xref: /linux/drivers/firmware/arm_scmi/driver.c (revision e18655cf35a5958fbf4ae9ca3ebf28871a3a1801)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Message Protocol driver
4  *
5  * SCMI Message Protocol is used between the System Control Processor(SCP)
6  * and the Application Processors(AP). The Message Handling Unit(MHU)
7  * provides a mechanism for inter-processor communication between SCP's
8  * Cortex M3 and AP.
9  *
10  * SCP offers control and management of the core/cluster power states,
11  * various power domain DVFS including the core/cluster, certain system
12  * clocks configuration, thermal sensors and many others.
13  *
14  * Copyright (C) 2018-2024 ARM Ltd.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/hashtable.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of.h>
32 #include <linux/platform_device.h>
33 #include <linux/processor.h>
34 #include <linux/refcount.h>
35 #include <linux/slab.h>
36 #include <linux/xarray.h>
37 
38 #include "common.h"
39 #include "notify.h"
40 
41 #include "raw_mode.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/scmi.h>
45 
46 static DEFINE_IDA(scmi_id);
47 
48 static DEFINE_XARRAY(scmi_protocols);
49 
50 /* List of all SCMI devices active in system */
51 static LIST_HEAD(scmi_list);
52 /* Protection for the entire list */
53 static DEFINE_MUTEX(scmi_list_mutex);
54 /* Track the unique id for the transfers for debug & profiling purpose */
55 static atomic_t transfer_last_id;
56 
57 static struct dentry *scmi_top_dentry;
58 
59 /**
60  * struct scmi_xfers_info - Structure to manage transfer information
61  *
62  * @xfer_alloc_table: Bitmap table for allocated messages.
63  *	Index of this bitmap table is also used for message
64  *	sequence identifier.
65  * @xfer_lock: Protection for message allocation
66  * @max_msg: Maximum number of messages that can be pending
67  * @free_xfers: A free list for available to use xfers. It is initialized with
68  *		a number of xfers equal to the maximum allowed in-flight
69  *		messages.
70  * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
71  *		   currently in-flight messages.
72  */
73 struct scmi_xfers_info {
74 	unsigned long *xfer_alloc_table;
75 	spinlock_t xfer_lock;
76 	int max_msg;
77 	struct hlist_head free_xfers;
78 	DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
79 };
80 
81 /**
82  * struct scmi_protocol_instance  - Describe an initialized protocol instance.
83  * @handle: Reference to the SCMI handle associated to this protocol instance.
84  * @proto: A reference to the protocol descriptor.
85  * @gid: A reference for per-protocol devres management.
86  * @users: A refcount to track effective users of this protocol.
87  * @priv: Reference for optional protocol private data.
88  * @version: Protocol version supported by the platform as detected at runtime.
89  * @negotiated_version: When the platform supports a newer protocol version,
90  *			the agent will try to negotiate with the platform the
91  *			usage of the newest version known to it, since
92  *			backward compatibility is NOT automatically assured.
93  *			This field is NON-zero when a successful negotiation
94  *			has completed.
95  * @ph: An embedded protocol handle that will be passed down to protocol
96  *	initialization code to identify this instance.
97  *
98  * Each protocol is initialized independently once for each SCMI platform in
99  * which is defined by DT and implemented by the SCMI server fw.
100  */
101 struct scmi_protocol_instance {
102 	const struct scmi_handle	*handle;
103 	const struct scmi_protocol	*proto;
104 	void				*gid;
105 	refcount_t			users;
106 	void				*priv;
107 	unsigned int			version;
108 	unsigned int			negotiated_version;
109 	struct scmi_protocol_handle	ph;
110 };
111 
112 #define ph_to_pi(h)	container_of(h, struct scmi_protocol_instance, ph)
113 
114 /**
115  * struct scmi_debug_info  - Debug common info
116  * @top_dentry: A reference to the top debugfs dentry
117  * @name: Name of this SCMI instance
118  * @type: Type of this SCMI instance
119  * @is_atomic: Flag to state if the transport of this instance is atomic
120  * @counters: An array of atomic_c's used for tracking statistics (if enabled)
121  */
122 struct scmi_debug_info {
123 	struct dentry *top_dentry;
124 	const char *name;
125 	const char *type;
126 	bool is_atomic;
127 	atomic_t counters[SCMI_DEBUG_COUNTERS_LAST];
128 };
129 
130 /**
131  * struct scmi_info - Structure representing a SCMI instance
132  *
133  * @id: A sequence number starting from zero identifying this instance
134  * @dev: Device pointer
135  * @desc: SoC description for this instance
136  * @version: SCMI revision information containing protocol version,
137  *	implementation version and (sub-)vendor identification.
138  * @handle: Instance of SCMI handle to send to clients
139  * @tx_minfo: Universal Transmit Message management info
140  * @rx_minfo: Universal Receive Message management info
141  * @tx_idr: IDR object to map protocol id to Tx channel info pointer
142  * @rx_idr: IDR object to map protocol id to Rx channel info pointer
143  * @protocols: IDR for protocols' instance descriptors initialized for
144  *	       this SCMI instance: populated on protocol's first attempted
145  *	       usage.
146  * @protocols_mtx: A mutex to protect protocols instances initialization.
147  * @protocols_imp: List of protocols implemented, currently maximum of
148  *		   scmi_revision_info.num_protocols elements allocated by the
149  *		   base protocol
150  * @active_protocols: IDR storing device_nodes for protocols actually defined
151  *		      in the DT and confirmed as implemented by fw.
152  * @notify_priv: Pointer to private data structure specific to notifications.
153  * @node: List head
154  * @users: Number of users of this instance
155  * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
156  * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
157  *		bus
158  * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
159  * @dbg: A pointer to debugfs related data (if any)
160  * @raw: An opaque reference handle used by SCMI Raw mode.
161  */
162 struct scmi_info {
163 	int id;
164 	struct device *dev;
165 	const struct scmi_desc *desc;
166 	struct scmi_revision_info version;
167 	struct scmi_handle handle;
168 	struct scmi_xfers_info tx_minfo;
169 	struct scmi_xfers_info rx_minfo;
170 	struct idr tx_idr;
171 	struct idr rx_idr;
172 	struct idr protocols;
173 	/* Ensure mutual exclusive access to protocols instance array */
174 	struct mutex protocols_mtx;
175 	u8 *protocols_imp;
176 	struct idr active_protocols;
177 	void *notify_priv;
178 	struct list_head node;
179 	int users;
180 	struct notifier_block bus_nb;
181 	struct notifier_block dev_req_nb;
182 	/* Serialize device creation process for this instance */
183 	struct mutex devreq_mtx;
184 	struct scmi_debug_info *dbg;
185 	void *raw;
186 };
187 
188 #define handle_to_scmi_info(h)	container_of(h, struct scmi_info, handle)
189 #define bus_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, bus_nb)
190 #define req_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, dev_req_nb)
191 
192 static void scmi_rx_callback(struct scmi_chan_info *cinfo,
193 			     u32 msg_hdr, void *priv);
194 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo,
195 				   u32 msg_hdr, enum scmi_bad_msg err);
196 
197 static struct scmi_transport_core_operations scmi_trans_core_ops = {
198 	.bad_message_trace = scmi_bad_message_trace,
199 	.rx_callback = scmi_rx_callback,
200 };
201 
202 static unsigned long
203 scmi_vendor_protocol_signature(unsigned int protocol_id, char *vendor_id,
204 			       char *sub_vendor_id, u32 impl_ver)
205 {
206 	char *signature, *p;
207 	unsigned long hash = 0;
208 
209 	/* vendor_id/sub_vendor_id guaranteed <= SCMI_SHORT_NAME_MAX_SIZE */
210 	signature = kasprintf(GFP_KERNEL, "%02X|%s|%s|0x%08X", protocol_id,
211 			      vendor_id ?: "", sub_vendor_id ?: "", impl_ver);
212 	if (!signature)
213 		return 0;
214 
215 	p = signature;
216 	while (*p)
217 		hash = partial_name_hash(tolower(*p++), hash);
218 	hash = end_name_hash(hash);
219 
220 	kfree(signature);
221 
222 	return hash;
223 }
224 
225 static unsigned long
226 scmi_protocol_key_calculate(int protocol_id, char *vendor_id,
227 			    char *sub_vendor_id, u32 impl_ver)
228 {
229 	if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE)
230 		return protocol_id;
231 	else
232 		return scmi_vendor_protocol_signature(protocol_id, vendor_id,
233 						      sub_vendor_id, impl_ver);
234 }
235 
236 static const struct scmi_protocol *
237 __scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id,
238 			      char *sub_vendor_id, u32 impl_ver)
239 {
240 	unsigned long key;
241 	struct scmi_protocol *proto = NULL;
242 
243 	key = scmi_protocol_key_calculate(protocol_id, vendor_id,
244 					  sub_vendor_id, impl_ver);
245 	if (key)
246 		proto = xa_load(&scmi_protocols, key);
247 
248 	return proto;
249 }
250 
251 static const struct scmi_protocol *
252 scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id,
253 			    char *sub_vendor_id, u32 impl_ver)
254 {
255 	const struct scmi_protocol *proto = NULL;
256 
257 	/* Searching for closest match ...*/
258 	proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
259 					      sub_vendor_id, impl_ver);
260 	if (proto)
261 		return proto;
262 
263 	/* Any match just on vendor/sub_vendor ? */
264 	if (impl_ver) {
265 		proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
266 						      sub_vendor_id, 0);
267 		if (proto)
268 			return proto;
269 	}
270 
271 	/* Any match just on the vendor ? */
272 	if (sub_vendor_id)
273 		proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
274 						      NULL, 0);
275 	return proto;
276 }
277 
278 static const struct scmi_protocol *
279 scmi_protocol_get(int protocol_id, struct scmi_revision_info *version)
280 {
281 	const struct scmi_protocol *proto = NULL;
282 
283 	if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE)
284 		proto = xa_load(&scmi_protocols, protocol_id);
285 	else
286 		proto = scmi_vendor_protocol_lookup(protocol_id,
287 						    version->vendor_id,
288 						    version->sub_vendor_id,
289 						    version->impl_ver);
290 	if (!proto || !try_module_get(proto->owner)) {
291 		pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
292 		return NULL;
293 	}
294 
295 	pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
296 
297 	if (protocol_id >= SCMI_PROTOCOL_VENDOR_BASE)
298 		pr_info("Loaded SCMI Vendor Protocol 0x%x - %s %s %X\n",
299 			protocol_id, proto->vendor_id ?: "",
300 			proto->sub_vendor_id ?: "", proto->impl_ver);
301 
302 	return proto;
303 }
304 
305 static void scmi_protocol_put(const struct scmi_protocol *proto)
306 {
307 	if (proto)
308 		module_put(proto->owner);
309 }
310 
311 static int scmi_vendor_protocol_check(const struct scmi_protocol *proto)
312 {
313 	if (!proto->vendor_id) {
314 		pr_err("missing vendor_id for protocol 0x%x\n", proto->id);
315 		return -EINVAL;
316 	}
317 
318 	if (strlen(proto->vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) {
319 		pr_err("malformed vendor_id for protocol 0x%x\n", proto->id);
320 		return -EINVAL;
321 	}
322 
323 	if (proto->sub_vendor_id &&
324 	    strlen(proto->sub_vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) {
325 		pr_err("malformed sub_vendor_id for protocol 0x%x\n",
326 		       proto->id);
327 		return -EINVAL;
328 	}
329 
330 	return 0;
331 }
332 
333 int scmi_protocol_register(const struct scmi_protocol *proto)
334 {
335 	int ret;
336 	unsigned long key;
337 
338 	if (!proto) {
339 		pr_err("invalid protocol\n");
340 		return -EINVAL;
341 	}
342 
343 	if (!proto->instance_init) {
344 		pr_err("missing init for protocol 0x%x\n", proto->id);
345 		return -EINVAL;
346 	}
347 
348 	if (proto->id >= SCMI_PROTOCOL_VENDOR_BASE &&
349 	    scmi_vendor_protocol_check(proto))
350 		return -EINVAL;
351 
352 	/*
353 	 * Calculate a protocol key to register this protocol with the core;
354 	 * key value 0 is considered invalid.
355 	 */
356 	key = scmi_protocol_key_calculate(proto->id, proto->vendor_id,
357 					  proto->sub_vendor_id,
358 					  proto->impl_ver);
359 	if (!key)
360 		return -EINVAL;
361 
362 	ret = xa_insert(&scmi_protocols, key, (void *)proto, GFP_KERNEL);
363 	if (ret) {
364 		pr_err("unable to allocate SCMI protocol slot for 0x%x - err %d\n",
365 		       proto->id, ret);
366 		return ret;
367 	}
368 
369 	pr_debug("Registered SCMI Protocol 0x%x\n", proto->id);
370 
371 	return 0;
372 }
373 EXPORT_SYMBOL_GPL(scmi_protocol_register);
374 
375 void scmi_protocol_unregister(const struct scmi_protocol *proto)
376 {
377 	unsigned long key;
378 
379 	key = scmi_protocol_key_calculate(proto->id, proto->vendor_id,
380 					  proto->sub_vendor_id,
381 					  proto->impl_ver);
382 	if (!key)
383 		return;
384 
385 	xa_erase(&scmi_protocols, key);
386 
387 	pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
388 }
389 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
390 
391 /**
392  * scmi_create_protocol_devices  - Create devices for all pending requests for
393  * this SCMI instance.
394  *
395  * @np: The device node describing the protocol
396  * @info: The SCMI instance descriptor
397  * @prot_id: The protocol ID
398  * @name: The optional name of the device to be created: if not provided this
399  *	  call will lead to the creation of all the devices currently requested
400  *	  for the specified protocol.
401  */
402 static void scmi_create_protocol_devices(struct device_node *np,
403 					 struct scmi_info *info,
404 					 int prot_id, const char *name)
405 {
406 	struct scmi_device *sdev;
407 
408 	mutex_lock(&info->devreq_mtx);
409 	sdev = scmi_device_create(np, info->dev, prot_id, name);
410 	if (name && !sdev)
411 		dev_err(info->dev,
412 			"failed to create device for protocol 0x%X (%s)\n",
413 			prot_id, name);
414 	mutex_unlock(&info->devreq_mtx);
415 }
416 
417 static void scmi_destroy_protocol_devices(struct scmi_info *info,
418 					  int prot_id, const char *name)
419 {
420 	mutex_lock(&info->devreq_mtx);
421 	scmi_device_destroy(info->dev, prot_id, name);
422 	mutex_unlock(&info->devreq_mtx);
423 }
424 
425 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
426 					 void *priv)
427 {
428 	struct scmi_info *info = handle_to_scmi_info(handle);
429 
430 	info->notify_priv = priv;
431 	/* Ensure updated protocol private date are visible */
432 	smp_wmb();
433 }
434 
435 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
436 {
437 	struct scmi_info *info = handle_to_scmi_info(handle);
438 
439 	/* Ensure protocols_private_data has been updated */
440 	smp_rmb();
441 	return info->notify_priv;
442 }
443 
444 /**
445  * scmi_xfer_token_set  - Reserve and set new token for the xfer at hand
446  *
447  * @minfo: Pointer to Tx/Rx Message management info based on channel type
448  * @xfer: The xfer to act upon
449  *
450  * Pick the next unused monotonically increasing token and set it into
451  * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
452  * reuse of freshly completed or timed-out xfers, thus mitigating the risk
453  * of incorrect association of a late and expired xfer with a live in-flight
454  * transaction, both happening to re-use the same token identifier.
455  *
456  * Since platform is NOT required to answer our request in-order we should
457  * account for a few rare but possible scenarios:
458  *
459  *  - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
460  *    using find_next_zero_bit() starting from candidate next_token bit
461  *
462  *  - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
463  *    are plenty of free tokens at start, so try a second pass using
464  *    find_next_zero_bit() and starting from 0.
465  *
466  *  X = used in-flight
467  *
468  * Normal
469  * ------
470  *
471  *		|- xfer_id picked
472  *   -----------+----------------------------------------------------------
473  *   | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
474  *   ----------------------------------------------------------------------
475  *		^
476  *		|- next_token
477  *
478  * Out-of-order pending at start
479  * -----------------------------
480  *
481  *	  |- xfer_id picked, last_token fixed
482  *   -----+----------------------------------------------------------------
483  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
484  *   ----------------------------------------------------------------------
485  *    ^
486  *    |- next_token
487  *
488  *
489  * Out-of-order pending at end
490  * ---------------------------
491  *
492  *	  |- xfer_id picked, last_token fixed
493  *   -----+----------------------------------------------------------------
494  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
495  *   ----------------------------------------------------------------------
496  *								^
497  *								|- next_token
498  *
499  * Context: Assumes to be called with @xfer_lock already acquired.
500  *
501  * Return: 0 on Success or error
502  */
503 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
504 			       struct scmi_xfer *xfer)
505 {
506 	unsigned long xfer_id, next_token;
507 
508 	/*
509 	 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
510 	 * using the pre-allocated transfer_id as a base.
511 	 * Note that the global transfer_id is shared across all message types
512 	 * so there could be holes in the allocated set of monotonic sequence
513 	 * numbers, but that is going to limit the effectiveness of the
514 	 * mitigation only in very rare limit conditions.
515 	 */
516 	next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
517 
518 	/* Pick the next available xfer_id >= next_token */
519 	xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
520 				     MSG_TOKEN_MAX, next_token);
521 	if (xfer_id == MSG_TOKEN_MAX) {
522 		/*
523 		 * After heavily out-of-order responses, there are no free
524 		 * tokens ahead, but only at start of xfer_alloc_table so
525 		 * try again from the beginning.
526 		 */
527 		xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
528 					     MSG_TOKEN_MAX, 0);
529 		/*
530 		 * Something is wrong if we got here since there can be a
531 		 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
532 		 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
533 		 */
534 		if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
535 			return -ENOMEM;
536 	}
537 
538 	/* Update +/- last_token accordingly if we skipped some hole */
539 	if (xfer_id != next_token)
540 		atomic_add((int)(xfer_id - next_token), &transfer_last_id);
541 
542 	xfer->hdr.seq = (u16)xfer_id;
543 
544 	return 0;
545 }
546 
547 /**
548  * scmi_xfer_token_clear  - Release the token
549  *
550  * @minfo: Pointer to Tx/Rx Message management info based on channel type
551  * @xfer: The xfer to act upon
552  */
553 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
554 					 struct scmi_xfer *xfer)
555 {
556 	clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
557 }
558 
559 /**
560  * scmi_xfer_inflight_register_unlocked  - Register the xfer as in-flight
561  *
562  * @xfer: The xfer to register
563  * @minfo: Pointer to Tx/Rx Message management info based on channel type
564  *
565  * Note that this helper assumes that the xfer to be registered as in-flight
566  * had been built using an xfer sequence number which still corresponds to a
567  * free slot in the xfer_alloc_table.
568  *
569  * Context: Assumes to be called with @xfer_lock already acquired.
570  */
571 static inline void
572 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
573 				     struct scmi_xfers_info *minfo)
574 {
575 	/* Set in-flight */
576 	set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
577 	hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
578 	xfer->pending = true;
579 }
580 
581 /**
582  * scmi_xfer_inflight_register  - Try to register an xfer as in-flight
583  *
584  * @xfer: The xfer to register
585  * @minfo: Pointer to Tx/Rx Message management info based on channel type
586  *
587  * Note that this helper does NOT assume anything about the sequence number
588  * that was baked into the provided xfer, so it checks at first if it can
589  * be mapped to a free slot and fails with an error if another xfer with the
590  * same sequence number is currently still registered as in-flight.
591  *
592  * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
593  *	   could not rbe mapped to a free slot in the xfer_alloc_table.
594  */
595 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
596 				       struct scmi_xfers_info *minfo)
597 {
598 	int ret = 0;
599 	unsigned long flags;
600 
601 	spin_lock_irqsave(&minfo->xfer_lock, flags);
602 	if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
603 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
604 	else
605 		ret = -EBUSY;
606 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
607 
608 	return ret;
609 }
610 
611 /**
612  * scmi_xfer_raw_inflight_register  - An helper to register the given xfer as in
613  * flight on the TX channel, if possible.
614  *
615  * @handle: Pointer to SCMI entity handle
616  * @xfer: The xfer to register
617  *
618  * Return: 0 on Success, error otherwise
619  */
620 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
621 				    struct scmi_xfer *xfer)
622 {
623 	struct scmi_info *info = handle_to_scmi_info(handle);
624 
625 	return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
626 }
627 
628 /**
629  * scmi_xfer_pending_set  - Pick a proper sequence number and mark the xfer
630  * as pending in-flight
631  *
632  * @xfer: The xfer to act upon
633  * @minfo: Pointer to Tx/Rx Message management info based on channel type
634  *
635  * Return: 0 on Success or error otherwise
636  */
637 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
638 					struct scmi_xfers_info *minfo)
639 {
640 	int ret;
641 	unsigned long flags;
642 
643 	spin_lock_irqsave(&minfo->xfer_lock, flags);
644 	/* Set a new monotonic token as the xfer sequence number */
645 	ret = scmi_xfer_token_set(minfo, xfer);
646 	if (!ret)
647 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
648 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
649 
650 	return ret;
651 }
652 
653 /**
654  * scmi_xfer_get() - Allocate one message
655  *
656  * @handle: Pointer to SCMI entity handle
657  * @minfo: Pointer to Tx/Rx Message management info based on channel type
658  *
659  * Helper function which is used by various message functions that are
660  * exposed to clients of this driver for allocating a message traffic event.
661  *
662  * Picks an xfer from the free list @free_xfers (if any available) and perform
663  * a basic initialization.
664  *
665  * Note that, at this point, still no sequence number is assigned to the
666  * allocated xfer, nor it is registered as a pending transaction.
667  *
668  * The successfully initialized xfer is refcounted.
669  *
670  * Context: Holds @xfer_lock while manipulating @free_xfers.
671  *
672  * Return: An initialized xfer if all went fine, else pointer error.
673  */
674 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
675 				       struct scmi_xfers_info *minfo)
676 {
677 	unsigned long flags;
678 	struct scmi_xfer *xfer;
679 
680 	spin_lock_irqsave(&minfo->xfer_lock, flags);
681 	if (hlist_empty(&minfo->free_xfers)) {
682 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
683 		return ERR_PTR(-ENOMEM);
684 	}
685 
686 	/* grab an xfer from the free_list */
687 	xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
688 	hlist_del_init(&xfer->node);
689 
690 	/*
691 	 * Allocate transfer_id early so that can be used also as base for
692 	 * monotonic sequence number generation if needed.
693 	 */
694 	xfer->transfer_id = atomic_inc_return(&transfer_last_id);
695 
696 	refcount_set(&xfer->users, 1);
697 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
698 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
699 
700 	return xfer;
701 }
702 
703 /**
704  * scmi_xfer_raw_get  - Helper to get a bare free xfer from the TX channel
705  *
706  * @handle: Pointer to SCMI entity handle
707  *
708  * Note that xfer is taken from the TX channel structures.
709  *
710  * Return: A valid xfer on Success, or an error-pointer otherwise
711  */
712 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
713 {
714 	struct scmi_xfer *xfer;
715 	struct scmi_info *info = handle_to_scmi_info(handle);
716 
717 	xfer = scmi_xfer_get(handle, &info->tx_minfo);
718 	if (!IS_ERR(xfer))
719 		xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
720 
721 	return xfer;
722 }
723 
724 /**
725  * scmi_xfer_raw_channel_get  - Helper to get a reference to the proper channel
726  * to use for a specific protocol_id Raw transaction.
727  *
728  * @handle: Pointer to SCMI entity handle
729  * @protocol_id: Identifier of the protocol
730  *
731  * Note that in a regular SCMI stack, usually, a protocol has to be defined in
732  * the DT to have an associated channel and be usable; but in Raw mode any
733  * protocol in range is allowed, re-using the Base channel, so as to enable
734  * fuzzing on any protocol without the need of a fully compiled DT.
735  *
736  * Return: A reference to the channel to use, or an ERR_PTR
737  */
738 struct scmi_chan_info *
739 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
740 {
741 	struct scmi_chan_info *cinfo;
742 	struct scmi_info *info = handle_to_scmi_info(handle);
743 
744 	cinfo = idr_find(&info->tx_idr, protocol_id);
745 	if (!cinfo) {
746 		if (protocol_id == SCMI_PROTOCOL_BASE)
747 			return ERR_PTR(-EINVAL);
748 		/* Use Base channel for protocols not defined for DT */
749 		cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
750 		if (!cinfo)
751 			return ERR_PTR(-EINVAL);
752 		dev_warn_once(handle->dev,
753 			      "Using Base channel for protocol 0x%X\n",
754 			      protocol_id);
755 	}
756 
757 	return cinfo;
758 }
759 
760 /**
761  * __scmi_xfer_put() - Release a message
762  *
763  * @minfo: Pointer to Tx/Rx Message management info based on channel type
764  * @xfer: message that was reserved by scmi_xfer_get
765  *
766  * After refcount check, possibly release an xfer, clearing the token slot,
767  * removing xfer from @pending_xfers and putting it back into free_xfers.
768  *
769  * This holds a spinlock to maintain integrity of internal data structures.
770  */
771 static void
772 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
773 {
774 	unsigned long flags;
775 
776 	spin_lock_irqsave(&minfo->xfer_lock, flags);
777 	if (refcount_dec_and_test(&xfer->users)) {
778 		if (xfer->pending) {
779 			scmi_xfer_token_clear(minfo, xfer);
780 			hash_del(&xfer->node);
781 			xfer->pending = false;
782 		}
783 		hlist_add_head(&xfer->node, &minfo->free_xfers);
784 	}
785 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
786 }
787 
788 /**
789  * scmi_xfer_raw_put  - Release an xfer that was taken by @scmi_xfer_raw_get
790  *
791  * @handle: Pointer to SCMI entity handle
792  * @xfer: A reference to the xfer to put
793  *
794  * Note that as with other xfer_put() handlers the xfer is really effectively
795  * released only if there are no more users on the system.
796  */
797 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
798 {
799 	struct scmi_info *info = handle_to_scmi_info(handle);
800 
801 	xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
802 	xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
803 	return __scmi_xfer_put(&info->tx_minfo, xfer);
804 }
805 
806 /**
807  * scmi_xfer_lookup_unlocked  -  Helper to lookup an xfer_id
808  *
809  * @minfo: Pointer to Tx/Rx Message management info based on channel type
810  * @xfer_id: Token ID to lookup in @pending_xfers
811  *
812  * Refcounting is untouched.
813  *
814  * Context: Assumes to be called with @xfer_lock already acquired.
815  *
816  * Return: A valid xfer on Success or error otherwise
817  */
818 static struct scmi_xfer *
819 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
820 {
821 	struct scmi_xfer *xfer = NULL;
822 
823 	if (test_bit(xfer_id, minfo->xfer_alloc_table))
824 		xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
825 
826 	return xfer ?: ERR_PTR(-EINVAL);
827 }
828 
829 /**
830  * scmi_bad_message_trace  - A helper to trace weird messages
831  *
832  * @cinfo: A reference to the channel descriptor on which the message was
833  *	   received
834  * @msg_hdr: Message header to track
835  * @err: A specific error code used as a status value in traces.
836  *
837  * This helper can be used to trace any kind of weird, incomplete, unexpected,
838  * timed-out message that arrives and as such, can be traced only referring to
839  * the header content, since the payload is missing/unreliable.
840  */
841 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo, u32 msg_hdr,
842 				   enum scmi_bad_msg err)
843 {
844 	char *tag;
845 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
846 
847 	switch (MSG_XTRACT_TYPE(msg_hdr)) {
848 	case MSG_TYPE_COMMAND:
849 		tag = "!RESP";
850 		break;
851 	case MSG_TYPE_DELAYED_RESP:
852 		tag = "!DLYD";
853 		break;
854 	case MSG_TYPE_NOTIFICATION:
855 		tag = "!NOTI";
856 		break;
857 	default:
858 		tag = "!UNKN";
859 		break;
860 	}
861 
862 	trace_scmi_msg_dump(info->id, cinfo->id,
863 			    MSG_XTRACT_PROT_ID(msg_hdr),
864 			    MSG_XTRACT_ID(msg_hdr), tag,
865 			    MSG_XTRACT_TOKEN(msg_hdr), err, NULL, 0);
866 }
867 
868 /**
869  * scmi_msg_response_validate  - Validate message type against state of related
870  * xfer
871  *
872  * @cinfo: A reference to the channel descriptor.
873  * @msg_type: Message type to check
874  * @xfer: A reference to the xfer to validate against @msg_type
875  *
876  * This function checks if @msg_type is congruent with the current state of
877  * a pending @xfer; if an asynchronous delayed response is received before the
878  * related synchronous response (Out-of-Order Delayed Response) the missing
879  * synchronous response is assumed to be OK and completed, carrying on with the
880  * Delayed Response: this is done to address the case in which the underlying
881  * SCMI transport can deliver such out-of-order responses.
882  *
883  * Context: Assumes to be called with xfer->lock already acquired.
884  *
885  * Return: 0 on Success, error otherwise
886  */
887 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
888 					     u8 msg_type,
889 					     struct scmi_xfer *xfer)
890 {
891 	/*
892 	 * Even if a response was indeed expected on this slot at this point,
893 	 * a buggy platform could wrongly reply feeding us an unexpected
894 	 * delayed response we're not prepared to handle: bail-out safely
895 	 * blaming firmware.
896 	 */
897 	if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
898 		dev_err(cinfo->dev,
899 			"Delayed Response for %d not expected! Buggy F/W ?\n",
900 			xfer->hdr.seq);
901 		return -EINVAL;
902 	}
903 
904 	switch (xfer->state) {
905 	case SCMI_XFER_SENT_OK:
906 		if (msg_type == MSG_TYPE_DELAYED_RESP) {
907 			/*
908 			 * Delayed Response expected but delivered earlier.
909 			 * Assume message RESPONSE was OK and skip state.
910 			 */
911 			xfer->hdr.status = SCMI_SUCCESS;
912 			xfer->state = SCMI_XFER_RESP_OK;
913 			complete(&xfer->done);
914 			dev_warn(cinfo->dev,
915 				 "Received valid OoO Delayed Response for %d\n",
916 				 xfer->hdr.seq);
917 		}
918 		break;
919 	case SCMI_XFER_RESP_OK:
920 		if (msg_type != MSG_TYPE_DELAYED_RESP)
921 			return -EINVAL;
922 		break;
923 	case SCMI_XFER_DRESP_OK:
924 		/* No further message expected once in SCMI_XFER_DRESP_OK */
925 		return -EINVAL;
926 	}
927 
928 	return 0;
929 }
930 
931 /**
932  * scmi_xfer_state_update  - Update xfer state
933  *
934  * @xfer: A reference to the xfer to update
935  * @msg_type: Type of message being processed.
936  *
937  * Note that this message is assumed to have been already successfully validated
938  * by @scmi_msg_response_validate(), so here we just update the state.
939  *
940  * Context: Assumes to be called on an xfer exclusively acquired using the
941  *	    busy flag.
942  */
943 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
944 {
945 	xfer->hdr.type = msg_type;
946 
947 	/* Unknown command types were already discarded earlier */
948 	if (xfer->hdr.type == MSG_TYPE_COMMAND)
949 		xfer->state = SCMI_XFER_RESP_OK;
950 	else
951 		xfer->state = SCMI_XFER_DRESP_OK;
952 }
953 
954 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
955 {
956 	int ret;
957 
958 	ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
959 
960 	return ret == SCMI_XFER_FREE;
961 }
962 
963 /**
964  * scmi_xfer_command_acquire  -  Helper to lookup and acquire a command xfer
965  *
966  * @cinfo: A reference to the channel descriptor.
967  * @msg_hdr: A message header to use as lookup key
968  *
969  * When a valid xfer is found for the sequence number embedded in the provided
970  * msg_hdr, reference counting is properly updated and exclusive access to this
971  * xfer is granted till released with @scmi_xfer_command_release.
972  *
973  * Return: A valid @xfer on Success or error otherwise.
974  */
975 static inline struct scmi_xfer *
976 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
977 {
978 	int ret;
979 	unsigned long flags;
980 	struct scmi_xfer *xfer;
981 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
982 	struct scmi_xfers_info *minfo = &info->tx_minfo;
983 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
984 	u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
985 
986 	/* Are we even expecting this? */
987 	spin_lock_irqsave(&minfo->xfer_lock, flags);
988 	xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
989 	if (IS_ERR(xfer)) {
990 		dev_err(cinfo->dev,
991 			"Message for %d type %d is not expected!\n",
992 			xfer_id, msg_type);
993 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
994 
995 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNEXPECTED);
996 		scmi_inc_count(info->dbg->counters, ERR_MSG_UNEXPECTED);
997 
998 		return xfer;
999 	}
1000 	refcount_inc(&xfer->users);
1001 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
1002 
1003 	spin_lock_irqsave(&xfer->lock, flags);
1004 	ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
1005 	/*
1006 	 * If a pending xfer was found which was also in a congruent state with
1007 	 * the received message, acquire exclusive access to it setting the busy
1008 	 * flag.
1009 	 * Spins only on the rare limit condition of concurrent reception of
1010 	 * RESP and DRESP for the same xfer.
1011 	 */
1012 	if (!ret) {
1013 		spin_until_cond(scmi_xfer_acquired(xfer));
1014 		scmi_xfer_state_update(xfer, msg_type);
1015 	}
1016 	spin_unlock_irqrestore(&xfer->lock, flags);
1017 
1018 	if (ret) {
1019 		dev_err(cinfo->dev,
1020 			"Invalid message type:%d for %d - HDR:0x%X  state:%d\n",
1021 			msg_type, xfer_id, msg_hdr, xfer->state);
1022 
1023 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_INVALID);
1024 		scmi_inc_count(info->dbg->counters, ERR_MSG_INVALID);
1025 
1026 		/* On error the refcount incremented above has to be dropped */
1027 		__scmi_xfer_put(minfo, xfer);
1028 		xfer = ERR_PTR(-EINVAL);
1029 	}
1030 
1031 	return xfer;
1032 }
1033 
1034 static inline void scmi_xfer_command_release(struct scmi_info *info,
1035 					     struct scmi_xfer *xfer)
1036 {
1037 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
1038 	__scmi_xfer_put(&info->tx_minfo, xfer);
1039 }
1040 
1041 static inline void scmi_clear_channel(struct scmi_info *info,
1042 				      struct scmi_chan_info *cinfo)
1043 {
1044 	if (!cinfo->is_p2a) {
1045 		dev_warn(cinfo->dev, "Invalid clear on A2P channel !\n");
1046 		return;
1047 	}
1048 
1049 	if (info->desc->ops->clear_channel)
1050 		info->desc->ops->clear_channel(cinfo);
1051 }
1052 
1053 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
1054 				     u32 msg_hdr, void *priv)
1055 {
1056 	struct scmi_xfer *xfer;
1057 	struct device *dev = cinfo->dev;
1058 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1059 	struct scmi_xfers_info *minfo = &info->rx_minfo;
1060 	ktime_t ts;
1061 
1062 	ts = ktime_get_boottime();
1063 	xfer = scmi_xfer_get(cinfo->handle, minfo);
1064 	if (IS_ERR(xfer)) {
1065 		dev_err(dev, "failed to get free message slot (%ld)\n",
1066 			PTR_ERR(xfer));
1067 
1068 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_NOMEM);
1069 		scmi_inc_count(info->dbg->counters, ERR_MSG_NOMEM);
1070 
1071 		scmi_clear_channel(info, cinfo);
1072 		return;
1073 	}
1074 
1075 	unpack_scmi_header(msg_hdr, &xfer->hdr);
1076 	if (priv)
1077 		/* Ensure order between xfer->priv store and following ops */
1078 		smp_store_mb(xfer->priv, priv);
1079 	info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
1080 					    xfer);
1081 
1082 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1083 			    xfer->hdr.id, "NOTI", xfer->hdr.seq,
1084 			    xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
1085 	scmi_inc_count(info->dbg->counters, NOTIFICATION_OK);
1086 
1087 	scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
1088 		    xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
1089 
1090 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
1091 			   xfer->hdr.protocol_id, xfer->hdr.seq,
1092 			   MSG_TYPE_NOTIFICATION);
1093 
1094 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1095 		xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
1096 		scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
1097 					cinfo->id);
1098 	}
1099 
1100 	__scmi_xfer_put(minfo, xfer);
1101 
1102 	scmi_clear_channel(info, cinfo);
1103 }
1104 
1105 static void scmi_handle_response(struct scmi_chan_info *cinfo,
1106 				 u32 msg_hdr, void *priv)
1107 {
1108 	struct scmi_xfer *xfer;
1109 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1110 
1111 	xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
1112 	if (IS_ERR(xfer)) {
1113 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
1114 			scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
1115 
1116 		if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
1117 			scmi_clear_channel(info, cinfo);
1118 		return;
1119 	}
1120 
1121 	/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
1122 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
1123 		xfer->rx.len = info->desc->max_msg_size;
1124 
1125 	if (priv)
1126 		/* Ensure order between xfer->priv store and following ops */
1127 		smp_store_mb(xfer->priv, priv);
1128 	info->desc->ops->fetch_response(cinfo, xfer);
1129 
1130 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1131 			    xfer->hdr.id,
1132 			    xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
1133 			    (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
1134 			    (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
1135 			    xfer->hdr.seq, xfer->hdr.status,
1136 			    xfer->rx.buf, xfer->rx.len);
1137 
1138 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
1139 			   xfer->hdr.protocol_id, xfer->hdr.seq,
1140 			   xfer->hdr.type);
1141 
1142 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
1143 		scmi_clear_channel(info, cinfo);
1144 		complete(xfer->async_done);
1145 		scmi_inc_count(info->dbg->counters, DELAYED_RESPONSE_OK);
1146 	} else {
1147 		complete(&xfer->done);
1148 		scmi_inc_count(info->dbg->counters, RESPONSE_OK);
1149 	}
1150 
1151 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1152 		/*
1153 		 * When in polling mode avoid to queue the Raw xfer on the IRQ
1154 		 * RX path since it will be already queued at the end of the TX
1155 		 * poll loop.
1156 		 */
1157 		if (!xfer->hdr.poll_completion)
1158 			scmi_raw_message_report(info->raw, xfer,
1159 						SCMI_RAW_REPLY_QUEUE,
1160 						cinfo->id);
1161 	}
1162 
1163 	scmi_xfer_command_release(info, xfer);
1164 }
1165 
1166 /**
1167  * scmi_rx_callback() - callback for receiving messages
1168  *
1169  * @cinfo: SCMI channel info
1170  * @msg_hdr: Message header
1171  * @priv: Transport specific private data.
1172  *
1173  * Processes one received message to appropriate transfer information and
1174  * signals completion of the transfer.
1175  *
1176  * NOTE: This function will be invoked in IRQ context, hence should be
1177  * as optimal as possible.
1178  */
1179 static void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr,
1180 			     void *priv)
1181 {
1182 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
1183 
1184 	switch (msg_type) {
1185 	case MSG_TYPE_NOTIFICATION:
1186 		scmi_handle_notification(cinfo, msg_hdr, priv);
1187 		break;
1188 	case MSG_TYPE_COMMAND:
1189 	case MSG_TYPE_DELAYED_RESP:
1190 		scmi_handle_response(cinfo, msg_hdr, priv);
1191 		break;
1192 	default:
1193 		WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
1194 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNKNOWN);
1195 		break;
1196 	}
1197 }
1198 
1199 /**
1200  * xfer_put() - Release a transmit message
1201  *
1202  * @ph: Pointer to SCMI protocol handle
1203  * @xfer: message that was reserved by xfer_get_init
1204  */
1205 static void xfer_put(const struct scmi_protocol_handle *ph,
1206 		     struct scmi_xfer *xfer)
1207 {
1208 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1209 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1210 
1211 	__scmi_xfer_put(&info->tx_minfo, xfer);
1212 }
1213 
1214 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1215 				      struct scmi_xfer *xfer, ktime_t stop)
1216 {
1217 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1218 
1219 	/*
1220 	 * Poll also on xfer->done so that polling can be forcibly terminated
1221 	 * in case of out-of-order receptions of delayed responses
1222 	 */
1223 	return info->desc->ops->poll_done(cinfo, xfer) ||
1224 	       try_wait_for_completion(&xfer->done) ||
1225 	       ktime_after(ktime_get(), stop);
1226 }
1227 
1228 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1229 			       struct scmi_chan_info *cinfo,
1230 			       struct scmi_xfer *xfer, unsigned int timeout_ms)
1231 {
1232 	int ret = 0;
1233 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1234 
1235 	if (xfer->hdr.poll_completion) {
1236 		/*
1237 		 * Real polling is needed only if transport has NOT declared
1238 		 * itself to support synchronous commands replies.
1239 		 */
1240 		if (!desc->sync_cmds_completed_on_ret) {
1241 			/*
1242 			 * Poll on xfer using transport provided .poll_done();
1243 			 * assumes no completion interrupt was available.
1244 			 */
1245 			ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1246 
1247 			spin_until_cond(scmi_xfer_done_no_timeout(cinfo,
1248 								  xfer, stop));
1249 			if (ktime_after(ktime_get(), stop)) {
1250 				dev_err(dev,
1251 					"timed out in resp(caller: %pS) - polling\n",
1252 					(void *)_RET_IP_);
1253 				ret = -ETIMEDOUT;
1254 				scmi_inc_count(info->dbg->counters, XFERS_RESPONSE_POLLED_TIMEOUT);
1255 			}
1256 		}
1257 
1258 		if (!ret) {
1259 			unsigned long flags;
1260 
1261 			/*
1262 			 * Do not fetch_response if an out-of-order delayed
1263 			 * response is being processed.
1264 			 */
1265 			spin_lock_irqsave(&xfer->lock, flags);
1266 			if (xfer->state == SCMI_XFER_SENT_OK) {
1267 				desc->ops->fetch_response(cinfo, xfer);
1268 				xfer->state = SCMI_XFER_RESP_OK;
1269 			}
1270 			spin_unlock_irqrestore(&xfer->lock, flags);
1271 
1272 			/* Trace polled replies. */
1273 			trace_scmi_msg_dump(info->id, cinfo->id,
1274 					    xfer->hdr.protocol_id, xfer->hdr.id,
1275 					    !SCMI_XFER_IS_RAW(xfer) ?
1276 					    "RESP" : "resp",
1277 					    xfer->hdr.seq, xfer->hdr.status,
1278 					    xfer->rx.buf, xfer->rx.len);
1279 			scmi_inc_count(info->dbg->counters, RESPONSE_POLLED_OK);
1280 
1281 			if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1282 				scmi_raw_message_report(info->raw, xfer,
1283 							SCMI_RAW_REPLY_QUEUE,
1284 							cinfo->id);
1285 			}
1286 		}
1287 	} else {
1288 		/* And we wait for the response. */
1289 		if (!wait_for_completion_timeout(&xfer->done,
1290 						 msecs_to_jiffies(timeout_ms))) {
1291 			dev_err(dev, "timed out in resp(caller: %pS)\n",
1292 				(void *)_RET_IP_);
1293 			ret = -ETIMEDOUT;
1294 			scmi_inc_count(info->dbg->counters, XFERS_RESPONSE_TIMEOUT);
1295 		}
1296 	}
1297 
1298 	return ret;
1299 }
1300 
1301 /**
1302  * scmi_wait_for_message_response  - An helper to group all the possible ways of
1303  * waiting for a synchronous message response.
1304  *
1305  * @cinfo: SCMI channel info
1306  * @xfer: Reference to the transfer being waited for.
1307  *
1308  * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1309  * configuration flags like xfer->hdr.poll_completion.
1310  *
1311  * Return: 0 on Success, error otherwise.
1312  */
1313 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1314 					  struct scmi_xfer *xfer)
1315 {
1316 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1317 	struct device *dev = info->dev;
1318 
1319 	trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1320 				      xfer->hdr.protocol_id, xfer->hdr.seq,
1321 				      info->desc->max_rx_timeout_ms,
1322 				      xfer->hdr.poll_completion);
1323 
1324 	return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1325 				   info->desc->max_rx_timeout_ms);
1326 }
1327 
1328 /**
1329  * scmi_xfer_raw_wait_for_message_response  - An helper to wait for a message
1330  * reply to an xfer raw request on a specific channel for the required timeout.
1331  *
1332  * @cinfo: SCMI channel info
1333  * @xfer: Reference to the transfer being waited for.
1334  * @timeout_ms: The maximum timeout in milliseconds
1335  *
1336  * Return: 0 on Success, error otherwise.
1337  */
1338 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1339 					    struct scmi_xfer *xfer,
1340 					    unsigned int timeout_ms)
1341 {
1342 	int ret;
1343 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1344 	struct device *dev = info->dev;
1345 
1346 	ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1347 	if (ret)
1348 		dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1349 			pack_scmi_header(&xfer->hdr));
1350 
1351 	return ret;
1352 }
1353 
1354 /**
1355  * do_xfer() - Do one transfer
1356  *
1357  * @ph: Pointer to SCMI protocol handle
1358  * @xfer: Transfer to initiate and wait for response
1359  *
1360  * Return: -ETIMEDOUT in case of no response, if transmit error,
1361  *	return corresponding error, else if all goes well,
1362  *	return 0.
1363  */
1364 static int do_xfer(const struct scmi_protocol_handle *ph,
1365 		   struct scmi_xfer *xfer)
1366 {
1367 	int ret;
1368 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1369 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1370 	struct device *dev = info->dev;
1371 	struct scmi_chan_info *cinfo;
1372 
1373 	/* Check for polling request on custom command xfers at first */
1374 	if (xfer->hdr.poll_completion &&
1375 	    !is_transport_polling_capable(info->desc)) {
1376 		dev_warn_once(dev,
1377 			      "Polling mode is not supported by transport.\n");
1378 		scmi_inc_count(info->dbg->counters, SENT_FAIL_POLLING_UNSUPPORTED);
1379 		return -EINVAL;
1380 	}
1381 
1382 	cinfo = idr_find(&info->tx_idr, pi->proto->id);
1383 	if (unlikely(!cinfo)) {
1384 		scmi_inc_count(info->dbg->counters, SENT_FAIL_CHANNEL_NOT_FOUND);
1385 		return -EINVAL;
1386 	}
1387 	/* True ONLY if also supported by transport. */
1388 	if (is_polling_enabled(cinfo, info->desc))
1389 		xfer->hdr.poll_completion = true;
1390 
1391 	/*
1392 	 * Initialise protocol id now from protocol handle to avoid it being
1393 	 * overridden by mistake (or malice) by the protocol code mangling with
1394 	 * the scmi_xfer structure prior to this.
1395 	 */
1396 	xfer->hdr.protocol_id = pi->proto->id;
1397 	reinit_completion(&xfer->done);
1398 
1399 	trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1400 			      xfer->hdr.protocol_id, xfer->hdr.seq,
1401 			      xfer->hdr.poll_completion);
1402 
1403 	/* Clear any stale status */
1404 	xfer->hdr.status = SCMI_SUCCESS;
1405 	xfer->state = SCMI_XFER_SENT_OK;
1406 	/*
1407 	 * Even though spinlocking is not needed here since no race is possible
1408 	 * on xfer->state due to the monotonically increasing tokens allocation,
1409 	 * we must anyway ensure xfer->state initialization is not re-ordered
1410 	 * after the .send_message() to be sure that on the RX path an early
1411 	 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1412 	 */
1413 	smp_mb();
1414 
1415 	ret = info->desc->ops->send_message(cinfo, xfer);
1416 	if (ret < 0) {
1417 		dev_dbg(dev, "Failed to send message %d\n", ret);
1418 		scmi_inc_count(info->dbg->counters, SENT_FAIL);
1419 		return ret;
1420 	}
1421 
1422 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1423 			    xfer->hdr.id, "CMND", xfer->hdr.seq,
1424 			    xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1425 	scmi_inc_count(info->dbg->counters, SENT_OK);
1426 
1427 	ret = scmi_wait_for_message_response(cinfo, xfer);
1428 	if (!ret && xfer->hdr.status) {
1429 		ret = scmi_to_linux_errno(xfer->hdr.status);
1430 		scmi_inc_count(info->dbg->counters, ERR_PROTOCOL);
1431 	}
1432 
1433 	if (info->desc->ops->mark_txdone)
1434 		info->desc->ops->mark_txdone(cinfo, ret, xfer);
1435 
1436 	trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1437 			    xfer->hdr.protocol_id, xfer->hdr.seq, ret);
1438 
1439 	return ret;
1440 }
1441 
1442 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1443 			      struct scmi_xfer *xfer)
1444 {
1445 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1446 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1447 
1448 	xfer->rx.len = info->desc->max_msg_size;
1449 }
1450 
1451 /**
1452  * do_xfer_with_response() - Do one transfer and wait until the delayed
1453  *	response is received
1454  *
1455  * @ph: Pointer to SCMI protocol handle
1456  * @xfer: Transfer to initiate and wait for response
1457  *
1458  * Using asynchronous commands in atomic/polling mode should be avoided since
1459  * it could cause long busy-waiting here, so ignore polling for the delayed
1460  * response and WARN if it was requested for this command transaction since
1461  * upper layers should refrain from issuing such kind of requests.
1462  *
1463  * The only other option would have been to refrain from using any asynchronous
1464  * command even if made available, when an atomic transport is detected, and
1465  * instead forcibly use the synchronous version (thing that can be easily
1466  * attained at the protocol layer), but this would also have led to longer
1467  * stalls of the channel for synchronous commands and possibly timeouts.
1468  * (in other words there is usually a good reason if a platform provides an
1469  *  asynchronous version of a command and we should prefer to use it...just not
1470  *  when using atomic/polling mode)
1471  *
1472  * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1473  *	return corresponding error, else if all goes well, return 0.
1474  */
1475 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1476 				 struct scmi_xfer *xfer)
1477 {
1478 	int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1479 	DECLARE_COMPLETION_ONSTACK(async_response);
1480 
1481 	xfer->async_done = &async_response;
1482 
1483 	/*
1484 	 * Delayed responses should not be polled, so an async command should
1485 	 * not have been used when requiring an atomic/poll context; WARN and
1486 	 * perform instead a sleeping wait.
1487 	 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1488 	 */
1489 	WARN_ON_ONCE(xfer->hdr.poll_completion);
1490 
1491 	ret = do_xfer(ph, xfer);
1492 	if (!ret) {
1493 		if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1494 			dev_err(ph->dev,
1495 				"timed out in delayed resp(caller: %pS)\n",
1496 				(void *)_RET_IP_);
1497 			ret = -ETIMEDOUT;
1498 		} else if (xfer->hdr.status) {
1499 			ret = scmi_to_linux_errno(xfer->hdr.status);
1500 		}
1501 	}
1502 
1503 	xfer->async_done = NULL;
1504 	return ret;
1505 }
1506 
1507 /**
1508  * xfer_get_init() - Allocate and initialise one message for transmit
1509  *
1510  * @ph: Pointer to SCMI protocol handle
1511  * @msg_id: Message identifier
1512  * @tx_size: transmit message size
1513  * @rx_size: receive message size
1514  * @p: pointer to the allocated and initialised message
1515  *
1516  * This function allocates the message using @scmi_xfer_get and
1517  * initialise the header.
1518  *
1519  * Return: 0 if all went fine with @p pointing to message, else
1520  *	corresponding error.
1521  */
1522 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1523 			 u8 msg_id, size_t tx_size, size_t rx_size,
1524 			 struct scmi_xfer **p)
1525 {
1526 	int ret;
1527 	struct scmi_xfer *xfer;
1528 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1529 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1530 	struct scmi_xfers_info *minfo = &info->tx_minfo;
1531 	struct device *dev = info->dev;
1532 
1533 	/* Ensure we have sane transfer sizes */
1534 	if (rx_size > info->desc->max_msg_size ||
1535 	    tx_size > info->desc->max_msg_size)
1536 		return -ERANGE;
1537 
1538 	xfer = scmi_xfer_get(pi->handle, minfo);
1539 	if (IS_ERR(xfer)) {
1540 		ret = PTR_ERR(xfer);
1541 		dev_err(dev, "failed to get free message slot(%d)\n", ret);
1542 		return ret;
1543 	}
1544 
1545 	/* Pick a sequence number and register this xfer as in-flight */
1546 	ret = scmi_xfer_pending_set(xfer, minfo);
1547 	if (ret) {
1548 		dev_err(pi->handle->dev,
1549 			"Failed to get monotonic token %d\n", ret);
1550 		__scmi_xfer_put(minfo, xfer);
1551 		return ret;
1552 	}
1553 
1554 	xfer->tx.len = tx_size;
1555 	xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1556 	xfer->hdr.type = MSG_TYPE_COMMAND;
1557 	xfer->hdr.id = msg_id;
1558 	xfer->hdr.poll_completion = false;
1559 
1560 	*p = xfer;
1561 
1562 	return 0;
1563 }
1564 
1565 /**
1566  * version_get() - command to get the revision of the SCMI entity
1567  *
1568  * @ph: Pointer to SCMI protocol handle
1569  * @version: Holds returned version of protocol.
1570  *
1571  * Updates the SCMI information in the internal data structure.
1572  *
1573  * Return: 0 if all went fine, else return appropriate error.
1574  */
1575 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1576 {
1577 	int ret;
1578 	__le32 *rev_info;
1579 	struct scmi_xfer *t;
1580 
1581 	ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1582 	if (ret)
1583 		return ret;
1584 
1585 	ret = do_xfer(ph, t);
1586 	if (!ret) {
1587 		rev_info = t->rx.buf;
1588 		*version = le32_to_cpu(*rev_info);
1589 	}
1590 
1591 	xfer_put(ph, t);
1592 	return ret;
1593 }
1594 
1595 /**
1596  * scmi_set_protocol_priv  - Set protocol specific data at init time
1597  *
1598  * @ph: A reference to the protocol handle.
1599  * @priv: The private data to set.
1600  * @version: The detected protocol version for the core to register.
1601  *
1602  * Return: 0 on Success
1603  */
1604 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1605 				  void *priv, u32 version)
1606 {
1607 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
1608 
1609 	pi->priv = priv;
1610 	pi->version = version;
1611 
1612 	return 0;
1613 }
1614 
1615 /**
1616  * scmi_get_protocol_priv  - Set protocol specific data at init time
1617  *
1618  * @ph: A reference to the protocol handle.
1619  *
1620  * Return: Protocol private data if any was set.
1621  */
1622 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1623 {
1624 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1625 
1626 	return pi->priv;
1627 }
1628 
1629 static const struct scmi_xfer_ops xfer_ops = {
1630 	.version_get = version_get,
1631 	.xfer_get_init = xfer_get_init,
1632 	.reset_rx_to_maxsz = reset_rx_to_maxsz,
1633 	.do_xfer = do_xfer,
1634 	.do_xfer_with_response = do_xfer_with_response,
1635 	.xfer_put = xfer_put,
1636 };
1637 
1638 struct scmi_msg_resp_domain_name_get {
1639 	__le32 flags;
1640 	u8 name[SCMI_MAX_STR_SIZE];
1641 };
1642 
1643 /**
1644  * scmi_common_extended_name_get  - Common helper to get extended resources name
1645  * @ph: A protocol handle reference.
1646  * @cmd_id: The specific command ID to use.
1647  * @res_id: The specific resource ID to use.
1648  * @flags: A pointer to specific flags to use, if any.
1649  * @name: A pointer to the preallocated area where the retrieved name will be
1650  *	  stored as a NULL terminated string.
1651  * @len: The len in bytes of the @name char array.
1652  *
1653  * Return: 0 on Succcess
1654  */
1655 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1656 					 u8 cmd_id, u32 res_id, u32 *flags,
1657 					 char *name, size_t len)
1658 {
1659 	int ret;
1660 	size_t txlen;
1661 	struct scmi_xfer *t;
1662 	struct scmi_msg_resp_domain_name_get *resp;
1663 
1664 	txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags);
1665 	ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t);
1666 	if (ret)
1667 		goto out;
1668 
1669 	put_unaligned_le32(res_id, t->tx.buf);
1670 	if (flags)
1671 		put_unaligned_le32(*flags, t->tx.buf + sizeof(res_id));
1672 	resp = t->rx.buf;
1673 
1674 	ret = ph->xops->do_xfer(ph, t);
1675 	if (!ret)
1676 		strscpy(name, resp->name, len);
1677 
1678 	ph->xops->xfer_put(ph, t);
1679 out:
1680 	if (ret)
1681 		dev_warn(ph->dev,
1682 			 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1683 			 res_id, ret, name);
1684 	return ret;
1685 }
1686 
1687 /**
1688  * scmi_common_get_max_msg_size  - Get maximum message size
1689  * @ph: A protocol handle reference.
1690  *
1691  * Return: Maximum message size for the current protocol.
1692  */
1693 static int scmi_common_get_max_msg_size(const struct scmi_protocol_handle *ph)
1694 {
1695 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1696 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1697 
1698 	return info->desc->max_msg_size;
1699 }
1700 
1701 /**
1702  * struct scmi_iterator  - Iterator descriptor
1703  * @msg: A reference to the message TX buffer; filled by @prepare_message with
1704  *	 a proper custom command payload for each multi-part command request.
1705  * @resp: A reference to the response RX buffer; used by @update_state and
1706  *	  @process_response to parse the multi-part replies.
1707  * @t: A reference to the underlying xfer initialized and used transparently by
1708  *     the iterator internal routines.
1709  * @ph: A reference to the associated protocol handle to be used.
1710  * @ops: A reference to the custom provided iterator operations.
1711  * @state: The current iterator state; used and updated in turn by the iterators
1712  *	   internal routines and by the caller-provided @scmi_iterator_ops.
1713  * @priv: A reference to optional private data as provided by the caller and
1714  *	  passed back to the @@scmi_iterator_ops.
1715  */
1716 struct scmi_iterator {
1717 	void *msg;
1718 	void *resp;
1719 	struct scmi_xfer *t;
1720 	const struct scmi_protocol_handle *ph;
1721 	struct scmi_iterator_ops *ops;
1722 	struct scmi_iterator_state state;
1723 	void *priv;
1724 };
1725 
1726 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1727 				struct scmi_iterator_ops *ops,
1728 				unsigned int max_resources, u8 msg_id,
1729 				size_t tx_size, void *priv)
1730 {
1731 	int ret;
1732 	struct scmi_iterator *i;
1733 
1734 	i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1735 	if (!i)
1736 		return ERR_PTR(-ENOMEM);
1737 
1738 	i->ph = ph;
1739 	i->ops = ops;
1740 	i->priv = priv;
1741 
1742 	ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1743 	if (ret) {
1744 		devm_kfree(ph->dev, i);
1745 		return ERR_PTR(ret);
1746 	}
1747 
1748 	i->state.max_resources = max_resources;
1749 	i->msg = i->t->tx.buf;
1750 	i->resp = i->t->rx.buf;
1751 
1752 	return i;
1753 }
1754 
1755 static int scmi_iterator_run(void *iter)
1756 {
1757 	int ret = -EINVAL;
1758 	struct scmi_iterator_ops *iops;
1759 	const struct scmi_protocol_handle *ph;
1760 	struct scmi_iterator_state *st;
1761 	struct scmi_iterator *i = iter;
1762 
1763 	if (!i || !i->ops || !i->ph)
1764 		return ret;
1765 
1766 	iops = i->ops;
1767 	ph = i->ph;
1768 	st = &i->state;
1769 
1770 	do {
1771 		iops->prepare_message(i->msg, st->desc_index, i->priv);
1772 		ret = ph->xops->do_xfer(ph, i->t);
1773 		if (ret)
1774 			break;
1775 
1776 		st->rx_len = i->t->rx.len;
1777 		ret = iops->update_state(st, i->resp, i->priv);
1778 		if (ret)
1779 			break;
1780 
1781 		if (st->num_returned > st->max_resources - st->desc_index) {
1782 			dev_err(ph->dev,
1783 				"No. of resources can't exceed %d\n",
1784 				st->max_resources);
1785 			ret = -EINVAL;
1786 			break;
1787 		}
1788 
1789 		for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1790 		     st->loop_idx++) {
1791 			ret = iops->process_response(ph, i->resp, st, i->priv);
1792 			if (ret)
1793 				goto out;
1794 		}
1795 
1796 		st->desc_index += st->num_returned;
1797 		ph->xops->reset_rx_to_maxsz(ph, i->t);
1798 		/*
1799 		 * check for both returned and remaining to avoid infinite
1800 		 * loop due to buggy firmware
1801 		 */
1802 	} while (st->num_returned && st->num_remaining);
1803 
1804 out:
1805 	/* Finalize and destroy iterator */
1806 	ph->xops->xfer_put(ph, i->t);
1807 	devm_kfree(ph->dev, i);
1808 
1809 	return ret;
1810 }
1811 
1812 struct scmi_msg_get_fc_info {
1813 	__le32 domain;
1814 	__le32 message_id;
1815 };
1816 
1817 struct scmi_msg_resp_desc_fc {
1818 	__le32 attr;
1819 #define SUPPORTS_DOORBELL(x)		((x) & BIT(0))
1820 #define DOORBELL_REG_WIDTH(x)		FIELD_GET(GENMASK(2, 1), (x))
1821 	__le32 rate_limit;
1822 	__le32 chan_addr_low;
1823 	__le32 chan_addr_high;
1824 	__le32 chan_size;
1825 	__le32 db_addr_low;
1826 	__le32 db_addr_high;
1827 	__le32 db_set_lmask;
1828 	__le32 db_set_hmask;
1829 	__le32 db_preserve_lmask;
1830 	__le32 db_preserve_hmask;
1831 };
1832 
1833 static void
1834 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1835 			     u8 describe_id, u32 message_id, u32 valid_size,
1836 			     u32 domain, void __iomem **p_addr,
1837 			     struct scmi_fc_db_info **p_db, u32 *rate_limit)
1838 {
1839 	int ret;
1840 	u32 flags;
1841 	u64 phys_addr;
1842 	u8 size;
1843 	void __iomem *addr;
1844 	struct scmi_xfer *t;
1845 	struct scmi_fc_db_info *db = NULL;
1846 	struct scmi_msg_get_fc_info *info;
1847 	struct scmi_msg_resp_desc_fc *resp;
1848 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1849 
1850 	if (!p_addr) {
1851 		ret = -EINVAL;
1852 		goto err_out;
1853 	}
1854 
1855 	ret = ph->xops->xfer_get_init(ph, describe_id,
1856 				      sizeof(*info), sizeof(*resp), &t);
1857 	if (ret)
1858 		goto err_out;
1859 
1860 	info = t->tx.buf;
1861 	info->domain = cpu_to_le32(domain);
1862 	info->message_id = cpu_to_le32(message_id);
1863 
1864 	/*
1865 	 * Bail out on error leaving fc_info addresses zeroed; this includes
1866 	 * the case in which the requested domain/message_id does NOT support
1867 	 * fastchannels at all.
1868 	 */
1869 	ret = ph->xops->do_xfer(ph, t);
1870 	if (ret)
1871 		goto err_xfer;
1872 
1873 	resp = t->rx.buf;
1874 	flags = le32_to_cpu(resp->attr);
1875 	size = le32_to_cpu(resp->chan_size);
1876 	if (size != valid_size) {
1877 		ret = -EINVAL;
1878 		goto err_xfer;
1879 	}
1880 
1881 	if (rate_limit)
1882 		*rate_limit = le32_to_cpu(resp->rate_limit) & GENMASK(19, 0);
1883 
1884 	phys_addr = le32_to_cpu(resp->chan_addr_low);
1885 	phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1886 	addr = devm_ioremap(ph->dev, phys_addr, size);
1887 	if (!addr) {
1888 		ret = -EADDRNOTAVAIL;
1889 		goto err_xfer;
1890 	}
1891 
1892 	*p_addr = addr;
1893 
1894 	if (p_db && SUPPORTS_DOORBELL(flags)) {
1895 		db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1896 		if (!db) {
1897 			ret = -ENOMEM;
1898 			goto err_db;
1899 		}
1900 
1901 		size = 1 << DOORBELL_REG_WIDTH(flags);
1902 		phys_addr = le32_to_cpu(resp->db_addr_low);
1903 		phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1904 		addr = devm_ioremap(ph->dev, phys_addr, size);
1905 		if (!addr) {
1906 			ret = -EADDRNOTAVAIL;
1907 			goto err_db_mem;
1908 		}
1909 
1910 		db->addr = addr;
1911 		db->width = size;
1912 		db->set = le32_to_cpu(resp->db_set_lmask);
1913 		db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1914 		db->mask = le32_to_cpu(resp->db_preserve_lmask);
1915 		db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1916 
1917 		*p_db = db;
1918 	}
1919 
1920 	ph->xops->xfer_put(ph, t);
1921 
1922 	dev_dbg(ph->dev,
1923 		"Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
1924 		pi->proto->id, message_id, domain);
1925 
1926 	return;
1927 
1928 err_db_mem:
1929 	devm_kfree(ph->dev, db);
1930 
1931 err_db:
1932 	*p_addr = NULL;
1933 
1934 err_xfer:
1935 	ph->xops->xfer_put(ph, t);
1936 
1937 err_out:
1938 	dev_warn(ph->dev,
1939 		 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
1940 		 pi->proto->id, message_id, domain, ret);
1941 }
1942 
1943 #define SCMI_PROTO_FC_RING_DB(w)			\
1944 do {							\
1945 	u##w val = 0;					\
1946 							\
1947 	if (db->mask)					\
1948 		val = ioread##w(db->addr) & db->mask;	\
1949 	iowrite##w((u##w)db->set | val, db->addr);	\
1950 } while (0)
1951 
1952 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
1953 {
1954 	if (!db || !db->addr)
1955 		return;
1956 
1957 	if (db->width == 1)
1958 		SCMI_PROTO_FC_RING_DB(8);
1959 	else if (db->width == 2)
1960 		SCMI_PROTO_FC_RING_DB(16);
1961 	else if (db->width == 4)
1962 		SCMI_PROTO_FC_RING_DB(32);
1963 	else /* db->width == 8 */
1964 #ifdef CONFIG_64BIT
1965 		SCMI_PROTO_FC_RING_DB(64);
1966 #else
1967 	{
1968 		u64 val = 0;
1969 
1970 		if (db->mask)
1971 			val = ioread64_hi_lo(db->addr) & db->mask;
1972 		iowrite64_hi_lo(db->set | val, db->addr);
1973 	}
1974 #endif
1975 }
1976 
1977 /**
1978  * scmi_protocol_msg_check  - Check protocol message attributes
1979  *
1980  * @ph: A reference to the protocol handle.
1981  * @message_id: The ID of the message to check.
1982  * @attributes: A parameter to optionally return the retrieved message
1983  *		attributes, in case of Success.
1984  *
1985  * An helper to check protocol message attributes for a specific protocol
1986  * and message pair.
1987  *
1988  * Return: 0 on SUCCESS
1989  */
1990 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph,
1991 				   u32 message_id, u32 *attributes)
1992 {
1993 	int ret;
1994 	struct scmi_xfer *t;
1995 
1996 	ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES,
1997 			    sizeof(__le32), 0, &t);
1998 	if (ret)
1999 		return ret;
2000 
2001 	put_unaligned_le32(message_id, t->tx.buf);
2002 	ret = do_xfer(ph, t);
2003 	if (!ret && attributes)
2004 		*attributes = get_unaligned_le32(t->rx.buf);
2005 	xfer_put(ph, t);
2006 
2007 	return ret;
2008 }
2009 
2010 static const struct scmi_proto_helpers_ops helpers_ops = {
2011 	.extended_name_get = scmi_common_extended_name_get,
2012 	.get_max_msg_size = scmi_common_get_max_msg_size,
2013 	.iter_response_init = scmi_iterator_init,
2014 	.iter_response_run = scmi_iterator_run,
2015 	.protocol_msg_check = scmi_protocol_msg_check,
2016 	.fastchannel_init = scmi_common_fastchannel_init,
2017 	.fastchannel_db_ring = scmi_common_fastchannel_db_ring,
2018 };
2019 
2020 /**
2021  * scmi_revision_area_get  - Retrieve version memory area.
2022  *
2023  * @ph: A reference to the protocol handle.
2024  *
2025  * A helper to grab the version memory area reference during SCMI Base protocol
2026  * initialization.
2027  *
2028  * Return: A reference to the version memory area associated to the SCMI
2029  *	   instance underlying this protocol handle.
2030  */
2031 struct scmi_revision_info *
2032 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
2033 {
2034 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2035 
2036 	return pi->handle->version;
2037 }
2038 
2039 /**
2040  * scmi_protocol_version_negotiate  - Negotiate protocol version
2041  *
2042  * @ph: A reference to the protocol handle.
2043  *
2044  * An helper to negotiate a protocol version different from the latest
2045  * advertised as supported from the platform: on Success backward
2046  * compatibility is assured by the platform.
2047  *
2048  * Return: 0 on Success
2049  */
2050 static int scmi_protocol_version_negotiate(struct scmi_protocol_handle *ph)
2051 {
2052 	int ret;
2053 	struct scmi_xfer *t;
2054 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
2055 
2056 	/* At first check if NEGOTIATE_PROTOCOL_VERSION is supported ... */
2057 	ret = scmi_protocol_msg_check(ph, NEGOTIATE_PROTOCOL_VERSION, NULL);
2058 	if (ret)
2059 		return ret;
2060 
2061 	/* ... then attempt protocol version negotiation */
2062 	ret = xfer_get_init(ph, NEGOTIATE_PROTOCOL_VERSION,
2063 			    sizeof(__le32), 0, &t);
2064 	if (ret)
2065 		return ret;
2066 
2067 	put_unaligned_le32(pi->proto->supported_version, t->tx.buf);
2068 	ret = do_xfer(ph, t);
2069 	if (!ret)
2070 		pi->negotiated_version = pi->proto->supported_version;
2071 
2072 	xfer_put(ph, t);
2073 
2074 	return ret;
2075 }
2076 
2077 /**
2078  * scmi_alloc_init_protocol_instance  - Allocate and initialize a protocol
2079  * instance descriptor.
2080  * @info: The reference to the related SCMI instance.
2081  * @proto: The protocol descriptor.
2082  *
2083  * Allocate a new protocol instance descriptor, using the provided @proto
2084  * description, against the specified SCMI instance @info, and initialize it;
2085  * all resources management is handled via a dedicated per-protocol devres
2086  * group.
2087  *
2088  * Context: Assumes to be called with @protocols_mtx already acquired.
2089  * Return: A reference to a freshly allocated and initialized protocol instance
2090  *	   or ERR_PTR on failure. On failure the @proto reference is at first
2091  *	   put using @scmi_protocol_put() before releasing all the devres group.
2092  */
2093 static struct scmi_protocol_instance *
2094 scmi_alloc_init_protocol_instance(struct scmi_info *info,
2095 				  const struct scmi_protocol *proto)
2096 {
2097 	int ret = -ENOMEM;
2098 	void *gid;
2099 	struct scmi_protocol_instance *pi;
2100 	const struct scmi_handle *handle = &info->handle;
2101 
2102 	/* Protocol specific devres group */
2103 	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
2104 	if (!gid) {
2105 		scmi_protocol_put(proto);
2106 		goto out;
2107 	}
2108 
2109 	pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
2110 	if (!pi)
2111 		goto clean;
2112 
2113 	pi->gid = gid;
2114 	pi->proto = proto;
2115 	pi->handle = handle;
2116 	pi->ph.dev = handle->dev;
2117 	pi->ph.xops = &xfer_ops;
2118 	pi->ph.hops = &helpers_ops;
2119 	pi->ph.set_priv = scmi_set_protocol_priv;
2120 	pi->ph.get_priv = scmi_get_protocol_priv;
2121 	refcount_set(&pi->users, 1);
2122 	/* proto->init is assured NON NULL by scmi_protocol_register */
2123 	ret = pi->proto->instance_init(&pi->ph);
2124 	if (ret)
2125 		goto clean;
2126 
2127 	ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
2128 			GFP_KERNEL);
2129 	if (ret != proto->id)
2130 		goto clean;
2131 
2132 	/*
2133 	 * Warn but ignore events registration errors since we do not want
2134 	 * to skip whole protocols if their notifications are messed up.
2135 	 */
2136 	if (pi->proto->events) {
2137 		ret = scmi_register_protocol_events(handle, pi->proto->id,
2138 						    &pi->ph,
2139 						    pi->proto->events);
2140 		if (ret)
2141 			dev_warn(handle->dev,
2142 				 "Protocol:%X - Events Registration Failed - err:%d\n",
2143 				 pi->proto->id, ret);
2144 	}
2145 
2146 	devres_close_group(handle->dev, pi->gid);
2147 	dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
2148 
2149 	if (pi->version > proto->supported_version) {
2150 		ret = scmi_protocol_version_negotiate(&pi->ph);
2151 		if (!ret) {
2152 			dev_info(handle->dev,
2153 				 "Protocol 0x%X successfully negotiated version 0x%X\n",
2154 				 proto->id, pi->negotiated_version);
2155 		} else {
2156 			dev_warn(handle->dev,
2157 				 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X.\n",
2158 				 pi->version, pi->proto->id);
2159 			dev_warn(handle->dev,
2160 				 "Trying version 0x%X. Backward compatibility is NOT assured.\n",
2161 				 pi->proto->supported_version);
2162 		}
2163 	}
2164 
2165 	return pi;
2166 
2167 clean:
2168 	/* Take care to put the protocol module's owner before releasing all */
2169 	scmi_protocol_put(proto);
2170 	devres_release_group(handle->dev, gid);
2171 out:
2172 	return ERR_PTR(ret);
2173 }
2174 
2175 /**
2176  * scmi_get_protocol_instance  - Protocol initialization helper.
2177  * @handle: A reference to the SCMI platform instance.
2178  * @protocol_id: The protocol being requested.
2179  *
2180  * In case the required protocol has never been requested before for this
2181  * instance, allocate and initialize all the needed structures while handling
2182  * resource allocation with a dedicated per-protocol devres subgroup.
2183  *
2184  * Return: A reference to an initialized protocol instance or error on failure:
2185  *	   in particular returns -EPROBE_DEFER when the desired protocol could
2186  *	   NOT be found.
2187  */
2188 static struct scmi_protocol_instance * __must_check
2189 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
2190 {
2191 	struct scmi_protocol_instance *pi;
2192 	struct scmi_info *info = handle_to_scmi_info(handle);
2193 
2194 	mutex_lock(&info->protocols_mtx);
2195 	pi = idr_find(&info->protocols, protocol_id);
2196 
2197 	if (pi) {
2198 		refcount_inc(&pi->users);
2199 	} else {
2200 		const struct scmi_protocol *proto;
2201 
2202 		/* Fails if protocol not registered on bus */
2203 		proto = scmi_protocol_get(protocol_id, &info->version);
2204 		if (proto)
2205 			pi = scmi_alloc_init_protocol_instance(info, proto);
2206 		else
2207 			pi = ERR_PTR(-EPROBE_DEFER);
2208 	}
2209 	mutex_unlock(&info->protocols_mtx);
2210 
2211 	return pi;
2212 }
2213 
2214 /**
2215  * scmi_protocol_acquire  - Protocol acquire
2216  * @handle: A reference to the SCMI platform instance.
2217  * @protocol_id: The protocol being requested.
2218  *
2219  * Register a new user for the requested protocol on the specified SCMI
2220  * platform instance, possibly triggering its initialization on first user.
2221  *
2222  * Return: 0 if protocol was acquired successfully.
2223  */
2224 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
2225 {
2226 	return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
2227 }
2228 
2229 /**
2230  * scmi_protocol_release  - Protocol de-initialization helper.
2231  * @handle: A reference to the SCMI platform instance.
2232  * @protocol_id: The protocol being requested.
2233  *
2234  * Remove one user for the specified protocol and triggers de-initialization
2235  * and resources de-allocation once the last user has gone.
2236  */
2237 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
2238 {
2239 	struct scmi_info *info = handle_to_scmi_info(handle);
2240 	struct scmi_protocol_instance *pi;
2241 
2242 	mutex_lock(&info->protocols_mtx);
2243 	pi = idr_find(&info->protocols, protocol_id);
2244 	if (WARN_ON(!pi))
2245 		goto out;
2246 
2247 	if (refcount_dec_and_test(&pi->users)) {
2248 		void *gid = pi->gid;
2249 
2250 		if (pi->proto->events)
2251 			scmi_deregister_protocol_events(handle, protocol_id);
2252 
2253 		if (pi->proto->instance_deinit)
2254 			pi->proto->instance_deinit(&pi->ph);
2255 
2256 		idr_remove(&info->protocols, protocol_id);
2257 
2258 		scmi_protocol_put(pi->proto);
2259 
2260 		devres_release_group(handle->dev, gid);
2261 		dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
2262 			protocol_id);
2263 	}
2264 
2265 out:
2266 	mutex_unlock(&info->protocols_mtx);
2267 }
2268 
2269 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
2270 				     u8 *prot_imp)
2271 {
2272 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2273 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
2274 
2275 	info->protocols_imp = prot_imp;
2276 }
2277 
2278 static bool
2279 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
2280 {
2281 	int i;
2282 	struct scmi_info *info = handle_to_scmi_info(handle);
2283 	struct scmi_revision_info *rev = handle->version;
2284 
2285 	if (!info->protocols_imp)
2286 		return false;
2287 
2288 	for (i = 0; i < rev->num_protocols; i++)
2289 		if (info->protocols_imp[i] == prot_id)
2290 			return true;
2291 	return false;
2292 }
2293 
2294 struct scmi_protocol_devres {
2295 	const struct scmi_handle *handle;
2296 	u8 protocol_id;
2297 };
2298 
2299 static void scmi_devm_release_protocol(struct device *dev, void *res)
2300 {
2301 	struct scmi_protocol_devres *dres = res;
2302 
2303 	scmi_protocol_release(dres->handle, dres->protocol_id);
2304 }
2305 
2306 static struct scmi_protocol_instance __must_check *
2307 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
2308 {
2309 	struct scmi_protocol_instance *pi;
2310 	struct scmi_protocol_devres *dres;
2311 
2312 	dres = devres_alloc(scmi_devm_release_protocol,
2313 			    sizeof(*dres), GFP_KERNEL);
2314 	if (!dres)
2315 		return ERR_PTR(-ENOMEM);
2316 
2317 	pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2318 	if (IS_ERR(pi)) {
2319 		devres_free(dres);
2320 		return pi;
2321 	}
2322 
2323 	dres->handle = sdev->handle;
2324 	dres->protocol_id = protocol_id;
2325 	devres_add(&sdev->dev, dres);
2326 
2327 	return pi;
2328 }
2329 
2330 /**
2331  * scmi_devm_protocol_get  - Devres managed get protocol operations and handle
2332  * @sdev: A reference to an scmi_device whose embedded struct device is to
2333  *	  be used for devres accounting.
2334  * @protocol_id: The protocol being requested.
2335  * @ph: A pointer reference used to pass back the associated protocol handle.
2336  *
2337  * Get hold of a protocol accounting for its usage, eventually triggering its
2338  * initialization, and returning the protocol specific operations and related
2339  * protocol handle which will be used as first argument in most of the
2340  * protocols operations methods.
2341  * Being a devres based managed method, protocol hold will be automatically
2342  * released, and possibly de-initialized on last user, once the SCMI driver
2343  * owning the scmi_device is unbound from it.
2344  *
2345  * Return: A reference to the requested protocol operations or error.
2346  *	   Must be checked for errors by caller.
2347  */
2348 static const void __must_check *
2349 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2350 		       struct scmi_protocol_handle **ph)
2351 {
2352 	struct scmi_protocol_instance *pi;
2353 
2354 	if (!ph)
2355 		return ERR_PTR(-EINVAL);
2356 
2357 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2358 	if (IS_ERR(pi))
2359 		return pi;
2360 
2361 	*ph = &pi->ph;
2362 
2363 	return pi->proto->ops;
2364 }
2365 
2366 /**
2367  * scmi_devm_protocol_acquire  - Devres managed helper to get hold of a protocol
2368  * @sdev: A reference to an scmi_device whose embedded struct device is to
2369  *	  be used for devres accounting.
2370  * @protocol_id: The protocol being requested.
2371  *
2372  * Get hold of a protocol accounting for its usage, possibly triggering its
2373  * initialization but without getting access to its protocol specific operations
2374  * and handle.
2375  *
2376  * Being a devres based managed method, protocol hold will be automatically
2377  * released, and possibly de-initialized on last user, once the SCMI driver
2378  * owning the scmi_device is unbound from it.
2379  *
2380  * Return: 0 on SUCCESS
2381  */
2382 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2383 						   u8 protocol_id)
2384 {
2385 	struct scmi_protocol_instance *pi;
2386 
2387 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2388 	if (IS_ERR(pi))
2389 		return PTR_ERR(pi);
2390 
2391 	return 0;
2392 }
2393 
2394 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2395 {
2396 	struct scmi_protocol_devres *dres = res;
2397 
2398 	if (WARN_ON(!dres || !data))
2399 		return 0;
2400 
2401 	return dres->protocol_id == *((u8 *)data);
2402 }
2403 
2404 /**
2405  * scmi_devm_protocol_put  - Devres managed put protocol operations and handle
2406  * @sdev: A reference to an scmi_device whose embedded struct device is to
2407  *	  be used for devres accounting.
2408  * @protocol_id: The protocol being requested.
2409  *
2410  * Explicitly release a protocol hold previously obtained calling the above
2411  * @scmi_devm_protocol_get.
2412  */
2413 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2414 {
2415 	int ret;
2416 
2417 	ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2418 			     scmi_devm_protocol_match, &protocol_id);
2419 	WARN_ON(ret);
2420 }
2421 
2422 /**
2423  * scmi_is_transport_atomic  - Method to check if underlying transport for an
2424  * SCMI instance is configured as atomic.
2425  *
2426  * @handle: A reference to the SCMI platform instance.
2427  * @atomic_threshold: An optional return value for the system wide currently
2428  *		      configured threshold for atomic operations.
2429  *
2430  * Return: True if transport is configured as atomic
2431  */
2432 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2433 				     unsigned int *atomic_threshold)
2434 {
2435 	bool ret;
2436 	struct scmi_info *info = handle_to_scmi_info(handle);
2437 
2438 	ret = info->desc->atomic_enabled &&
2439 		is_transport_polling_capable(info->desc);
2440 	if (ret && atomic_threshold)
2441 		*atomic_threshold = info->desc->atomic_threshold;
2442 
2443 	return ret;
2444 }
2445 
2446 /**
2447  * scmi_handle_get() - Get the SCMI handle for a device
2448  *
2449  * @dev: pointer to device for which we want SCMI handle
2450  *
2451  * NOTE: The function does not track individual clients of the framework
2452  * and is expected to be maintained by caller of SCMI protocol library.
2453  * scmi_handle_put must be balanced with successful scmi_handle_get
2454  *
2455  * Return: pointer to handle if successful, NULL on error
2456  */
2457 static struct scmi_handle *scmi_handle_get(struct device *dev)
2458 {
2459 	struct list_head *p;
2460 	struct scmi_info *info;
2461 	struct scmi_handle *handle = NULL;
2462 
2463 	mutex_lock(&scmi_list_mutex);
2464 	list_for_each(p, &scmi_list) {
2465 		info = list_entry(p, struct scmi_info, node);
2466 		if (dev->parent == info->dev) {
2467 			info->users++;
2468 			handle = &info->handle;
2469 			break;
2470 		}
2471 	}
2472 	mutex_unlock(&scmi_list_mutex);
2473 
2474 	return handle;
2475 }
2476 
2477 /**
2478  * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2479  *
2480  * @handle: handle acquired by scmi_handle_get
2481  *
2482  * NOTE: The function does not track individual clients of the framework
2483  * and is expected to be maintained by caller of SCMI protocol library.
2484  * scmi_handle_put must be balanced with successful scmi_handle_get
2485  *
2486  * Return: 0 is successfully released
2487  *	if null was passed, it returns -EINVAL;
2488  */
2489 static int scmi_handle_put(const struct scmi_handle *handle)
2490 {
2491 	struct scmi_info *info;
2492 
2493 	if (!handle)
2494 		return -EINVAL;
2495 
2496 	info = handle_to_scmi_info(handle);
2497 	mutex_lock(&scmi_list_mutex);
2498 	if (!WARN_ON(!info->users))
2499 		info->users--;
2500 	mutex_unlock(&scmi_list_mutex);
2501 
2502 	return 0;
2503 }
2504 
2505 static void scmi_device_link_add(struct device *consumer,
2506 				 struct device *supplier)
2507 {
2508 	struct device_link *link;
2509 
2510 	link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2511 
2512 	WARN_ON(!link);
2513 }
2514 
2515 static void scmi_set_handle(struct scmi_device *scmi_dev)
2516 {
2517 	scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2518 	if (scmi_dev->handle)
2519 		scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2520 }
2521 
2522 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2523 				 struct scmi_xfers_info *info)
2524 {
2525 	int i;
2526 	struct scmi_xfer *xfer;
2527 	struct device *dev = sinfo->dev;
2528 	const struct scmi_desc *desc = sinfo->desc;
2529 
2530 	/* Pre-allocated messages, no more than what hdr.seq can support */
2531 	if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2532 		dev_err(dev,
2533 			"Invalid maximum messages %d, not in range [1 - %lu]\n",
2534 			info->max_msg, MSG_TOKEN_MAX);
2535 		return -EINVAL;
2536 	}
2537 
2538 	hash_init(info->pending_xfers);
2539 
2540 	/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2541 	info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2542 						    GFP_KERNEL);
2543 	if (!info->xfer_alloc_table)
2544 		return -ENOMEM;
2545 
2546 	/*
2547 	 * Preallocate a number of xfers equal to max inflight messages,
2548 	 * pre-initialize the buffer pointer to pre-allocated buffers and
2549 	 * attach all of them to the free list
2550 	 */
2551 	INIT_HLIST_HEAD(&info->free_xfers);
2552 	for (i = 0; i < info->max_msg; i++) {
2553 		xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2554 		if (!xfer)
2555 			return -ENOMEM;
2556 
2557 		xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2558 					    GFP_KERNEL);
2559 		if (!xfer->rx.buf)
2560 			return -ENOMEM;
2561 
2562 		xfer->tx.buf = xfer->rx.buf;
2563 		init_completion(&xfer->done);
2564 		spin_lock_init(&xfer->lock);
2565 
2566 		/* Add initialized xfer to the free list */
2567 		hlist_add_head(&xfer->node, &info->free_xfers);
2568 	}
2569 
2570 	spin_lock_init(&info->xfer_lock);
2571 
2572 	return 0;
2573 }
2574 
2575 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2576 {
2577 	const struct scmi_desc *desc = sinfo->desc;
2578 
2579 	if (!desc->ops->get_max_msg) {
2580 		sinfo->tx_minfo.max_msg = desc->max_msg;
2581 		sinfo->rx_minfo.max_msg = desc->max_msg;
2582 	} else {
2583 		struct scmi_chan_info *base_cinfo;
2584 
2585 		base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2586 		if (!base_cinfo)
2587 			return -EINVAL;
2588 		sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2589 
2590 		/* RX channel is optional so can be skipped */
2591 		base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2592 		if (base_cinfo)
2593 			sinfo->rx_minfo.max_msg =
2594 				desc->ops->get_max_msg(base_cinfo);
2595 	}
2596 
2597 	return 0;
2598 }
2599 
2600 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2601 {
2602 	int ret;
2603 
2604 	ret = scmi_channels_max_msg_configure(sinfo);
2605 	if (ret)
2606 		return ret;
2607 
2608 	ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2609 	if (!ret && !idr_is_empty(&sinfo->rx_idr))
2610 		ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2611 
2612 	return ret;
2613 }
2614 
2615 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2616 			   int prot_id, bool tx)
2617 {
2618 	int ret, idx;
2619 	char name[32];
2620 	struct scmi_chan_info *cinfo;
2621 	struct idr *idr;
2622 	struct scmi_device *tdev = NULL;
2623 
2624 	/* Transmit channel is first entry i.e. index 0 */
2625 	idx = tx ? 0 : 1;
2626 	idr = tx ? &info->tx_idr : &info->rx_idr;
2627 
2628 	if (!info->desc->ops->chan_available(of_node, idx)) {
2629 		cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2630 		if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2631 			return -EINVAL;
2632 		goto idr_alloc;
2633 	}
2634 
2635 	cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2636 	if (!cinfo)
2637 		return -ENOMEM;
2638 
2639 	cinfo->is_p2a = !tx;
2640 	cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2641 	cinfo->max_msg_size = info->desc->max_msg_size;
2642 
2643 	/* Create a unique name for this transport device */
2644 	snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2645 		 idx ? "rx" : "tx", prot_id);
2646 	/* Create a uniquely named, dedicated transport device for this chan */
2647 	tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2648 	if (!tdev) {
2649 		dev_err(info->dev,
2650 			"failed to create transport device (%s)\n", name);
2651 		devm_kfree(info->dev, cinfo);
2652 		return -EINVAL;
2653 	}
2654 	of_node_get(of_node);
2655 
2656 	cinfo->id = prot_id;
2657 	cinfo->dev = &tdev->dev;
2658 	ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2659 	if (ret) {
2660 		of_node_put(of_node);
2661 		scmi_device_destroy(info->dev, prot_id, name);
2662 		devm_kfree(info->dev, cinfo);
2663 		return ret;
2664 	}
2665 
2666 	if (tx && is_polling_required(cinfo, info->desc)) {
2667 		if (is_transport_polling_capable(info->desc))
2668 			dev_info(&tdev->dev,
2669 				 "Enabled polling mode TX channel - prot_id:%d\n",
2670 				 prot_id);
2671 		else
2672 			dev_warn(&tdev->dev,
2673 				 "Polling mode NOT supported by transport.\n");
2674 	}
2675 
2676 idr_alloc:
2677 	ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2678 	if (ret != prot_id) {
2679 		dev_err(info->dev,
2680 			"unable to allocate SCMI idr slot err %d\n", ret);
2681 		/* Destroy channel and device only if created by this call. */
2682 		if (tdev) {
2683 			of_node_put(of_node);
2684 			scmi_device_destroy(info->dev, prot_id, name);
2685 			devm_kfree(info->dev, cinfo);
2686 		}
2687 		return ret;
2688 	}
2689 
2690 	cinfo->handle = &info->handle;
2691 	return 0;
2692 }
2693 
2694 static inline int
2695 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2696 		int prot_id)
2697 {
2698 	int ret = scmi_chan_setup(info, of_node, prot_id, true);
2699 
2700 	if (!ret) {
2701 		/* Rx is optional, report only memory errors */
2702 		ret = scmi_chan_setup(info, of_node, prot_id, false);
2703 		if (ret && ret != -ENOMEM)
2704 			ret = 0;
2705 	}
2706 
2707 	if (ret)
2708 		dev_err(info->dev,
2709 			"failed to setup channel for protocol:0x%X\n", prot_id);
2710 
2711 	return ret;
2712 }
2713 
2714 /**
2715  * scmi_channels_setup  - Helper to initialize all required channels
2716  *
2717  * @info: The SCMI instance descriptor.
2718  *
2719  * Initialize all the channels found described in the DT against the underlying
2720  * configured transport using custom defined dedicated devices instead of
2721  * borrowing devices from the SCMI drivers; this way channels are initialized
2722  * upfront during core SCMI stack probing and are no more coupled with SCMI
2723  * devices used by SCMI drivers.
2724  *
2725  * Note that, even though a pair of TX/RX channels is associated to each
2726  * protocol defined in the DT, a distinct freshly initialized channel is
2727  * created only if the DT node for the protocol at hand describes a dedicated
2728  * channel: in all the other cases the common BASE protocol channel is reused.
2729  *
2730  * Return: 0 on Success
2731  */
2732 static int scmi_channels_setup(struct scmi_info *info)
2733 {
2734 	int ret;
2735 	struct device_node *top_np = info->dev->of_node;
2736 
2737 	/* Initialize a common generic channel at first */
2738 	ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2739 	if (ret)
2740 		return ret;
2741 
2742 	for_each_available_child_of_node_scoped(top_np, child) {
2743 		u32 prot_id;
2744 
2745 		if (of_property_read_u32(child, "reg", &prot_id))
2746 			continue;
2747 
2748 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2749 			dev_err(info->dev,
2750 				"Out of range protocol %d\n", prot_id);
2751 
2752 		ret = scmi_txrx_setup(info, child, prot_id);
2753 		if (ret)
2754 			return ret;
2755 	}
2756 
2757 	return 0;
2758 }
2759 
2760 static int scmi_chan_destroy(int id, void *p, void *idr)
2761 {
2762 	struct scmi_chan_info *cinfo = p;
2763 
2764 	if (cinfo->dev) {
2765 		struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2766 		struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2767 
2768 		of_node_put(cinfo->dev->of_node);
2769 		scmi_device_destroy(info->dev, id, sdev->name);
2770 		cinfo->dev = NULL;
2771 	}
2772 
2773 	idr_remove(idr, id);
2774 
2775 	return 0;
2776 }
2777 
2778 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2779 {
2780 	/* At first free all channels at the transport layer ... */
2781 	idr_for_each(idr, info->desc->ops->chan_free, idr);
2782 
2783 	/* ...then destroy all underlying devices */
2784 	idr_for_each(idr, scmi_chan_destroy, idr);
2785 
2786 	idr_destroy(idr);
2787 }
2788 
2789 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2790 {
2791 	scmi_cleanup_channels(info, &info->tx_idr);
2792 
2793 	scmi_cleanup_channels(info, &info->rx_idr);
2794 }
2795 
2796 static int scmi_bus_notifier(struct notifier_block *nb,
2797 			     unsigned long action, void *data)
2798 {
2799 	struct scmi_info *info = bus_nb_to_scmi_info(nb);
2800 	struct scmi_device *sdev = to_scmi_dev(data);
2801 
2802 	/* Skip transport devices and devices of different SCMI instances */
2803 	if (!strncmp(sdev->name, "__scmi_transport_device", 23) ||
2804 	    sdev->dev.parent != info->dev)
2805 		return NOTIFY_DONE;
2806 
2807 	switch (action) {
2808 	case BUS_NOTIFY_BIND_DRIVER:
2809 		/* setup handle now as the transport is ready */
2810 		scmi_set_handle(sdev);
2811 		break;
2812 	case BUS_NOTIFY_UNBOUND_DRIVER:
2813 		scmi_handle_put(sdev->handle);
2814 		sdev->handle = NULL;
2815 		break;
2816 	default:
2817 		return NOTIFY_DONE;
2818 	}
2819 
2820 	dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2821 		sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2822 		"about to be BOUND." : "UNBOUND.");
2823 
2824 	return NOTIFY_OK;
2825 }
2826 
2827 static int scmi_device_request_notifier(struct notifier_block *nb,
2828 					unsigned long action, void *data)
2829 {
2830 	struct device_node *np;
2831 	struct scmi_device_id *id_table = data;
2832 	struct scmi_info *info = req_nb_to_scmi_info(nb);
2833 
2834 	np = idr_find(&info->active_protocols, id_table->protocol_id);
2835 	if (!np)
2836 		return NOTIFY_DONE;
2837 
2838 	dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2839 		action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2840 		id_table->name, id_table->protocol_id);
2841 
2842 	switch (action) {
2843 	case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2844 		scmi_create_protocol_devices(np, info, id_table->protocol_id,
2845 					     id_table->name);
2846 		break;
2847 	case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2848 		scmi_destroy_protocol_devices(info, id_table->protocol_id,
2849 					      id_table->name);
2850 		break;
2851 	default:
2852 		return NOTIFY_DONE;
2853 	}
2854 
2855 	return NOTIFY_OK;
2856 }
2857 
2858 static const char * const dbg_counter_strs[] = {
2859 	"sent_ok",
2860 	"sent_fail",
2861 	"sent_fail_polling_unsupported",
2862 	"sent_fail_channel_not_found",
2863 	"response_ok",
2864 	"notification_ok",
2865 	"delayed_response_ok",
2866 	"xfers_response_timeout",
2867 	"xfers_response_polled_timeout",
2868 	"response_polled_ok",
2869 	"err_msg_unexpected",
2870 	"err_msg_invalid",
2871 	"err_msg_nomem",
2872 	"err_protocol",
2873 };
2874 
2875 static ssize_t reset_all_on_write(struct file *filp, const char __user *buf,
2876 				  size_t count, loff_t *ppos)
2877 {
2878 	struct scmi_debug_info *dbg = filp->private_data;
2879 
2880 	for (int i = 0; i < SCMI_DEBUG_COUNTERS_LAST; i++)
2881 		atomic_set(&dbg->counters[i], 0);
2882 
2883 	return count;
2884 }
2885 
2886 static const struct file_operations fops_reset_counts = {
2887 	.owner = THIS_MODULE,
2888 	.open = simple_open,
2889 	.write = reset_all_on_write,
2890 };
2891 
2892 static void scmi_debugfs_counters_setup(struct scmi_debug_info *dbg,
2893 					struct dentry *trans)
2894 {
2895 	struct dentry *counters;
2896 	int idx;
2897 
2898 	counters = debugfs_create_dir("counters", trans);
2899 
2900 	for (idx = 0; idx < SCMI_DEBUG_COUNTERS_LAST; idx++)
2901 		debugfs_create_atomic_t(dbg_counter_strs[idx], 0600, counters,
2902 					&dbg->counters[idx]);
2903 
2904 	debugfs_create_file("reset", 0200, counters, dbg, &fops_reset_counts);
2905 }
2906 
2907 static void scmi_debugfs_common_cleanup(void *d)
2908 {
2909 	struct scmi_debug_info *dbg = d;
2910 
2911 	if (!dbg)
2912 		return;
2913 
2914 	debugfs_remove_recursive(dbg->top_dentry);
2915 	kfree(dbg->name);
2916 	kfree(dbg->type);
2917 }
2918 
2919 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2920 {
2921 	char top_dir[16];
2922 	struct dentry *trans, *top_dentry;
2923 	struct scmi_debug_info *dbg;
2924 	const char *c_ptr = NULL;
2925 
2926 	dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2927 	if (!dbg)
2928 		return NULL;
2929 
2930 	dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2931 	if (!dbg->name) {
2932 		devm_kfree(info->dev, dbg);
2933 		return NULL;
2934 	}
2935 
2936 	of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2937 	dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2938 	if (!dbg->type) {
2939 		kfree(dbg->name);
2940 		devm_kfree(info->dev, dbg);
2941 		return NULL;
2942 	}
2943 
2944 	snprintf(top_dir, 16, "%d", info->id);
2945 	top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2946 	trans = debugfs_create_dir("transport", top_dentry);
2947 
2948 	dbg->is_atomic = info->desc->atomic_enabled &&
2949 				is_transport_polling_capable(info->desc);
2950 
2951 	debugfs_create_str("instance_name", 0400, top_dentry,
2952 			   (char **)&dbg->name);
2953 
2954 	debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2955 			   (u32 *)&info->desc->atomic_threshold);
2956 
2957 	debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
2958 
2959 	debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
2960 
2961 	debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
2962 			   (u32 *)&info->desc->max_rx_timeout_ms);
2963 
2964 	debugfs_create_u32("max_msg_size", 0400, trans,
2965 			   (u32 *)&info->desc->max_msg_size);
2966 
2967 	debugfs_create_u32("tx_max_msg", 0400, trans,
2968 			   (u32 *)&info->tx_minfo.max_msg);
2969 
2970 	debugfs_create_u32("rx_max_msg", 0400, trans,
2971 			   (u32 *)&info->rx_minfo.max_msg);
2972 
2973 	if (IS_ENABLED(CONFIG_ARM_SCMI_DEBUG_COUNTERS))
2974 		scmi_debugfs_counters_setup(dbg, trans);
2975 
2976 	dbg->top_dentry = top_dentry;
2977 
2978 	if (devm_add_action_or_reset(info->dev,
2979 				     scmi_debugfs_common_cleanup, dbg))
2980 		return NULL;
2981 
2982 	return dbg;
2983 }
2984 
2985 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
2986 {
2987 	int id, num_chans = 0, ret = 0;
2988 	struct scmi_chan_info *cinfo;
2989 	u8 channels[SCMI_MAX_CHANNELS] = {};
2990 	DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
2991 
2992 	if (!info->dbg)
2993 		return -EINVAL;
2994 
2995 	/* Enumerate all channels to collect their ids */
2996 	idr_for_each_entry(&info->tx_idr, cinfo, id) {
2997 		/*
2998 		 * Cannot happen, but be defensive.
2999 		 * Zero as num_chans is ok, warn and carry on.
3000 		 */
3001 		if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
3002 			dev_warn(info->dev,
3003 				 "SCMI RAW - Error enumerating channels\n");
3004 			break;
3005 		}
3006 
3007 		if (!test_bit(cinfo->id, protos)) {
3008 			channels[num_chans++] = cinfo->id;
3009 			set_bit(cinfo->id, protos);
3010 		}
3011 	}
3012 
3013 	info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
3014 				       info->id, channels, num_chans,
3015 				       info->desc, info->tx_minfo.max_msg);
3016 	if (IS_ERR(info->raw)) {
3017 		dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
3018 		ret = PTR_ERR(info->raw);
3019 		info->raw = NULL;
3020 	}
3021 
3022 	return ret;
3023 }
3024 
3025 static const struct scmi_desc *scmi_transport_setup(struct device *dev)
3026 {
3027 	struct scmi_transport *trans;
3028 	int ret;
3029 
3030 	trans = dev_get_platdata(dev);
3031 	if (!trans || !trans->desc || !trans->supplier || !trans->core_ops)
3032 		return NULL;
3033 
3034 	if (!device_link_add(dev, trans->supplier, DL_FLAG_AUTOREMOVE_CONSUMER)) {
3035 		dev_err(dev,
3036 			"Adding link to supplier transport device failed\n");
3037 		return NULL;
3038 	}
3039 
3040 	/* Provide core transport ops */
3041 	*trans->core_ops = &scmi_trans_core_ops;
3042 
3043 	dev_info(dev, "Using %s\n", dev_driver_string(trans->supplier));
3044 
3045 	ret = of_property_read_u32(dev->of_node, "arm,max-rx-timeout-ms",
3046 				   &trans->desc->max_rx_timeout_ms);
3047 	if (ret && ret != -EINVAL)
3048 		dev_err(dev, "Malformed arm,max-rx-timeout-ms DT property.\n");
3049 
3050 	ret = of_property_read_u32(dev->of_node, "arm,max-msg-size",
3051 				   &trans->desc->max_msg_size);
3052 	if (ret && ret != -EINVAL)
3053 		dev_err(dev, "Malformed arm,max-msg-size DT property.\n");
3054 
3055 	ret = of_property_read_u32(dev->of_node, "arm,max-msg",
3056 				   &trans->desc->max_msg);
3057 	if (ret && ret != -EINVAL)
3058 		dev_err(dev, "Malformed arm,max-msg DT property.\n");
3059 
3060 	dev_info(dev,
3061 		 "SCMI max-rx-timeout: %dms / max-msg-size: %dbytes / max-msg: %d\n",
3062 		 trans->desc->max_rx_timeout_ms, trans->desc->max_msg_size,
3063 		 trans->desc->max_msg);
3064 
3065 	/* System wide atomic threshold for atomic ops .. if any */
3066 	if (!of_property_read_u32(dev->of_node, "atomic-threshold-us",
3067 				  &trans->desc->atomic_threshold))
3068 		dev_info(dev,
3069 			 "SCMI System wide atomic threshold set to %u us\n",
3070 			 trans->desc->atomic_threshold);
3071 
3072 	return trans->desc;
3073 }
3074 
3075 static int scmi_probe(struct platform_device *pdev)
3076 {
3077 	int ret;
3078 	char *err_str = "probe failure\n";
3079 	struct scmi_handle *handle;
3080 	const struct scmi_desc *desc;
3081 	struct scmi_info *info;
3082 	bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
3083 	struct device *dev = &pdev->dev;
3084 	struct device_node *child, *np = dev->of_node;
3085 
3086 	desc = scmi_transport_setup(dev);
3087 	if (!desc) {
3088 		err_str = "transport invalid\n";
3089 		ret = -EINVAL;
3090 		goto out_err;
3091 	}
3092 
3093 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
3094 	if (!info)
3095 		return -ENOMEM;
3096 
3097 	info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
3098 	if (info->id < 0)
3099 		return info->id;
3100 
3101 	info->dev = dev;
3102 	info->desc = desc;
3103 	info->bus_nb.notifier_call = scmi_bus_notifier;
3104 	info->dev_req_nb.notifier_call = scmi_device_request_notifier;
3105 	INIT_LIST_HEAD(&info->node);
3106 	idr_init(&info->protocols);
3107 	mutex_init(&info->protocols_mtx);
3108 	idr_init(&info->active_protocols);
3109 	mutex_init(&info->devreq_mtx);
3110 
3111 	platform_set_drvdata(pdev, info);
3112 	idr_init(&info->tx_idr);
3113 	idr_init(&info->rx_idr);
3114 
3115 	handle = &info->handle;
3116 	handle->dev = info->dev;
3117 	handle->version = &info->version;
3118 	handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
3119 	handle->devm_protocol_get = scmi_devm_protocol_get;
3120 	handle->devm_protocol_put = scmi_devm_protocol_put;
3121 	handle->is_transport_atomic = scmi_is_transport_atomic;
3122 
3123 	/* Setup all channels described in the DT at first */
3124 	ret = scmi_channels_setup(info);
3125 	if (ret) {
3126 		err_str = "failed to setup channels\n";
3127 		goto clear_ida;
3128 	}
3129 
3130 	ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
3131 	if (ret) {
3132 		err_str = "failed to register bus notifier\n";
3133 		goto clear_txrx_setup;
3134 	}
3135 
3136 	ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
3137 					       &info->dev_req_nb);
3138 	if (ret) {
3139 		err_str = "failed to register device notifier\n";
3140 		goto clear_bus_notifier;
3141 	}
3142 
3143 	ret = scmi_xfer_info_init(info);
3144 	if (ret) {
3145 		err_str = "failed to init xfers pool\n";
3146 		goto clear_dev_req_notifier;
3147 	}
3148 
3149 	if (scmi_top_dentry) {
3150 		info->dbg = scmi_debugfs_common_setup(info);
3151 		if (!info->dbg)
3152 			dev_warn(dev, "Failed to setup SCMI debugfs.\n");
3153 
3154 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
3155 			ret = scmi_debugfs_raw_mode_setup(info);
3156 			if (!coex) {
3157 				if (ret)
3158 					goto clear_dev_req_notifier;
3159 
3160 				/* Bail out anyway when coex disabled. */
3161 				return 0;
3162 			}
3163 
3164 			/* Coex enabled, carry on in any case. */
3165 			dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
3166 		}
3167 	}
3168 
3169 	if (scmi_notification_init(handle))
3170 		dev_err(dev, "SCMI Notifications NOT available.\n");
3171 
3172 	if (info->desc->atomic_enabled &&
3173 	    !is_transport_polling_capable(info->desc))
3174 		dev_err(dev,
3175 			"Transport is not polling capable. Atomic mode not supported.\n");
3176 
3177 	/*
3178 	 * Trigger SCMI Base protocol initialization.
3179 	 * It's mandatory and won't be ever released/deinit until the
3180 	 * SCMI stack is shutdown/unloaded as a whole.
3181 	 */
3182 	ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
3183 	if (ret) {
3184 		err_str = "unable to communicate with SCMI\n";
3185 		if (coex) {
3186 			dev_err(dev, "%s", err_str);
3187 			return 0;
3188 		}
3189 		goto notification_exit;
3190 	}
3191 
3192 	mutex_lock(&scmi_list_mutex);
3193 	list_add_tail(&info->node, &scmi_list);
3194 	mutex_unlock(&scmi_list_mutex);
3195 
3196 	for_each_available_child_of_node(np, child) {
3197 		u32 prot_id;
3198 
3199 		if (of_property_read_u32(child, "reg", &prot_id))
3200 			continue;
3201 
3202 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
3203 			dev_err(dev, "Out of range protocol %d\n", prot_id);
3204 
3205 		if (!scmi_is_protocol_implemented(handle, prot_id)) {
3206 			dev_err(dev, "SCMI protocol %d not implemented\n",
3207 				prot_id);
3208 			continue;
3209 		}
3210 
3211 		/*
3212 		 * Save this valid DT protocol descriptor amongst
3213 		 * @active_protocols for this SCMI instance/
3214 		 */
3215 		ret = idr_alloc(&info->active_protocols, child,
3216 				prot_id, prot_id + 1, GFP_KERNEL);
3217 		if (ret != prot_id) {
3218 			dev_err(dev, "SCMI protocol %d already activated. Skip\n",
3219 				prot_id);
3220 			continue;
3221 		}
3222 
3223 		of_node_get(child);
3224 		scmi_create_protocol_devices(child, info, prot_id, NULL);
3225 	}
3226 
3227 	return 0;
3228 
3229 notification_exit:
3230 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
3231 		scmi_raw_mode_cleanup(info->raw);
3232 	scmi_notification_exit(&info->handle);
3233 clear_dev_req_notifier:
3234 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
3235 					   &info->dev_req_nb);
3236 clear_bus_notifier:
3237 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
3238 clear_txrx_setup:
3239 	scmi_cleanup_txrx_channels(info);
3240 clear_ida:
3241 	ida_free(&scmi_id, info->id);
3242 
3243 out_err:
3244 	return dev_err_probe(dev, ret, "%s", err_str);
3245 }
3246 
3247 static void scmi_remove(struct platform_device *pdev)
3248 {
3249 	int id;
3250 	struct scmi_info *info = platform_get_drvdata(pdev);
3251 	struct device_node *child;
3252 
3253 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
3254 		scmi_raw_mode_cleanup(info->raw);
3255 
3256 	mutex_lock(&scmi_list_mutex);
3257 	if (info->users)
3258 		dev_warn(&pdev->dev,
3259 			 "Still active SCMI users will be forcibly unbound.\n");
3260 	list_del(&info->node);
3261 	mutex_unlock(&scmi_list_mutex);
3262 
3263 	scmi_notification_exit(&info->handle);
3264 
3265 	mutex_lock(&info->protocols_mtx);
3266 	idr_destroy(&info->protocols);
3267 	mutex_unlock(&info->protocols_mtx);
3268 
3269 	idr_for_each_entry(&info->active_protocols, child, id)
3270 		of_node_put(child);
3271 	idr_destroy(&info->active_protocols);
3272 
3273 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
3274 					   &info->dev_req_nb);
3275 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
3276 
3277 	/* Safe to free channels since no more users */
3278 	scmi_cleanup_txrx_channels(info);
3279 
3280 	ida_free(&scmi_id, info->id);
3281 }
3282 
3283 static ssize_t protocol_version_show(struct device *dev,
3284 				     struct device_attribute *attr, char *buf)
3285 {
3286 	struct scmi_info *info = dev_get_drvdata(dev);
3287 
3288 	return sprintf(buf, "%u.%u\n", info->version.major_ver,
3289 		       info->version.minor_ver);
3290 }
3291 static DEVICE_ATTR_RO(protocol_version);
3292 
3293 static ssize_t firmware_version_show(struct device *dev,
3294 				     struct device_attribute *attr, char *buf)
3295 {
3296 	struct scmi_info *info = dev_get_drvdata(dev);
3297 
3298 	return sprintf(buf, "0x%x\n", info->version.impl_ver);
3299 }
3300 static DEVICE_ATTR_RO(firmware_version);
3301 
3302 static ssize_t vendor_id_show(struct device *dev,
3303 			      struct device_attribute *attr, char *buf)
3304 {
3305 	struct scmi_info *info = dev_get_drvdata(dev);
3306 
3307 	return sprintf(buf, "%s\n", info->version.vendor_id);
3308 }
3309 static DEVICE_ATTR_RO(vendor_id);
3310 
3311 static ssize_t sub_vendor_id_show(struct device *dev,
3312 				  struct device_attribute *attr, char *buf)
3313 {
3314 	struct scmi_info *info = dev_get_drvdata(dev);
3315 
3316 	return sprintf(buf, "%s\n", info->version.sub_vendor_id);
3317 }
3318 static DEVICE_ATTR_RO(sub_vendor_id);
3319 
3320 static struct attribute *versions_attrs[] = {
3321 	&dev_attr_firmware_version.attr,
3322 	&dev_attr_protocol_version.attr,
3323 	&dev_attr_vendor_id.attr,
3324 	&dev_attr_sub_vendor_id.attr,
3325 	NULL,
3326 };
3327 ATTRIBUTE_GROUPS(versions);
3328 
3329 static struct platform_driver scmi_driver = {
3330 	.driver = {
3331 		   .name = "arm-scmi",
3332 		   .suppress_bind_attrs = true,
3333 		   .dev_groups = versions_groups,
3334 		   },
3335 	.probe = scmi_probe,
3336 	.remove = scmi_remove,
3337 };
3338 
3339 static struct dentry *scmi_debugfs_init(void)
3340 {
3341 	struct dentry *d;
3342 
3343 	d = debugfs_create_dir("scmi", NULL);
3344 	if (IS_ERR(d)) {
3345 		pr_err("Could NOT create SCMI top dentry.\n");
3346 		return NULL;
3347 	}
3348 
3349 	return d;
3350 }
3351 
3352 static int __init scmi_driver_init(void)
3353 {
3354 	/* Bail out if no SCMI transport was configured */
3355 	if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3356 		return -EINVAL;
3357 
3358 	if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_SHMEM))
3359 		scmi_trans_core_ops.shmem = scmi_shared_mem_operations_get();
3360 
3361 	if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_MSG))
3362 		scmi_trans_core_ops.msg = scmi_message_operations_get();
3363 
3364 	if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3365 		scmi_top_dentry = scmi_debugfs_init();
3366 
3367 	scmi_base_register();
3368 
3369 	scmi_clock_register();
3370 	scmi_perf_register();
3371 	scmi_power_register();
3372 	scmi_reset_register();
3373 	scmi_sensors_register();
3374 	scmi_voltage_register();
3375 	scmi_system_register();
3376 	scmi_powercap_register();
3377 	scmi_pinctrl_register();
3378 
3379 	return platform_driver_register(&scmi_driver);
3380 }
3381 module_init(scmi_driver_init);
3382 
3383 static void __exit scmi_driver_exit(void)
3384 {
3385 	scmi_base_unregister();
3386 
3387 	scmi_clock_unregister();
3388 	scmi_perf_unregister();
3389 	scmi_power_unregister();
3390 	scmi_reset_unregister();
3391 	scmi_sensors_unregister();
3392 	scmi_voltage_unregister();
3393 	scmi_system_unregister();
3394 	scmi_powercap_unregister();
3395 	scmi_pinctrl_unregister();
3396 
3397 	platform_driver_unregister(&scmi_driver);
3398 
3399 	debugfs_remove_recursive(scmi_top_dentry);
3400 }
3401 module_exit(scmi_driver_exit);
3402 
3403 MODULE_ALIAS("platform:arm-scmi");
3404 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3405 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3406 MODULE_LICENSE("GPL v2");
3407