocol.
1374  *
1375  * Updates the SCMI information in the internal data structure.
1376  *
1377  * Return: 0 if all went fine, else return appropriate error.
1378  */
1379 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1380 {
1381 	int ret;
1382 	__le32 *rev_info;
1383 	struct scmi_xfer *t;
1384 
1385 	ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1386 	if (ret)
1387 		return ret;
1388 
1389 	ret = do_xfer(ph, t);
1390 	if (!ret) {
1391 		rev_info = t->rx.buf;
1392 		*version = le32_to_cpu(*rev_info);
1393 	}
1394 
1395 	xfer_put(ph, t);
1396 	return ret;
1397 }
1398 
1399 /**
1400  * scmi_set_protocol_priv  - Set protocol specific data at init time
1401  *
1402  * @ph: A reference to the protocol handle.
1403  * @priv: The private data to set.
1404  * @version: The detected protocol version for the core to register.
1405  *
1406  * Return: 0 on Success
1407  */
1408 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1409 				  void *priv, u32 version)
1410 {
1411 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
1412 
1413 	pi->priv = priv;
1414 	pi->version = version;
1415 
1416 	return 0;
1417 }
1418 
1419 /**
1420  * scmi_get_protocol_priv  - Set protocol specific data at init time
1421  *
1422  * @ph: A reference to the protocol handle.
1423  *
1424  * Return: Protocol private data if any was set.
1425  */
1426 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1427 {
1428 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1429 
1430 	return pi->priv;
1431 }
1432 
1433 static const struct scmi_xfer_ops xfer_ops = {
1434 	.version_get = version_get,
1435 	.xfer_get_init = xfer_get_init,
1436 	.reset_rx_to_maxsz = reset_rx_to_maxsz,
1437 	.do_xfer = do_xfer,
1438 	.do_xfer_with_response = do_xfer_with_response,
1439 	.xfer_put = xfer_put,
1440 };
1441 
1442 struct scmi_msg_resp_domain_name_get {
1443 	__le32 flags;
1444 	u8 name[SCMI_MAX_STR_SIZE];
1445 };
1446 
1447 /**
1448  * scmi_common_extended_name_get  - Common helper to get extended resources name
1449  * @ph: A protocol handle reference.
1450  * @cmd_id: The specific command ID to use.
1451  * @res_id: The specific resource ID to use.
1452  * @flags: A pointer to specific flags to use, if any.
1453  * @name: A pointer to the preallocated area where the retrieved name will be
1454  *	  stored as a NULL terminated string.
1455  * @len: The len in bytes of the @name char array.
1456  *
1457  * Return: 0 on Succcess
1458  */
1459 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1460 					 u8 cmd_id, u32 res_id, u32 *flags,
1461 					 char *name, size_t len)
1462 {
1463 	int ret;
1464 	size_t txlen;
1465 	struct scmi_xfer *t;
1466 	struct scmi_msg_resp_domain_name_get *resp;
1467 
1468 	txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags);
1469 	ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t);
1470 	if (ret)
1471 		goto out;
1472 
1473 	put_unaligned_le32(res_id, t->tx.buf);
1474 	if (flags)
1475 		put_unaligned_le32(*flags, t->tx.buf + sizeof(res_id));
1476 	resp = t->rx.buf;
1477 
1478 	ret = ph->xops->do_xfer(ph, t);
1479 	if (!ret)
1480 		strscpy(name, resp->name, len);
1481 
1482 	ph->xops->xfer_put(ph, t);
1483 out:
1484 	if (ret)
1485 		dev_warn(ph->dev,
1486 			 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1487 			 res_id, ret, name);
1488 	return ret;
1489 }
1490 
1491 /**
1492  * struct scmi_iterator  - Iterator descriptor
1493  * @msg: A reference to the message TX buffer; filled by @prepare_message with
1494  *	 a proper custom command payload for each multi-part command request.
1495  * @resp: A reference to the response RX buffer; used by @update_state and
1496  *	  @process_response to parse the multi-part replies.
1497  * @t: A reference to the underlying xfer initialized and used transparently by
1498  *     the iterator internal routines.
1499  * @ph: A reference to the associated protocol handle to be used.
1500  * @ops: A reference to the custom provided iterator operations.
1501  * @state: The current iterator state; used and updated in turn by the iterators
1502  *	   internal routines and by the caller-provided @scmi_iterator_ops.
1503  * @priv: A reference to optional private data as provided by the caller and
1504  *	  passed back to the @@scmi_iterator_ops.
1505  */
1506 struct scmi_iterator {
1507 	void *msg;
1508 	void *resp;
1509 	struct scmi_xfer *t;
1510 	const struct scmi_protocol_handle *ph;
1511 	struct scmi_iterator_ops *ops;
1512 	struct scmi_iterator_state state;
1513 	void *priv;
1514 };
1515 
1516 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1517 				struct scmi_iterator_ops *ops,
1518 				unsigned int max_resources, u8 msg_id,
1519 				size_t tx_size, void *priv)
1520 {
1521 	int ret;
1522 	struct scmi_iterator *i;
1523 
1524 	i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1525 	if (!i)
1526 		return ERR_PTR(-ENOMEM);
1527 
1528 	i->ph = ph;
1529 	i->ops = ops;
1530 	i->priv = priv;
1531 
1532 	ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1533 	if (ret) {
1534 		devm_kfree(ph->dev, i);
1535 		return ERR_PTR(ret);
1536 	}
1537 
1538 	i->state.max_resources = max_resources;
1539 	i->msg = i->t->tx.buf;
1540 	i->resp = i->t->rx.buf;
1541 
1542 	return i;
1543 }
1544 
1545 static int scmi_iterator_run(void *iter)
1546 {
1547 	int ret = -EINVAL;
1548 	struct scmi_iterator_ops *iops;
1549 	const struct scmi_protocol_handle *ph;
1550 	struct scmi_iterator_state *st;
1551 	struct scmi_iterator *i = iter;
1552 
1553 	if (!i || !i->ops || !i->ph)
1554 		return ret;
1555 
1556 	iops = i->ops;
1557 	ph = i->ph;
1558 	st = &i->state;
1559 
1560 	do {
1561 		iops->prepare_message(i->msg, st->desc_index, i->priv);
1562 		ret = ph->xops->do_xfer(ph, i->t);
1563 		if (ret)
1564 			break;
1565 
1566 		st->rx_len = i->t->rx.len;
1567 		ret = iops->update_state(st, i->resp, i->priv);
1568 		if (ret)
1569 			break;
1570 
1571 		if (st->num_returned > st->max_resources - st->desc_index) {
1572 			dev_err(ph->dev,
1573 				"No. of resources can't exceed %d\n",
1574 				st->max_resources);
1575 			ret = -EINVAL;
1576 			break;
1577 		}
1578 
1579 		for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1580 		     st->loop_idx++) {
1581 			ret = iops->process_response(ph, i->resp, st, i->priv);
1582 			if (ret)
1583 				goto out;
1584 		}
1585 
1586 		st->desc_index += st->num_returned;
1587 		ph->xops->reset_rx_to_maxsz(ph, i->t);
1588 		/*
1589 		 * check for both returned and remaining to avoid infinite
1590 		 * loop due to buggy firmware
1591 		 */
1592 	} while (st->num_returned && st->num_remaining);
1593 
1594 out:
1595 	/* Finalize and destroy iterator */
1596 	ph->xops->xfer_put(ph, i->t);
1597 	devm_kfree(ph->dev, i);
1598 
1599 	return ret;
1600 }
1601 
1602 struct scmi_msg_get_fc_info {
1603 	__le32 domain;
1604 	__le32 message_id;
1605 };
1606 
1607 struct scmi_msg_resp_desc_fc {
1608 	__le32 attr;
1609 #define SUPPORTS_DOORBELL(x)		((x) & BIT(0))
1610 #define DOORBELL_REG_WIDTH(x)		FIELD_GET(GENMASK(2, 1), (x))
1611 	__le32 rate_limit;
1612 	__le32 chan_addr_low;
1613 	__le32 chan_addr_high;
1614 	__le32 chan_size;
1615 	__le32 db_addr_low;
1616 	__le32 db_addr_high;
1617 	__le32 db_set_lmask;
1618 	__le32 db_set_hmask;
1619 	__le32 db_preserve_lmask;
1620 	__le32 db_preserve_hmask;
1621 };
1622 
1623 static void
1624 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1625 			     u8 describe_id, u32 message_id, u32 valid_size,
1626 			     u32 domain, void __iomem **p_addr,
1627 			     struct scmi_fc_db_info **p_db, u32 *rate_limit)
1628 {
1629 	int ret;
1630 	u32 flags;
1631 	u64 phys_addr;
1632 	u8 size;
1633 	void __iomem *addr;
1634 	struct scmi_xfer *t;
1635 	struct scmi_fc_db_info *db = NULL;
1636 	struct scmi_msg_get_fc_info *info;
1637 	struct scmi_msg_resp_desc_fc *resp;
1638 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1639 
1640 	if (!p_addr) {
1641 		ret = -EINVAL;
1642 		goto err_out;
1643 	}
1644 
1645 	ret = ph->xops->xfer_get_init(ph, describe_id,
1646 				      sizeof(*info), sizeof(*resp), &t);
1647 	if (ret)
1648 		goto err_out;
1649 
1650 	info = t->tx.buf;
1651 	info->domain = cpu_to_le32(domain);
1652 	info->message_id = cpu_to_le32(message_id);
1653 
1654 	/*
1655 	 * Bail out on error leaving fc_info addresses zeroed; this includes
1656 	 * the case in which the requested domain/message_id does NOT support
1657 	 * fastchannels at all.
1658 	 */
1659 	ret = ph->xops->do_xfer(ph, t);
1660 	if (ret)
1661 		goto err_xfer;
1662 
1663 	resp = t->rx.buf;
1664 	flags = le32_to_cpu(resp->attr);
1665 	size = le32_to_cpu(resp->chan_size);
1666 	if (size != valid_size) {
1667 		ret = -EINVAL;
1668 		goto err_xfer;
1669 	}
1670 
1671 	if (rate_limit)
1672 		*rate_limit = le32_to_cpu(resp->rate_limit) & GENMASK(19, 0);
1673 
1674 	phys_addr = le32_to_cpu(resp->chan_addr_low);
1675 	phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1676 	addr = devm_ioremap(ph->dev, phys_addr, size);
1677 	if (!addr) {
1678 		ret = -EADDRNOTAVAIL;
1679 		goto err_xfer;
1680 	}
1681 
1682 	*p_addr = addr;
1683 
1684 	if (p_db && SUPPORTS_DOORBELL(flags)) {
1685 		db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1686 		if (!db) {
1687 			ret = -ENOMEM;
1688 			goto err_db;
1689 		}
1690 
1691 		size = 1 << DOORBELL_REG_WIDTH(flags);
1692 		phys_addr = le32_to_cpu(resp->db_addr_low);
1693 		phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1694 		addr = devm_ioremap(ph->dev, phys_addr, size);
1695 		if (!addr) {
1696 			ret = -EADDRNOTAVAIL;
1697 			goto err_db_mem;
1698 		}
1699 
1700 		db->addr = addr;
1701 		db->width = size;
1702 		db->set = le32_to_cpu(resp->db_set_lmask);
1703 		db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1704 		db->mask = le32_to_cpu(resp->db_preserve_lmask);
1705 		db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1706 
1707 		*p_db = db;
1708 	}
1709 
1710 	ph->xops->xfer_put(ph, t);
1711 
1712 	dev_dbg(ph->dev,
1713 		"Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
1714 		pi->proto->id, message_id, domain);
1715 
1716 	return;
1717 
1718 err_db_mem:
1719 	devm_kfree(ph->dev, db);
1720 
1721 err_db:
1722 	*p_addr = NULL;
1723 
1724 err_xfer:
1725 	ph->xops->xfer_put(ph, t);
1726 
1727 err_out:
1728 	dev_warn(ph->dev,
1729 		 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
1730 		 pi->proto->id, message_id, domain, ret);
1731 }
1732 
1733 #define SCMI_PROTO_FC_RING_DB(w)			\
1734 do {							\
1735 	u##w val = 0;					\
1736 							\
1737 	if (db->mask)					\
1738 		val = ioread##w(db->addr) & db->mask;	\
1739 	iowrite##w((u##w)db->set | val, db->addr);	\
1740 } while (0)
1741 
1742 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
1743 {
1744 	if (!db || !db->addr)
1745 		return;
1746 
1747 	if (db->width == 1)
1748 		SCMI_PROTO_FC_RING_DB(8);
1749 	else if (db->width == 2)
1750 		SCMI_PROTO_FC_RING_DB(16);
1751 	else if (db->width == 4)
1752 		SCMI_PROTO_FC_RING_DB(32);
1753 	else /* db->width == 8 */
1754 #ifdef CONFIG_64BIT
1755 		SCMI_PROTO_FC_RING_DB(64);
1756 #else
1757 	{
1758 		u64 val = 0;
1759 
1760 		if (db->mask)
1761 			val = ioread64_hi_lo(db->addr) & db->mask;
1762 		iowrite64_hi_lo(db->set | val, db->addr);
1763 	}
1764 #endif
1765 }
1766 
1767 /**
1768  * scmi_protocol_msg_check  - Check protocol message attributes
1769  *
1770  * @ph: A reference to the protocol handle.
1771  * @message_id: The ID of the message to check.
1772  * @attributes: A parameter to optionally return the retrieved message
1773  *		attributes, in case of Success.
1774  *
1775  * An helper to check protocol message attributes for a specific protocol
1776  * and message pair.
1777  *
1778  * Return: 0 on SUCCESS
1779  */
1780 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph,
1781 				   u32 message_id, u32 *attributes)
1782 {
1783 	int ret;
1784 	struct scmi_xfer *t;
1785 
1786 	ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES,
1787 			    sizeof(__le32), 0, &t);
1788 	if (ret)
1789 		return ret;
1790 
1791 	put_unaligned_le32(message_id, t->tx.buf);
1792 	ret = do_xfer(ph, t);
1793 	if (!ret && attributes)
1794 		*attributes = get_unaligned_le32(t->rx.buf);
1795 	xfer_put(ph, t);
1796 
1797 	return ret;
1798 }
1799 
1800 static const struct scmi_proto_helpers_ops helpers_ops = {
1801 	.extended_name_get = scmi_common_extended_name_get,
1802 	.iter_response_init = scmi_iterator_init,
1803 	.iter_response_run = scmi_iterator_run,
1804 	.protocol_msg_check = scmi_protocol_msg_check,
1805 	.fastchannel_init = scmi_common_fastchannel_init,
1806 	.fastchannel_db_ring = scmi_common_fastchannel_db_ring,
1807 };
1808 
1809 /**
1810  * scmi_revision_area_get  - Retrieve version memory area.
1811  *
1812  * @ph: A reference to the protocol handle.
1813  *
1814  * A helper to grab the version memory area reference during SCMI Base protocol
1815  * initialization.
1816  *
1817  * Return: A reference to the version memory area associated to the SCMI
1818  *	   instance underlying this protocol handle.
1819  */
1820 struct scmi_revision_info *
1821 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1822 {
1823 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1824 
1825 	return pi->handle->version;
1826 }
1827 
1828 /**
1829  * scmi_protocol_version_negotiate  - Negotiate protocol version
1830  *
1831  * @ph: A reference to the protocol handle.
1832  *
1833  * An helper to negotiate a protocol version different from the latest
1834  * advertised as supported from the platform: on Success backward
1835  * compatibility is assured by the platform.
1836  *
1837  * Return: 0 on Success
1838  */
1839 static int scmi_protocol_version_negotiate(struct scmi_protocol_handle *ph)
1840 {
1841 	int ret;
1842 	struct scmi_xfer *t;
1843 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
1844 
1845 	/* At first check if NEGOTIATE_PROTOCOL_VERSION is supported ... */
1846 	ret = scmi_protocol_msg_check(ph, NEGOTIATE_PROTOCOL_VERSION, NULL);
1847 	if (ret)
1848 		return ret;
1849 
1850 	/* ... then attempt protocol version negotiation */
1851 	ret = xfer_get_init(ph, NEGOTIATE_PROTOCOL_VERSION,
1852 			    sizeof(__le32), 0, &t);
1853 	if (ret)
1854 		return ret;
1855 
1856 	put_unaligned_le32(pi->proto->supported_version, t->tx.buf);
1857 	ret = do_xfer(ph, t);
1858 	if (!ret)
1859 		pi->negotiated_version = pi->proto->supported_version;
1860 
1861 	xfer_put(ph, t);
1862 
1863 	return ret;
1864 }
1865 
1866 /**
1867  * scmi_alloc_init_protocol_instance  - Allocate and initialize a protocol
1868  * instance descriptor.
1869  * @info: The reference to the related SCMI instance.
1870  * @proto: The protocol descriptor.
1871  *
1872  * Allocate a new protocol instance descriptor, using the provided @proto
1873  * description, against the specified SCMI instance @info, and initialize it;
1874  * all resources management is handled via a dedicated per-protocol devres
1875  * group.
1876  *
1877  * Context: Assumes to be called with @protocols_mtx already acquired.
1878  * Return: A reference to a freshly allocated and initialized protocol instance
1879  *	   or ERR_PTR on failure. On failure the @proto reference is at first
1880  *	   put using @scmi_protocol_put() before releasing all the devres group.
1881  */
1882 static struct scmi_protocol_instance *
1883 scmi_alloc_init_protocol_instance(struct scmi_info *info,
1884 				  const struct scmi_protocol *proto)
1885 {
1886 	int ret = -ENOMEM;
1887 	void *gid;
1888 	struct scmi_protocol_instance *pi;
1889 	const struct scmi_handle *handle = &info->handle;
1890 
1891 	/* Protocol specific devres group */
1892 	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1893 	if (!gid) {
1894 		scmi_protocol_put(proto->id);
1895 		goto out;
1896 	}
1897 
1898 	pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
1899 	if (!pi)
1900 		goto clean;
1901 
1902 	pi->gid = gid;
1903 	pi->proto = proto;
1904 	pi->handle = handle;
1905 	pi->ph.dev = handle->dev;
1906 	pi->ph.xops = &xfer_ops;
1907 	pi->ph.hops = &helpers_ops;
1908 	pi->ph.set_priv = scmi_set_protocol_priv;
1909 	pi->ph.get_priv = scmi_get_protocol_priv;
1910 	refcount_set(&pi->users, 1);
1911 	/* proto->init is assured NON NULL by scmi_protocol_register */
1912 	ret = pi->proto->instance_init(&pi->ph);
1913 	if (ret)
1914 		goto clean;
1915 
1916 	ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
1917 			GFP_KERNEL);
1918 	if (ret != proto->id)
1919 		goto clean;
1920 
1921 	/*
1922 	 * Warn but ignore events registration errors since we do not want
1923 	 * to skip whole protocols if their notifications are messed up.
1924 	 */
1925 	if (pi->proto->events) {
1926 		ret = scmi_register_protocol_events(handle, pi->proto->id,
1927 						    &pi->ph,
1928 						    pi->proto->events);
1929 		if (ret)
1930 			dev_warn(handle->dev,
1931 				 "Protocol:%X - Events Registration Failed - err:%d\n",
1932 				 pi->proto->id, ret);
1933 	}
1934 
1935 	devres_close_group(handle->dev, pi->gid);
1936 	dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1937 
1938 	if (pi->version > proto->supported_version) {
1939 		ret = scmi_protocol_version_negotiate(&pi->ph);
1940 		if (!ret) {
1941 			dev_info(handle->dev,
1942 				 "Protocol 0x%X successfully negotiated version 0x%X\n",
1943 				 proto->id, pi->negotiated_version);
1944 		} else {
1945 			dev_warn(handle->dev,
1946 				 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X.\n",
1947 				 pi->version, pi->proto->id);
1948 			dev_warn(handle->dev,
1949 				 "Trying version 0x%X. Backward compatibility is NOT assured.\n",
1950 				 pi->proto->supported_version);
1951 		}
1952 	}
1953 
1954 	return pi;
1955 
1956 clean:
1957 	/* Take care to put the protocol module's owner before releasing all */
1958 	scmi_protocol_put(proto->id);
1959 	devres_release_group(handle->dev, gid);
1960 out:
1961 	return ERR_PTR(ret);
1962 }
1963 
1964 /**
1965  * scmi_get_protocol_instance  - Protocol initialization helper.
1966  * @handle: A reference to the SCMI platform instance.
1967  * @protocol_id: The protocol being requested.
1968  *
1969  * In case the required protocol has never been requested before for this
1970  * instance, allocate and initialize all the needed structures while handling
1971  * resource allocation with a dedicated per-protocol devres subgroup.
1972  *
1973  * Return: A reference to an initialized protocol instance or error on failure:
1974  *	   in particular returns -EPROBE_DEFER when the desired protocol could
1975  *	   NOT be found.
1976  */
1977 static struct scmi_protocol_instance * __must_check
1978 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1979 {
1980 	struct scmi_protocol_instance *pi;
1981 	struct scmi_info *info = handle_to_scmi_info(handle);
1982 
1983 	mutex_lock(&info->protocols_mtx);
1984 	pi = idr_find(&info->protocols, protocol_id);
1985 
1986 	if (pi) {
1987 		refcount_inc(&pi->users);
1988 	} else {
1989 		const struct scmi_protocol *proto;
1990 
1991 		/* Fails if protocol not registered on bus */
1992 		proto = scmi_protocol_get(protocol_id);
1993 		if (proto)
1994 			pi = scmi_alloc_init_protocol_instance(info, proto);
1995 		else
1996 			pi = ERR_PTR(-EPROBE_DEFER);
1997 	}
1998 	mutex_unlock(&info->protocols_mtx);
1999 
2000 	return pi;
2001 }
2002 
2003 /**
2004  * scmi_protocol_acquire  - Protocol acquire
2005  * @handle: A reference to the SCMI platform instance.
2006  * @protocol_id: The protocol being requested.
2007  *
2008  * Register a new user for the requested protocol on the specified SCMI
2009  * platform instance, possibly triggering its initialization on first user.
2010  *
2011  * Return: 0 if protocol was acquired successfully.
2012  */
2013 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
2014 {
2015 	return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
2016 }
2017 
2018 /**
2019  * scmi_protocol_release  - Protocol de-initialization helper.
2020  * @handle: A reference to the SCMI platform instance.
2021  * @protocol_id: The protocol being requested.
2022  *
2023  * Remove one user for the specified protocol and triggers de-initialization
2024  * and resources de-allocation once the last user has gone.
2025  */
2026 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
2027 {
2028 	struct scmi_info *info = handle_to_scmi_info(handle);
2029 	struct scmi_protocol_instance *pi;
2030 
2031 	mutex_lock(&info->protocols_mtx);
2032 	pi = idr_find(&info->protocols, protocol_id);
2033 	if (WARN_ON(!pi))
2034 		goto out;
2035 
2036 	if (refcount_dec_and_test(&pi->users)) {
2037 		void *gid = pi->gid;
2038 
2039 		if (pi->proto->events)
2040 			scmi_deregister_protocol_events(handle, protocol_id);
2041 
2042 		if (pi->proto->instance_deinit)
2043 			pi->proto->instance_deinit(&pi->ph);
2044 
2045 		idr_remove(&info->protocols, protocol_id);
2046 
2047 		scmi_protocol_put(protocol_id);
2048 
2049 		devres_release_group(handle->dev, gid);
2050 		dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
2051 			protocol_id);
2052 	}
2053 
2054 out:
2055 	mutex_unlock(&info->protocols_mtx);
2056 }
2057 
2058 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
2059 				     u8 *prot_imp)
2060 {
2061 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2062 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
2063 
2064 	info->protocols_imp = prot_imp;
2065 }
2066 
2067 static bool
2068 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
2069 {
2070 	int i;
2071 	struct scmi_info *info = handle_to_scmi_info(handle);
2072 	struct scmi_revision_info *rev = handle->version;
2073 
2074 	if (!info->protocols_imp)
2075 		return false;
2076 
2077 	for (i = 0; i < rev->num_protocols; i++)
2078 		if (info->protocols_imp[i] == prot_id)
2079 			return true;
2080 	return false;
2081 }
2082 
2083 struct scmi_protocol_devres {
2084 	const struct scmi_handle *handle;
2085 	u8 protocol_id;
2086 };
2087 
2088 static void scmi_devm_release_protocol(struct device *dev, void *res)
2089 {
2090 	struct scmi_protocol_devres *dres = res;
2091 
2092 	scmi_protocol_release(dres->handle, dres->protocol_id);
2093 }
2094 
2095 static struct scmi_protocol_instance __must_check *
2096 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
2097 {
2098 	struct scmi_protocol_instance *pi;
2099 	struct scmi_protocol_devres *dres;
2100 
2101 	dres = devres_alloc(scmi_devm_release_protocol,
2102 			    sizeof(*dres), GFP_KERNEL);
2103 	if (!dres)
2104 		return ERR_PTR(-ENOMEM);
2105 
2106 	pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2107 	if (IS_ERR(pi)) {
2108 		devres_free(dres);
2109 		return pi;
2110 	}
2111 
2112 	dres->handle = sdev->handle;
2113 	dres->protocol_id = protocol_id;
2114 	devres_add(&sdev->dev, dres);
2115 
2116 	return pi;
2117 }
2118 
2119 /**
2120  * scmi_devm_protocol_get  - Devres managed get protocol operations and handle
2121  * @sdev: A reference to an scmi_device whose embedded struct device is to
2122  *	  be used for devres accounting.
2123  * @protocol_id: The protocol being requested.
2124  * @ph: A pointer reference used to pass back the associated protocol handle.
2125  *
2126  * Get hold of a protocol accounting for its usage, eventually triggering its
2127  * initialization, and returning the protocol specific operations and related
2128  * protocol handle which will be used as first argument in most of the
2129  * protocols operations methods.
2130  * Being a devres based managed method, protocol hold will be automatically
2131  * released, and possibly de-initialized on last user, once the SCMI driver
2132  * owning the scmi_device is unbound from it.
2133  *
2134  * Return: A reference to the requested protocol operations or error.
2135  *	   Must be checked for errors by caller.
2136  */
2137 static const void __must_check *
2138 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2139 		       struct scmi_protocol_handle **ph)
2140 {
2141 	struct scmi_protocol_instance *pi;
2142 
2143 	if (!ph)
2144 		return ERR_PTR(-EINVAL);
2145 
2146 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2147 	if (IS_ERR(pi))
2148 		return pi;
2149 
2150 	*ph = &pi->ph;
2151 
2152 	return pi->proto->ops;
2153 }
2154 
2155 /**
2156  * scmi_devm_protocol_acquire  - Devres managed helper to get hold of a protocol
2157  * @sdev: A reference to an scmi_device whose embedded struct device is to
2158  *	  be used for devres accounting.
2159  * @protocol_id: The protocol being requested.
2160  *
2161  * Get hold of a protocol accounting for its usage, possibly triggering its
2162  * initialization but without getting access to its protocol specific operations
2163  * and handle.
2164  *
2165  * Being a devres based managed method, protocol hold will be automatically
2166  * released, and possibly de-initialized on last user, once the SCMI driver
2167  * owning the scmi_device is unbound from it.
2168  *
2169  * Return: 0 on SUCCESS
2170  */
2171 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2172 						   u8 protocol_id)
2173 {
2174 	struct scmi_protocol_instance *pi;
2175 
2176 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2177 	if (IS_ERR(pi))
2178 		return PTR_ERR(pi);
2179 
2180 	return 0;
2181 }
2182 
2183 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2184 {
2185 	struct scmi_protocol_devres *dres = res;
2186 
2187 	if (WARN_ON(!dres || !data))
2188 		return 0;
2189 
2190 	return dres->protocol_id == *((u8 *)data);
2191 }
2192 
2193 /**
2194  * scmi_devm_protocol_put  - Devres managed put protocol operations and handle
2195  * @sdev: A reference to an scmi_device whose embedded struct device is to
2196  *	  be used for devres accounting.
2197  * @protocol_id: The protocol being requested.
2198  *
2199  * Explicitly release a protocol hold previously obtained calling the above
2200  * @scmi_devm_protocol_get.
2201  */
2202 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2203 {
2204 	int ret;
2205 
2206 	ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2207 			     scmi_devm_protocol_match, &protocol_id);
2208 	WARN_ON(ret);
2209 }
2210 
2211 /**
2212  * scmi_is_transport_atomic  - Method to check if underlying transport for an
2213  * SCMI instance is configured as atomic.
2214  *
2215  * @handle: A reference to the SCMI platform instance.
2216  * @atomic_threshold: An optional return value for the system wide currently
2217  *		      configured threshold for atomic operations.
2218  *
2219  * Return: True if transport is configured as atomic
2220  */
2221 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2222 				     unsigned int *atomic_threshold)
2223 {
2224 	bool ret;
2225 	struct scmi_info *info = handle_to_scmi_info(handle);
2226 
2227 	ret = info->desc->atomic_enabled &&
2228 		is_transport_polling_capable(info->desc);
2229 	if (ret && atomic_threshold)
2230 		*atomic_threshold = info->atomic_threshold;
2231 
2232 	return ret;
2233 }
2234 
2235 /**
2236  * scmi_handle_get() - Get the SCMI handle for a device
2237  *
2238  * @dev: pointer to device for which we want SCMI handle
2239  *
2240  * NOTE: The function does not track individual clients of the framework
2241  * and is expected to be maintained by caller of SCMI protocol library.
2242  * scmi_handle_put must be balanced with successful scmi_handle_get
2243  *
2244  * Return: pointer to handle if successful, NULL on error
2245  */
2246 static struct scmi_handle *scmi_handle_get(struct device *dev)
2247 {
2248 	struct list_head *p;
2249 	struct scmi_info *info;
2250 	struct scmi_handle *handle = NULL;
2251 
2252 	mutex_lock(&scmi_list_mutex);
2253 	list_for_each(p, &scmi_list) {
2254 		info = list_entry(p, struct scmi_info, node);
2255 		if (dev->parent == info->dev) {
2256 			info->users++;
2257 			handle = &info->handle;
2258 			break;
2259 		}
2260 	}
2261 	mutex_unlock(&scmi_list_mutex);
2262 
2263 	return handle;
2264 }
2265 
2266 /**
2267  * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2268  *
2269  * @handle: handle acquired by scmi_handle_get
2270  *
2271  * NOTE: The function does not track individual clients of the framework
2272  * and is expected to be maintained by caller of SCMI protocol library.
2273  * scmi_handle_put must be balanced with successful scmi_handle_get
2274  *
2275  * Return: 0 is successfully released
2276  *	if null was passed, it returns -EINVAL;
2277  */
2278 static int scmi_handle_put(const struct scmi_handle *handle)
2279 {
2280 	struct scmi_info *info;
2281 
2282 	if (!handle)
2283 		return -EINVAL;
2284 
2285 	info = handle_to_scmi_info(handle);
2286 	mutex_lock(&scmi_list_mutex);
2287 	if (!WARN_ON(!info->users))
2288 		info->users--;
2289 	mutex_unlock(&scmi_list_mutex);
2290 
2291 	return 0;
2292 }
2293 
2294 static void scmi_device_link_add(struct device *consumer,
2295 				 struct device *supplier)
2296 {
2297 	struct device_link *link;
2298 
2299 	link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2300 
2301 	WARN_ON(!link);
2302 }
2303 
2304 static void scmi_set_handle(struct scmi_device *scmi_dev)
2305 {
2306 	scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2307 	if (scmi_dev->handle)
2308 		scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2309 }
2310 
2311 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2312 				 struct scmi_xfers_info *info)
2313 {
2314 	int i;
2315 	struct scmi_xfer *xfer;
2316 	struct device *dev = sinfo->dev;
2317 	const struct scmi_desc *desc = sinfo->desc;
2318 
2319 	/* Pre-allocated messages, no more than what hdr.seq can support */
2320 	if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2321 		dev_err(dev,
2322 			"Invalid maximum messages %d, not in range [1 - %lu]\n",
2323 			info->max_msg, MSG_TOKEN_MAX);
2324 		return -EINVAL;
2325 	}
2326 
2327 	hash_init(info->pending_xfers);
2328 
2329 	/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2330 	info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2331 						    GFP_KERNEL);
2332 	if (!info->xfer_alloc_table)
2333 		return -ENOMEM;
2334 
2335 	/*
2336 	 * Preallocate a number of xfers equal to max inflight messages,
2337 	 * pre-initialize the buffer pointer to pre-allocated buffers and
2338 	 * attach all of them to the free list
2339 	 */
2340 	INIT_HLIST_HEAD(&info->free_xfers);
2341 	for (i = 0; i < info->max_msg; i++) {
2342 		xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2343 		if (!xfer)
2344 			return -ENOMEM;
2345 
2346 		xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2347 					    GFP_KERNEL);
2348 		if (!xfer->rx.buf)
2349 			return -ENOMEM;
2350 
2351 		xfer->tx.buf = xfer->rx.buf;
2352 		init_completion(&xfer->done);
2353 		spin_lock_init(&xfer->lock);
2354 
2355 		/* Add initialized xfer to the free list */
2356 		hlist_add_head(&xfer->node, &info->free_xfers);
2357 	}
2358 
2359 	spin_lock_init(&info->xfer_lock);
2360 
2361 	return 0;
2362 }
2363 
2364 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2365 {
2366 	const struct scmi_desc *desc = sinfo->desc;
2367 
2368 	if (!desc->ops->get_max_msg) {
2369 		sinfo->tx_minfo.max_msg = desc->max_msg;
2370 		sinfo->rx_minfo.max_msg = desc->max_msg;
2371 	} else {
2372 		struct scmi_chan_info *base_cinfo;
2373 
2374 		base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2375 		if (!base_cinfo)
2376 			return -EINVAL;
2377 		sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2378 
2379 		/* RX channel is optional so can be skipped */
2380 		base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2381 		if (base_cinfo)
2382 			sinfo->rx_minfo.max_msg =
2383 				desc->ops->get_max_msg(base_cinfo);
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2390 {
2391 	int ret;
2392 
2393 	ret = scmi_channels_max_msg_configure(sinfo);
2394 	if (ret)
2395 		return ret;
2396 
2397 	ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2398 	if (!ret && !idr_is_empty(&sinfo->rx_idr))
2399 		ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2400 
2401 	return ret;
2402 }
2403 
2404 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2405 			   int prot_id, bool tx)
2406 {
2407 	int ret, idx;
2408 	char name[32];
2409 	struct scmi_chan_info *cinfo;
2410 	struct idr *idr;
2411 	struct scmi_device *tdev = NULL;
2412 
2413 	/* Transmit channel is first entry i.e. index 0 */
2414 	idx = tx ? 0 : 1;
2415 	idr = tx ? &info->tx_idr : &info->rx_idr;
2416 
2417 	if (!info->desc->ops->chan_available(of_node, idx)) {
2418 		cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2419 		if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2420 			return -EINVAL;
2421 		goto idr_alloc;
2422 	}
2423 
2424 	cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2425 	if (!cinfo)
2426 		return -ENOMEM;
2427 
2428 	cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2429 
2430 	/* Create a unique name for this transport device */
2431 	snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2432 		 idx ? "rx" : "tx", prot_id);
2433 	/* Create a uniquely named, dedicated transport device for this chan */
2434 	tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2435 	if (!tdev) {
2436 		dev_err(info->dev,
2437 			"failed to create transport device (%s)\n", name);
2438 		devm_kfree(info->dev, cinfo);
2439 		return -EINVAL;
2440 	}
2441 	of_node_get(of_node);
2442 
2443 	cinfo->id = prot_id;
2444 	cinfo->dev = &tdev->dev;
2445 	ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2446 	if (ret) {
2447 		of_node_put(of_node);
2448 		scmi_device_destroy(info->dev, prot_id, name);
2449 		devm_kfree(info->dev, cinfo);
2450 		return ret;
2451 	}
2452 
2453 	if (tx && is_polling_required(cinfo, info->desc)) {
2454 		if (is_transport_polling_capable(info->desc))
2455 			dev_info(&tdev->dev,
2456 				 "Enabled polling mode TX channel - prot_id:%d\n",
2457 				 prot_id);
2458 		else
2459 			dev_warn(&tdev->dev,
2460 				 "Polling mode NOT supported by transport.\n");
2461 	}
2462 
2463 idr_alloc:
2464 	ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2465 	if (ret != prot_id) {
2466 		dev_err(info->dev,
2467 			"unable to allocate SCMI idr slot err %d\n", ret);
2468 		/* Destroy channel and device only if created by this call. */
2469 		if (tdev) {
2470 			of_node_put(of_node);
2471 			scmi_device_destroy(info->dev, prot_id, name);
2472 			devm_kfree(info->dev, cinfo);
2473 		}
2474 		return ret;
2475 	}
2476 
2477 	cinfo->handle = &info->handle;
2478 	return 0;
2479 }
2480 
2481 static inline int
2482 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2483 		int prot_id)
2484 {
2485 	int ret = scmi_chan_setup(info, of_node, prot_id, true);
2486 
2487 	if (!ret) {
2488 		/* Rx is optional, report only memory errors */
2489 		ret = scmi_chan_setup(info, of_node, prot_id, false);
2490 		if (ret && ret != -ENOMEM)
2491 			ret = 0;
2492 	}
2493 
2494 	return ret;
2495 }
2496 
2497 /**
2498  * scmi_channels_setup  - Helper to initialize all required channels
2499  *
2500  * @info: The SCMI instance descriptor.
2501  *
2502  * Initialize all the channels found described in the DT against the underlying
2503  * configured transport using custom defined dedicated devices instead of
2504  * borrowing devices from the SCMI drivers; this way channels are initialized
2505  * upfront during core SCMI stack probing and are no more coupled with SCMI
2506  * devices used by SCMI drivers.
2507  *
2508  * Note that, even though a pair of TX/RX channels is associated to each
2509  * protocol defined in the DT, a distinct freshly initialized channel is
2510  * created only if the DT node for the protocol at hand describes a dedicated
2511  * channel: in all the other cases the common BASE protocol channel is reused.
2512  *
2513  * Return: 0 on Success
2514  */
2515 static int scmi_channels_setup(struct scmi_info *info)
2516 {
2517 	int ret;
2518 	struct device_node *child, *top_np = info->dev->of_node;
2519 
2520 	/* Initialize a common generic channel at first */
2521 	ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2522 	if (ret)
2523 		return ret;
2524 
2525 	for_each_available_child_of_node(top_np, child) {
2526 		u32 prot_id;
2527 
2528 		if (of_property_read_u32(child, "reg", &prot_id))
2529 			continue;
2530 
2531 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2532 			dev_err(info->dev,
2533 				"Out of range protocol %d\n", prot_id);
2534 
2535 		ret = scmi_txrx_setup(info, child, prot_id);
2536 		if (ret) {
2537 			of_node_put(child);
2538 			return ret;
2539 		}
2540 	}
2541 
2542 	return 0;
2543 }
2544 
2545 static int scmi_chan_destroy(int id, void *p, void *idr)
2546 {
2547 	struct scmi_chan_info *cinfo = p;
2548 
2549 	if (cinfo->dev) {
2550 		struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2551 		struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2552 
2553 		of_node_put(cinfo->dev->of_node);
2554 		scmi_device_destroy(info->dev, id, sdev->name);
2555 		cinfo->dev = NULL;
2556 	}
2557 
2558 	idr_remove(idr, id);
2559 
2560 	return 0;
2561 }
2562 
2563 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2564 {
2565 	/* At first free all channels at the transport layer ... */
2566 	idr_for_each(idr, info->desc->ops->chan_free, idr);
2567 
2568 	/* ...then destroy all underlying devices */
2569 	idr_for_each(idr, scmi_chan_destroy, idr);
2570 
2571 	idr_destroy(idr);
2572 }
2573 
2574 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2575 {
2576 	scmi_cleanup_channels(info, &info->tx_idr);
2577 
2578 	scmi_cleanup_channels(info, &info->rx_idr);
2579 }
2580 
2581 static int scmi_bus_notifier(struct notifier_block *nb,
2582 			     unsigned long action, void *data)
2583 {
2584 	struct scmi_info *info = bus_nb_to_scmi_info(nb);
2585 	struct scmi_device *sdev = to_scmi_dev(data);
2586 
2587 	/* Skip transport devices and devices of different SCMI instances */
2588 	if (!strncmp(sdev->name, "__scmi_transport_device", 23) ||
2589 	    sdev->dev.parent != info->dev)
2590 		return NOTIFY_DONE;
2591 
2592 	switch (action) {
2593 	case BUS_NOTIFY_BIND_DRIVER:
2594 		/* setup handle now as the transport is ready */
2595 		scmi_set_handle(sdev);
2596 		break;
2597 	case BUS_NOTIFY_UNBOUND_DRIVER:
2598 		scmi_handle_put(sdev->handle);
2599 		sdev->handle = NULL;
2600 		break;
2601 	default:
2602 		return NOTIFY_DONE;
2603 	}
2604 
2605 	dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2606 		sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2607 		"about to be BOUND." : "UNBOUND.");
2608 
2609 	return NOTIFY_OK;
2610 }
2611 
2612 static int scmi_device_request_notifier(struct notifier_block *nb,
2613 					unsigned long action, void *data)
2614 {
2615 	struct device_node *np;
2616 	struct scmi_device_id *id_table = data;
2617 	struct scmi_info *info = req_nb_to_scmi_info(nb);
2618 
2619 	np = idr_find(&info->active_protocols, id_table->protocol_id);
2620 	if (!np)
2621 		return NOTIFY_DONE;
2622 
2623 	dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2624 		action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2625 		id_table->name, id_table->protocol_id);
2626 
2627 	switch (action) {
2628 	case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2629 		scmi_create_protocol_devices(np, info, id_table->protocol_id,
2630 					     id_table->name);
2631 		break;
2632 	case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2633 		scmi_destroy_protocol_devices(info, id_table->protocol_id,
2634 					      id_table->name);
2635 		break;
2636 	default:
2637 		return NOTIFY_DONE;
2638 	}
2639 
2640 	return NOTIFY_OK;
2641 }
2642 
2643 static void scmi_debugfs_common_cleanup(void *d)
2644 {
2645 	struct scmi_debug_info *dbg = d;
2646 
2647 	if (!dbg)
2648 		return;
2649 
2650 	debugfs_remove_recursive(dbg->top_dentry);
2651 	kfree(dbg->name);
2652 	kfree(dbg->type);
2653 }
2654 
2655 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2656 {
2657 	char top_dir[16];
2658 	struct dentry *trans, *top_dentry;
2659 	struct scmi_debug_info *dbg;
2660 	const char *c_ptr = NULL;
2661 
2662 	dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2663 	if (!dbg)
2664 		return NULL;
2665 
2666 	dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2667 	if (!dbg->name) {
2668 		devm_kfree(info->dev, dbg);
2669 		return NULL;
2670 	}
2671 
2672 	of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2673 	dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2674 	if (!dbg->type) {
2675 		kfree(dbg->name);
2676 		devm_kfree(info->dev, dbg);
2677 		return NULL;
2678 	}
2679 
2680 	snprintf(top_dir, 16, "%d", info->id);
2681 	top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2682 	trans = debugfs_create_dir("transport", top_dentry);
2683 
2684 	dbg->is_atomic = info->desc->atomic_enabled &&
2685 				is_transport_polling_capable(info->desc);
2686 
2687 	debugfs_create_str("instance_name", 0400, top_dentry,
2688 			   (char **)&dbg->name);
2689 
2690 	debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2691 			   &info->atomic_threshold);
2692 
2693 	debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
2694 
2695 	debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
2696 
2697 	debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
2698 			   (u32 *)&info->desc->max_rx_timeout_ms);
2699 
2700 	debugfs_create_u32("max_msg_size", 0400, trans,
2701 			   (u32 *)&info->desc->max_msg_size);
2702 
2703 	debugfs_create_u32("tx_max_msg", 0400, trans,
2704 			   (u32 *)&info->tx_minfo.max_msg);
2705 
2706 	debugfs_create_u32("rx_max_msg", 0400, trans,
2707 			   (u32 *)&info->rx_minfo.max_msg);
2708 
2709 	dbg->top_dentry = top_dentry;
2710 
2711 	if (devm_add_action_or_reset(info->dev,
2712 				     scmi_debugfs_common_cleanup, dbg)) {
2713 		scmi_debugfs_common_cleanup(dbg);
2714 		return NULL;
2715 	}
2716 
2717 	return dbg;
2718 }
2719 
2720 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
2721 {
2722 	int id, num_chans = 0, ret = 0;
2723 	struct scmi_chan_info *cinfo;
2724 	u8 channels[SCMI_MAX_CHANNELS] = {};
2725 	DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
2726 
2727 	if (!info->dbg)
2728 		return -EINVAL;
2729 
2730 	/* Enumerate all channels to collect their ids */
2731 	idr_for_each_entry(&info->tx_idr, cinfo, id) {
2732 		/*
2733 		 * Cannot happen, but be defensive.
2734 		 * Zero as num_chans is ok, warn and carry on.
2735 		 */
2736 		if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
2737 			dev_warn(info->dev,
2738 				 "SCMI RAW - Error enumerating channels\n");
2739 			break;
2740 		}
2741 
2742 		if (!test_bit(cinfo->id, protos)) {
2743 			channels[num_chans++] = cinfo->id;
2744 			set_bit(cinfo->id, protos);
2745 		}
2746 	}
2747 
2748 	info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
2749 				       info->id, channels, num_chans,
2750 				       info->desc, info->tx_minfo.max_msg);
2751 	if (IS_ERR(info->raw)) {
2752 		dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
2753 		ret = PTR_ERR(info->raw);
2754 		info->raw = NULL;
2755 	}
2756 
2757 	return ret;
2758 }
2759 
2760 static int scmi_probe(struct platform_device *pdev)
2761 {
2762 	int ret;
2763 	struct scmi_handle *handle;
2764 	const struct scmi_desc *desc;
2765 	struct scmi_info *info;
2766 	bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
2767 	struct device *dev = &pdev->dev;
2768 	struct device_node *child, *np = dev->of_node;
2769 
2770 	desc = of_device_get_match_data(dev);
2771 	if (!desc)
2772 		return -EINVAL;
2773 
2774 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2775 	if (!info)
2776 		return -ENOMEM;
2777 
2778 	info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
2779 	if (info->id < 0)
2780 		return info->id;
2781 
2782 	info->dev = dev;
2783 	info->desc = desc;
2784 	info->bus_nb.notifier_call = scmi_bus_notifier;
2785 	info->dev_req_nb.notifier_call = scmi_device_request_notifier;
2786 	INIT_LIST_HEAD(&info->node);
2787 	idr_init(&info->protocols);
2788 	mutex_init(&info->protocols_mtx);
2789 	idr_init(&info->active_protocols);
2790 	mutex_init(&info->devreq_mtx);
2791 
2792 	platform_set_drvdata(pdev, info);
2793 	idr_init(&info->tx_idr);
2794 	idr_init(&info->rx_idr);
2795 
2796 	handle = &info->handle;
2797 	handle->dev = info->dev;
2798 	handle->version = &info->version;
2799 	handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
2800 	handle->devm_protocol_get = scmi_devm_protocol_get;
2801 	handle->devm_protocol_put = scmi_devm_protocol_put;
2802 
2803 	/* System wide atomic threshold for atomic ops .. if any */
2804 	if (!of_property_read_u32(np, "atomic-threshold-us",
2805 				  &info->atomic_threshold))
2806 		dev_info(dev,
2807 			 "SCMI System wide atomic threshold set to %d us\n",
2808 			 info->atomic_threshold);
2809 	handle->is_transport_atomic = scmi_is_transport_atomic;
2810 
2811 	if (desc->ops->link_supplier) {
2812 		ret = desc->ops->link_supplier(dev);
2813 		if (ret)
2814 			goto clear_ida;
2815 	}
2816 
2817 	/* Setup all channels described in the DT at first */
2818 	ret = scmi_channels_setup(info);
2819 	if (ret)
2820 		goto clear_ida;
2821 
2822 	ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
2823 	if (ret)
2824 		goto clear_txrx_setup;
2825 
2826 	ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
2827 					       &info->dev_req_nb);
2828 	if (ret)
2829 		goto clear_bus_notifier;
2830 
2831 	ret = scmi_xfer_info_init(info);
2832 	if (ret)
2833 		goto clear_dev_req_notifier;
2834 
2835 	if (scmi_top_dentry) {
2836 		info->dbg = scmi_debugfs_common_setup(info);
2837 		if (!info->dbg)
2838 			dev_warn(dev, "Failed to setup SCMI debugfs.\n");
2839 
2840 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
2841 			ret = scmi_debugfs_raw_mode_setup(info);
2842 			if (!coex) {
2843 				if (ret)
2844 					goto clear_dev_req_notifier;
2845 
2846 				/* Bail out anyway when coex disabled. */
2847 				return 0;
2848 			}
2849 
2850 			/* Coex enabled, carry on in any case. */
2851 			dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
2852 		}
2853 	}
2854 
2855 	if (scmi_notification_init(handle))
2856 		dev_err(dev, "SCMI Notifications NOT available.\n");
2857 
2858 	if (info->desc->atomic_enabled &&
2859 	    !is_transport_polling_capable(info->desc))
2860 		dev_err(dev,
2861 			"Transport is not polling capable. Atomic mode not supported.\n");
2862 
2863 	/*
2864 	 * Trigger SCMI Base protocol initialization.
2865 	 * It's mandatory and won't be ever released/deinit until the
2866 	 * SCMI stack is shutdown/unloaded as a whole.
2867 	 */
2868 	ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
2869 	if (ret) {
2870 		dev_err(dev, "unable to communicate with SCMI\n");
2871 		if (coex)
2872 			return 0;
2873 		goto notification_exit;
2874 	}
2875 
2876 	mutex_lock(&scmi_list_mutex);
2877 	list_add_tail(&info->node, &scmi_list);
2878 	mutex_unlock(&scmi_list_mutex);
2879 
2880 	for_each_available_child_of_node(np, child) {
2881 		u32 prot_id;
2882 
2883 		if (of_property_read_u32(child, "reg", &prot_id))
2884 			continue;
2885 
2886 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2887 			dev_err(dev, "Out of range protocol %d\n", prot_id);
2888 
2889 		if (!scmi_is_protocol_implemented(handle, prot_id)) {
2890 			dev_err(dev, "SCMI protocol %d not implemented\n",
2891 				prot_id);
2892 			continue;
2893 		}
2894 
2895 		/*
2896 		 * Save this valid DT protocol descriptor amongst
2897 		 * @active_protocols for this SCMI instance/
2898 		 */
2899 		ret = idr_alloc(&info->active_protocols, child,
2900 				prot_id, prot_id + 1, GFP_KERNEL);
2901 		if (ret != prot_id) {
2902 			dev_err(dev, "SCMI protocol %d already activated. Skip\n",
2903 				prot_id);
2904 			continue;
2905 		}
2906 
2907 		of_node_get(child);
2908 		scmi_create_protocol_devices(child, info, prot_id, NULL);
2909 	}
2910 
2911 	return 0;
2912 
2913 notification_exit:
2914 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2915 		scmi_raw_mode_cleanup(info->raw);
2916 	scmi_notification_exit(&info->handle);
2917 clear_dev_req_notifier:
2918 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2919 					   &info->dev_req_nb);
2920 clear_bus_notifier:
2921 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2922 clear_txrx_setup:
2923 	scmi_cleanup_txrx_channels(info);
2924 clear_ida:
2925 	ida_free(&scmi_id, info->id);
2926 	return ret;
2927 }
2928 
2929 static void scmi_remove(struct platform_device *pdev)
2930 {
2931 	int id;
2932 	struct scmi_info *info = platform_get_drvdata(pdev);
2933 	struct device_node *child;
2934 
2935 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2936 		scmi_raw_mode_cleanup(info->raw);
2937 
2938 	mutex_lock(&scmi_list_mutex);
2939 	if (info->users)
2940 		dev_warn(&pdev->dev,
2941 			 "Still active SCMI users will be forcibly unbound.\n");
2942 	list_del(&info->node);
2943 	mutex_unlock(&scmi_list_mutex);
2944 
2945 	scmi_notification_exit(&info->handle);
2946 
2947 	mutex_lock(&info->protocols_mtx);
2948 	idr_destroy(&info->protocols);
2949 	mutex_unlock(&info->protocols_mtx);
2950 
2951 	idr_for_each_entry(&info->active_protocols, child, id)
2952 		of_node_put(child);
2953 	idr_destroy(&info->active_protocols);
2954 
2955 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2956 					   &info->dev_req_nb);
2957 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2958 
2959 	/* Safe to free channels since no more users */
2960 	scmi_cleanup_txrx_channels(info);
2961 
2962 	ida_free(&scmi_id, info->id);
2963 }
2964 
2965 static ssize_t protocol_version_show(struct device *dev,
2966 				     struct device_attribute *attr, char *buf)
2967 {
2968 	struct scmi_info *info = dev_get_drvdata(dev);
2969 
2970 	return sprintf(buf, "%u.%u\n", info->version.major_ver,
2971 		       info->version.minor_ver);
2972 }
2973 static DEVICE_ATTR_RO(protocol_version);
2974 
2975 static ssize_t firmware_version_show(struct device *dev,
2976 				     struct device_attribute *attr, char *buf)
2977 {
2978 	struct scmi_info *info = dev_get_drvdata(dev);
2979 
2980 	return sprintf(buf, "0x%x\n", info->version.impl_ver);
2981 }
2982 static DEVICE_ATTR_RO(firmware_version);
2983 
2984 static ssize_t vendor_id_show(struct device *dev,
2985 			      struct device_attribute *attr, char *buf)
2986 {
2987 	struct scmi_info *info = dev_get_drvdata(dev);
2988 
2989 	return sprintf(buf, "%s\n", info->version.vendor_id);
2990 }
2991 static DEVICE_ATTR_RO(vendor_id);
2992 
2993 static ssize_t sub_vendor_id_show(struct device *dev,
2994 				  struct device_attribute *attr, char *buf)
2995 {
2996 	struct scmi_info *info = dev_get_drvdata(dev);
2997 
2998 	return sprintf(buf, "%s\n", info->version.sub_vendor_id);
2999 }
3000 static DEVICE_ATTR_RO(sub_vendor_id);
3001 
3002 static struct attribute *versions_attrs[] = {
3003 	&dev_attr_firmware_version.attr,
3004 	&dev_attr_protocol_version.attr,
3005 	&dev_attr_vendor_id.attr,
3006 	&dev_attr_sub_vendor_id.attr,
3007 	NULL,
3008 };
3009 ATTRIBUTE_GROUPS(versions);
3010 
3011 /* Each compatible listed below must have descriptor associated with it */
3012 static const struct of_device_id scmi_of_match[] = {
3013 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
3014 	{ .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
3015 #endif
3016 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE
3017 	{ .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc },
3018 #endif
3019 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
3020 	{ .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
3021 	{ .compatible = "arm,scmi-smc-param", .data = &scmi_smc_desc},
3022 	{ .compatible = "qcom,scmi-smc", .data = &scmi_smc_desc},
3023 #endif
3024 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
3025 	{ .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
3026 #endif
3027 	{ /* Sentinel */ },
3028 };
3029 
3030 MODULE_DEVICE_TABLE(of, scmi_of_match);
3031 
3032 static struct platform_driver scmi_driver = {
3033 	.driver = {
3034 		   .name = "arm-scmi",
3035 		   .suppress_bind_attrs = true,
3036 		   .of_match_table = scmi_of_match,
3037 		   .dev_groups = versions_groups,
3038 		   },
3039 	.probe = scmi_probe,
3040 	.remove_new = scmi_remove,
3041 };
3042 
3043 /**
3044  * __scmi_transports_setup  - Common helper to call transport-specific
3045  * .init/.exit code if provided.
3046  *
3047  * @init: A flag to distinguish between init and exit.
3048  *
3049  * Note that, if provided, we invoke .init/.exit functions for all the
3050  * transports currently compiled in.
3051  *
3052  * Return: 0 on Success.
3053  */
3054 static inline int __scmi_transports_setup(bool init)
3055 {
3056 	int ret = 0;
3057 	const struct of_device_id *trans;
3058 
3059 	for (trans = scmi_of_match; trans->data; trans++) {
3060 		const struct scmi_desc *tdesc = trans->data;
3061 
3062 		if ((init && !tdesc->transport_init) ||
3063 		    (!init && !tdesc->transport_exit))
3064 			continue;
3065 
3066 		if (init)
3067 			ret = tdesc->transport_init();
3068 		else
3069 			tdesc->transport_exit();
3070 
3071 		if (ret) {
3072 			pr_err("SCMI transport %s FAILED initialization!\n",
3073 			       trans->compatible);
3074 			break;
3075 		}
3076 	}
3077 
3078 	return ret;
3079 }
3080 
3081 static int __init scmi_transports_init(void)
3082 {
3083 	return __scmi_transports_setup(true);
3084 }
3085 
3086 static void __exit scmi_transports_exit(void)
3087 {
3088 	__scmi_transports_setup(false);
3089 }
3090 
3091 static struct dentry *scmi_debugfs_init(void)
3092 {
3093 	struct dentry *d;
3094 
3095 	d = debugfs_create_dir("scmi", NULL);
3096 	if (IS_ERR(d)) {
3097 		pr_err("Could NOT create SCMI top dentry.\n");
3098 		return NULL;
3099 	}
3100 
3101 	return d;
3102 }
3103 
3104 static int __init scmi_driver_init(void)
3105 {
3106 	int ret;
3107 
3108 	/* Bail out if no SCMI transport was configured */
3109 	if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3110 		return -EINVAL;
3111 
3112 	/* Initialize any compiled-in transport which provided an init/exit */
3113 	ret = scmi_transports_init();
3114 	if (ret)
3115 		return ret;
3116 
3117 	if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3118 		scmi_top_dentry = scmi_debugfs_init();
3119 
3120 	scmi_base_register();
3121 
3122 	scmi_clock_register();
3123 	scmi_perf_register();
3124 	scmi_power_register();
3125 	scmi_reset_register();
3126 	scmi_sensors_register();
3127 	scmi_voltage_register();
3128 	scmi_system_register();
3129 	scmi_powercap_register();
3130 
3131 	return platform_driver_register(&scmi_driver);
3132 }
3133 module_init(scmi_driver_init);
3134 
3135 static void __exit scmi_driver_exit(void)
3136 {
3137 	scmi_base_unregister();
3138 
3139 	scmi_clock_unregister();
3140 	scmi_perf_unregister();
3141 	scmi_power_unregister();
3142 	scmi_reset_unregister();
3143 	scmi_sensors_unregister();
3144 	scmi_voltage_unregister();
3145 	scmi_system_unregister();
3146 	scmi_powercap_unregister();
3147 
3148 	scmi_transports_exit();
3149 
3150 	platform_driver_unregister(&scmi_driver);
3151 
3152 	debugfs_remove_recursive(scmi_top_dentry);
3153 }
3154 module_exit(scmi_driver_exit);
3155 
3156 MODULE_ALIAS("platform:arm-scmi");
3157 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3158 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3159 MODULE_LICENSE("GPL v2");
3160