1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Control and Management Interface (SCMI) Message Protocol driver 4 * 5 * SCMI Message Protocol is used between the System Control Processor(SCP) 6 * and the Application Processors(AP). The Message Handling Unit(MHU) 7 * provides a mechanism for inter-processor communication between SCP's 8 * Cortex M3 and AP. 9 * 10 * SCP offers control and management of the core/cluster power states, 11 * various power domain DVFS including the core/cluster, certain system 12 * clocks configuration, thermal sensors and many others. 13 * 14 * Copyright (C) 2018-2021 ARM Ltd. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/debugfs.h> 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/idr.h> 24 #include <linux/io.h> 25 #include <linux/io-64-nonatomic-hi-lo.h> 26 #include <linux/kernel.h> 27 #include <linux/ktime.h> 28 #include <linux/hashtable.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/of.h> 32 #include <linux/platform_device.h> 33 #include <linux/processor.h> 34 #include <linux/refcount.h> 35 #include <linux/slab.h> 36 #include <linux/xarray.h> 37 38 #include "common.h" 39 #include "notify.h" 40 41 #include "raw_mode.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/scmi.h> 45 46 static DEFINE_IDA(scmi_id); 47 48 static DEFINE_XARRAY(scmi_protocols); 49 50 /* List of all SCMI devices active in system */ 51 static LIST_HEAD(scmi_list); 52 /* Protection for the entire list */ 53 static DEFINE_MUTEX(scmi_list_mutex); 54 /* Track the unique id for the transfers for debug & profiling purpose */ 55 static atomic_t transfer_last_id; 56 57 static struct dentry *scmi_top_dentry; 58 59 /** 60 * struct scmi_xfers_info - Structure to manage transfer information 61 * 62 * @xfer_alloc_table: Bitmap table for allocated messages. 63 * Index of this bitmap table is also used for message 64 * sequence identifier. 65 * @xfer_lock: Protection for message allocation 66 * @max_msg: Maximum number of messages that can be pending 67 * @free_xfers: A free list for available to use xfers. It is initialized with 68 * a number of xfers equal to the maximum allowed in-flight 69 * messages. 70 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the 71 * currently in-flight messages. 72 */ 73 struct scmi_xfers_info { 74 unsigned long *xfer_alloc_table; 75 spinlock_t xfer_lock; 76 int max_msg; 77 struct hlist_head free_xfers; 78 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ); 79 }; 80 81 /** 82 * struct scmi_protocol_instance - Describe an initialized protocol instance. 83 * @handle: Reference to the SCMI handle associated to this protocol instance. 84 * @proto: A reference to the protocol descriptor. 85 * @gid: A reference for per-protocol devres management. 86 * @users: A refcount to track effective users of this protocol. 87 * @priv: Reference for optional protocol private data. 88 * @version: Protocol version supported by the platform as detected at runtime. 89 * @negotiated_version: When the platform supports a newer protocol version, 90 * the agent will try to negotiate with the platform the 91 * usage of the newest version known to it, since 92 * backward compatibility is NOT automatically assured. 93 * This field is NON-zero when a successful negotiation 94 * has completed. 95 * @ph: An embedded protocol handle that will be passed down to protocol 96 * initialization code to identify this instance. 97 * 98 * Each protocol is initialized independently once for each SCMI platform in 99 * which is defined by DT and implemented by the SCMI server fw. 100 */ 101 struct scmi_protocol_instance { 102 const struct scmi_handle *handle; 103 const struct scmi_protocol *proto; 104 void *gid; 105 refcount_t users; 106 void *priv; 107 unsigned int version; 108 unsigned int negotiated_version; 109 struct scmi_protocol_handle ph; 110 }; 111 112 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph) 113 114 /** 115 * struct scmi_debug_info - Debug common info 116 * @top_dentry: A reference to the top debugfs dentry 117 * @name: Name of this SCMI instance 118 * @type: Type of this SCMI instance 119 * @is_atomic: Flag to state if the transport of this instance is atomic 120 */ 121 struct scmi_debug_info { 122 struct dentry *top_dentry; 123 const char *name; 124 const char *type; 125 bool is_atomic; 126 }; 127 128 /** 129 * struct scmi_info - Structure representing a SCMI instance 130 * 131 * @id: A sequence number starting from zero identifying this instance 132 * @dev: Device pointer 133 * @desc: SoC description for this instance 134 * @version: SCMI revision information containing protocol version, 135 * implementation version and (sub-)vendor identification. 136 * @handle: Instance of SCMI handle to send to clients 137 * @tx_minfo: Universal Transmit Message management info 138 * @rx_minfo: Universal Receive Message management info 139 * @tx_idr: IDR object to map protocol id to Tx channel info pointer 140 * @rx_idr: IDR object to map protocol id to Rx channel info pointer 141 * @protocols: IDR for protocols' instance descriptors initialized for 142 * this SCMI instance: populated on protocol's first attempted 143 * usage. 144 * @protocols_mtx: A mutex to protect protocols instances initialization. 145 * @protocols_imp: List of protocols implemented, currently maximum of 146 * scmi_revision_info.num_protocols elements allocated by the 147 * base protocol 148 * @active_protocols: IDR storing device_nodes for protocols actually defined 149 * in the DT and confirmed as implemented by fw. 150 * @atomic_threshold: Optional system wide DT-configured threshold, expressed 151 * in microseconds, for atomic operations. 152 * Only SCMI synchronous commands reported by the platform 153 * to have an execution latency lesser-equal to the threshold 154 * should be considered for atomic mode operation: such 155 * decision is finally left up to the SCMI drivers. 156 * @notify_priv: Pointer to private data structure specific to notifications. 157 * @node: List head 158 * @users: Number of users of this instance 159 * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus 160 * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi 161 * bus 162 * @devreq_mtx: A mutex to serialize device creation for this SCMI instance 163 * @dbg: A pointer to debugfs related data (if any) 164 * @raw: An opaque reference handle used by SCMI Raw mode. 165 */ 166 struct scmi_info { 167 int id; 168 struct device *dev; 169 const struct scmi_desc *desc; 170 struct scmi_revision_info version; 171 struct scmi_handle handle; 172 struct scmi_xfers_info tx_minfo; 173 struct scmi_xfers_info rx_minfo; 174 struct idr tx_idr; 175 struct idr rx_idr; 176 struct idr protocols; 177 /* Ensure mutual exclusive access to protocols instance array */ 178 struct mutex protocols_mtx; 179 u8 *protocols_imp; 180 struct idr active_protocols; 181 unsigned int atomic_threshold; 182 void *notify_priv; 183 struct list_head node; 184 int users; 185 struct notifier_block bus_nb; 186 struct notifier_block dev_req_nb; 187 /* Serialize device creation process for this instance */ 188 struct mutex devreq_mtx; 189 struct scmi_debug_info *dbg; 190 void *raw; 191 }; 192 193 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle) 194 #define bus_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, bus_nb) 195 #define req_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, dev_req_nb) 196 197 static unsigned long 198 scmi_vendor_protocol_signature(unsigned int protocol_id, char *vendor_id, 199 char *sub_vendor_id, u32 impl_ver) 200 { 201 char *signature, *p; 202 unsigned long hash = 0; 203 204 /* vendor_id/sub_vendor_id guaranteed <= SCMI_SHORT_NAME_MAX_SIZE */ 205 signature = kasprintf(GFP_KERNEL, "%02X|%s|%s|0x%08X", protocol_id, 206 vendor_id ?: "", sub_vendor_id ?: "", impl_ver); 207 if (!signature) 208 return 0; 209 210 p = signature; 211 while (*p) 212 hash = partial_name_hash(tolower(*p++), hash); 213 hash = end_name_hash(hash); 214 215 kfree(signature); 216 217 return hash; 218 } 219 220 static unsigned long 221 scmi_protocol_key_calculate(int protocol_id, char *vendor_id, 222 char *sub_vendor_id, u32 impl_ver) 223 { 224 if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE) 225 return protocol_id; 226 else 227 return scmi_vendor_protocol_signature(protocol_id, vendor_id, 228 sub_vendor_id, impl_ver); 229 } 230 231 static const struct scmi_protocol * 232 __scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id, 233 char *sub_vendor_id, u32 impl_ver) 234 { 235 unsigned long key; 236 struct scmi_protocol *proto = NULL; 237 238 key = scmi_protocol_key_calculate(protocol_id, vendor_id, 239 sub_vendor_id, impl_ver); 240 if (key) 241 proto = xa_load(&scmi_protocols, key); 242 243 return proto; 244 } 245 246 static const struct scmi_protocol * 247 scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id, 248 char *sub_vendor_id, u32 impl_ver) 249 { 250 const struct scmi_protocol *proto = NULL; 251 252 /* Searching for closest match ...*/ 253 proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id, 254 sub_vendor_id, impl_ver); 255 if (proto) 256 return proto; 257 258 /* Any match just on vendor/sub_vendor ? */ 259 if (impl_ver) { 260 proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id, 261 sub_vendor_id, 0); 262 if (proto) 263 return proto; 264 } 265 266 /* Any match just on the vendor ? */ 267 if (sub_vendor_id) 268 proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id, 269 NULL, 0); 270 return proto; 271 } 272 273 static const struct scmi_protocol * 274 scmi_protocol_get(int protocol_id, struct scmi_revision_info *version) 275 { 276 const struct scmi_protocol *proto = NULL; 277 278 if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE) 279 proto = xa_load(&scmi_protocols, protocol_id); 280 else 281 proto = scmi_vendor_protocol_lookup(protocol_id, 282 version->vendor_id, 283 version->sub_vendor_id, 284 version->impl_ver); 285 if (!proto || !try_module_get(proto->owner)) { 286 pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id); 287 return NULL; 288 } 289 290 pr_debug("Found SCMI Protocol 0x%x\n", protocol_id); 291 292 if (protocol_id >= SCMI_PROTOCOL_VENDOR_BASE) 293 pr_info("Loaded SCMI Vendor Protocol 0x%x - %s %s %X\n", 294 protocol_id, proto->vendor_id ?: "", 295 proto->sub_vendor_id ?: "", proto->impl_ver); 296 297 return proto; 298 } 299 300 static void scmi_protocol_put(const struct scmi_protocol *proto) 301 { 302 if (proto) 303 module_put(proto->owner); 304 } 305 306 static int scmi_vendor_protocol_check(const struct scmi_protocol *proto) 307 { 308 if (!proto->vendor_id) { 309 pr_err("missing vendor_id for protocol 0x%x\n", proto->id); 310 return -EINVAL; 311 } 312 313 if (strlen(proto->vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) { 314 pr_err("malformed vendor_id for protocol 0x%x\n", proto->id); 315 return -EINVAL; 316 } 317 318 if (proto->sub_vendor_id && 319 strlen(proto->sub_vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) { 320 pr_err("malformed sub_vendor_id for protocol 0x%x\n", 321 proto->id); 322 return -EINVAL; 323 } 324 325 return 0; 326 } 327 328 int scmi_protocol_register(const struct scmi_protocol *proto) 329 { 330 int ret; 331 unsigned long key; 332 333 if (!proto) { 334 pr_err("invalid protocol\n"); 335 return -EINVAL; 336 } 337 338 if (!proto->instance_init) { 339 pr_err("missing init for protocol 0x%x\n", proto->id); 340 return -EINVAL; 341 } 342 343 if (proto->id >= SCMI_PROTOCOL_VENDOR_BASE && 344 scmi_vendor_protocol_check(proto)) 345 return -EINVAL; 346 347 /* 348 * Calculate a protocol key to register this protocol with the core; 349 * key value 0 is considered invalid. 350 */ 351 key = scmi_protocol_key_calculate(proto->id, proto->vendor_id, 352 proto->sub_vendor_id, 353 proto->impl_ver); 354 if (!key) 355 return -EINVAL; 356 357 ret = xa_insert(&scmi_protocols, key, (void *)proto, GFP_KERNEL); 358 if (ret) { 359 pr_err("unable to allocate SCMI protocol slot for 0x%x - err %d\n", 360 proto->id, ret); 361 return ret; 362 } 363 364 pr_debug("Registered SCMI Protocol 0x%x\n", proto->id); 365 366 return 0; 367 } 368 EXPORT_SYMBOL_GPL(scmi_protocol_register); 369 370 void scmi_protocol_unregister(const struct scmi_protocol *proto) 371 { 372 unsigned long key; 373 374 key = scmi_protocol_key_calculate(proto->id, proto->vendor_id, 375 proto->sub_vendor_id, 376 proto->impl_ver); 377 if (!key) 378 return; 379 380 xa_erase(&scmi_protocols, key); 381 382 pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id); 383 } 384 EXPORT_SYMBOL_GPL(scmi_protocol_unregister); 385 386 /** 387 * scmi_create_protocol_devices - Create devices for all pending requests for 388 * this SCMI instance. 389 * 390 * @np: The device node describing the protocol 391 * @info: The SCMI instance descriptor 392 * @prot_id: The protocol ID 393 * @name: The optional name of the device to be created: if not provided this 394 * call will lead to the creation of all the devices currently requested 395 * for the specified protocol. 396 */ 397 static void scmi_create_protocol_devices(struct device_node *np, 398 struct scmi_info *info, 399 int prot_id, const char *name) 400 { 401 struct scmi_device *sdev; 402 403 mutex_lock(&info->devreq_mtx); 404 sdev = scmi_device_create(np, info->dev, prot_id, name); 405 if (name && !sdev) 406 dev_err(info->dev, 407 "failed to create device for protocol 0x%X (%s)\n", 408 prot_id, name); 409 mutex_unlock(&info->devreq_mtx); 410 } 411 412 static void scmi_destroy_protocol_devices(struct scmi_info *info, 413 int prot_id, const char *name) 414 { 415 mutex_lock(&info->devreq_mtx); 416 scmi_device_destroy(info->dev, prot_id, name); 417 mutex_unlock(&info->devreq_mtx); 418 } 419 420 void scmi_notification_instance_data_set(const struct scmi_handle *handle, 421 void *priv) 422 { 423 struct scmi_info *info = handle_to_scmi_info(handle); 424 425 info->notify_priv = priv; 426 /* Ensure updated protocol private date are visible */ 427 smp_wmb(); 428 } 429 430 void *scmi_notification_instance_data_get(const struct scmi_handle *handle) 431 { 432 struct scmi_info *info = handle_to_scmi_info(handle); 433 434 /* Ensure protocols_private_data has been updated */ 435 smp_rmb(); 436 return info->notify_priv; 437 } 438 439 /** 440 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand 441 * 442 * @minfo: Pointer to Tx/Rx Message management info based on channel type 443 * @xfer: The xfer to act upon 444 * 445 * Pick the next unused monotonically increasing token and set it into 446 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate 447 * reuse of freshly completed or timed-out xfers, thus mitigating the risk 448 * of incorrect association of a late and expired xfer with a live in-flight 449 * transaction, both happening to re-use the same token identifier. 450 * 451 * Since platform is NOT required to answer our request in-order we should 452 * account for a few rare but possible scenarios: 453 * 454 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token 455 * using find_next_zero_bit() starting from candidate next_token bit 456 * 457 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we 458 * are plenty of free tokens at start, so try a second pass using 459 * find_next_zero_bit() and starting from 0. 460 * 461 * X = used in-flight 462 * 463 * Normal 464 * ------ 465 * 466 * |- xfer_id picked 467 * -----------+---------------------------------------------------------- 468 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X| 469 * ---------------------------------------------------------------------- 470 * ^ 471 * |- next_token 472 * 473 * Out-of-order pending at start 474 * ----------------------------- 475 * 476 * |- xfer_id picked, last_token fixed 477 * -----+---------------------------------------------------------------- 478 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| | 479 * ---------------------------------------------------------------------- 480 * ^ 481 * |- next_token 482 * 483 * 484 * Out-of-order pending at end 485 * --------------------------- 486 * 487 * |- xfer_id picked, last_token fixed 488 * -----+---------------------------------------------------------------- 489 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X| 490 * ---------------------------------------------------------------------- 491 * ^ 492 * |- next_token 493 * 494 * Context: Assumes to be called with @xfer_lock already acquired. 495 * 496 * Return: 0 on Success or error 497 */ 498 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo, 499 struct scmi_xfer *xfer) 500 { 501 unsigned long xfer_id, next_token; 502 503 /* 504 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1] 505 * using the pre-allocated transfer_id as a base. 506 * Note that the global transfer_id is shared across all message types 507 * so there could be holes in the allocated set of monotonic sequence 508 * numbers, but that is going to limit the effectiveness of the 509 * mitigation only in very rare limit conditions. 510 */ 511 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1)); 512 513 /* Pick the next available xfer_id >= next_token */ 514 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 515 MSG_TOKEN_MAX, next_token); 516 if (xfer_id == MSG_TOKEN_MAX) { 517 /* 518 * After heavily out-of-order responses, there are no free 519 * tokens ahead, but only at start of xfer_alloc_table so 520 * try again from the beginning. 521 */ 522 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 523 MSG_TOKEN_MAX, 0); 524 /* 525 * Something is wrong if we got here since there can be a 526 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages 527 * but we have not found any free token [0, MSG_TOKEN_MAX - 1]. 528 */ 529 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX)) 530 return -ENOMEM; 531 } 532 533 /* Update +/- last_token accordingly if we skipped some hole */ 534 if (xfer_id != next_token) 535 atomic_add((int)(xfer_id - next_token), &transfer_last_id); 536 537 xfer->hdr.seq = (u16)xfer_id; 538 539 return 0; 540 } 541 542 /** 543 * scmi_xfer_token_clear - Release the token 544 * 545 * @minfo: Pointer to Tx/Rx Message management info based on channel type 546 * @xfer: The xfer to act upon 547 */ 548 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo, 549 struct scmi_xfer *xfer) 550 { 551 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 552 } 553 554 /** 555 * scmi_xfer_inflight_register_unlocked - Register the xfer as in-flight 556 * 557 * @xfer: The xfer to register 558 * @minfo: Pointer to Tx/Rx Message management info based on channel type 559 * 560 * Note that this helper assumes that the xfer to be registered as in-flight 561 * had been built using an xfer sequence number which still corresponds to a 562 * free slot in the xfer_alloc_table. 563 * 564 * Context: Assumes to be called with @xfer_lock already acquired. 565 */ 566 static inline void 567 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer, 568 struct scmi_xfers_info *minfo) 569 { 570 /* Set in-flight */ 571 set_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 572 hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq); 573 xfer->pending = true; 574 } 575 576 /** 577 * scmi_xfer_inflight_register - Try to register an xfer as in-flight 578 * 579 * @xfer: The xfer to register 580 * @minfo: Pointer to Tx/Rx Message management info based on channel type 581 * 582 * Note that this helper does NOT assume anything about the sequence number 583 * that was baked into the provided xfer, so it checks at first if it can 584 * be mapped to a free slot and fails with an error if another xfer with the 585 * same sequence number is currently still registered as in-flight. 586 * 587 * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer 588 * could not rbe mapped to a free slot in the xfer_alloc_table. 589 */ 590 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer, 591 struct scmi_xfers_info *minfo) 592 { 593 int ret = 0; 594 unsigned long flags; 595 596 spin_lock_irqsave(&minfo->xfer_lock, flags); 597 if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table)) 598 scmi_xfer_inflight_register_unlocked(xfer, minfo); 599 else 600 ret = -EBUSY; 601 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 602 603 return ret; 604 } 605 606 /** 607 * scmi_xfer_raw_inflight_register - An helper to register the given xfer as in 608 * flight on the TX channel, if possible. 609 * 610 * @handle: Pointer to SCMI entity handle 611 * @xfer: The xfer to register 612 * 613 * Return: 0 on Success, error otherwise 614 */ 615 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle, 616 struct scmi_xfer *xfer) 617 { 618 struct scmi_info *info = handle_to_scmi_info(handle); 619 620 return scmi_xfer_inflight_register(xfer, &info->tx_minfo); 621 } 622 623 /** 624 * scmi_xfer_pending_set - Pick a proper sequence number and mark the xfer 625 * as pending in-flight 626 * 627 * @xfer: The xfer to act upon 628 * @minfo: Pointer to Tx/Rx Message management info based on channel type 629 * 630 * Return: 0 on Success or error otherwise 631 */ 632 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer, 633 struct scmi_xfers_info *minfo) 634 { 635 int ret; 636 unsigned long flags; 637 638 spin_lock_irqsave(&minfo->xfer_lock, flags); 639 /* Set a new monotonic token as the xfer sequence number */ 640 ret = scmi_xfer_token_set(minfo, xfer); 641 if (!ret) 642 scmi_xfer_inflight_register_unlocked(xfer, minfo); 643 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 644 645 return ret; 646 } 647 648 /** 649 * scmi_xfer_get() - Allocate one message 650 * 651 * @handle: Pointer to SCMI entity handle 652 * @minfo: Pointer to Tx/Rx Message management info based on channel type 653 * 654 * Helper function which is used by various message functions that are 655 * exposed to clients of this driver for allocating a message traffic event. 656 * 657 * Picks an xfer from the free list @free_xfers (if any available) and perform 658 * a basic initialization. 659 * 660 * Note that, at this point, still no sequence number is assigned to the 661 * allocated xfer, nor it is registered as a pending transaction. 662 * 663 * The successfully initialized xfer is refcounted. 664 * 665 * Context: Holds @xfer_lock while manipulating @free_xfers. 666 * 667 * Return: An initialized xfer if all went fine, else pointer error. 668 */ 669 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle, 670 struct scmi_xfers_info *minfo) 671 { 672 unsigned long flags; 673 struct scmi_xfer *xfer; 674 675 spin_lock_irqsave(&minfo->xfer_lock, flags); 676 if (hlist_empty(&minfo->free_xfers)) { 677 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 678 return ERR_PTR(-ENOMEM); 679 } 680 681 /* grab an xfer from the free_list */ 682 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node); 683 hlist_del_init(&xfer->node); 684 685 /* 686 * Allocate transfer_id early so that can be used also as base for 687 * monotonic sequence number generation if needed. 688 */ 689 xfer->transfer_id = atomic_inc_return(&transfer_last_id); 690 691 refcount_set(&xfer->users, 1); 692 atomic_set(&xfer->busy, SCMI_XFER_FREE); 693 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 694 695 return xfer; 696 } 697 698 /** 699 * scmi_xfer_raw_get - Helper to get a bare free xfer from the TX channel 700 * 701 * @handle: Pointer to SCMI entity handle 702 * 703 * Note that xfer is taken from the TX channel structures. 704 * 705 * Return: A valid xfer on Success, or an error-pointer otherwise 706 */ 707 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle) 708 { 709 struct scmi_xfer *xfer; 710 struct scmi_info *info = handle_to_scmi_info(handle); 711 712 xfer = scmi_xfer_get(handle, &info->tx_minfo); 713 if (!IS_ERR(xfer)) 714 xfer->flags |= SCMI_XFER_FLAG_IS_RAW; 715 716 return xfer; 717 } 718 719 /** 720 * scmi_xfer_raw_channel_get - Helper to get a reference to the proper channel 721 * to use for a specific protocol_id Raw transaction. 722 * 723 * @handle: Pointer to SCMI entity handle 724 * @protocol_id: Identifier of the protocol 725 * 726 * Note that in a regular SCMI stack, usually, a protocol has to be defined in 727 * the DT to have an associated channel and be usable; but in Raw mode any 728 * protocol in range is allowed, re-using the Base channel, so as to enable 729 * fuzzing on any protocol without the need of a fully compiled DT. 730 * 731 * Return: A reference to the channel to use, or an ERR_PTR 732 */ 733 struct scmi_chan_info * 734 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id) 735 { 736 struct scmi_chan_info *cinfo; 737 struct scmi_info *info = handle_to_scmi_info(handle); 738 739 cinfo = idr_find(&info->tx_idr, protocol_id); 740 if (!cinfo) { 741 if (protocol_id == SCMI_PROTOCOL_BASE) 742 return ERR_PTR(-EINVAL); 743 /* Use Base channel for protocols not defined for DT */ 744 cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE); 745 if (!cinfo) 746 return ERR_PTR(-EINVAL); 747 dev_warn_once(handle->dev, 748 "Using Base channel for protocol 0x%X\n", 749 protocol_id); 750 } 751 752 return cinfo; 753 } 754 755 /** 756 * __scmi_xfer_put() - Release a message 757 * 758 * @minfo: Pointer to Tx/Rx Message management info based on channel type 759 * @xfer: message that was reserved by scmi_xfer_get 760 * 761 * After refcount check, possibly release an xfer, clearing the token slot, 762 * removing xfer from @pending_xfers and putting it back into free_xfers. 763 * 764 * This holds a spinlock to maintain integrity of internal data structures. 765 */ 766 static void 767 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer) 768 { 769 unsigned long flags; 770 771 spin_lock_irqsave(&minfo->xfer_lock, flags); 772 if (refcount_dec_and_test(&xfer->users)) { 773 if (xfer->pending) { 774 scmi_xfer_token_clear(minfo, xfer); 775 hash_del(&xfer->node); 776 xfer->pending = false; 777 } 778 hlist_add_head(&xfer->node, &minfo->free_xfers); 779 } 780 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 781 } 782 783 /** 784 * scmi_xfer_raw_put - Release an xfer that was taken by @scmi_xfer_raw_get 785 * 786 * @handle: Pointer to SCMI entity handle 787 * @xfer: A reference to the xfer to put 788 * 789 * Note that as with other xfer_put() handlers the xfer is really effectively 790 * released only if there are no more users on the system. 791 */ 792 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer) 793 { 794 struct scmi_info *info = handle_to_scmi_info(handle); 795 796 xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW; 797 xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET; 798 return __scmi_xfer_put(&info->tx_minfo, xfer); 799 } 800 801 /** 802 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id 803 * 804 * @minfo: Pointer to Tx/Rx Message management info based on channel type 805 * @xfer_id: Token ID to lookup in @pending_xfers 806 * 807 * Refcounting is untouched. 808 * 809 * Context: Assumes to be called with @xfer_lock already acquired. 810 * 811 * Return: A valid xfer on Success or error otherwise 812 */ 813 static struct scmi_xfer * 814 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id) 815 { 816 struct scmi_xfer *xfer = NULL; 817 818 if (test_bit(xfer_id, minfo->xfer_alloc_table)) 819 xfer = XFER_FIND(minfo->pending_xfers, xfer_id); 820 821 return xfer ?: ERR_PTR(-EINVAL); 822 } 823 824 /** 825 * scmi_bad_message_trace - A helper to trace weird messages 826 * 827 * @cinfo: A reference to the channel descriptor on which the message was 828 * received 829 * @msg_hdr: Message header to track 830 * @err: A specific error code used as a status value in traces. 831 * 832 * This helper can be used to trace any kind of weird, incomplete, unexpected, 833 * timed-out message that arrives and as such, can be traced only referring to 834 * the header content, since the payload is missing/unreliable. 835 */ 836 void scmi_bad_message_trace(struct scmi_chan_info *cinfo, u32 msg_hdr, 837 enum scmi_bad_msg err) 838 { 839 char *tag; 840 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 841 842 switch (MSG_XTRACT_TYPE(msg_hdr)) { 843 case MSG_TYPE_COMMAND: 844 tag = "!RESP"; 845 break; 846 case MSG_TYPE_DELAYED_RESP: 847 tag = "!DLYD"; 848 break; 849 case MSG_TYPE_NOTIFICATION: 850 tag = "!NOTI"; 851 break; 852 default: 853 tag = "!UNKN"; 854 break; 855 } 856 857 trace_scmi_msg_dump(info->id, cinfo->id, 858 MSG_XTRACT_PROT_ID(msg_hdr), 859 MSG_XTRACT_ID(msg_hdr), tag, 860 MSG_XTRACT_TOKEN(msg_hdr), err, NULL, 0); 861 } 862 863 /** 864 * scmi_msg_response_validate - Validate message type against state of related 865 * xfer 866 * 867 * @cinfo: A reference to the channel descriptor. 868 * @msg_type: Message type to check 869 * @xfer: A reference to the xfer to validate against @msg_type 870 * 871 * This function checks if @msg_type is congruent with the current state of 872 * a pending @xfer; if an asynchronous delayed response is received before the 873 * related synchronous response (Out-of-Order Delayed Response) the missing 874 * synchronous response is assumed to be OK and completed, carrying on with the 875 * Delayed Response: this is done to address the case in which the underlying 876 * SCMI transport can deliver such out-of-order responses. 877 * 878 * Context: Assumes to be called with xfer->lock already acquired. 879 * 880 * Return: 0 on Success, error otherwise 881 */ 882 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo, 883 u8 msg_type, 884 struct scmi_xfer *xfer) 885 { 886 /* 887 * Even if a response was indeed expected on this slot at this point, 888 * a buggy platform could wrongly reply feeding us an unexpected 889 * delayed response we're not prepared to handle: bail-out safely 890 * blaming firmware. 891 */ 892 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) { 893 dev_err(cinfo->dev, 894 "Delayed Response for %d not expected! Buggy F/W ?\n", 895 xfer->hdr.seq); 896 return -EINVAL; 897 } 898 899 switch (xfer->state) { 900 case SCMI_XFER_SENT_OK: 901 if (msg_type == MSG_TYPE_DELAYED_RESP) { 902 /* 903 * Delayed Response expected but delivered earlier. 904 * Assume message RESPONSE was OK and skip state. 905 */ 906 xfer->hdr.status = SCMI_SUCCESS; 907 xfer->state = SCMI_XFER_RESP_OK; 908 complete(&xfer->done); 909 dev_warn(cinfo->dev, 910 "Received valid OoO Delayed Response for %d\n", 911 xfer->hdr.seq); 912 } 913 break; 914 case SCMI_XFER_RESP_OK: 915 if (msg_type != MSG_TYPE_DELAYED_RESP) 916 return -EINVAL; 917 break; 918 case SCMI_XFER_DRESP_OK: 919 /* No further message expected once in SCMI_XFER_DRESP_OK */ 920 return -EINVAL; 921 } 922 923 return 0; 924 } 925 926 /** 927 * scmi_xfer_state_update - Update xfer state 928 * 929 * @xfer: A reference to the xfer to update 930 * @msg_type: Type of message being processed. 931 * 932 * Note that this message is assumed to have been already successfully validated 933 * by @scmi_msg_response_validate(), so here we just update the state. 934 * 935 * Context: Assumes to be called on an xfer exclusively acquired using the 936 * busy flag. 937 */ 938 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type) 939 { 940 xfer->hdr.type = msg_type; 941 942 /* Unknown command types were already discarded earlier */ 943 if (xfer->hdr.type == MSG_TYPE_COMMAND) 944 xfer->state = SCMI_XFER_RESP_OK; 945 else 946 xfer->state = SCMI_XFER_DRESP_OK; 947 } 948 949 static bool scmi_xfer_acquired(struct scmi_xfer *xfer) 950 { 951 int ret; 952 953 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY); 954 955 return ret == SCMI_XFER_FREE; 956 } 957 958 /** 959 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer 960 * 961 * @cinfo: A reference to the channel descriptor. 962 * @msg_hdr: A message header to use as lookup key 963 * 964 * When a valid xfer is found for the sequence number embedded in the provided 965 * msg_hdr, reference counting is properly updated and exclusive access to this 966 * xfer is granted till released with @scmi_xfer_command_release. 967 * 968 * Return: A valid @xfer on Success or error otherwise. 969 */ 970 static inline struct scmi_xfer * 971 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr) 972 { 973 int ret; 974 unsigned long flags; 975 struct scmi_xfer *xfer; 976 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 977 struct scmi_xfers_info *minfo = &info->tx_minfo; 978 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 979 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr); 980 981 /* Are we even expecting this? */ 982 spin_lock_irqsave(&minfo->xfer_lock, flags); 983 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id); 984 if (IS_ERR(xfer)) { 985 dev_err(cinfo->dev, 986 "Message for %d type %d is not expected!\n", 987 xfer_id, msg_type); 988 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 989 990 scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNEXPECTED); 991 992 return xfer; 993 } 994 refcount_inc(&xfer->users); 995 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 996 997 spin_lock_irqsave(&xfer->lock, flags); 998 ret = scmi_msg_response_validate(cinfo, msg_type, xfer); 999 /* 1000 * If a pending xfer was found which was also in a congruent state with 1001 * the received message, acquire exclusive access to it setting the busy 1002 * flag. 1003 * Spins only on the rare limit condition of concurrent reception of 1004 * RESP and DRESP for the same xfer. 1005 */ 1006 if (!ret) { 1007 spin_until_cond(scmi_xfer_acquired(xfer)); 1008 scmi_xfer_state_update(xfer, msg_type); 1009 } 1010 spin_unlock_irqrestore(&xfer->lock, flags); 1011 1012 if (ret) { 1013 dev_err(cinfo->dev, 1014 "Invalid message type:%d for %d - HDR:0x%X state:%d\n", 1015 msg_type, xfer_id, msg_hdr, xfer->state); 1016 1017 scmi_bad_message_trace(cinfo, msg_hdr, MSG_INVALID); 1018 1019 /* On error the refcount incremented above has to be dropped */ 1020 __scmi_xfer_put(minfo, xfer); 1021 xfer = ERR_PTR(-EINVAL); 1022 } 1023 1024 return xfer; 1025 } 1026 1027 static inline void scmi_xfer_command_release(struct scmi_info *info, 1028 struct scmi_xfer *xfer) 1029 { 1030 atomic_set(&xfer->busy, SCMI_XFER_FREE); 1031 __scmi_xfer_put(&info->tx_minfo, xfer); 1032 } 1033 1034 static inline void scmi_clear_channel(struct scmi_info *info, 1035 struct scmi_chan_info *cinfo) 1036 { 1037 if (info->desc->ops->clear_channel) 1038 info->desc->ops->clear_channel(cinfo); 1039 } 1040 1041 static void scmi_handle_notification(struct scmi_chan_info *cinfo, 1042 u32 msg_hdr, void *priv) 1043 { 1044 struct scmi_xfer *xfer; 1045 struct device *dev = cinfo->dev; 1046 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1047 struct scmi_xfers_info *minfo = &info->rx_minfo; 1048 ktime_t ts; 1049 1050 ts = ktime_get_boottime(); 1051 xfer = scmi_xfer_get(cinfo->handle, minfo); 1052 if (IS_ERR(xfer)) { 1053 dev_err(dev, "failed to get free message slot (%ld)\n", 1054 PTR_ERR(xfer)); 1055 1056 scmi_bad_message_trace(cinfo, msg_hdr, MSG_NOMEM); 1057 1058 scmi_clear_channel(info, cinfo); 1059 return; 1060 } 1061 1062 unpack_scmi_header(msg_hdr, &xfer->hdr); 1063 if (priv) 1064 /* Ensure order between xfer->priv store and following ops */ 1065 smp_store_mb(xfer->priv, priv); 1066 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size, 1067 xfer); 1068 1069 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 1070 xfer->hdr.id, "NOTI", xfer->hdr.seq, 1071 xfer->hdr.status, xfer->rx.buf, xfer->rx.len); 1072 1073 scmi_notify(cinfo->handle, xfer->hdr.protocol_id, 1074 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts); 1075 1076 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 1077 xfer->hdr.protocol_id, xfer->hdr.seq, 1078 MSG_TYPE_NOTIFICATION); 1079 1080 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 1081 xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr); 1082 scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE, 1083 cinfo->id); 1084 } 1085 1086 __scmi_xfer_put(minfo, xfer); 1087 1088 scmi_clear_channel(info, cinfo); 1089 } 1090 1091 static void scmi_handle_response(struct scmi_chan_info *cinfo, 1092 u32 msg_hdr, void *priv) 1093 { 1094 struct scmi_xfer *xfer; 1095 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1096 1097 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr); 1098 if (IS_ERR(xfer)) { 1099 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 1100 scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv); 1101 1102 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP) 1103 scmi_clear_channel(info, cinfo); 1104 return; 1105 } 1106 1107 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */ 1108 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) 1109 xfer->rx.len = info->desc->max_msg_size; 1110 1111 if (priv) 1112 /* Ensure order between xfer->priv store and following ops */ 1113 smp_store_mb(xfer->priv, priv); 1114 info->desc->ops->fetch_response(cinfo, xfer); 1115 1116 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 1117 xfer->hdr.id, 1118 xfer->hdr.type == MSG_TYPE_DELAYED_RESP ? 1119 (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") : 1120 (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"), 1121 xfer->hdr.seq, xfer->hdr.status, 1122 xfer->rx.buf, xfer->rx.len); 1123 1124 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 1125 xfer->hdr.protocol_id, xfer->hdr.seq, 1126 xfer->hdr.type); 1127 1128 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) { 1129 scmi_clear_channel(info, cinfo); 1130 complete(xfer->async_done); 1131 } else { 1132 complete(&xfer->done); 1133 } 1134 1135 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 1136 /* 1137 * When in polling mode avoid to queue the Raw xfer on the IRQ 1138 * RX path since it will be already queued at the end of the TX 1139 * poll loop. 1140 */ 1141 if (!xfer->hdr.poll_completion) 1142 scmi_raw_message_report(info->raw, xfer, 1143 SCMI_RAW_REPLY_QUEUE, 1144 cinfo->id); 1145 } 1146 1147 scmi_xfer_command_release(info, xfer); 1148 } 1149 1150 /** 1151 * scmi_rx_callback() - callback for receiving messages 1152 * 1153 * @cinfo: SCMI channel info 1154 * @msg_hdr: Message header 1155 * @priv: Transport specific private data. 1156 * 1157 * Processes one received message to appropriate transfer information and 1158 * signals completion of the transfer. 1159 * 1160 * NOTE: This function will be invoked in IRQ context, hence should be 1161 * as optimal as possible. 1162 */ 1163 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv) 1164 { 1165 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 1166 1167 switch (msg_type) { 1168 case MSG_TYPE_NOTIFICATION: 1169 scmi_handle_notification(cinfo, msg_hdr, priv); 1170 break; 1171 case MSG_TYPE_COMMAND: 1172 case MSG_TYPE_DELAYED_RESP: 1173 scmi_handle_response(cinfo, msg_hdr, priv); 1174 break; 1175 default: 1176 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type); 1177 scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNKNOWN); 1178 break; 1179 } 1180 } 1181 1182 /** 1183 * xfer_put() - Release a transmit message 1184 * 1185 * @ph: Pointer to SCMI protocol handle 1186 * @xfer: message that was reserved by xfer_get_init 1187 */ 1188 static void xfer_put(const struct scmi_protocol_handle *ph, 1189 struct scmi_xfer *xfer) 1190 { 1191 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1192 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1193 1194 __scmi_xfer_put(&info->tx_minfo, xfer); 1195 } 1196 1197 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo, 1198 struct scmi_xfer *xfer, ktime_t stop) 1199 { 1200 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1201 1202 /* 1203 * Poll also on xfer->done so that polling can be forcibly terminated 1204 * in case of out-of-order receptions of delayed responses 1205 */ 1206 return info->desc->ops->poll_done(cinfo, xfer) || 1207 try_wait_for_completion(&xfer->done) || 1208 ktime_after(ktime_get(), stop); 1209 } 1210 1211 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc, 1212 struct scmi_chan_info *cinfo, 1213 struct scmi_xfer *xfer, unsigned int timeout_ms) 1214 { 1215 int ret = 0; 1216 1217 if (xfer->hdr.poll_completion) { 1218 /* 1219 * Real polling is needed only if transport has NOT declared 1220 * itself to support synchronous commands replies. 1221 */ 1222 if (!desc->sync_cmds_completed_on_ret) { 1223 /* 1224 * Poll on xfer using transport provided .poll_done(); 1225 * assumes no completion interrupt was available. 1226 */ 1227 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms); 1228 1229 spin_until_cond(scmi_xfer_done_no_timeout(cinfo, 1230 xfer, stop)); 1231 if (ktime_after(ktime_get(), stop)) { 1232 dev_err(dev, 1233 "timed out in resp(caller: %pS) - polling\n", 1234 (void *)_RET_IP_); 1235 ret = -ETIMEDOUT; 1236 } 1237 } 1238 1239 if (!ret) { 1240 unsigned long flags; 1241 struct scmi_info *info = 1242 handle_to_scmi_info(cinfo->handle); 1243 1244 /* 1245 * Do not fetch_response if an out-of-order delayed 1246 * response is being processed. 1247 */ 1248 spin_lock_irqsave(&xfer->lock, flags); 1249 if (xfer->state == SCMI_XFER_SENT_OK) { 1250 desc->ops->fetch_response(cinfo, xfer); 1251 xfer->state = SCMI_XFER_RESP_OK; 1252 } 1253 spin_unlock_irqrestore(&xfer->lock, flags); 1254 1255 /* Trace polled replies. */ 1256 trace_scmi_msg_dump(info->id, cinfo->id, 1257 xfer->hdr.protocol_id, xfer->hdr.id, 1258 !SCMI_XFER_IS_RAW(xfer) ? 1259 "RESP" : "resp", 1260 xfer->hdr.seq, xfer->hdr.status, 1261 xfer->rx.buf, xfer->rx.len); 1262 1263 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 1264 struct scmi_info *info = 1265 handle_to_scmi_info(cinfo->handle); 1266 1267 scmi_raw_message_report(info->raw, xfer, 1268 SCMI_RAW_REPLY_QUEUE, 1269 cinfo->id); 1270 } 1271 } 1272 } else { 1273 /* And we wait for the response. */ 1274 if (!wait_for_completion_timeout(&xfer->done, 1275 msecs_to_jiffies(timeout_ms))) { 1276 dev_err(dev, "timed out in resp(caller: %pS)\n", 1277 (void *)_RET_IP_); 1278 ret = -ETIMEDOUT; 1279 } 1280 } 1281 1282 return ret; 1283 } 1284 1285 /** 1286 * scmi_wait_for_message_response - An helper to group all the possible ways of 1287 * waiting for a synchronous message response. 1288 * 1289 * @cinfo: SCMI channel info 1290 * @xfer: Reference to the transfer being waited for. 1291 * 1292 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on 1293 * configuration flags like xfer->hdr.poll_completion. 1294 * 1295 * Return: 0 on Success, error otherwise. 1296 */ 1297 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo, 1298 struct scmi_xfer *xfer) 1299 { 1300 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1301 struct device *dev = info->dev; 1302 1303 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id, 1304 xfer->hdr.protocol_id, xfer->hdr.seq, 1305 info->desc->max_rx_timeout_ms, 1306 xfer->hdr.poll_completion); 1307 1308 return scmi_wait_for_reply(dev, info->desc, cinfo, xfer, 1309 info->desc->max_rx_timeout_ms); 1310 } 1311 1312 /** 1313 * scmi_xfer_raw_wait_for_message_response - An helper to wait for a message 1314 * reply to an xfer raw request on a specific channel for the required timeout. 1315 * 1316 * @cinfo: SCMI channel info 1317 * @xfer: Reference to the transfer being waited for. 1318 * @timeout_ms: The maximum timeout in milliseconds 1319 * 1320 * Return: 0 on Success, error otherwise. 1321 */ 1322 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo, 1323 struct scmi_xfer *xfer, 1324 unsigned int timeout_ms) 1325 { 1326 int ret; 1327 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1328 struct device *dev = info->dev; 1329 1330 ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms); 1331 if (ret) 1332 dev_dbg(dev, "timed out in RAW response - HDR:%08X\n", 1333 pack_scmi_header(&xfer->hdr)); 1334 1335 return ret; 1336 } 1337 1338 /** 1339 * do_xfer() - Do one transfer 1340 * 1341 * @ph: Pointer to SCMI protocol handle 1342 * @xfer: Transfer to initiate and wait for response 1343 * 1344 * Return: -ETIMEDOUT in case of no response, if transmit error, 1345 * return corresponding error, else if all goes well, 1346 * return 0. 1347 */ 1348 static int do_xfer(const struct scmi_protocol_handle *ph, 1349 struct scmi_xfer *xfer) 1350 { 1351 int ret; 1352 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1353 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1354 struct device *dev = info->dev; 1355 struct scmi_chan_info *cinfo; 1356 1357 /* Check for polling request on custom command xfers at first */ 1358 if (xfer->hdr.poll_completion && 1359 !is_transport_polling_capable(info->desc)) { 1360 dev_warn_once(dev, 1361 "Polling mode is not supported by transport.\n"); 1362 return -EINVAL; 1363 } 1364 1365 cinfo = idr_find(&info->tx_idr, pi->proto->id); 1366 if (unlikely(!cinfo)) 1367 return -EINVAL; 1368 1369 /* True ONLY if also supported by transport. */ 1370 if (is_polling_enabled(cinfo, info->desc)) 1371 xfer->hdr.poll_completion = true; 1372 1373 /* 1374 * Initialise protocol id now from protocol handle to avoid it being 1375 * overridden by mistake (or malice) by the protocol code mangling with 1376 * the scmi_xfer structure prior to this. 1377 */ 1378 xfer->hdr.protocol_id = pi->proto->id; 1379 reinit_completion(&xfer->done); 1380 1381 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id, 1382 xfer->hdr.protocol_id, xfer->hdr.seq, 1383 xfer->hdr.poll_completion); 1384 1385 /* Clear any stale status */ 1386 xfer->hdr.status = SCMI_SUCCESS; 1387 xfer->state = SCMI_XFER_SENT_OK; 1388 /* 1389 * Even though spinlocking is not needed here since no race is possible 1390 * on xfer->state due to the monotonically increasing tokens allocation, 1391 * we must anyway ensure xfer->state initialization is not re-ordered 1392 * after the .send_message() to be sure that on the RX path an early 1393 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state. 1394 */ 1395 smp_mb(); 1396 1397 ret = info->desc->ops->send_message(cinfo, xfer); 1398 if (ret < 0) { 1399 dev_dbg(dev, "Failed to send message %d\n", ret); 1400 return ret; 1401 } 1402 1403 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 1404 xfer->hdr.id, "CMND", xfer->hdr.seq, 1405 xfer->hdr.status, xfer->tx.buf, xfer->tx.len); 1406 1407 ret = scmi_wait_for_message_response(cinfo, xfer); 1408 if (!ret && xfer->hdr.status) 1409 ret = scmi_to_linux_errno(xfer->hdr.status); 1410 1411 if (info->desc->ops->mark_txdone) 1412 info->desc->ops->mark_txdone(cinfo, ret, xfer); 1413 1414 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id, 1415 xfer->hdr.protocol_id, xfer->hdr.seq, ret); 1416 1417 return ret; 1418 } 1419 1420 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph, 1421 struct scmi_xfer *xfer) 1422 { 1423 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1424 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1425 1426 xfer->rx.len = info->desc->max_msg_size; 1427 } 1428 1429 /** 1430 * do_xfer_with_response() - Do one transfer and wait until the delayed 1431 * response is received 1432 * 1433 * @ph: Pointer to SCMI protocol handle 1434 * @xfer: Transfer to initiate and wait for response 1435 * 1436 * Using asynchronous commands in atomic/polling mode should be avoided since 1437 * it could cause long busy-waiting here, so ignore polling for the delayed 1438 * response and WARN if it was requested for this command transaction since 1439 * upper layers should refrain from issuing such kind of requests. 1440 * 1441 * The only other option would have been to refrain from using any asynchronous 1442 * command even if made available, when an atomic transport is detected, and 1443 * instead forcibly use the synchronous version (thing that can be easily 1444 * attained at the protocol layer), but this would also have led to longer 1445 * stalls of the channel for synchronous commands and possibly timeouts. 1446 * (in other words there is usually a good reason if a platform provides an 1447 * asynchronous version of a command and we should prefer to use it...just not 1448 * when using atomic/polling mode) 1449 * 1450 * Return: -ETIMEDOUT in case of no delayed response, if transmit error, 1451 * return corresponding error, else if all goes well, return 0. 1452 */ 1453 static int do_xfer_with_response(const struct scmi_protocol_handle *ph, 1454 struct scmi_xfer *xfer) 1455 { 1456 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT); 1457 DECLARE_COMPLETION_ONSTACK(async_response); 1458 1459 xfer->async_done = &async_response; 1460 1461 /* 1462 * Delayed responses should not be polled, so an async command should 1463 * not have been used when requiring an atomic/poll context; WARN and 1464 * perform instead a sleeping wait. 1465 * (Note Async + IgnoreDelayedResponses are sent via do_xfer) 1466 */ 1467 WARN_ON_ONCE(xfer->hdr.poll_completion); 1468 1469 ret = do_xfer(ph, xfer); 1470 if (!ret) { 1471 if (!wait_for_completion_timeout(xfer->async_done, timeout)) { 1472 dev_err(ph->dev, 1473 "timed out in delayed resp(caller: %pS)\n", 1474 (void *)_RET_IP_); 1475 ret = -ETIMEDOUT; 1476 } else if (xfer->hdr.status) { 1477 ret = scmi_to_linux_errno(xfer->hdr.status); 1478 } 1479 } 1480 1481 xfer->async_done = NULL; 1482 return ret; 1483 } 1484 1485 /** 1486 * xfer_get_init() - Allocate and initialise one message for transmit 1487 * 1488 * @ph: Pointer to SCMI protocol handle 1489 * @msg_id: Message identifier 1490 * @tx_size: transmit message size 1491 * @rx_size: receive message size 1492 * @p: pointer to the allocated and initialised message 1493 * 1494 * This function allocates the message using @scmi_xfer_get and 1495 * initialise the header. 1496 * 1497 * Return: 0 if all went fine with @p pointing to message, else 1498 * corresponding error. 1499 */ 1500 static int xfer_get_init(const struct scmi_protocol_handle *ph, 1501 u8 msg_id, size_t tx_size, size_t rx_size, 1502 struct scmi_xfer **p) 1503 { 1504 int ret; 1505 struct scmi_xfer *xfer; 1506 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1507 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1508 struct scmi_xfers_info *minfo = &info->tx_minfo; 1509 struct device *dev = info->dev; 1510 1511 /* Ensure we have sane transfer sizes */ 1512 if (rx_size > info->desc->max_msg_size || 1513 tx_size > info->desc->max_msg_size) 1514 return -ERANGE; 1515 1516 xfer = scmi_xfer_get(pi->handle, minfo); 1517 if (IS_ERR(xfer)) { 1518 ret = PTR_ERR(xfer); 1519 dev_err(dev, "failed to get free message slot(%d)\n", ret); 1520 return ret; 1521 } 1522 1523 /* Pick a sequence number and register this xfer as in-flight */ 1524 ret = scmi_xfer_pending_set(xfer, minfo); 1525 if (ret) { 1526 dev_err(pi->handle->dev, 1527 "Failed to get monotonic token %d\n", ret); 1528 __scmi_xfer_put(minfo, xfer); 1529 return ret; 1530 } 1531 1532 xfer->tx.len = tx_size; 1533 xfer->rx.len = rx_size ? : info->desc->max_msg_size; 1534 xfer->hdr.type = MSG_TYPE_COMMAND; 1535 xfer->hdr.id = msg_id; 1536 xfer->hdr.poll_completion = false; 1537 1538 *p = xfer; 1539 1540 return 0; 1541 } 1542 1543 /** 1544 * version_get() - command to get the revision of the SCMI entity 1545 * 1546 * @ph: Pointer to SCMI protocol handle 1547 * @version: Holds returned version of protocol. 1548 * 1549 * Updates the SCMI information in the internal data structure. 1550 * 1551 * Return: 0 if all went fine, else return appropriate error. 1552 */ 1553 static int version_get(const struct scmi_protocol_handle *ph, u32 *version) 1554 { 1555 int ret; 1556 __le32 *rev_info; 1557 struct scmi_xfer *t; 1558 1559 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t); 1560 if (ret) 1561 return ret; 1562 1563 ret = do_xfer(ph, t); 1564 if (!ret) { 1565 rev_info = t->rx.buf; 1566 *version = le32_to_cpu(*rev_info); 1567 } 1568 1569 xfer_put(ph, t); 1570 return ret; 1571 } 1572 1573 /** 1574 * scmi_set_protocol_priv - Set protocol specific data at init time 1575 * 1576 * @ph: A reference to the protocol handle. 1577 * @priv: The private data to set. 1578 * @version: The detected protocol version for the core to register. 1579 * 1580 * Return: 0 on Success 1581 */ 1582 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph, 1583 void *priv, u32 version) 1584 { 1585 struct scmi_protocol_instance *pi = ph_to_pi(ph); 1586 1587 pi->priv = priv; 1588 pi->version = version; 1589 1590 return 0; 1591 } 1592 1593 /** 1594 * scmi_get_protocol_priv - Set protocol specific data at init time 1595 * 1596 * @ph: A reference to the protocol handle. 1597 * 1598 * Return: Protocol private data if any was set. 1599 */ 1600 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph) 1601 { 1602 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1603 1604 return pi->priv; 1605 } 1606 1607 static const struct scmi_xfer_ops xfer_ops = { 1608 .version_get = version_get, 1609 .xfer_get_init = xfer_get_init, 1610 .reset_rx_to_maxsz = reset_rx_to_maxsz, 1611 .do_xfer = do_xfer, 1612 .do_xfer_with_response = do_xfer_with_response, 1613 .xfer_put = xfer_put, 1614 }; 1615 1616 struct scmi_msg_resp_domain_name_get { 1617 __le32 flags; 1618 u8 name[SCMI_MAX_STR_SIZE]; 1619 }; 1620 1621 /** 1622 * scmi_common_extended_name_get - Common helper to get extended resources name 1623 * @ph: A protocol handle reference. 1624 * @cmd_id: The specific command ID to use. 1625 * @res_id: The specific resource ID to use. 1626 * @flags: A pointer to specific flags to use, if any. 1627 * @name: A pointer to the preallocated area where the retrieved name will be 1628 * stored as a NULL terminated string. 1629 * @len: The len in bytes of the @name char array. 1630 * 1631 * Return: 0 on Succcess 1632 */ 1633 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph, 1634 u8 cmd_id, u32 res_id, u32 *flags, 1635 char *name, size_t len) 1636 { 1637 int ret; 1638 size_t txlen; 1639 struct scmi_xfer *t; 1640 struct scmi_msg_resp_domain_name_get *resp; 1641 1642 txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags); 1643 ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t); 1644 if (ret) 1645 goto out; 1646 1647 put_unaligned_le32(res_id, t->tx.buf); 1648 if (flags) 1649 put_unaligned_le32(*flags, t->tx.buf + sizeof(res_id)); 1650 resp = t->rx.buf; 1651 1652 ret = ph->xops->do_xfer(ph, t); 1653 if (!ret) 1654 strscpy(name, resp->name, len); 1655 1656 ph->xops->xfer_put(ph, t); 1657 out: 1658 if (ret) 1659 dev_warn(ph->dev, 1660 "Failed to get extended name - id:%u (ret:%d). Using %s\n", 1661 res_id, ret, name); 1662 return ret; 1663 } 1664 1665 /** 1666 * scmi_common_get_max_msg_size - Get maximum message size 1667 * @ph: A protocol handle reference. 1668 * 1669 * Return: Maximum message size for the current protocol. 1670 */ 1671 static int scmi_common_get_max_msg_size(const struct scmi_protocol_handle *ph) 1672 { 1673 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1674 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1675 1676 return info->desc->max_msg_size; 1677 } 1678 1679 /** 1680 * struct scmi_iterator - Iterator descriptor 1681 * @msg: A reference to the message TX buffer; filled by @prepare_message with 1682 * a proper custom command payload for each multi-part command request. 1683 * @resp: A reference to the response RX buffer; used by @update_state and 1684 * @process_response to parse the multi-part replies. 1685 * @t: A reference to the underlying xfer initialized and used transparently by 1686 * the iterator internal routines. 1687 * @ph: A reference to the associated protocol handle to be used. 1688 * @ops: A reference to the custom provided iterator operations. 1689 * @state: The current iterator state; used and updated in turn by the iterators 1690 * internal routines and by the caller-provided @scmi_iterator_ops. 1691 * @priv: A reference to optional private data as provided by the caller and 1692 * passed back to the @@scmi_iterator_ops. 1693 */ 1694 struct scmi_iterator { 1695 void *msg; 1696 void *resp; 1697 struct scmi_xfer *t; 1698 const struct scmi_protocol_handle *ph; 1699 struct scmi_iterator_ops *ops; 1700 struct scmi_iterator_state state; 1701 void *priv; 1702 }; 1703 1704 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph, 1705 struct scmi_iterator_ops *ops, 1706 unsigned int max_resources, u8 msg_id, 1707 size_t tx_size, void *priv) 1708 { 1709 int ret; 1710 struct scmi_iterator *i; 1711 1712 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL); 1713 if (!i) 1714 return ERR_PTR(-ENOMEM); 1715 1716 i->ph = ph; 1717 i->ops = ops; 1718 i->priv = priv; 1719 1720 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t); 1721 if (ret) { 1722 devm_kfree(ph->dev, i); 1723 return ERR_PTR(ret); 1724 } 1725 1726 i->state.max_resources = max_resources; 1727 i->msg = i->t->tx.buf; 1728 i->resp = i->t->rx.buf; 1729 1730 return i; 1731 } 1732 1733 static int scmi_iterator_run(void *iter) 1734 { 1735 int ret = -EINVAL; 1736 struct scmi_iterator_ops *iops; 1737 const struct scmi_protocol_handle *ph; 1738 struct scmi_iterator_state *st; 1739 struct scmi_iterator *i = iter; 1740 1741 if (!i || !i->ops || !i->ph) 1742 return ret; 1743 1744 iops = i->ops; 1745 ph = i->ph; 1746 st = &i->state; 1747 1748 do { 1749 iops->prepare_message(i->msg, st->desc_index, i->priv); 1750 ret = ph->xops->do_xfer(ph, i->t); 1751 if (ret) 1752 break; 1753 1754 st->rx_len = i->t->rx.len; 1755 ret = iops->update_state(st, i->resp, i->priv); 1756 if (ret) 1757 break; 1758 1759 if (st->num_returned > st->max_resources - st->desc_index) { 1760 dev_err(ph->dev, 1761 "No. of resources can't exceed %d\n", 1762 st->max_resources); 1763 ret = -EINVAL; 1764 break; 1765 } 1766 1767 for (st->loop_idx = 0; st->loop_idx < st->num_returned; 1768 st->loop_idx++) { 1769 ret = iops->process_response(ph, i->resp, st, i->priv); 1770 if (ret) 1771 goto out; 1772 } 1773 1774 st->desc_index += st->num_returned; 1775 ph->xops->reset_rx_to_maxsz(ph, i->t); 1776 /* 1777 * check for both returned and remaining to avoid infinite 1778 * loop due to buggy firmware 1779 */ 1780 } while (st->num_returned && st->num_remaining); 1781 1782 out: 1783 /* Finalize and destroy iterator */ 1784 ph->xops->xfer_put(ph, i->t); 1785 devm_kfree(ph->dev, i); 1786 1787 return ret; 1788 } 1789 1790 struct scmi_msg_get_fc_info { 1791 __le32 domain; 1792 __le32 message_id; 1793 }; 1794 1795 struct scmi_msg_resp_desc_fc { 1796 __le32 attr; 1797 #define SUPPORTS_DOORBELL(x) ((x) & BIT(0)) 1798 #define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x)) 1799 __le32 rate_limit; 1800 __le32 chan_addr_low; 1801 __le32 chan_addr_high; 1802 __le32 chan_size; 1803 __le32 db_addr_low; 1804 __le32 db_addr_high; 1805 __le32 db_set_lmask; 1806 __le32 db_set_hmask; 1807 __le32 db_preserve_lmask; 1808 __le32 db_preserve_hmask; 1809 }; 1810 1811 static void 1812 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph, 1813 u8 describe_id, u32 message_id, u32 valid_size, 1814 u32 domain, void __iomem **p_addr, 1815 struct scmi_fc_db_info **p_db, u32 *rate_limit) 1816 { 1817 int ret; 1818 u32 flags; 1819 u64 phys_addr; 1820 u8 size; 1821 void __iomem *addr; 1822 struct scmi_xfer *t; 1823 struct scmi_fc_db_info *db = NULL; 1824 struct scmi_msg_get_fc_info *info; 1825 struct scmi_msg_resp_desc_fc *resp; 1826 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1827 1828 if (!p_addr) { 1829 ret = -EINVAL; 1830 goto err_out; 1831 } 1832 1833 ret = ph->xops->xfer_get_init(ph, describe_id, 1834 sizeof(*info), sizeof(*resp), &t); 1835 if (ret) 1836 goto err_out; 1837 1838 info = t->tx.buf; 1839 info->domain = cpu_to_le32(domain); 1840 info->message_id = cpu_to_le32(message_id); 1841 1842 /* 1843 * Bail out on error leaving fc_info addresses zeroed; this includes 1844 * the case in which the requested domain/message_id does NOT support 1845 * fastchannels at all. 1846 */ 1847 ret = ph->xops->do_xfer(ph, t); 1848 if (ret) 1849 goto err_xfer; 1850 1851 resp = t->rx.buf; 1852 flags = le32_to_cpu(resp->attr); 1853 size = le32_to_cpu(resp->chan_size); 1854 if (size != valid_size) { 1855 ret = -EINVAL; 1856 goto err_xfer; 1857 } 1858 1859 if (rate_limit) 1860 *rate_limit = le32_to_cpu(resp->rate_limit) & GENMASK(19, 0); 1861 1862 phys_addr = le32_to_cpu(resp->chan_addr_low); 1863 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32; 1864 addr = devm_ioremap(ph->dev, phys_addr, size); 1865 if (!addr) { 1866 ret = -EADDRNOTAVAIL; 1867 goto err_xfer; 1868 } 1869 1870 *p_addr = addr; 1871 1872 if (p_db && SUPPORTS_DOORBELL(flags)) { 1873 db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL); 1874 if (!db) { 1875 ret = -ENOMEM; 1876 goto err_db; 1877 } 1878 1879 size = 1 << DOORBELL_REG_WIDTH(flags); 1880 phys_addr = le32_to_cpu(resp->db_addr_low); 1881 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32; 1882 addr = devm_ioremap(ph->dev, phys_addr, size); 1883 if (!addr) { 1884 ret = -EADDRNOTAVAIL; 1885 goto err_db_mem; 1886 } 1887 1888 db->addr = addr; 1889 db->width = size; 1890 db->set = le32_to_cpu(resp->db_set_lmask); 1891 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32; 1892 db->mask = le32_to_cpu(resp->db_preserve_lmask); 1893 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32; 1894 1895 *p_db = db; 1896 } 1897 1898 ph->xops->xfer_put(ph, t); 1899 1900 dev_dbg(ph->dev, 1901 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n", 1902 pi->proto->id, message_id, domain); 1903 1904 return; 1905 1906 err_db_mem: 1907 devm_kfree(ph->dev, db); 1908 1909 err_db: 1910 *p_addr = NULL; 1911 1912 err_xfer: 1913 ph->xops->xfer_put(ph, t); 1914 1915 err_out: 1916 dev_warn(ph->dev, 1917 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n", 1918 pi->proto->id, message_id, domain, ret); 1919 } 1920 1921 #define SCMI_PROTO_FC_RING_DB(w) \ 1922 do { \ 1923 u##w val = 0; \ 1924 \ 1925 if (db->mask) \ 1926 val = ioread##w(db->addr) & db->mask; \ 1927 iowrite##w((u##w)db->set | val, db->addr); \ 1928 } while (0) 1929 1930 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db) 1931 { 1932 if (!db || !db->addr) 1933 return; 1934 1935 if (db->width == 1) 1936 SCMI_PROTO_FC_RING_DB(8); 1937 else if (db->width == 2) 1938 SCMI_PROTO_FC_RING_DB(16); 1939 else if (db->width == 4) 1940 SCMI_PROTO_FC_RING_DB(32); 1941 else /* db->width == 8 */ 1942 #ifdef CONFIG_64BIT 1943 SCMI_PROTO_FC_RING_DB(64); 1944 #else 1945 { 1946 u64 val = 0; 1947 1948 if (db->mask) 1949 val = ioread64_hi_lo(db->addr) & db->mask; 1950 iowrite64_hi_lo(db->set | val, db->addr); 1951 } 1952 #endif 1953 } 1954 1955 /** 1956 * scmi_protocol_msg_check - Check protocol message attributes 1957 * 1958 * @ph: A reference to the protocol handle. 1959 * @message_id: The ID of the message to check. 1960 * @attributes: A parameter to optionally return the retrieved message 1961 * attributes, in case of Success. 1962 * 1963 * An helper to check protocol message attributes for a specific protocol 1964 * and message pair. 1965 * 1966 * Return: 0 on SUCCESS 1967 */ 1968 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph, 1969 u32 message_id, u32 *attributes) 1970 { 1971 int ret; 1972 struct scmi_xfer *t; 1973 1974 ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES, 1975 sizeof(__le32), 0, &t); 1976 if (ret) 1977 return ret; 1978 1979 put_unaligned_le32(message_id, t->tx.buf); 1980 ret = do_xfer(ph, t); 1981 if (!ret && attributes) 1982 *attributes = get_unaligned_le32(t->rx.buf); 1983 xfer_put(ph, t); 1984 1985 return ret; 1986 } 1987 1988 static const struct scmi_proto_helpers_ops helpers_ops = { 1989 .extended_name_get = scmi_common_extended_name_get, 1990 .get_max_msg_size = scmi_common_get_max_msg_size, 1991 .iter_response_init = scmi_iterator_init, 1992 .iter_response_run = scmi_iterator_run, 1993 .protocol_msg_check = scmi_protocol_msg_check, 1994 .fastchannel_init = scmi_common_fastchannel_init, 1995 .fastchannel_db_ring = scmi_common_fastchannel_db_ring, 1996 }; 1997 1998 /** 1999 * scmi_revision_area_get - Retrieve version memory area. 2000 * 2001 * @ph: A reference to the protocol handle. 2002 * 2003 * A helper to grab the version memory area reference during SCMI Base protocol 2004 * initialization. 2005 * 2006 * Return: A reference to the version memory area associated to the SCMI 2007 * instance underlying this protocol handle. 2008 */ 2009 struct scmi_revision_info * 2010 scmi_revision_area_get(const struct scmi_protocol_handle *ph) 2011 { 2012 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 2013 2014 return pi->handle->version; 2015 } 2016 2017 /** 2018 * scmi_protocol_version_negotiate - Negotiate protocol version 2019 * 2020 * @ph: A reference to the protocol handle. 2021 * 2022 * An helper to negotiate a protocol version different from the latest 2023 * advertised as supported from the platform: on Success backward 2024 * compatibility is assured by the platform. 2025 * 2026 * Return: 0 on Success 2027 */ 2028 static int scmi_protocol_version_negotiate(struct scmi_protocol_handle *ph) 2029 { 2030 int ret; 2031 struct scmi_xfer *t; 2032 struct scmi_protocol_instance *pi = ph_to_pi(ph); 2033 2034 /* At first check if NEGOTIATE_PROTOCOL_VERSION is supported ... */ 2035 ret = scmi_protocol_msg_check(ph, NEGOTIATE_PROTOCOL_VERSION, NULL); 2036 if (ret) 2037 return ret; 2038 2039 /* ... then attempt protocol version negotiation */ 2040 ret = xfer_get_init(ph, NEGOTIATE_PROTOCOL_VERSION, 2041 sizeof(__le32), 0, &t); 2042 if (ret) 2043 return ret; 2044 2045 put_unaligned_le32(pi->proto->supported_version, t->tx.buf); 2046 ret = do_xfer(ph, t); 2047 if (!ret) 2048 pi->negotiated_version = pi->proto->supported_version; 2049 2050 xfer_put(ph, t); 2051 2052 return ret; 2053 } 2054 2055 /** 2056 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol 2057 * instance descriptor. 2058 * @info: The reference to the related SCMI instance. 2059 * @proto: The protocol descriptor. 2060 * 2061 * Allocate a new protocol instance descriptor, using the provided @proto 2062 * description, against the specified SCMI instance @info, and initialize it; 2063 * all resources management is handled via a dedicated per-protocol devres 2064 * group. 2065 * 2066 * Context: Assumes to be called with @protocols_mtx already acquired. 2067 * Return: A reference to a freshly allocated and initialized protocol instance 2068 * or ERR_PTR on failure. On failure the @proto reference is at first 2069 * put using @scmi_protocol_put() before releasing all the devres group. 2070 */ 2071 static struct scmi_protocol_instance * 2072 scmi_alloc_init_protocol_instance(struct scmi_info *info, 2073 const struct scmi_protocol *proto) 2074 { 2075 int ret = -ENOMEM; 2076 void *gid; 2077 struct scmi_protocol_instance *pi; 2078 const struct scmi_handle *handle = &info->handle; 2079 2080 /* Protocol specific devres group */ 2081 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL); 2082 if (!gid) { 2083 scmi_protocol_put(proto); 2084 goto out; 2085 } 2086 2087 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL); 2088 if (!pi) 2089 goto clean; 2090 2091 pi->gid = gid; 2092 pi->proto = proto; 2093 pi->handle = handle; 2094 pi->ph.dev = handle->dev; 2095 pi->ph.xops = &xfer_ops; 2096 pi->ph.hops = &helpers_ops; 2097 pi->ph.set_priv = scmi_set_protocol_priv; 2098 pi->ph.get_priv = scmi_get_protocol_priv; 2099 refcount_set(&pi->users, 1); 2100 /* proto->init is assured NON NULL by scmi_protocol_register */ 2101 ret = pi->proto->instance_init(&pi->ph); 2102 if (ret) 2103 goto clean; 2104 2105 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1, 2106 GFP_KERNEL); 2107 if (ret != proto->id) 2108 goto clean; 2109 2110 /* 2111 * Warn but ignore events registration errors since we do not want 2112 * to skip whole protocols if their notifications are messed up. 2113 */ 2114 if (pi->proto->events) { 2115 ret = scmi_register_protocol_events(handle, pi->proto->id, 2116 &pi->ph, 2117 pi->proto->events); 2118 if (ret) 2119 dev_warn(handle->dev, 2120 "Protocol:%X - Events Registration Failed - err:%d\n", 2121 pi->proto->id, ret); 2122 } 2123 2124 devres_close_group(handle->dev, pi->gid); 2125 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id); 2126 2127 if (pi->version > proto->supported_version) { 2128 ret = scmi_protocol_version_negotiate(&pi->ph); 2129 if (!ret) { 2130 dev_info(handle->dev, 2131 "Protocol 0x%X successfully negotiated version 0x%X\n", 2132 proto->id, pi->negotiated_version); 2133 } else { 2134 dev_warn(handle->dev, 2135 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X.\n", 2136 pi->version, pi->proto->id); 2137 dev_warn(handle->dev, 2138 "Trying version 0x%X. Backward compatibility is NOT assured.\n", 2139 pi->proto->supported_version); 2140 } 2141 } 2142 2143 return pi; 2144 2145 clean: 2146 /* Take care to put the protocol module's owner before releasing all */ 2147 scmi_protocol_put(proto); 2148 devres_release_group(handle->dev, gid); 2149 out: 2150 return ERR_PTR(ret); 2151 } 2152 2153 /** 2154 * scmi_get_protocol_instance - Protocol initialization helper. 2155 * @handle: A reference to the SCMI platform instance. 2156 * @protocol_id: The protocol being requested. 2157 * 2158 * In case the required protocol has never been requested before for this 2159 * instance, allocate and initialize all the needed structures while handling 2160 * resource allocation with a dedicated per-protocol devres subgroup. 2161 * 2162 * Return: A reference to an initialized protocol instance or error on failure: 2163 * in particular returns -EPROBE_DEFER when the desired protocol could 2164 * NOT be found. 2165 */ 2166 static struct scmi_protocol_instance * __must_check 2167 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id) 2168 { 2169 struct scmi_protocol_instance *pi; 2170 struct scmi_info *info = handle_to_scmi_info(handle); 2171 2172 mutex_lock(&info->protocols_mtx); 2173 pi = idr_find(&info->protocols, protocol_id); 2174 2175 if (pi) { 2176 refcount_inc(&pi->users); 2177 } else { 2178 const struct scmi_protocol *proto; 2179 2180 /* Fails if protocol not registered on bus */ 2181 proto = scmi_protocol_get(protocol_id, &info->version); 2182 if (proto) 2183 pi = scmi_alloc_init_protocol_instance(info, proto); 2184 else 2185 pi = ERR_PTR(-EPROBE_DEFER); 2186 } 2187 mutex_unlock(&info->protocols_mtx); 2188 2189 return pi; 2190 } 2191 2192 /** 2193 * scmi_protocol_acquire - Protocol acquire 2194 * @handle: A reference to the SCMI platform instance. 2195 * @protocol_id: The protocol being requested. 2196 * 2197 * Register a new user for the requested protocol on the specified SCMI 2198 * platform instance, possibly triggering its initialization on first user. 2199 * 2200 * Return: 0 if protocol was acquired successfully. 2201 */ 2202 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id) 2203 { 2204 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id)); 2205 } 2206 2207 /** 2208 * scmi_protocol_release - Protocol de-initialization helper. 2209 * @handle: A reference to the SCMI platform instance. 2210 * @protocol_id: The protocol being requested. 2211 * 2212 * Remove one user for the specified protocol and triggers de-initialization 2213 * and resources de-allocation once the last user has gone. 2214 */ 2215 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id) 2216 { 2217 struct scmi_info *info = handle_to_scmi_info(handle); 2218 struct scmi_protocol_instance *pi; 2219 2220 mutex_lock(&info->protocols_mtx); 2221 pi = idr_find(&info->protocols, protocol_id); 2222 if (WARN_ON(!pi)) 2223 goto out; 2224 2225 if (refcount_dec_and_test(&pi->users)) { 2226 void *gid = pi->gid; 2227 2228 if (pi->proto->events) 2229 scmi_deregister_protocol_events(handle, protocol_id); 2230 2231 if (pi->proto->instance_deinit) 2232 pi->proto->instance_deinit(&pi->ph); 2233 2234 idr_remove(&info->protocols, protocol_id); 2235 2236 scmi_protocol_put(pi->proto); 2237 2238 devres_release_group(handle->dev, gid); 2239 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n", 2240 protocol_id); 2241 } 2242 2243 out: 2244 mutex_unlock(&info->protocols_mtx); 2245 } 2246 2247 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph, 2248 u8 *prot_imp) 2249 { 2250 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 2251 struct scmi_info *info = handle_to_scmi_info(pi->handle); 2252 2253 info->protocols_imp = prot_imp; 2254 } 2255 2256 static bool 2257 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id) 2258 { 2259 int i; 2260 struct scmi_info *info = handle_to_scmi_info(handle); 2261 struct scmi_revision_info *rev = handle->version; 2262 2263 if (!info->protocols_imp) 2264 return false; 2265 2266 for (i = 0; i < rev->num_protocols; i++) 2267 if (info->protocols_imp[i] == prot_id) 2268 return true; 2269 return false; 2270 } 2271 2272 struct scmi_protocol_devres { 2273 const struct scmi_handle *handle; 2274 u8 protocol_id; 2275 }; 2276 2277 static void scmi_devm_release_protocol(struct device *dev, void *res) 2278 { 2279 struct scmi_protocol_devres *dres = res; 2280 2281 scmi_protocol_release(dres->handle, dres->protocol_id); 2282 } 2283 2284 static struct scmi_protocol_instance __must_check * 2285 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id) 2286 { 2287 struct scmi_protocol_instance *pi; 2288 struct scmi_protocol_devres *dres; 2289 2290 dres = devres_alloc(scmi_devm_release_protocol, 2291 sizeof(*dres), GFP_KERNEL); 2292 if (!dres) 2293 return ERR_PTR(-ENOMEM); 2294 2295 pi = scmi_get_protocol_instance(sdev->handle, protocol_id); 2296 if (IS_ERR(pi)) { 2297 devres_free(dres); 2298 return pi; 2299 } 2300 2301 dres->handle = sdev->handle; 2302 dres->protocol_id = protocol_id; 2303 devres_add(&sdev->dev, dres); 2304 2305 return pi; 2306 } 2307 2308 /** 2309 * scmi_devm_protocol_get - Devres managed get protocol operations and handle 2310 * @sdev: A reference to an scmi_device whose embedded struct device is to 2311 * be used for devres accounting. 2312 * @protocol_id: The protocol being requested. 2313 * @ph: A pointer reference used to pass back the associated protocol handle. 2314 * 2315 * Get hold of a protocol accounting for its usage, eventually triggering its 2316 * initialization, and returning the protocol specific operations and related 2317 * protocol handle which will be used as first argument in most of the 2318 * protocols operations methods. 2319 * Being a devres based managed method, protocol hold will be automatically 2320 * released, and possibly de-initialized on last user, once the SCMI driver 2321 * owning the scmi_device is unbound from it. 2322 * 2323 * Return: A reference to the requested protocol operations or error. 2324 * Must be checked for errors by caller. 2325 */ 2326 static const void __must_check * 2327 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id, 2328 struct scmi_protocol_handle **ph) 2329 { 2330 struct scmi_protocol_instance *pi; 2331 2332 if (!ph) 2333 return ERR_PTR(-EINVAL); 2334 2335 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 2336 if (IS_ERR(pi)) 2337 return pi; 2338 2339 *ph = &pi->ph; 2340 2341 return pi->proto->ops; 2342 } 2343 2344 /** 2345 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol 2346 * @sdev: A reference to an scmi_device whose embedded struct device is to 2347 * be used for devres accounting. 2348 * @protocol_id: The protocol being requested. 2349 * 2350 * Get hold of a protocol accounting for its usage, possibly triggering its 2351 * initialization but without getting access to its protocol specific operations 2352 * and handle. 2353 * 2354 * Being a devres based managed method, protocol hold will be automatically 2355 * released, and possibly de-initialized on last user, once the SCMI driver 2356 * owning the scmi_device is unbound from it. 2357 * 2358 * Return: 0 on SUCCESS 2359 */ 2360 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev, 2361 u8 protocol_id) 2362 { 2363 struct scmi_protocol_instance *pi; 2364 2365 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 2366 if (IS_ERR(pi)) 2367 return PTR_ERR(pi); 2368 2369 return 0; 2370 } 2371 2372 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data) 2373 { 2374 struct scmi_protocol_devres *dres = res; 2375 2376 if (WARN_ON(!dres || !data)) 2377 return 0; 2378 2379 return dres->protocol_id == *((u8 *)data); 2380 } 2381 2382 /** 2383 * scmi_devm_protocol_put - Devres managed put protocol operations and handle 2384 * @sdev: A reference to an scmi_device whose embedded struct device is to 2385 * be used for devres accounting. 2386 * @protocol_id: The protocol being requested. 2387 * 2388 * Explicitly release a protocol hold previously obtained calling the above 2389 * @scmi_devm_protocol_get. 2390 */ 2391 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id) 2392 { 2393 int ret; 2394 2395 ret = devres_release(&sdev->dev, scmi_devm_release_protocol, 2396 scmi_devm_protocol_match, &protocol_id); 2397 WARN_ON(ret); 2398 } 2399 2400 /** 2401 * scmi_is_transport_atomic - Method to check if underlying transport for an 2402 * SCMI instance is configured as atomic. 2403 * 2404 * @handle: A reference to the SCMI platform instance. 2405 * @atomic_threshold: An optional return value for the system wide currently 2406 * configured threshold for atomic operations. 2407 * 2408 * Return: True if transport is configured as atomic 2409 */ 2410 static bool scmi_is_transport_atomic(const struct scmi_handle *handle, 2411 unsigned int *atomic_threshold) 2412 { 2413 bool ret; 2414 struct scmi_info *info = handle_to_scmi_info(handle); 2415 2416 ret = info->desc->atomic_enabled && 2417 is_transport_polling_capable(info->desc); 2418 if (ret && atomic_threshold) 2419 *atomic_threshold = info->atomic_threshold; 2420 2421 return ret; 2422 } 2423 2424 /** 2425 * scmi_handle_get() - Get the SCMI handle for a device 2426 * 2427 * @dev: pointer to device for which we want SCMI handle 2428 * 2429 * NOTE: The function does not track individual clients of the framework 2430 * and is expected to be maintained by caller of SCMI protocol library. 2431 * scmi_handle_put must be balanced with successful scmi_handle_get 2432 * 2433 * Return: pointer to handle if successful, NULL on error 2434 */ 2435 static struct scmi_handle *scmi_handle_get(struct device *dev) 2436 { 2437 struct list_head *p; 2438 struct scmi_info *info; 2439 struct scmi_handle *handle = NULL; 2440 2441 mutex_lock(&scmi_list_mutex); 2442 list_for_each(p, &scmi_list) { 2443 info = list_entry(p, struct scmi_info, node); 2444 if (dev->parent == info->dev) { 2445 info->users++; 2446 handle = &info->handle; 2447 break; 2448 } 2449 } 2450 mutex_unlock(&scmi_list_mutex); 2451 2452 return handle; 2453 } 2454 2455 /** 2456 * scmi_handle_put() - Release the handle acquired by scmi_handle_get 2457 * 2458 * @handle: handle acquired by scmi_handle_get 2459 * 2460 * NOTE: The function does not track individual clients of the framework 2461 * and is expected to be maintained by caller of SCMI protocol library. 2462 * scmi_handle_put must be balanced with successful scmi_handle_get 2463 * 2464 * Return: 0 is successfully released 2465 * if null was passed, it returns -EINVAL; 2466 */ 2467 static int scmi_handle_put(const struct scmi_handle *handle) 2468 { 2469 struct scmi_info *info; 2470 2471 if (!handle) 2472 return -EINVAL; 2473 2474 info = handle_to_scmi_info(handle); 2475 mutex_lock(&scmi_list_mutex); 2476 if (!WARN_ON(!info->users)) 2477 info->users--; 2478 mutex_unlock(&scmi_list_mutex); 2479 2480 return 0; 2481 } 2482 2483 static void scmi_device_link_add(struct device *consumer, 2484 struct device *supplier) 2485 { 2486 struct device_link *link; 2487 2488 link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER); 2489 2490 WARN_ON(!link); 2491 } 2492 2493 static void scmi_set_handle(struct scmi_device *scmi_dev) 2494 { 2495 scmi_dev->handle = scmi_handle_get(&scmi_dev->dev); 2496 if (scmi_dev->handle) 2497 scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev); 2498 } 2499 2500 static int __scmi_xfer_info_init(struct scmi_info *sinfo, 2501 struct scmi_xfers_info *info) 2502 { 2503 int i; 2504 struct scmi_xfer *xfer; 2505 struct device *dev = sinfo->dev; 2506 const struct scmi_desc *desc = sinfo->desc; 2507 2508 /* Pre-allocated messages, no more than what hdr.seq can support */ 2509 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) { 2510 dev_err(dev, 2511 "Invalid maximum messages %d, not in range [1 - %lu]\n", 2512 info->max_msg, MSG_TOKEN_MAX); 2513 return -EINVAL; 2514 } 2515 2516 hash_init(info->pending_xfers); 2517 2518 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */ 2519 info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX, 2520 GFP_KERNEL); 2521 if (!info->xfer_alloc_table) 2522 return -ENOMEM; 2523 2524 /* 2525 * Preallocate a number of xfers equal to max inflight messages, 2526 * pre-initialize the buffer pointer to pre-allocated buffers and 2527 * attach all of them to the free list 2528 */ 2529 INIT_HLIST_HEAD(&info->free_xfers); 2530 for (i = 0; i < info->max_msg; i++) { 2531 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL); 2532 if (!xfer) 2533 return -ENOMEM; 2534 2535 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size, 2536 GFP_KERNEL); 2537 if (!xfer->rx.buf) 2538 return -ENOMEM; 2539 2540 xfer->tx.buf = xfer->rx.buf; 2541 init_completion(&xfer->done); 2542 spin_lock_init(&xfer->lock); 2543 2544 /* Add initialized xfer to the free list */ 2545 hlist_add_head(&xfer->node, &info->free_xfers); 2546 } 2547 2548 spin_lock_init(&info->xfer_lock); 2549 2550 return 0; 2551 } 2552 2553 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo) 2554 { 2555 const struct scmi_desc *desc = sinfo->desc; 2556 2557 if (!desc->ops->get_max_msg) { 2558 sinfo->tx_minfo.max_msg = desc->max_msg; 2559 sinfo->rx_minfo.max_msg = desc->max_msg; 2560 } else { 2561 struct scmi_chan_info *base_cinfo; 2562 2563 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE); 2564 if (!base_cinfo) 2565 return -EINVAL; 2566 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo); 2567 2568 /* RX channel is optional so can be skipped */ 2569 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE); 2570 if (base_cinfo) 2571 sinfo->rx_minfo.max_msg = 2572 desc->ops->get_max_msg(base_cinfo); 2573 } 2574 2575 return 0; 2576 } 2577 2578 static int scmi_xfer_info_init(struct scmi_info *sinfo) 2579 { 2580 int ret; 2581 2582 ret = scmi_channels_max_msg_configure(sinfo); 2583 if (ret) 2584 return ret; 2585 2586 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo); 2587 if (!ret && !idr_is_empty(&sinfo->rx_idr)) 2588 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo); 2589 2590 return ret; 2591 } 2592 2593 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node, 2594 int prot_id, bool tx) 2595 { 2596 int ret, idx; 2597 char name[32]; 2598 struct scmi_chan_info *cinfo; 2599 struct idr *idr; 2600 struct scmi_device *tdev = NULL; 2601 2602 /* Transmit channel is first entry i.e. index 0 */ 2603 idx = tx ? 0 : 1; 2604 idr = tx ? &info->tx_idr : &info->rx_idr; 2605 2606 if (!info->desc->ops->chan_available(of_node, idx)) { 2607 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE); 2608 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */ 2609 return -EINVAL; 2610 goto idr_alloc; 2611 } 2612 2613 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL); 2614 if (!cinfo) 2615 return -ENOMEM; 2616 2617 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms; 2618 2619 /* Create a unique name for this transport device */ 2620 snprintf(name, 32, "__scmi_transport_device_%s_%02X", 2621 idx ? "rx" : "tx", prot_id); 2622 /* Create a uniquely named, dedicated transport device for this chan */ 2623 tdev = scmi_device_create(of_node, info->dev, prot_id, name); 2624 if (!tdev) { 2625 dev_err(info->dev, 2626 "failed to create transport device (%s)\n", name); 2627 devm_kfree(info->dev, cinfo); 2628 return -EINVAL; 2629 } 2630 of_node_get(of_node); 2631 2632 cinfo->id = prot_id; 2633 cinfo->dev = &tdev->dev; 2634 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx); 2635 if (ret) { 2636 of_node_put(of_node); 2637 scmi_device_destroy(info->dev, prot_id, name); 2638 devm_kfree(info->dev, cinfo); 2639 return ret; 2640 } 2641 2642 if (tx && is_polling_required(cinfo, info->desc)) { 2643 if (is_transport_polling_capable(info->desc)) 2644 dev_info(&tdev->dev, 2645 "Enabled polling mode TX channel - prot_id:%d\n", 2646 prot_id); 2647 else 2648 dev_warn(&tdev->dev, 2649 "Polling mode NOT supported by transport.\n"); 2650 } 2651 2652 idr_alloc: 2653 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL); 2654 if (ret != prot_id) { 2655 dev_err(info->dev, 2656 "unable to allocate SCMI idr slot err %d\n", ret); 2657 /* Destroy channel and device only if created by this call. */ 2658 if (tdev) { 2659 of_node_put(of_node); 2660 scmi_device_destroy(info->dev, prot_id, name); 2661 devm_kfree(info->dev, cinfo); 2662 } 2663 return ret; 2664 } 2665 2666 cinfo->handle = &info->handle; 2667 return 0; 2668 } 2669 2670 static inline int 2671 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node, 2672 int prot_id) 2673 { 2674 int ret = scmi_chan_setup(info, of_node, prot_id, true); 2675 2676 if (!ret) { 2677 /* Rx is optional, report only memory errors */ 2678 ret = scmi_chan_setup(info, of_node, prot_id, false); 2679 if (ret && ret != -ENOMEM) 2680 ret = 0; 2681 } 2682 2683 if (ret) 2684 dev_err(info->dev, 2685 "failed to setup channel for protocol:0x%X\n", prot_id); 2686 2687 return ret; 2688 } 2689 2690 /** 2691 * scmi_channels_setup - Helper to initialize all required channels 2692 * 2693 * @info: The SCMI instance descriptor. 2694 * 2695 * Initialize all the channels found described in the DT against the underlying 2696 * configured transport using custom defined dedicated devices instead of 2697 * borrowing devices from the SCMI drivers; this way channels are initialized 2698 * upfront during core SCMI stack probing and are no more coupled with SCMI 2699 * devices used by SCMI drivers. 2700 * 2701 * Note that, even though a pair of TX/RX channels is associated to each 2702 * protocol defined in the DT, a distinct freshly initialized channel is 2703 * created only if the DT node for the protocol at hand describes a dedicated 2704 * channel: in all the other cases the common BASE protocol channel is reused. 2705 * 2706 * Return: 0 on Success 2707 */ 2708 static int scmi_channels_setup(struct scmi_info *info) 2709 { 2710 int ret; 2711 struct device_node *child, *top_np = info->dev->of_node; 2712 2713 /* Initialize a common generic channel at first */ 2714 ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE); 2715 if (ret) 2716 return ret; 2717 2718 for_each_available_child_of_node(top_np, child) { 2719 u32 prot_id; 2720 2721 if (of_property_read_u32(child, "reg", &prot_id)) 2722 continue; 2723 2724 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 2725 dev_err(info->dev, 2726 "Out of range protocol %d\n", prot_id); 2727 2728 ret = scmi_txrx_setup(info, child, prot_id); 2729 if (ret) { 2730 of_node_put(child); 2731 return ret; 2732 } 2733 } 2734 2735 return 0; 2736 } 2737 2738 static int scmi_chan_destroy(int id, void *p, void *idr) 2739 { 2740 struct scmi_chan_info *cinfo = p; 2741 2742 if (cinfo->dev) { 2743 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 2744 struct scmi_device *sdev = to_scmi_dev(cinfo->dev); 2745 2746 of_node_put(cinfo->dev->of_node); 2747 scmi_device_destroy(info->dev, id, sdev->name); 2748 cinfo->dev = NULL; 2749 } 2750 2751 idr_remove(idr, id); 2752 2753 return 0; 2754 } 2755 2756 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr) 2757 { 2758 /* At first free all channels at the transport layer ... */ 2759 idr_for_each(idr, info->desc->ops->chan_free, idr); 2760 2761 /* ...then destroy all underlying devices */ 2762 idr_for_each(idr, scmi_chan_destroy, idr); 2763 2764 idr_destroy(idr); 2765 } 2766 2767 static void scmi_cleanup_txrx_channels(struct scmi_info *info) 2768 { 2769 scmi_cleanup_channels(info, &info->tx_idr); 2770 2771 scmi_cleanup_channels(info, &info->rx_idr); 2772 } 2773 2774 static int scmi_bus_notifier(struct notifier_block *nb, 2775 unsigned long action, void *data) 2776 { 2777 struct scmi_info *info = bus_nb_to_scmi_info(nb); 2778 struct scmi_device *sdev = to_scmi_dev(data); 2779 2780 /* Skip transport devices and devices of different SCMI instances */ 2781 if (!strncmp(sdev->name, "__scmi_transport_device", 23) || 2782 sdev->dev.parent != info->dev) 2783 return NOTIFY_DONE; 2784 2785 switch (action) { 2786 case BUS_NOTIFY_BIND_DRIVER: 2787 /* setup handle now as the transport is ready */ 2788 scmi_set_handle(sdev); 2789 break; 2790 case BUS_NOTIFY_UNBOUND_DRIVER: 2791 scmi_handle_put(sdev->handle); 2792 sdev->handle = NULL; 2793 break; 2794 default: 2795 return NOTIFY_DONE; 2796 } 2797 2798 dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev), 2799 sdev->name, action == BUS_NOTIFY_BIND_DRIVER ? 2800 "about to be BOUND." : "UNBOUND."); 2801 2802 return NOTIFY_OK; 2803 } 2804 2805 static int scmi_device_request_notifier(struct notifier_block *nb, 2806 unsigned long action, void *data) 2807 { 2808 struct device_node *np; 2809 struct scmi_device_id *id_table = data; 2810 struct scmi_info *info = req_nb_to_scmi_info(nb); 2811 2812 np = idr_find(&info->active_protocols, id_table->protocol_id); 2813 if (!np) 2814 return NOTIFY_DONE; 2815 2816 dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n", 2817 action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-", 2818 id_table->name, id_table->protocol_id); 2819 2820 switch (action) { 2821 case SCMI_BUS_NOTIFY_DEVICE_REQUEST: 2822 scmi_create_protocol_devices(np, info, id_table->protocol_id, 2823 id_table->name); 2824 break; 2825 case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST: 2826 scmi_destroy_protocol_devices(info, id_table->protocol_id, 2827 id_table->name); 2828 break; 2829 default: 2830 return NOTIFY_DONE; 2831 } 2832 2833 return NOTIFY_OK; 2834 } 2835 2836 static void scmi_debugfs_common_cleanup(void *d) 2837 { 2838 struct scmi_debug_info *dbg = d; 2839 2840 if (!dbg) 2841 return; 2842 2843 debugfs_remove_recursive(dbg->top_dentry); 2844 kfree(dbg->name); 2845 kfree(dbg->type); 2846 } 2847 2848 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info) 2849 { 2850 char top_dir[16]; 2851 struct dentry *trans, *top_dentry; 2852 struct scmi_debug_info *dbg; 2853 const char *c_ptr = NULL; 2854 2855 dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL); 2856 if (!dbg) 2857 return NULL; 2858 2859 dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL); 2860 if (!dbg->name) { 2861 devm_kfree(info->dev, dbg); 2862 return NULL; 2863 } 2864 2865 of_property_read_string(info->dev->of_node, "compatible", &c_ptr); 2866 dbg->type = kstrdup(c_ptr, GFP_KERNEL); 2867 if (!dbg->type) { 2868 kfree(dbg->name); 2869 devm_kfree(info->dev, dbg); 2870 return NULL; 2871 } 2872 2873 snprintf(top_dir, 16, "%d", info->id); 2874 top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry); 2875 trans = debugfs_create_dir("transport", top_dentry); 2876 2877 dbg->is_atomic = info->desc->atomic_enabled && 2878 is_transport_polling_capable(info->desc); 2879 2880 debugfs_create_str("instance_name", 0400, top_dentry, 2881 (char **)&dbg->name); 2882 2883 debugfs_create_u32("atomic_threshold_us", 0400, top_dentry, 2884 &info->atomic_threshold); 2885 2886 debugfs_create_str("type", 0400, trans, (char **)&dbg->type); 2887 2888 debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic); 2889 2890 debugfs_create_u32("max_rx_timeout_ms", 0400, trans, 2891 (u32 *)&info->desc->max_rx_timeout_ms); 2892 2893 debugfs_create_u32("max_msg_size", 0400, trans, 2894 (u32 *)&info->desc->max_msg_size); 2895 2896 debugfs_create_u32("tx_max_msg", 0400, trans, 2897 (u32 *)&info->tx_minfo.max_msg); 2898 2899 debugfs_create_u32("rx_max_msg", 0400, trans, 2900 (u32 *)&info->rx_minfo.max_msg); 2901 2902 dbg->top_dentry = top_dentry; 2903 2904 if (devm_add_action_or_reset(info->dev, 2905 scmi_debugfs_common_cleanup, dbg)) { 2906 scmi_debugfs_common_cleanup(dbg); 2907 return NULL; 2908 } 2909 2910 return dbg; 2911 } 2912 2913 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info) 2914 { 2915 int id, num_chans = 0, ret = 0; 2916 struct scmi_chan_info *cinfo; 2917 u8 channels[SCMI_MAX_CHANNELS] = {}; 2918 DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {}; 2919 2920 if (!info->dbg) 2921 return -EINVAL; 2922 2923 /* Enumerate all channels to collect their ids */ 2924 idr_for_each_entry(&info->tx_idr, cinfo, id) { 2925 /* 2926 * Cannot happen, but be defensive. 2927 * Zero as num_chans is ok, warn and carry on. 2928 */ 2929 if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) { 2930 dev_warn(info->dev, 2931 "SCMI RAW - Error enumerating channels\n"); 2932 break; 2933 } 2934 2935 if (!test_bit(cinfo->id, protos)) { 2936 channels[num_chans++] = cinfo->id; 2937 set_bit(cinfo->id, protos); 2938 } 2939 } 2940 2941 info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry, 2942 info->id, channels, num_chans, 2943 info->desc, info->tx_minfo.max_msg); 2944 if (IS_ERR(info->raw)) { 2945 dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n"); 2946 ret = PTR_ERR(info->raw); 2947 info->raw = NULL; 2948 } 2949 2950 return ret; 2951 } 2952 2953 static int scmi_probe(struct platform_device *pdev) 2954 { 2955 int ret; 2956 char *err_str = "probe failure\n"; 2957 struct scmi_handle *handle; 2958 const struct scmi_desc *desc; 2959 struct scmi_info *info; 2960 bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX); 2961 struct device *dev = &pdev->dev; 2962 struct device_node *child, *np = dev->of_node; 2963 2964 desc = of_device_get_match_data(dev); 2965 if (!desc) 2966 return -EINVAL; 2967 2968 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); 2969 if (!info) 2970 return -ENOMEM; 2971 2972 info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL); 2973 if (info->id < 0) 2974 return info->id; 2975 2976 info->dev = dev; 2977 info->desc = desc; 2978 info->bus_nb.notifier_call = scmi_bus_notifier; 2979 info->dev_req_nb.notifier_call = scmi_device_request_notifier; 2980 INIT_LIST_HEAD(&info->node); 2981 idr_init(&info->protocols); 2982 mutex_init(&info->protocols_mtx); 2983 idr_init(&info->active_protocols); 2984 mutex_init(&info->devreq_mtx); 2985 2986 platform_set_drvdata(pdev, info); 2987 idr_init(&info->tx_idr); 2988 idr_init(&info->rx_idr); 2989 2990 handle = &info->handle; 2991 handle->dev = info->dev; 2992 handle->version = &info->version; 2993 handle->devm_protocol_acquire = scmi_devm_protocol_acquire; 2994 handle->devm_protocol_get = scmi_devm_protocol_get; 2995 handle->devm_protocol_put = scmi_devm_protocol_put; 2996 2997 /* System wide atomic threshold for atomic ops .. if any */ 2998 if (!of_property_read_u32(np, "atomic-threshold-us", 2999 &info->atomic_threshold)) 3000 dev_info(dev, 3001 "SCMI System wide atomic threshold set to %d us\n", 3002 info->atomic_threshold); 3003 handle->is_transport_atomic = scmi_is_transport_atomic; 3004 3005 if (desc->ops->link_supplier) { 3006 ret = desc->ops->link_supplier(dev); 3007 if (ret) { 3008 err_str = "transport not ready\n"; 3009 goto clear_ida; 3010 } 3011 } 3012 3013 /* Setup all channels described in the DT at first */ 3014 ret = scmi_channels_setup(info); 3015 if (ret) { 3016 err_str = "failed to setup channels\n"; 3017 goto clear_ida; 3018 } 3019 3020 ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb); 3021 if (ret) { 3022 err_str = "failed to register bus notifier\n"; 3023 goto clear_txrx_setup; 3024 } 3025 3026 ret = blocking_notifier_chain_register(&scmi_requested_devices_nh, 3027 &info->dev_req_nb); 3028 if (ret) { 3029 err_str = "failed to register device notifier\n"; 3030 goto clear_bus_notifier; 3031 } 3032 3033 ret = scmi_xfer_info_init(info); 3034 if (ret) { 3035 err_str = "failed to init xfers pool\n"; 3036 goto clear_dev_req_notifier; 3037 } 3038 3039 if (scmi_top_dentry) { 3040 info->dbg = scmi_debugfs_common_setup(info); 3041 if (!info->dbg) 3042 dev_warn(dev, "Failed to setup SCMI debugfs.\n"); 3043 3044 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 3045 ret = scmi_debugfs_raw_mode_setup(info); 3046 if (!coex) { 3047 if (ret) 3048 goto clear_dev_req_notifier; 3049 3050 /* Bail out anyway when coex disabled. */ 3051 return 0; 3052 } 3053 3054 /* Coex enabled, carry on in any case. */ 3055 dev_info(dev, "SCMI RAW Mode COEX enabled !\n"); 3056 } 3057 } 3058 3059 if (scmi_notification_init(handle)) 3060 dev_err(dev, "SCMI Notifications NOT available.\n"); 3061 3062 if (info->desc->atomic_enabled && 3063 !is_transport_polling_capable(info->desc)) 3064 dev_err(dev, 3065 "Transport is not polling capable. Atomic mode not supported.\n"); 3066 3067 /* 3068 * Trigger SCMI Base protocol initialization. 3069 * It's mandatory and won't be ever released/deinit until the 3070 * SCMI stack is shutdown/unloaded as a whole. 3071 */ 3072 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE); 3073 if (ret) { 3074 err_str = "unable to communicate with SCMI\n"; 3075 if (coex) { 3076 dev_err(dev, "%s", err_str); 3077 return 0; 3078 } 3079 goto notification_exit; 3080 } 3081 3082 mutex_lock(&scmi_list_mutex); 3083 list_add_tail(&info->node, &scmi_list); 3084 mutex_unlock(&scmi_list_mutex); 3085 3086 for_each_available_child_of_node(np, child) { 3087 u32 prot_id; 3088 3089 if (of_property_read_u32(child, "reg", &prot_id)) 3090 continue; 3091 3092 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 3093 dev_err(dev, "Out of range protocol %d\n", prot_id); 3094 3095 if (!scmi_is_protocol_implemented(handle, prot_id)) { 3096 dev_err(dev, "SCMI protocol %d not implemented\n", 3097 prot_id); 3098 continue; 3099 } 3100 3101 /* 3102 * Save this valid DT protocol descriptor amongst 3103 * @active_protocols for this SCMI instance/ 3104 */ 3105 ret = idr_alloc(&info->active_protocols, child, 3106 prot_id, prot_id + 1, GFP_KERNEL); 3107 if (ret != prot_id) { 3108 dev_err(dev, "SCMI protocol %d already activated. Skip\n", 3109 prot_id); 3110 continue; 3111 } 3112 3113 of_node_get(child); 3114 scmi_create_protocol_devices(child, info, prot_id, NULL); 3115 } 3116 3117 return 0; 3118 3119 notification_exit: 3120 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 3121 scmi_raw_mode_cleanup(info->raw); 3122 scmi_notification_exit(&info->handle); 3123 clear_dev_req_notifier: 3124 blocking_notifier_chain_unregister(&scmi_requested_devices_nh, 3125 &info->dev_req_nb); 3126 clear_bus_notifier: 3127 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb); 3128 clear_txrx_setup: 3129 scmi_cleanup_txrx_channels(info); 3130 clear_ida: 3131 ida_free(&scmi_id, info->id); 3132 3133 return dev_err_probe(dev, ret, "%s", err_str); 3134 } 3135 3136 static void scmi_remove(struct platform_device *pdev) 3137 { 3138 int id; 3139 struct scmi_info *info = platform_get_drvdata(pdev); 3140 struct device_node *child; 3141 3142 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 3143 scmi_raw_mode_cleanup(info->raw); 3144 3145 mutex_lock(&scmi_list_mutex); 3146 if (info->users) 3147 dev_warn(&pdev->dev, 3148 "Still active SCMI users will be forcibly unbound.\n"); 3149 list_del(&info->node); 3150 mutex_unlock(&scmi_list_mutex); 3151 3152 scmi_notification_exit(&info->handle); 3153 3154 mutex_lock(&info->protocols_mtx); 3155 idr_destroy(&info->protocols); 3156 mutex_unlock(&info->protocols_mtx); 3157 3158 idr_for_each_entry(&info->active_protocols, child, id) 3159 of_node_put(child); 3160 idr_destroy(&info->active_protocols); 3161 3162 blocking_notifier_chain_unregister(&scmi_requested_devices_nh, 3163 &info->dev_req_nb); 3164 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb); 3165 3166 /* Safe to free channels since no more users */ 3167 scmi_cleanup_txrx_channels(info); 3168 3169 ida_free(&scmi_id, info->id); 3170 } 3171 3172 static ssize_t protocol_version_show(struct device *dev, 3173 struct device_attribute *attr, char *buf) 3174 { 3175 struct scmi_info *info = dev_get_drvdata(dev); 3176 3177 return sprintf(buf, "%u.%u\n", info->version.major_ver, 3178 info->version.minor_ver); 3179 } 3180 static DEVICE_ATTR_RO(protocol_version); 3181 3182 static ssize_t firmware_version_show(struct device *dev, 3183 struct device_attribute *attr, char *buf) 3184 { 3185 struct scmi_info *info = dev_get_drvdata(dev); 3186 3187 return sprintf(buf, "0x%x\n", info->version.impl_ver); 3188 } 3189 static DEVICE_ATTR_RO(firmware_version); 3190 3191 static ssize_t vendor_id_show(struct device *dev, 3192 struct device_attribute *attr, char *buf) 3193 { 3194 struct scmi_info *info = dev_get_drvdata(dev); 3195 3196 return sprintf(buf, "%s\n", info->version.vendor_id); 3197 } 3198 static DEVICE_ATTR_RO(vendor_id); 3199 3200 static ssize_t sub_vendor_id_show(struct device *dev, 3201 struct device_attribute *attr, char *buf) 3202 { 3203 struct scmi_info *info = dev_get_drvdata(dev); 3204 3205 return sprintf(buf, "%s\n", info->version.sub_vendor_id); 3206 } 3207 static DEVICE_ATTR_RO(sub_vendor_id); 3208 3209 static struct attribute *versions_attrs[] = { 3210 &dev_attr_firmware_version.attr, 3211 &dev_attr_protocol_version.attr, 3212 &dev_attr_vendor_id.attr, 3213 &dev_attr_sub_vendor_id.attr, 3214 NULL, 3215 }; 3216 ATTRIBUTE_GROUPS(versions); 3217 3218 /* Each compatible listed below must have descriptor associated with it */ 3219 static const struct of_device_id scmi_of_match[] = { 3220 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX 3221 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc }, 3222 #endif 3223 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE 3224 { .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc }, 3225 #endif 3226 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC 3227 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc}, 3228 { .compatible = "arm,scmi-smc-param", .data = &scmi_smc_desc}, 3229 { .compatible = "qcom,scmi-smc", .data = &scmi_smc_desc}, 3230 #endif 3231 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO 3232 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc}, 3233 #endif 3234 { /* Sentinel */ }, 3235 }; 3236 3237 MODULE_DEVICE_TABLE(of, scmi_of_match); 3238 3239 static struct platform_driver scmi_driver = { 3240 .driver = { 3241 .name = "arm-scmi", 3242 .suppress_bind_attrs = true, 3243 .of_match_table = scmi_of_match, 3244 .dev_groups = versions_groups, 3245 }, 3246 .probe = scmi_probe, 3247 .remove_new = scmi_remove, 3248 }; 3249 3250 /** 3251 * __scmi_transports_setup - Common helper to call transport-specific 3252 * .init/.exit code if provided. 3253 * 3254 * @init: A flag to distinguish between init and exit. 3255 * 3256 * Note that, if provided, we invoke .init/.exit functions for all the 3257 * transports currently compiled in. 3258 * 3259 * Return: 0 on Success. 3260 */ 3261 static inline int __scmi_transports_setup(bool init) 3262 { 3263 int ret = 0; 3264 const struct of_device_id *trans; 3265 3266 for (trans = scmi_of_match; trans->data; trans++) { 3267 const struct scmi_desc *tdesc = trans->data; 3268 3269 if ((init && !tdesc->transport_init) || 3270 (!init && !tdesc->transport_exit)) 3271 continue; 3272 3273 if (init) 3274 ret = tdesc->transport_init(); 3275 else 3276 tdesc->transport_exit(); 3277 3278 if (ret) { 3279 pr_err("SCMI transport %s FAILED initialization!\n", 3280 trans->compatible); 3281 break; 3282 } 3283 } 3284 3285 return ret; 3286 } 3287 3288 static int __init scmi_transports_init(void) 3289 { 3290 return __scmi_transports_setup(true); 3291 } 3292 3293 static void __exit scmi_transports_exit(void) 3294 { 3295 __scmi_transports_setup(false); 3296 } 3297 3298 static struct dentry *scmi_debugfs_init(void) 3299 { 3300 struct dentry *d; 3301 3302 d = debugfs_create_dir("scmi", NULL); 3303 if (IS_ERR(d)) { 3304 pr_err("Could NOT create SCMI top dentry.\n"); 3305 return NULL; 3306 } 3307 3308 return d; 3309 } 3310 3311 static int __init scmi_driver_init(void) 3312 { 3313 int ret; 3314 3315 /* Bail out if no SCMI transport was configured */ 3316 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT))) 3317 return -EINVAL; 3318 3319 /* Initialize any compiled-in transport which provided an init/exit */ 3320 ret = scmi_transports_init(); 3321 if (ret) 3322 return ret; 3323 3324 if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS)) 3325 scmi_top_dentry = scmi_debugfs_init(); 3326 3327 scmi_base_register(); 3328 3329 scmi_clock_register(); 3330 scmi_perf_register(); 3331 scmi_power_register(); 3332 scmi_reset_register(); 3333 scmi_sensors_register(); 3334 scmi_voltage_register(); 3335 scmi_system_register(); 3336 scmi_powercap_register(); 3337 scmi_pinctrl_register(); 3338 3339 return platform_driver_register(&scmi_driver); 3340 } 3341 module_init(scmi_driver_init); 3342 3343 static void __exit scmi_driver_exit(void) 3344 { 3345 scmi_base_unregister(); 3346 3347 scmi_clock_unregister(); 3348 scmi_perf_unregister(); 3349 scmi_power_unregister(); 3350 scmi_reset_unregister(); 3351 scmi_sensors_unregister(); 3352 scmi_voltage_unregister(); 3353 scmi_system_unregister(); 3354 scmi_powercap_unregister(); 3355 scmi_pinctrl_unregister(); 3356 3357 scmi_transports_exit(); 3358 3359 platform_driver_unregister(&scmi_driver); 3360 3361 debugfs_remove_recursive(scmi_top_dentry); 3362 } 3363 module_exit(scmi_driver_exit); 3364 3365 MODULE_ALIAS("platform:arm-scmi"); 3366 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 3367 MODULE_DESCRIPTION("ARM SCMI protocol driver"); 3368 MODULE_LICENSE("GPL v2"); 3369