xref: /linux/drivers/firmware/arm_scmi/driver.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Message Protocol driver
4  *
5  * SCMI Message Protocol is used between the System Control Processor(SCP)
6  * and the Application Processors(AP). The Message Handling Unit(MHU)
7  * provides a mechanism for inter-processor communication between SCP's
8  * Cortex M3 and AP.
9  *
10  * SCP offers control and management of the core/cluster power states,
11  * various power domain DVFS including the core/cluster, certain system
12  * clocks configuration, thermal sensors and many others.
13  *
14  * Copyright (C) 2018-2024 ARM Ltd.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/hashtable.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of.h>
32 #include <linux/platform_device.h>
33 #include <linux/processor.h>
34 #include <linux/refcount.h>
35 #include <linux/slab.h>
36 #include <linux/xarray.h>
37 
38 #include "common.h"
39 #include "notify.h"
40 
41 #include "raw_mode.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/scmi.h>
45 
46 static DEFINE_IDA(scmi_id);
47 
48 static DEFINE_XARRAY(scmi_protocols);
49 
50 /* List of all SCMI devices active in system */
51 static LIST_HEAD(scmi_list);
52 /* Protection for the entire list */
53 static DEFINE_MUTEX(scmi_list_mutex);
54 /* Track the unique id for the transfers for debug & profiling purpose */
55 static atomic_t transfer_last_id;
56 
57 static struct dentry *scmi_top_dentry;
58 
59 /**
60  * struct scmi_xfers_info - Structure to manage transfer information
61  *
62  * @xfer_alloc_table: Bitmap table for allocated messages.
63  *	Index of this bitmap table is also used for message
64  *	sequence identifier.
65  * @xfer_lock: Protection for message allocation
66  * @max_msg: Maximum number of messages that can be pending
67  * @free_xfers: A free list for available to use xfers. It is initialized with
68  *		a number of xfers equal to the maximum allowed in-flight
69  *		messages.
70  * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
71  *		   currently in-flight messages.
72  */
73 struct scmi_xfers_info {
74 	unsigned long *xfer_alloc_table;
75 	spinlock_t xfer_lock;
76 	int max_msg;
77 	struct hlist_head free_xfers;
78 	DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
79 };
80 
81 /**
82  * struct scmi_protocol_instance  - Describe an initialized protocol instance.
83  * @handle: Reference to the SCMI handle associated to this protocol instance.
84  * @proto: A reference to the protocol descriptor.
85  * @gid: A reference for per-protocol devres management.
86  * @users: A refcount to track effective users of this protocol.
87  * @priv: Reference for optional protocol private data.
88  * @version: Protocol version supported by the platform as detected at runtime.
89  * @negotiated_version: When the platform supports a newer protocol version,
90  *			the agent will try to negotiate with the platform the
91  *			usage of the newest version known to it, since
92  *			backward compatibility is NOT automatically assured.
93  *			This field is NON-zero when a successful negotiation
94  *			has completed.
95  * @ph: An embedded protocol handle that will be passed down to protocol
96  *	initialization code to identify this instance.
97  *
98  * Each protocol is initialized independently once for each SCMI platform in
99  * which is defined by DT and implemented by the SCMI server fw.
100  */
101 struct scmi_protocol_instance {
102 	const struct scmi_handle	*handle;
103 	const struct scmi_protocol	*proto;
104 	void				*gid;
105 	refcount_t			users;
106 	void				*priv;
107 	unsigned int			version;
108 	unsigned int			negotiated_version;
109 	struct scmi_protocol_handle	ph;
110 };
111 
112 #define ph_to_pi(h)	container_of(h, struct scmi_protocol_instance, ph)
113 
114 /**
115  * struct scmi_debug_info  - Debug common info
116  * @top_dentry: A reference to the top debugfs dentry
117  * @name: Name of this SCMI instance
118  * @type: Type of this SCMI instance
119  * @is_atomic: Flag to state if the transport of this instance is atomic
120  * @counters: An array of atomic_c's used for tracking statistics (if enabled)
121  */
122 struct scmi_debug_info {
123 	struct dentry *top_dentry;
124 	const char *name;
125 	const char *type;
126 	bool is_atomic;
127 	atomic_t counters[SCMI_DEBUG_COUNTERS_LAST];
128 };
129 
130 /**
131  * struct scmi_info - Structure representing a SCMI instance
132  *
133  * @id: A sequence number starting from zero identifying this instance
134  * @dev: Device pointer
135  * @desc: SoC description for this instance
136  * @version: SCMI revision information containing protocol version,
137  *	implementation version and (sub-)vendor identification.
138  * @handle: Instance of SCMI handle to send to clients
139  * @tx_minfo: Universal Transmit Message management info
140  * @rx_minfo: Universal Receive Message management info
141  * @tx_idr: IDR object to map protocol id to Tx channel info pointer
142  * @rx_idr: IDR object to map protocol id to Rx channel info pointer
143  * @protocols: IDR for protocols' instance descriptors initialized for
144  *	       this SCMI instance: populated on protocol's first attempted
145  *	       usage.
146  * @protocols_mtx: A mutex to protect protocols instances initialization.
147  * @protocols_imp: List of protocols implemented, currently maximum of
148  *		   scmi_revision_info.num_protocols elements allocated by the
149  *		   base protocol
150  * @active_protocols: IDR storing device_nodes for protocols actually defined
151  *		      in the DT and confirmed as implemented by fw.
152  * @atomic_threshold: Optional system wide DT-configured threshold, expressed
153  *		      in microseconds, for atomic operations.
154  *		      Only SCMI synchronous commands reported by the platform
155  *		      to have an execution latency lesser-equal to the threshold
156  *		      should be considered for atomic mode operation: such
157  *		      decision is finally left up to the SCMI drivers.
158  * @notify_priv: Pointer to private data structure specific to notifications.
159  * @node: List head
160  * @users: Number of users of this instance
161  * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
162  * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
163  *		bus
164  * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
165  * @dbg: A pointer to debugfs related data (if any)
166  * @raw: An opaque reference handle used by SCMI Raw mode.
167  */
168 struct scmi_info {
169 	int id;
170 	struct device *dev;
171 	const struct scmi_desc *desc;
172 	struct scmi_revision_info version;
173 	struct scmi_handle handle;
174 	struct scmi_xfers_info tx_minfo;
175 	struct scmi_xfers_info rx_minfo;
176 	struct idr tx_idr;
177 	struct idr rx_idr;
178 	struct idr protocols;
179 	/* Ensure mutual exclusive access to protocols instance array */
180 	struct mutex protocols_mtx;
181 	u8 *protocols_imp;
182 	struct idr active_protocols;
183 	unsigned int atomic_threshold;
184 	void *notify_priv;
185 	struct list_head node;
186 	int users;
187 	struct notifier_block bus_nb;
188 	struct notifier_block dev_req_nb;
189 	/* Serialize device creation process for this instance */
190 	struct mutex devreq_mtx;
191 	struct scmi_debug_info *dbg;
192 	void *raw;
193 };
194 
195 #define handle_to_scmi_info(h)	container_of(h, struct scmi_info, handle)
196 #define bus_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, bus_nb)
197 #define req_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, dev_req_nb)
198 
199 static void scmi_rx_callback(struct scmi_chan_info *cinfo,
200 			     u32 msg_hdr, void *priv);
201 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo,
202 				   u32 msg_hdr, enum scmi_bad_msg err);
203 
204 static struct scmi_transport_core_operations scmi_trans_core_ops = {
205 	.bad_message_trace = scmi_bad_message_trace,
206 	.rx_callback = scmi_rx_callback,
207 };
208 
209 static unsigned long
210 scmi_vendor_protocol_signature(unsigned int protocol_id, char *vendor_id,
211 			       char *sub_vendor_id, u32 impl_ver)
212 {
213 	char *signature, *p;
214 	unsigned long hash = 0;
215 
216 	/* vendor_id/sub_vendor_id guaranteed <= SCMI_SHORT_NAME_MAX_SIZE */
217 	signature = kasprintf(GFP_KERNEL, "%02X|%s|%s|0x%08X", protocol_id,
218 			      vendor_id ?: "", sub_vendor_id ?: "", impl_ver);
219 	if (!signature)
220 		return 0;
221 
222 	p = signature;
223 	while (*p)
224 		hash = partial_name_hash(tolower(*p++), hash);
225 	hash = end_name_hash(hash);
226 
227 	kfree(signature);
228 
229 	return hash;
230 }
231 
232 static unsigned long
233 scmi_protocol_key_calculate(int protocol_id, char *vendor_id,
234 			    char *sub_vendor_id, u32 impl_ver)
235 {
236 	if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE)
237 		return protocol_id;
238 	else
239 		return scmi_vendor_protocol_signature(protocol_id, vendor_id,
240 						      sub_vendor_id, impl_ver);
241 }
242 
243 static const struct scmi_protocol *
244 __scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id,
245 			      char *sub_vendor_id, u32 impl_ver)
246 {
247 	unsigned long key;
248 	struct scmi_protocol *proto = NULL;
249 
250 	key = scmi_protocol_key_calculate(protocol_id, vendor_id,
251 					  sub_vendor_id, impl_ver);
252 	if (key)
253 		proto = xa_load(&scmi_protocols, key);
254 
255 	return proto;
256 }
257 
258 static const struct scmi_protocol *
259 scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id,
260 			    char *sub_vendor_id, u32 impl_ver)
261 {
262 	const struct scmi_protocol *proto = NULL;
263 
264 	/* Searching for closest match ...*/
265 	proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
266 					      sub_vendor_id, impl_ver);
267 	if (proto)
268 		return proto;
269 
270 	/* Any match just on vendor/sub_vendor ? */
271 	if (impl_ver) {
272 		proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
273 						      sub_vendor_id, 0);
274 		if (proto)
275 			return proto;
276 	}
277 
278 	/* Any match just on the vendor ? */
279 	if (sub_vendor_id)
280 		proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
281 						      NULL, 0);
282 	return proto;
283 }
284 
285 static const struct scmi_protocol *
286 scmi_protocol_get(int protocol_id, struct scmi_revision_info *version)
287 {
288 	const struct scmi_protocol *proto = NULL;
289 
290 	if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE)
291 		proto = xa_load(&scmi_protocols, protocol_id);
292 	else
293 		proto = scmi_vendor_protocol_lookup(protocol_id,
294 						    version->vendor_id,
295 						    version->sub_vendor_id,
296 						    version->impl_ver);
297 	if (!proto || !try_module_get(proto->owner)) {
298 		pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
299 		return NULL;
300 	}
301 
302 	pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
303 
304 	if (protocol_id >= SCMI_PROTOCOL_VENDOR_BASE)
305 		pr_info("Loaded SCMI Vendor Protocol 0x%x - %s %s %X\n",
306 			protocol_id, proto->vendor_id ?: "",
307 			proto->sub_vendor_id ?: "", proto->impl_ver);
308 
309 	return proto;
310 }
311 
312 static void scmi_protocol_put(const struct scmi_protocol *proto)
313 {
314 	if (proto)
315 		module_put(proto->owner);
316 }
317 
318 static int scmi_vendor_protocol_check(const struct scmi_protocol *proto)
319 {
320 	if (!proto->vendor_id) {
321 		pr_err("missing vendor_id for protocol 0x%x\n", proto->id);
322 		return -EINVAL;
323 	}
324 
325 	if (strlen(proto->vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) {
326 		pr_err("malformed vendor_id for protocol 0x%x\n", proto->id);
327 		return -EINVAL;
328 	}
329 
330 	if (proto->sub_vendor_id &&
331 	    strlen(proto->sub_vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) {
332 		pr_err("malformed sub_vendor_id for protocol 0x%x\n",
333 		       proto->id);
334 		return -EINVAL;
335 	}
336 
337 	return 0;
338 }
339 
340 int scmi_protocol_register(const struct scmi_protocol *proto)
341 {
342 	int ret;
343 	unsigned long key;
344 
345 	if (!proto) {
346 		pr_err("invalid protocol\n");
347 		return -EINVAL;
348 	}
349 
350 	if (!proto->instance_init) {
351 		pr_err("missing init for protocol 0x%x\n", proto->id);
352 		return -EINVAL;
353 	}
354 
355 	if (proto->id >= SCMI_PROTOCOL_VENDOR_BASE &&
356 	    scmi_vendor_protocol_check(proto))
357 		return -EINVAL;
358 
359 	/*
360 	 * Calculate a protocol key to register this protocol with the core;
361 	 * key value 0 is considered invalid.
362 	 */
363 	key = scmi_protocol_key_calculate(proto->id, proto->vendor_id,
364 					  proto->sub_vendor_id,
365 					  proto->impl_ver);
366 	if (!key)
367 		return -EINVAL;
368 
369 	ret = xa_insert(&scmi_protocols, key, (void *)proto, GFP_KERNEL);
370 	if (ret) {
371 		pr_err("unable to allocate SCMI protocol slot for 0x%x - err %d\n",
372 		       proto->id, ret);
373 		return ret;
374 	}
375 
376 	pr_debug("Registered SCMI Protocol 0x%x\n", proto->id);
377 
378 	return 0;
379 }
380 EXPORT_SYMBOL_GPL(scmi_protocol_register);
381 
382 void scmi_protocol_unregister(const struct scmi_protocol *proto)
383 {
384 	unsigned long key;
385 
386 	key = scmi_protocol_key_calculate(proto->id, proto->vendor_id,
387 					  proto->sub_vendor_id,
388 					  proto->impl_ver);
389 	if (!key)
390 		return;
391 
392 	xa_erase(&scmi_protocols, key);
393 
394 	pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
395 }
396 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
397 
398 /**
399  * scmi_create_protocol_devices  - Create devices for all pending requests for
400  * this SCMI instance.
401  *
402  * @np: The device node describing the protocol
403  * @info: The SCMI instance descriptor
404  * @prot_id: The protocol ID
405  * @name: The optional name of the device to be created: if not provided this
406  *	  call will lead to the creation of all the devices currently requested
407  *	  for the specified protocol.
408  */
409 static void scmi_create_protocol_devices(struct device_node *np,
410 					 struct scmi_info *info,
411 					 int prot_id, const char *name)
412 {
413 	struct scmi_device *sdev;
414 
415 	mutex_lock(&info->devreq_mtx);
416 	sdev = scmi_device_create(np, info->dev, prot_id, name);
417 	if (name && !sdev)
418 		dev_err(info->dev,
419 			"failed to create device for protocol 0x%X (%s)\n",
420 			prot_id, name);
421 	mutex_unlock(&info->devreq_mtx);
422 }
423 
424 static void scmi_destroy_protocol_devices(struct scmi_info *info,
425 					  int prot_id, const char *name)
426 {
427 	mutex_lock(&info->devreq_mtx);
428 	scmi_device_destroy(info->dev, prot_id, name);
429 	mutex_unlock(&info->devreq_mtx);
430 }
431 
432 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
433 					 void *priv)
434 {
435 	struct scmi_info *info = handle_to_scmi_info(handle);
436 
437 	info->notify_priv = priv;
438 	/* Ensure updated protocol private date are visible */
439 	smp_wmb();
440 }
441 
442 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
443 {
444 	struct scmi_info *info = handle_to_scmi_info(handle);
445 
446 	/* Ensure protocols_private_data has been updated */
447 	smp_rmb();
448 	return info->notify_priv;
449 }
450 
451 /**
452  * scmi_xfer_token_set  - Reserve and set new token for the xfer at hand
453  *
454  * @minfo: Pointer to Tx/Rx Message management info based on channel type
455  * @xfer: The xfer to act upon
456  *
457  * Pick the next unused monotonically increasing token and set it into
458  * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
459  * reuse of freshly completed or timed-out xfers, thus mitigating the risk
460  * of incorrect association of a late and expired xfer with a live in-flight
461  * transaction, both happening to re-use the same token identifier.
462  *
463  * Since platform is NOT required to answer our request in-order we should
464  * account for a few rare but possible scenarios:
465  *
466  *  - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
467  *    using find_next_zero_bit() starting from candidate next_token bit
468  *
469  *  - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
470  *    are plenty of free tokens at start, so try a second pass using
471  *    find_next_zero_bit() and starting from 0.
472  *
473  *  X = used in-flight
474  *
475  * Normal
476  * ------
477  *
478  *		|- xfer_id picked
479  *   -----------+----------------------------------------------------------
480  *   | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
481  *   ----------------------------------------------------------------------
482  *		^
483  *		|- next_token
484  *
485  * Out-of-order pending at start
486  * -----------------------------
487  *
488  *	  |- xfer_id picked, last_token fixed
489  *   -----+----------------------------------------------------------------
490  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
491  *   ----------------------------------------------------------------------
492  *    ^
493  *    |- next_token
494  *
495  *
496  * Out-of-order pending at end
497  * ---------------------------
498  *
499  *	  |- xfer_id picked, last_token fixed
500  *   -----+----------------------------------------------------------------
501  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
502  *   ----------------------------------------------------------------------
503  *								^
504  *								|- next_token
505  *
506  * Context: Assumes to be called with @xfer_lock already acquired.
507  *
508  * Return: 0 on Success or error
509  */
510 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
511 			       struct scmi_xfer *xfer)
512 {
513 	unsigned long xfer_id, next_token;
514 
515 	/*
516 	 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
517 	 * using the pre-allocated transfer_id as a base.
518 	 * Note that the global transfer_id is shared across all message types
519 	 * so there could be holes in the allocated set of monotonic sequence
520 	 * numbers, but that is going to limit the effectiveness of the
521 	 * mitigation only in very rare limit conditions.
522 	 */
523 	next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
524 
525 	/* Pick the next available xfer_id >= next_token */
526 	xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
527 				     MSG_TOKEN_MAX, next_token);
528 	if (xfer_id == MSG_TOKEN_MAX) {
529 		/*
530 		 * After heavily out-of-order responses, there are no free
531 		 * tokens ahead, but only at start of xfer_alloc_table so
532 		 * try again from the beginning.
533 		 */
534 		xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
535 					     MSG_TOKEN_MAX, 0);
536 		/*
537 		 * Something is wrong if we got here since there can be a
538 		 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
539 		 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
540 		 */
541 		if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
542 			return -ENOMEM;
543 	}
544 
545 	/* Update +/- last_token accordingly if we skipped some hole */
546 	if (xfer_id != next_token)
547 		atomic_add((int)(xfer_id - next_token), &transfer_last_id);
548 
549 	xfer->hdr.seq = (u16)xfer_id;
550 
551 	return 0;
552 }
553 
554 /**
555  * scmi_xfer_token_clear  - Release the token
556  *
557  * @minfo: Pointer to Tx/Rx Message management info based on channel type
558  * @xfer: The xfer to act upon
559  */
560 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
561 					 struct scmi_xfer *xfer)
562 {
563 	clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
564 }
565 
566 /**
567  * scmi_xfer_inflight_register_unlocked  - Register the xfer as in-flight
568  *
569  * @xfer: The xfer to register
570  * @minfo: Pointer to Tx/Rx Message management info based on channel type
571  *
572  * Note that this helper assumes that the xfer to be registered as in-flight
573  * had been built using an xfer sequence number which still corresponds to a
574  * free slot in the xfer_alloc_table.
575  *
576  * Context: Assumes to be called with @xfer_lock already acquired.
577  */
578 static inline void
579 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
580 				     struct scmi_xfers_info *minfo)
581 {
582 	/* Set in-flight */
583 	set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
584 	hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
585 	xfer->pending = true;
586 }
587 
588 /**
589  * scmi_xfer_inflight_register  - Try to register an xfer as in-flight
590  *
591  * @xfer: The xfer to register
592  * @minfo: Pointer to Tx/Rx Message management info based on channel type
593  *
594  * Note that this helper does NOT assume anything about the sequence number
595  * that was baked into the provided xfer, so it checks at first if it can
596  * be mapped to a free slot and fails with an error if another xfer with the
597  * same sequence number is currently still registered as in-flight.
598  *
599  * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
600  *	   could not rbe mapped to a free slot in the xfer_alloc_table.
601  */
602 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
603 				       struct scmi_xfers_info *minfo)
604 {
605 	int ret = 0;
606 	unsigned long flags;
607 
608 	spin_lock_irqsave(&minfo->xfer_lock, flags);
609 	if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
610 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
611 	else
612 		ret = -EBUSY;
613 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
614 
615 	return ret;
616 }
617 
618 /**
619  * scmi_xfer_raw_inflight_register  - An helper to register the given xfer as in
620  * flight on the TX channel, if possible.
621  *
622  * @handle: Pointer to SCMI entity handle
623  * @xfer: The xfer to register
624  *
625  * Return: 0 on Success, error otherwise
626  */
627 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
628 				    struct scmi_xfer *xfer)
629 {
630 	struct scmi_info *info = handle_to_scmi_info(handle);
631 
632 	return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
633 }
634 
635 /**
636  * scmi_xfer_pending_set  - Pick a proper sequence number and mark the xfer
637  * as pending in-flight
638  *
639  * @xfer: The xfer to act upon
640  * @minfo: Pointer to Tx/Rx Message management info based on channel type
641  *
642  * Return: 0 on Success or error otherwise
643  */
644 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
645 					struct scmi_xfers_info *minfo)
646 {
647 	int ret;
648 	unsigned long flags;
649 
650 	spin_lock_irqsave(&minfo->xfer_lock, flags);
651 	/* Set a new monotonic token as the xfer sequence number */
652 	ret = scmi_xfer_token_set(minfo, xfer);
653 	if (!ret)
654 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
655 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
656 
657 	return ret;
658 }
659 
660 /**
661  * scmi_xfer_get() - Allocate one message
662  *
663  * @handle: Pointer to SCMI entity handle
664  * @minfo: Pointer to Tx/Rx Message management info based on channel type
665  *
666  * Helper function which is used by various message functions that are
667  * exposed to clients of this driver for allocating a message traffic event.
668  *
669  * Picks an xfer from the free list @free_xfers (if any available) and perform
670  * a basic initialization.
671  *
672  * Note that, at this point, still no sequence number is assigned to the
673  * allocated xfer, nor it is registered as a pending transaction.
674  *
675  * The successfully initialized xfer is refcounted.
676  *
677  * Context: Holds @xfer_lock while manipulating @free_xfers.
678  *
679  * Return: An initialized xfer if all went fine, else pointer error.
680  */
681 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
682 				       struct scmi_xfers_info *minfo)
683 {
684 	unsigned long flags;
685 	struct scmi_xfer *xfer;
686 
687 	spin_lock_irqsave(&minfo->xfer_lock, flags);
688 	if (hlist_empty(&minfo->free_xfers)) {
689 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
690 		return ERR_PTR(-ENOMEM);
691 	}
692 
693 	/* grab an xfer from the free_list */
694 	xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
695 	hlist_del_init(&xfer->node);
696 
697 	/*
698 	 * Allocate transfer_id early so that can be used also as base for
699 	 * monotonic sequence number generation if needed.
700 	 */
701 	xfer->transfer_id = atomic_inc_return(&transfer_last_id);
702 
703 	refcount_set(&xfer->users, 1);
704 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
705 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
706 
707 	return xfer;
708 }
709 
710 /**
711  * scmi_xfer_raw_get  - Helper to get a bare free xfer from the TX channel
712  *
713  * @handle: Pointer to SCMI entity handle
714  *
715  * Note that xfer is taken from the TX channel structures.
716  *
717  * Return: A valid xfer on Success, or an error-pointer otherwise
718  */
719 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
720 {
721 	struct scmi_xfer *xfer;
722 	struct scmi_info *info = handle_to_scmi_info(handle);
723 
724 	xfer = scmi_xfer_get(handle, &info->tx_minfo);
725 	if (!IS_ERR(xfer))
726 		xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
727 
728 	return xfer;
729 }
730 
731 /**
732  * scmi_xfer_raw_channel_get  - Helper to get a reference to the proper channel
733  * to use for a specific protocol_id Raw transaction.
734  *
735  * @handle: Pointer to SCMI entity handle
736  * @protocol_id: Identifier of the protocol
737  *
738  * Note that in a regular SCMI stack, usually, a protocol has to be defined in
739  * the DT to have an associated channel and be usable; but in Raw mode any
740  * protocol in range is allowed, re-using the Base channel, so as to enable
741  * fuzzing on any protocol without the need of a fully compiled DT.
742  *
743  * Return: A reference to the channel to use, or an ERR_PTR
744  */
745 struct scmi_chan_info *
746 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
747 {
748 	struct scmi_chan_info *cinfo;
749 	struct scmi_info *info = handle_to_scmi_info(handle);
750 
751 	cinfo = idr_find(&info->tx_idr, protocol_id);
752 	if (!cinfo) {
753 		if (protocol_id == SCMI_PROTOCOL_BASE)
754 			return ERR_PTR(-EINVAL);
755 		/* Use Base channel for protocols not defined for DT */
756 		cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
757 		if (!cinfo)
758 			return ERR_PTR(-EINVAL);
759 		dev_warn_once(handle->dev,
760 			      "Using Base channel for protocol 0x%X\n",
761 			      protocol_id);
762 	}
763 
764 	return cinfo;
765 }
766 
767 /**
768  * __scmi_xfer_put() - Release a message
769  *
770  * @minfo: Pointer to Tx/Rx Message management info based on channel type
771  * @xfer: message that was reserved by scmi_xfer_get
772  *
773  * After refcount check, possibly release an xfer, clearing the token slot,
774  * removing xfer from @pending_xfers and putting it back into free_xfers.
775  *
776  * This holds a spinlock to maintain integrity of internal data structures.
777  */
778 static void
779 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
780 {
781 	unsigned long flags;
782 
783 	spin_lock_irqsave(&minfo->xfer_lock, flags);
784 	if (refcount_dec_and_test(&xfer->users)) {
785 		if (xfer->pending) {
786 			scmi_xfer_token_clear(minfo, xfer);
787 			hash_del(&xfer->node);
788 			xfer->pending = false;
789 		}
790 		hlist_add_head(&xfer->node, &minfo->free_xfers);
791 	}
792 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
793 }
794 
795 /**
796  * scmi_xfer_raw_put  - Release an xfer that was taken by @scmi_xfer_raw_get
797  *
798  * @handle: Pointer to SCMI entity handle
799  * @xfer: A reference to the xfer to put
800  *
801  * Note that as with other xfer_put() handlers the xfer is really effectively
802  * released only if there are no more users on the system.
803  */
804 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
805 {
806 	struct scmi_info *info = handle_to_scmi_info(handle);
807 
808 	xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
809 	xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
810 	return __scmi_xfer_put(&info->tx_minfo, xfer);
811 }
812 
813 /**
814  * scmi_xfer_lookup_unlocked  -  Helper to lookup an xfer_id
815  *
816  * @minfo: Pointer to Tx/Rx Message management info based on channel type
817  * @xfer_id: Token ID to lookup in @pending_xfers
818  *
819  * Refcounting is untouched.
820  *
821  * Context: Assumes to be called with @xfer_lock already acquired.
822  *
823  * Return: A valid xfer on Success or error otherwise
824  */
825 static struct scmi_xfer *
826 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
827 {
828 	struct scmi_xfer *xfer = NULL;
829 
830 	if (test_bit(xfer_id, minfo->xfer_alloc_table))
831 		xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
832 
833 	return xfer ?: ERR_PTR(-EINVAL);
834 }
835 
836 /**
837  * scmi_bad_message_trace  - A helper to trace weird messages
838  *
839  * @cinfo: A reference to the channel descriptor on which the message was
840  *	   received
841  * @msg_hdr: Message header to track
842  * @err: A specific error code used as a status value in traces.
843  *
844  * This helper can be used to trace any kind of weird, incomplete, unexpected,
845  * timed-out message that arrives and as such, can be traced only referring to
846  * the header content, since the payload is missing/unreliable.
847  */
848 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo, u32 msg_hdr,
849 				   enum scmi_bad_msg err)
850 {
851 	char *tag;
852 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
853 
854 	switch (MSG_XTRACT_TYPE(msg_hdr)) {
855 	case MSG_TYPE_COMMAND:
856 		tag = "!RESP";
857 		break;
858 	case MSG_TYPE_DELAYED_RESP:
859 		tag = "!DLYD";
860 		break;
861 	case MSG_TYPE_NOTIFICATION:
862 		tag = "!NOTI";
863 		break;
864 	default:
865 		tag = "!UNKN";
866 		break;
867 	}
868 
869 	trace_scmi_msg_dump(info->id, cinfo->id,
870 			    MSG_XTRACT_PROT_ID(msg_hdr),
871 			    MSG_XTRACT_ID(msg_hdr), tag,
872 			    MSG_XTRACT_TOKEN(msg_hdr), err, NULL, 0);
873 }
874 
875 /**
876  * scmi_msg_response_validate  - Validate message type against state of related
877  * xfer
878  *
879  * @cinfo: A reference to the channel descriptor.
880  * @msg_type: Message type to check
881  * @xfer: A reference to the xfer to validate against @msg_type
882  *
883  * This function checks if @msg_type is congruent with the current state of
884  * a pending @xfer; if an asynchronous delayed response is received before the
885  * related synchronous response (Out-of-Order Delayed Response) the missing
886  * synchronous response is assumed to be OK and completed, carrying on with the
887  * Delayed Response: this is done to address the case in which the underlying
888  * SCMI transport can deliver such out-of-order responses.
889  *
890  * Context: Assumes to be called with xfer->lock already acquired.
891  *
892  * Return: 0 on Success, error otherwise
893  */
894 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
895 					     u8 msg_type,
896 					     struct scmi_xfer *xfer)
897 {
898 	/*
899 	 * Even if a response was indeed expected on this slot at this point,
900 	 * a buggy platform could wrongly reply feeding us an unexpected
901 	 * delayed response we're not prepared to handle: bail-out safely
902 	 * blaming firmware.
903 	 */
904 	if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
905 		dev_err(cinfo->dev,
906 			"Delayed Response for %d not expected! Buggy F/W ?\n",
907 			xfer->hdr.seq);
908 		return -EINVAL;
909 	}
910 
911 	switch (xfer->state) {
912 	case SCMI_XFER_SENT_OK:
913 		if (msg_type == MSG_TYPE_DELAYED_RESP) {
914 			/*
915 			 * Delayed Response expected but delivered earlier.
916 			 * Assume message RESPONSE was OK and skip state.
917 			 */
918 			xfer->hdr.status = SCMI_SUCCESS;
919 			xfer->state = SCMI_XFER_RESP_OK;
920 			complete(&xfer->done);
921 			dev_warn(cinfo->dev,
922 				 "Received valid OoO Delayed Response for %d\n",
923 				 xfer->hdr.seq);
924 		}
925 		break;
926 	case SCMI_XFER_RESP_OK:
927 		if (msg_type != MSG_TYPE_DELAYED_RESP)
928 			return -EINVAL;
929 		break;
930 	case SCMI_XFER_DRESP_OK:
931 		/* No further message expected once in SCMI_XFER_DRESP_OK */
932 		return -EINVAL;
933 	}
934 
935 	return 0;
936 }
937 
938 /**
939  * scmi_xfer_state_update  - Update xfer state
940  *
941  * @xfer: A reference to the xfer to update
942  * @msg_type: Type of message being processed.
943  *
944  * Note that this message is assumed to have been already successfully validated
945  * by @scmi_msg_response_validate(), so here we just update the state.
946  *
947  * Context: Assumes to be called on an xfer exclusively acquired using the
948  *	    busy flag.
949  */
950 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
951 {
952 	xfer->hdr.type = msg_type;
953 
954 	/* Unknown command types were already discarded earlier */
955 	if (xfer->hdr.type == MSG_TYPE_COMMAND)
956 		xfer->state = SCMI_XFER_RESP_OK;
957 	else
958 		xfer->state = SCMI_XFER_DRESP_OK;
959 }
960 
961 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
962 {
963 	int ret;
964 
965 	ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
966 
967 	return ret == SCMI_XFER_FREE;
968 }
969 
970 /**
971  * scmi_xfer_command_acquire  -  Helper to lookup and acquire a command xfer
972  *
973  * @cinfo: A reference to the channel descriptor.
974  * @msg_hdr: A message header to use as lookup key
975  *
976  * When a valid xfer is found for the sequence number embedded in the provided
977  * msg_hdr, reference counting is properly updated and exclusive access to this
978  * xfer is granted till released with @scmi_xfer_command_release.
979  *
980  * Return: A valid @xfer on Success or error otherwise.
981  */
982 static inline struct scmi_xfer *
983 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
984 {
985 	int ret;
986 	unsigned long flags;
987 	struct scmi_xfer *xfer;
988 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
989 	struct scmi_xfers_info *minfo = &info->tx_minfo;
990 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
991 	u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
992 
993 	/* Are we even expecting this? */
994 	spin_lock_irqsave(&minfo->xfer_lock, flags);
995 	xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
996 	if (IS_ERR(xfer)) {
997 		dev_err(cinfo->dev,
998 			"Message for %d type %d is not expected!\n",
999 			xfer_id, msg_type);
1000 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
1001 
1002 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNEXPECTED);
1003 		scmi_inc_count(info->dbg->counters, ERR_MSG_UNEXPECTED);
1004 
1005 		return xfer;
1006 	}
1007 	refcount_inc(&xfer->users);
1008 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
1009 
1010 	spin_lock_irqsave(&xfer->lock, flags);
1011 	ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
1012 	/*
1013 	 * If a pending xfer was found which was also in a congruent state with
1014 	 * the received message, acquire exclusive access to it setting the busy
1015 	 * flag.
1016 	 * Spins only on the rare limit condition of concurrent reception of
1017 	 * RESP and DRESP for the same xfer.
1018 	 */
1019 	if (!ret) {
1020 		spin_until_cond(scmi_xfer_acquired(xfer));
1021 		scmi_xfer_state_update(xfer, msg_type);
1022 	}
1023 	spin_unlock_irqrestore(&xfer->lock, flags);
1024 
1025 	if (ret) {
1026 		dev_err(cinfo->dev,
1027 			"Invalid message type:%d for %d - HDR:0x%X  state:%d\n",
1028 			msg_type, xfer_id, msg_hdr, xfer->state);
1029 
1030 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_INVALID);
1031 		scmi_inc_count(info->dbg->counters, ERR_MSG_INVALID);
1032 
1033 		/* On error the refcount incremented above has to be dropped */
1034 		__scmi_xfer_put(minfo, xfer);
1035 		xfer = ERR_PTR(-EINVAL);
1036 	}
1037 
1038 	return xfer;
1039 }
1040 
1041 static inline void scmi_xfer_command_release(struct scmi_info *info,
1042 					     struct scmi_xfer *xfer)
1043 {
1044 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
1045 	__scmi_xfer_put(&info->tx_minfo, xfer);
1046 }
1047 
1048 static inline void scmi_clear_channel(struct scmi_info *info,
1049 				      struct scmi_chan_info *cinfo)
1050 {
1051 	if (!cinfo->is_p2a) {
1052 		dev_warn(cinfo->dev, "Invalid clear on A2P channel !\n");
1053 		return;
1054 	}
1055 
1056 	if (info->desc->ops->clear_channel)
1057 		info->desc->ops->clear_channel(cinfo);
1058 }
1059 
1060 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
1061 				     u32 msg_hdr, void *priv)
1062 {
1063 	struct scmi_xfer *xfer;
1064 	struct device *dev = cinfo->dev;
1065 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1066 	struct scmi_xfers_info *minfo = &info->rx_minfo;
1067 	ktime_t ts;
1068 
1069 	ts = ktime_get_boottime();
1070 	xfer = scmi_xfer_get(cinfo->handle, minfo);
1071 	if (IS_ERR(xfer)) {
1072 		dev_err(dev, "failed to get free message slot (%ld)\n",
1073 			PTR_ERR(xfer));
1074 
1075 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_NOMEM);
1076 		scmi_inc_count(info->dbg->counters, ERR_MSG_NOMEM);
1077 
1078 		scmi_clear_channel(info, cinfo);
1079 		return;
1080 	}
1081 
1082 	unpack_scmi_header(msg_hdr, &xfer->hdr);
1083 	if (priv)
1084 		/* Ensure order between xfer->priv store and following ops */
1085 		smp_store_mb(xfer->priv, priv);
1086 	info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
1087 					    xfer);
1088 
1089 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1090 			    xfer->hdr.id, "NOTI", xfer->hdr.seq,
1091 			    xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
1092 	scmi_inc_count(info->dbg->counters, NOTIFICATION_OK);
1093 
1094 	scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
1095 		    xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
1096 
1097 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
1098 			   xfer->hdr.protocol_id, xfer->hdr.seq,
1099 			   MSG_TYPE_NOTIFICATION);
1100 
1101 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1102 		xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
1103 		scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
1104 					cinfo->id);
1105 	}
1106 
1107 	__scmi_xfer_put(minfo, xfer);
1108 
1109 	scmi_clear_channel(info, cinfo);
1110 }
1111 
1112 static void scmi_handle_response(struct scmi_chan_info *cinfo,
1113 				 u32 msg_hdr, void *priv)
1114 {
1115 	struct scmi_xfer *xfer;
1116 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1117 
1118 	xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
1119 	if (IS_ERR(xfer)) {
1120 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
1121 			scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
1122 
1123 		if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
1124 			scmi_clear_channel(info, cinfo);
1125 		return;
1126 	}
1127 
1128 	/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
1129 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
1130 		xfer->rx.len = info->desc->max_msg_size;
1131 
1132 	if (priv)
1133 		/* Ensure order between xfer->priv store and following ops */
1134 		smp_store_mb(xfer->priv, priv);
1135 	info->desc->ops->fetch_response(cinfo, xfer);
1136 
1137 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1138 			    xfer->hdr.id,
1139 			    xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
1140 			    (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
1141 			    (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
1142 			    xfer->hdr.seq, xfer->hdr.status,
1143 			    xfer->rx.buf, xfer->rx.len);
1144 
1145 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
1146 			   xfer->hdr.protocol_id, xfer->hdr.seq,
1147 			   xfer->hdr.type);
1148 
1149 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
1150 		scmi_clear_channel(info, cinfo);
1151 		complete(xfer->async_done);
1152 		scmi_inc_count(info->dbg->counters, DELAYED_RESPONSE_OK);
1153 	} else {
1154 		complete(&xfer->done);
1155 		scmi_inc_count(info->dbg->counters, RESPONSE_OK);
1156 	}
1157 
1158 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1159 		/*
1160 		 * When in polling mode avoid to queue the Raw xfer on the IRQ
1161 		 * RX path since it will be already queued at the end of the TX
1162 		 * poll loop.
1163 		 */
1164 		if (!xfer->hdr.poll_completion)
1165 			scmi_raw_message_report(info->raw, xfer,
1166 						SCMI_RAW_REPLY_QUEUE,
1167 						cinfo->id);
1168 	}
1169 
1170 	scmi_xfer_command_release(info, xfer);
1171 }
1172 
1173 /**
1174  * scmi_rx_callback() - callback for receiving messages
1175  *
1176  * @cinfo: SCMI channel info
1177  * @msg_hdr: Message header
1178  * @priv: Transport specific private data.
1179  *
1180  * Processes one received message to appropriate transfer information and
1181  * signals completion of the transfer.
1182  *
1183  * NOTE: This function will be invoked in IRQ context, hence should be
1184  * as optimal as possible.
1185  */
1186 static void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr,
1187 			     void *priv)
1188 {
1189 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
1190 
1191 	switch (msg_type) {
1192 	case MSG_TYPE_NOTIFICATION:
1193 		scmi_handle_notification(cinfo, msg_hdr, priv);
1194 		break;
1195 	case MSG_TYPE_COMMAND:
1196 	case MSG_TYPE_DELAYED_RESP:
1197 		scmi_handle_response(cinfo, msg_hdr, priv);
1198 		break;
1199 	default:
1200 		WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
1201 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNKNOWN);
1202 		break;
1203 	}
1204 }
1205 
1206 /**
1207  * xfer_put() - Release a transmit message
1208  *
1209  * @ph: Pointer to SCMI protocol handle
1210  * @xfer: message that was reserved by xfer_get_init
1211  */
1212 static void xfer_put(const struct scmi_protocol_handle *ph,
1213 		     struct scmi_xfer *xfer)
1214 {
1215 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1216 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1217 
1218 	__scmi_xfer_put(&info->tx_minfo, xfer);
1219 }
1220 
1221 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1222 				      struct scmi_xfer *xfer, ktime_t stop)
1223 {
1224 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1225 
1226 	/*
1227 	 * Poll also on xfer->done so that polling can be forcibly terminated
1228 	 * in case of out-of-order receptions of delayed responses
1229 	 */
1230 	return info->desc->ops->poll_done(cinfo, xfer) ||
1231 	       try_wait_for_completion(&xfer->done) ||
1232 	       ktime_after(ktime_get(), stop);
1233 }
1234 
1235 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1236 			       struct scmi_chan_info *cinfo,
1237 			       struct scmi_xfer *xfer, unsigned int timeout_ms)
1238 {
1239 	int ret = 0;
1240 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1241 
1242 	if (xfer->hdr.poll_completion) {
1243 		/*
1244 		 * Real polling is needed only if transport has NOT declared
1245 		 * itself to support synchronous commands replies.
1246 		 */
1247 		if (!desc->sync_cmds_completed_on_ret) {
1248 			/*
1249 			 * Poll on xfer using transport provided .poll_done();
1250 			 * assumes no completion interrupt was available.
1251 			 */
1252 			ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1253 
1254 			spin_until_cond(scmi_xfer_done_no_timeout(cinfo,
1255 								  xfer, stop));
1256 			if (ktime_after(ktime_get(), stop)) {
1257 				dev_err(dev,
1258 					"timed out in resp(caller: %pS) - polling\n",
1259 					(void *)_RET_IP_);
1260 				ret = -ETIMEDOUT;
1261 				scmi_inc_count(info->dbg->counters, XFERS_RESPONSE_POLLED_TIMEOUT);
1262 			}
1263 		}
1264 
1265 		if (!ret) {
1266 			unsigned long flags;
1267 
1268 			/*
1269 			 * Do not fetch_response if an out-of-order delayed
1270 			 * response is being processed.
1271 			 */
1272 			spin_lock_irqsave(&xfer->lock, flags);
1273 			if (xfer->state == SCMI_XFER_SENT_OK) {
1274 				desc->ops->fetch_response(cinfo, xfer);
1275 				xfer->state = SCMI_XFER_RESP_OK;
1276 			}
1277 			spin_unlock_irqrestore(&xfer->lock, flags);
1278 
1279 			/* Trace polled replies. */
1280 			trace_scmi_msg_dump(info->id, cinfo->id,
1281 					    xfer->hdr.protocol_id, xfer->hdr.id,
1282 					    !SCMI_XFER_IS_RAW(xfer) ?
1283 					    "RESP" : "resp",
1284 					    xfer->hdr.seq, xfer->hdr.status,
1285 					    xfer->rx.buf, xfer->rx.len);
1286 			scmi_inc_count(info->dbg->counters, RESPONSE_POLLED_OK);
1287 
1288 			if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1289 				scmi_raw_message_report(info->raw, xfer,
1290 							SCMI_RAW_REPLY_QUEUE,
1291 							cinfo->id);
1292 			}
1293 		}
1294 	} else {
1295 		/* And we wait for the response. */
1296 		if (!wait_for_completion_timeout(&xfer->done,
1297 						 msecs_to_jiffies(timeout_ms))) {
1298 			dev_err(dev, "timed out in resp(caller: %pS)\n",
1299 				(void *)_RET_IP_);
1300 			ret = -ETIMEDOUT;
1301 			scmi_inc_count(info->dbg->counters, XFERS_RESPONSE_TIMEOUT);
1302 		}
1303 	}
1304 
1305 	return ret;
1306 }
1307 
1308 /**
1309  * scmi_wait_for_message_response  - An helper to group all the possible ways of
1310  * waiting for a synchronous message response.
1311  *
1312  * @cinfo: SCMI channel info
1313  * @xfer: Reference to the transfer being waited for.
1314  *
1315  * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1316  * configuration flags like xfer->hdr.poll_completion.
1317  *
1318  * Return: 0 on Success, error otherwise.
1319  */
1320 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1321 					  struct scmi_xfer *xfer)
1322 {
1323 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1324 	struct device *dev = info->dev;
1325 
1326 	trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1327 				      xfer->hdr.protocol_id, xfer->hdr.seq,
1328 				      info->desc->max_rx_timeout_ms,
1329 				      xfer->hdr.poll_completion);
1330 
1331 	return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1332 				   info->desc->max_rx_timeout_ms);
1333 }
1334 
1335 /**
1336  * scmi_xfer_raw_wait_for_message_response  - An helper to wait for a message
1337  * reply to an xfer raw request on a specific channel for the required timeout.
1338  *
1339  * @cinfo: SCMI channel info
1340  * @xfer: Reference to the transfer being waited for.
1341  * @timeout_ms: The maximum timeout in milliseconds
1342  *
1343  * Return: 0 on Success, error otherwise.
1344  */
1345 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1346 					    struct scmi_xfer *xfer,
1347 					    unsigned int timeout_ms)
1348 {
1349 	int ret;
1350 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1351 	struct device *dev = info->dev;
1352 
1353 	ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1354 	if (ret)
1355 		dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1356 			pack_scmi_header(&xfer->hdr));
1357 
1358 	return ret;
1359 }
1360 
1361 /**
1362  * do_xfer() - Do one transfer
1363  *
1364  * @ph: Pointer to SCMI protocol handle
1365  * @xfer: Transfer to initiate and wait for response
1366  *
1367  * Return: -ETIMEDOUT in case of no response, if transmit error,
1368  *	return corresponding error, else if all goes well,
1369  *	return 0.
1370  */
1371 static int do_xfer(const struct scmi_protocol_handle *ph,
1372 		   struct scmi_xfer *xfer)
1373 {
1374 	int ret;
1375 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1376 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1377 	struct device *dev = info->dev;
1378 	struct scmi_chan_info *cinfo;
1379 
1380 	/* Check for polling request on custom command xfers at first */
1381 	if (xfer->hdr.poll_completion &&
1382 	    !is_transport_polling_capable(info->desc)) {
1383 		dev_warn_once(dev,
1384 			      "Polling mode is not supported by transport.\n");
1385 		scmi_inc_count(info->dbg->counters, SENT_FAIL_POLLING_UNSUPPORTED);
1386 		return -EINVAL;
1387 	}
1388 
1389 	cinfo = idr_find(&info->tx_idr, pi->proto->id);
1390 	if (unlikely(!cinfo)) {
1391 		scmi_inc_count(info->dbg->counters, SENT_FAIL_CHANNEL_NOT_FOUND);
1392 		return -EINVAL;
1393 	}
1394 	/* True ONLY if also supported by transport. */
1395 	if (is_polling_enabled(cinfo, info->desc))
1396 		xfer->hdr.poll_completion = true;
1397 
1398 	/*
1399 	 * Initialise protocol id now from protocol handle to avoid it being
1400 	 * overridden by mistake (or malice) by the protocol code mangling with
1401 	 * the scmi_xfer structure prior to this.
1402 	 */
1403 	xfer->hdr.protocol_id = pi->proto->id;
1404 	reinit_completion(&xfer->done);
1405 
1406 	trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1407 			      xfer->hdr.protocol_id, xfer->hdr.seq,
1408 			      xfer->hdr.poll_completion);
1409 
1410 	/* Clear any stale status */
1411 	xfer->hdr.status = SCMI_SUCCESS;
1412 	xfer->state = SCMI_XFER_SENT_OK;
1413 	/*
1414 	 * Even though spinlocking is not needed here since no race is possible
1415 	 * on xfer->state due to the monotonically increasing tokens allocation,
1416 	 * we must anyway ensure xfer->state initialization is not re-ordered
1417 	 * after the .send_message() to be sure that on the RX path an early
1418 	 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1419 	 */
1420 	smp_mb();
1421 
1422 	ret = info->desc->ops->send_message(cinfo, xfer);
1423 	if (ret < 0) {
1424 		dev_dbg(dev, "Failed to send message %d\n", ret);
1425 		scmi_inc_count(info->dbg->counters, SENT_FAIL);
1426 		return ret;
1427 	}
1428 
1429 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1430 			    xfer->hdr.id, "CMND", xfer->hdr.seq,
1431 			    xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1432 	scmi_inc_count(info->dbg->counters, SENT_OK);
1433 
1434 	ret = scmi_wait_for_message_response(cinfo, xfer);
1435 	if (!ret && xfer->hdr.status) {
1436 		ret = scmi_to_linux_errno(xfer->hdr.status);
1437 		scmi_inc_count(info->dbg->counters, ERR_PROTOCOL);
1438 	}
1439 
1440 	if (info->desc->ops->mark_txdone)
1441 		info->desc->ops->mark_txdone(cinfo, ret, xfer);
1442 
1443 	trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1444 			    xfer->hdr.protocol_id, xfer->hdr.seq, ret);
1445 
1446 	return ret;
1447 }
1448 
1449 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1450 			      struct scmi_xfer *xfer)
1451 {
1452 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1453 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1454 
1455 	xfer->rx.len = info->desc->max_msg_size;
1456 }
1457 
1458 /**
1459  * do_xfer_with_response() - Do one transfer and wait until the delayed
1460  *	response is received
1461  *
1462  * @ph: Pointer to SCMI protocol handle
1463  * @xfer: Transfer to initiate and wait for response
1464  *
1465  * Using asynchronous commands in atomic/polling mode should be avoided since
1466  * it could cause long busy-waiting here, so ignore polling for the delayed
1467  * response and WARN if it was requested for this command transaction since
1468  * upper layers should refrain from issuing such kind of requests.
1469  *
1470  * The only other option would have been to refrain from using any asynchronous
1471  * command even if made available, when an atomic transport is detected, and
1472  * instead forcibly use the synchronous version (thing that can be easily
1473  * attained at the protocol layer), but this would also have led to longer
1474  * stalls of the channel for synchronous commands and possibly timeouts.
1475  * (in other words there is usually a good reason if a platform provides an
1476  *  asynchronous version of a command and we should prefer to use it...just not
1477  *  when using atomic/polling mode)
1478  *
1479  * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1480  *	return corresponding error, else if all goes well, return 0.
1481  */
1482 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1483 				 struct scmi_xfer *xfer)
1484 {
1485 	int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1486 	DECLARE_COMPLETION_ONSTACK(async_response);
1487 
1488 	xfer->async_done = &async_response;
1489 
1490 	/*
1491 	 * Delayed responses should not be polled, so an async command should
1492 	 * not have been used when requiring an atomic/poll context; WARN and
1493 	 * perform instead a sleeping wait.
1494 	 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1495 	 */
1496 	WARN_ON_ONCE(xfer->hdr.poll_completion);
1497 
1498 	ret = do_xfer(ph, xfer);
1499 	if (!ret) {
1500 		if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1501 			dev_err(ph->dev,
1502 				"timed out in delayed resp(caller: %pS)\n",
1503 				(void *)_RET_IP_);
1504 			ret = -ETIMEDOUT;
1505 		} else if (xfer->hdr.status) {
1506 			ret = scmi_to_linux_errno(xfer->hdr.status);
1507 		}
1508 	}
1509 
1510 	xfer->async_done = NULL;
1511 	return ret;
1512 }
1513 
1514 /**
1515  * xfer_get_init() - Allocate and initialise one message for transmit
1516  *
1517  * @ph: Pointer to SCMI protocol handle
1518  * @msg_id: Message identifier
1519  * @tx_size: transmit message size
1520  * @rx_size: receive message size
1521  * @p: pointer to the allocated and initialised message
1522  *
1523  * This function allocates the message using @scmi_xfer_get and
1524  * initialise the header.
1525  *
1526  * Return: 0 if all went fine with @p pointing to message, else
1527  *	corresponding error.
1528  */
1529 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1530 			 u8 msg_id, size_t tx_size, size_t rx_size,
1531 			 struct scmi_xfer **p)
1532 {
1533 	int ret;
1534 	struct scmi_xfer *xfer;
1535 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1536 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1537 	struct scmi_xfers_info *minfo = &info->tx_minfo;
1538 	struct device *dev = info->dev;
1539 
1540 	/* Ensure we have sane transfer sizes */
1541 	if (rx_size > info->desc->max_msg_size ||
1542 	    tx_size > info->desc->max_msg_size)
1543 		return -ERANGE;
1544 
1545 	xfer = scmi_xfer_get(pi->handle, minfo);
1546 	if (IS_ERR(xfer)) {
1547 		ret = PTR_ERR(xfer);
1548 		dev_err(dev, "failed to get free message slot(%d)\n", ret);
1549 		return ret;
1550 	}
1551 
1552 	/* Pick a sequence number and register this xfer as in-flight */
1553 	ret = scmi_xfer_pending_set(xfer, minfo);
1554 	if (ret) {
1555 		dev_err(pi->handle->dev,
1556 			"Failed to get monotonic token %d\n", ret);
1557 		__scmi_xfer_put(minfo, xfer);
1558 		return ret;
1559 	}
1560 
1561 	xfer->tx.len = tx_size;
1562 	xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1563 	xfer->hdr.type = MSG_TYPE_COMMAND;
1564 	xfer->hdr.id = msg_id;
1565 	xfer->hdr.poll_completion = false;
1566 
1567 	*p = xfer;
1568 
1569 	return 0;
1570 }
1571 
1572 /**
1573  * version_get() - command to get the revision of the SCMI entity
1574  *
1575  * @ph: Pointer to SCMI protocol handle
1576  * @version: Holds returned version of protocol.
1577  *
1578  * Updates the SCMI information in the internal data structure.
1579  *
1580  * Return: 0 if all went fine, else return appropriate error.
1581  */
1582 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1583 {
1584 	int ret;
1585 	__le32 *rev_info;
1586 	struct scmi_xfer *t;
1587 
1588 	ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1589 	if (ret)
1590 		return ret;
1591 
1592 	ret = do_xfer(ph, t);
1593 	if (!ret) {
1594 		rev_info = t->rx.buf;
1595 		*version = le32_to_cpu(*rev_info);
1596 	}
1597 
1598 	xfer_put(ph, t);
1599 	return ret;
1600 }
1601 
1602 /**
1603  * scmi_set_protocol_priv  - Set protocol specific data at init time
1604  *
1605  * @ph: A reference to the protocol handle.
1606  * @priv: The private data to set.
1607  * @version: The detected protocol version for the core to register.
1608  *
1609  * Return: 0 on Success
1610  */
1611 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1612 				  void *priv, u32 version)
1613 {
1614 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
1615 
1616 	pi->priv = priv;
1617 	pi->version = version;
1618 
1619 	return 0;
1620 }
1621 
1622 /**
1623  * scmi_get_protocol_priv  - Set protocol specific data at init time
1624  *
1625  * @ph: A reference to the protocol handle.
1626  *
1627  * Return: Protocol private data if any was set.
1628  */
1629 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1630 {
1631 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1632 
1633 	return pi->priv;
1634 }
1635 
1636 static const struct scmi_xfer_ops xfer_ops = {
1637 	.version_get = version_get,
1638 	.xfer_get_init = xfer_get_init,
1639 	.reset_rx_to_maxsz = reset_rx_to_maxsz,
1640 	.do_xfer = do_xfer,
1641 	.do_xfer_with_response = do_xfer_with_response,
1642 	.xfer_put = xfer_put,
1643 };
1644 
1645 struct scmi_msg_resp_domain_name_get {
1646 	__le32 flags;
1647 	u8 name[SCMI_MAX_STR_SIZE];
1648 };
1649 
1650 /**
1651  * scmi_common_extended_name_get  - Common helper to get extended resources name
1652  * @ph: A protocol handle reference.
1653  * @cmd_id: The specific command ID to use.
1654  * @res_id: The specific resource ID to use.
1655  * @flags: A pointer to specific flags to use, if any.
1656  * @name: A pointer to the preallocated area where the retrieved name will be
1657  *	  stored as a NULL terminated string.
1658  * @len: The len in bytes of the @name char array.
1659  *
1660  * Return: 0 on Succcess
1661  */
1662 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1663 					 u8 cmd_id, u32 res_id, u32 *flags,
1664 					 char *name, size_t len)
1665 {
1666 	int ret;
1667 	size_t txlen;
1668 	struct scmi_xfer *t;
1669 	struct scmi_msg_resp_domain_name_get *resp;
1670 
1671 	txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags);
1672 	ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t);
1673 	if (ret)
1674 		goto out;
1675 
1676 	put_unaligned_le32(res_id, t->tx.buf);
1677 	if (flags)
1678 		put_unaligned_le32(*flags, t->tx.buf + sizeof(res_id));
1679 	resp = t->rx.buf;
1680 
1681 	ret = ph->xops->do_xfer(ph, t);
1682 	if (!ret)
1683 		strscpy(name, resp->name, len);
1684 
1685 	ph->xops->xfer_put(ph, t);
1686 out:
1687 	if (ret)
1688 		dev_warn(ph->dev,
1689 			 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1690 			 res_id, ret, name);
1691 	return ret;
1692 }
1693 
1694 /**
1695  * scmi_common_get_max_msg_size  - Get maximum message size
1696  * @ph: A protocol handle reference.
1697  *
1698  * Return: Maximum message size for the current protocol.
1699  */
1700 static int scmi_common_get_max_msg_size(const struct scmi_protocol_handle *ph)
1701 {
1702 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1703 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1704 
1705 	return info->desc->max_msg_size;
1706 }
1707 
1708 /**
1709  * struct scmi_iterator  - Iterator descriptor
1710  * @msg: A reference to the message TX buffer; filled by @prepare_message with
1711  *	 a proper custom command payload for each multi-part command request.
1712  * @resp: A reference to the response RX buffer; used by @update_state and
1713  *	  @process_response to parse the multi-part replies.
1714  * @t: A reference to the underlying xfer initialized and used transparently by
1715  *     the iterator internal routines.
1716  * @ph: A reference to the associated protocol handle to be used.
1717  * @ops: A reference to the custom provided iterator operations.
1718  * @state: The current iterator state; used and updated in turn by the iterators
1719  *	   internal routines and by the caller-provided @scmi_iterator_ops.
1720  * @priv: A reference to optional private data as provided by the caller and
1721  *	  passed back to the @@scmi_iterator_ops.
1722  */
1723 struct scmi_iterator {
1724 	void *msg;
1725 	void *resp;
1726 	struct scmi_xfer *t;
1727 	const struct scmi_protocol_handle *ph;
1728 	struct scmi_iterator_ops *ops;
1729 	struct scmi_iterator_state state;
1730 	void *priv;
1731 };
1732 
1733 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1734 				struct scmi_iterator_ops *ops,
1735 				unsigned int max_resources, u8 msg_id,
1736 				size_t tx_size, void *priv)
1737 {
1738 	int ret;
1739 	struct scmi_iterator *i;
1740 
1741 	i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1742 	if (!i)
1743 		return ERR_PTR(-ENOMEM);
1744 
1745 	i->ph = ph;
1746 	i->ops = ops;
1747 	i->priv = priv;
1748 
1749 	ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1750 	if (ret) {
1751 		devm_kfree(ph->dev, i);
1752 		return ERR_PTR(ret);
1753 	}
1754 
1755 	i->state.max_resources = max_resources;
1756 	i->msg = i->t->tx.buf;
1757 	i->resp = i->t->rx.buf;
1758 
1759 	return i;
1760 }
1761 
1762 static int scmi_iterator_run(void *iter)
1763 {
1764 	int ret = -EINVAL;
1765 	struct scmi_iterator_ops *iops;
1766 	const struct scmi_protocol_handle *ph;
1767 	struct scmi_iterator_state *st;
1768 	struct scmi_iterator *i = iter;
1769 
1770 	if (!i || !i->ops || !i->ph)
1771 		return ret;
1772 
1773 	iops = i->ops;
1774 	ph = i->ph;
1775 	st = &i->state;
1776 
1777 	do {
1778 		iops->prepare_message(i->msg, st->desc_index, i->priv);
1779 		ret = ph->xops->do_xfer(ph, i->t);
1780 		if (ret)
1781 			break;
1782 
1783 		st->rx_len = i->t->rx.len;
1784 		ret = iops->update_state(st, i->resp, i->priv);
1785 		if (ret)
1786 			break;
1787 
1788 		if (st->num_returned > st->max_resources - st->desc_index) {
1789 			dev_err(ph->dev,
1790 				"No. of resources can't exceed %d\n",
1791 				st->max_resources);
1792 			ret = -EINVAL;
1793 			break;
1794 		}
1795 
1796 		for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1797 		     st->loop_idx++) {
1798 			ret = iops->process_response(ph, i->resp, st, i->priv);
1799 			if (ret)
1800 				goto out;
1801 		}
1802 
1803 		st->desc_index += st->num_returned;
1804 		ph->xops->reset_rx_to_maxsz(ph, i->t);
1805 		/*
1806 		 * check for both returned and remaining to avoid infinite
1807 		 * loop due to buggy firmware
1808 		 */
1809 	} while (st->num_returned && st->num_remaining);
1810 
1811 out:
1812 	/* Finalize and destroy iterator */
1813 	ph->xops->xfer_put(ph, i->t);
1814 	devm_kfree(ph->dev, i);
1815 
1816 	return ret;
1817 }
1818 
1819 struct scmi_msg_get_fc_info {
1820 	__le32 domain;
1821 	__le32 message_id;
1822 };
1823 
1824 struct scmi_msg_resp_desc_fc {
1825 	__le32 attr;
1826 #define SUPPORTS_DOORBELL(x)		((x) & BIT(0))
1827 #define DOORBELL_REG_WIDTH(x)		FIELD_GET(GENMASK(2, 1), (x))
1828 	__le32 rate_limit;
1829 	__le32 chan_addr_low;
1830 	__le32 chan_addr_high;
1831 	__le32 chan_size;
1832 	__le32 db_addr_low;
1833 	__le32 db_addr_high;
1834 	__le32 db_set_lmask;
1835 	__le32 db_set_hmask;
1836 	__le32 db_preserve_lmask;
1837 	__le32 db_preserve_hmask;
1838 };
1839 
1840 static void
1841 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1842 			     u8 describe_id, u32 message_id, u32 valid_size,
1843 			     u32 domain, void __iomem **p_addr,
1844 			     struct scmi_fc_db_info **p_db, u32 *rate_limit)
1845 {
1846 	int ret;
1847 	u32 flags;
1848 	u64 phys_addr;
1849 	u8 size;
1850 	void __iomem *addr;
1851 	struct scmi_xfer *t;
1852 	struct scmi_fc_db_info *db = NULL;
1853 	struct scmi_msg_get_fc_info *info;
1854 	struct scmi_msg_resp_desc_fc *resp;
1855 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1856 
1857 	if (!p_addr) {
1858 		ret = -EINVAL;
1859 		goto err_out;
1860 	}
1861 
1862 	ret = ph->xops->xfer_get_init(ph, describe_id,
1863 				      sizeof(*info), sizeof(*resp), &t);
1864 	if (ret)
1865 		goto err_out;
1866 
1867 	info = t->tx.buf;
1868 	info->domain = cpu_to_le32(domain);
1869 	info->message_id = cpu_to_le32(message_id);
1870 
1871 	/*
1872 	 * Bail out on error leaving fc_info addresses zeroed; this includes
1873 	 * the case in which the requested domain/message_id does NOT support
1874 	 * fastchannels at all.
1875 	 */
1876 	ret = ph->xops->do_xfer(ph, t);
1877 	if (ret)
1878 		goto err_xfer;
1879 
1880 	resp = t->rx.buf;
1881 	flags = le32_to_cpu(resp->attr);
1882 	size = le32_to_cpu(resp->chan_size);
1883 	if (size != valid_size) {
1884 		ret = -EINVAL;
1885 		goto err_xfer;
1886 	}
1887 
1888 	if (rate_limit)
1889 		*rate_limit = le32_to_cpu(resp->rate_limit) & GENMASK(19, 0);
1890 
1891 	phys_addr = le32_to_cpu(resp->chan_addr_low);
1892 	phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1893 	addr = devm_ioremap(ph->dev, phys_addr, size);
1894 	if (!addr) {
1895 		ret = -EADDRNOTAVAIL;
1896 		goto err_xfer;
1897 	}
1898 
1899 	*p_addr = addr;
1900 
1901 	if (p_db && SUPPORTS_DOORBELL(flags)) {
1902 		db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1903 		if (!db) {
1904 			ret = -ENOMEM;
1905 			goto err_db;
1906 		}
1907 
1908 		size = 1 << DOORBELL_REG_WIDTH(flags);
1909 		phys_addr = le32_to_cpu(resp->db_addr_low);
1910 		phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1911 		addr = devm_ioremap(ph->dev, phys_addr, size);
1912 		if (!addr) {
1913 			ret = -EADDRNOTAVAIL;
1914 			goto err_db_mem;
1915 		}
1916 
1917 		db->addr = addr;
1918 		db->width = size;
1919 		db->set = le32_to_cpu(resp->db_set_lmask);
1920 		db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1921 		db->mask = le32_to_cpu(resp->db_preserve_lmask);
1922 		db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1923 
1924 		*p_db = db;
1925 	}
1926 
1927 	ph->xops->xfer_put(ph, t);
1928 
1929 	dev_dbg(ph->dev,
1930 		"Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
1931 		pi->proto->id, message_id, domain);
1932 
1933 	return;
1934 
1935 err_db_mem:
1936 	devm_kfree(ph->dev, db);
1937 
1938 err_db:
1939 	*p_addr = NULL;
1940 
1941 err_xfer:
1942 	ph->xops->xfer_put(ph, t);
1943 
1944 err_out:
1945 	dev_warn(ph->dev,
1946 		 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
1947 		 pi->proto->id, message_id, domain, ret);
1948 }
1949 
1950 #define SCMI_PROTO_FC_RING_DB(w)			\
1951 do {							\
1952 	u##w val = 0;					\
1953 							\
1954 	if (db->mask)					\
1955 		val = ioread##w(db->addr) & db->mask;	\
1956 	iowrite##w((u##w)db->set | val, db->addr);	\
1957 } while (0)
1958 
1959 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
1960 {
1961 	if (!db || !db->addr)
1962 		return;
1963 
1964 	if (db->width == 1)
1965 		SCMI_PROTO_FC_RING_DB(8);
1966 	else if (db->width == 2)
1967 		SCMI_PROTO_FC_RING_DB(16);
1968 	else if (db->width == 4)
1969 		SCMI_PROTO_FC_RING_DB(32);
1970 	else /* db->width == 8 */
1971 #ifdef CONFIG_64BIT
1972 		SCMI_PROTO_FC_RING_DB(64);
1973 #else
1974 	{
1975 		u64 val = 0;
1976 
1977 		if (db->mask)
1978 			val = ioread64_hi_lo(db->addr) & db->mask;
1979 		iowrite64_hi_lo(db->set | val, db->addr);
1980 	}
1981 #endif
1982 }
1983 
1984 /**
1985  * scmi_protocol_msg_check  - Check protocol message attributes
1986  *
1987  * @ph: A reference to the protocol handle.
1988  * @message_id: The ID of the message to check.
1989  * @attributes: A parameter to optionally return the retrieved message
1990  *		attributes, in case of Success.
1991  *
1992  * An helper to check protocol message attributes for a specific protocol
1993  * and message pair.
1994  *
1995  * Return: 0 on SUCCESS
1996  */
1997 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph,
1998 				   u32 message_id, u32 *attributes)
1999 {
2000 	int ret;
2001 	struct scmi_xfer *t;
2002 
2003 	ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES,
2004 			    sizeof(__le32), 0, &t);
2005 	if (ret)
2006 		return ret;
2007 
2008 	put_unaligned_le32(message_id, t->tx.buf);
2009 	ret = do_xfer(ph, t);
2010 	if (!ret && attributes)
2011 		*attributes = get_unaligned_le32(t->rx.buf);
2012 	xfer_put(ph, t);
2013 
2014 	return ret;
2015 }
2016 
2017 static const struct scmi_proto_helpers_ops helpers_ops = {
2018 	.extended_name_get = scmi_common_extended_name_get,
2019 	.get_max_msg_size = scmi_common_get_max_msg_size,
2020 	.iter_response_init = scmi_iterator_init,
2021 	.iter_response_run = scmi_iterator_run,
2022 	.protocol_msg_check = scmi_protocol_msg_check,
2023 	.fastchannel_init = scmi_common_fastchannel_init,
2024 	.fastchannel_db_ring = scmi_common_fastchannel_db_ring,
2025 };
2026 
2027 /**
2028  * scmi_revision_area_get  - Retrieve version memory area.
2029  *
2030  * @ph: A reference to the protocol handle.
2031  *
2032  * A helper to grab the version memory area reference during SCMI Base protocol
2033  * initialization.
2034  *
2035  * Return: A reference to the version memory area associated to the SCMI
2036  *	   instance underlying this protocol handle.
2037  */
2038 struct scmi_revision_info *
2039 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
2040 {
2041 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2042 
2043 	return pi->handle->version;
2044 }
2045 
2046 /**
2047  * scmi_protocol_version_negotiate  - Negotiate protocol version
2048  *
2049  * @ph: A reference to the protocol handle.
2050  *
2051  * An helper to negotiate a protocol version different from the latest
2052  * advertised as supported from the platform: on Success backward
2053  * compatibility is assured by the platform.
2054  *
2055  * Return: 0 on Success
2056  */
2057 static int scmi_protocol_version_negotiate(struct scmi_protocol_handle *ph)
2058 {
2059 	int ret;
2060 	struct scmi_xfer *t;
2061 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
2062 
2063 	/* At first check if NEGOTIATE_PROTOCOL_VERSION is supported ... */
2064 	ret = scmi_protocol_msg_check(ph, NEGOTIATE_PROTOCOL_VERSION, NULL);
2065 	if (ret)
2066 		return ret;
2067 
2068 	/* ... then attempt protocol version negotiation */
2069 	ret = xfer_get_init(ph, NEGOTIATE_PROTOCOL_VERSION,
2070 			    sizeof(__le32), 0, &t);
2071 	if (ret)
2072 		return ret;
2073 
2074 	put_unaligned_le32(pi->proto->supported_version, t->tx.buf);
2075 	ret = do_xfer(ph, t);
2076 	if (!ret)
2077 		pi->negotiated_version = pi->proto->supported_version;
2078 
2079 	xfer_put(ph, t);
2080 
2081 	return ret;
2082 }
2083 
2084 /**
2085  * scmi_alloc_init_protocol_instance  - Allocate and initialize a protocol
2086  * instance descriptor.
2087  * @info: The reference to the related SCMI instance.
2088  * @proto: The protocol descriptor.
2089  *
2090  * Allocate a new protocol instance descriptor, using the provided @proto
2091  * description, against the specified SCMI instance @info, and initialize it;
2092  * all resources management is handled via a dedicated per-protocol devres
2093  * group.
2094  *
2095  * Context: Assumes to be called with @protocols_mtx already acquired.
2096  * Return: A reference to a freshly allocated and initialized protocol instance
2097  *	   or ERR_PTR on failure. On failure the @proto reference is at first
2098  *	   put using @scmi_protocol_put() before releasing all the devres group.
2099  */
2100 static struct scmi_protocol_instance *
2101 scmi_alloc_init_protocol_instance(struct scmi_info *info,
2102 				  const struct scmi_protocol *proto)
2103 {
2104 	int ret = -ENOMEM;
2105 	void *gid;
2106 	struct scmi_protocol_instance *pi;
2107 	const struct scmi_handle *handle = &info->handle;
2108 
2109 	/* Protocol specific devres group */
2110 	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
2111 	if (!gid) {
2112 		scmi_protocol_put(proto);
2113 		goto out;
2114 	}
2115 
2116 	pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
2117 	if (!pi)
2118 		goto clean;
2119 
2120 	pi->gid = gid;
2121 	pi->proto = proto;
2122 	pi->handle = handle;
2123 	pi->ph.dev = handle->dev;
2124 	pi->ph.xops = &xfer_ops;
2125 	pi->ph.hops = &helpers_ops;
2126 	pi->ph.set_priv = scmi_set_protocol_priv;
2127 	pi->ph.get_priv = scmi_get_protocol_priv;
2128 	refcount_set(&pi->users, 1);
2129 	/* proto->init is assured NON NULL by scmi_protocol_register */
2130 	ret = pi->proto->instance_init(&pi->ph);
2131 	if (ret)
2132 		goto clean;
2133 
2134 	ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
2135 			GFP_KERNEL);
2136 	if (ret != proto->id)
2137 		goto clean;
2138 
2139 	/*
2140 	 * Warn but ignore events registration errors since we do not want
2141 	 * to skip whole protocols if their notifications are messed up.
2142 	 */
2143 	if (pi->proto->events) {
2144 		ret = scmi_register_protocol_events(handle, pi->proto->id,
2145 						    &pi->ph,
2146 						    pi->proto->events);
2147 		if (ret)
2148 			dev_warn(handle->dev,
2149 				 "Protocol:%X - Events Registration Failed - err:%d\n",
2150 				 pi->proto->id, ret);
2151 	}
2152 
2153 	devres_close_group(handle->dev, pi->gid);
2154 	dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
2155 
2156 	if (pi->version > proto->supported_version) {
2157 		ret = scmi_protocol_version_negotiate(&pi->ph);
2158 		if (!ret) {
2159 			dev_info(handle->dev,
2160 				 "Protocol 0x%X successfully negotiated version 0x%X\n",
2161 				 proto->id, pi->negotiated_version);
2162 		} else {
2163 			dev_warn(handle->dev,
2164 				 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X.\n",
2165 				 pi->version, pi->proto->id);
2166 			dev_warn(handle->dev,
2167 				 "Trying version 0x%X. Backward compatibility is NOT assured.\n",
2168 				 pi->proto->supported_version);
2169 		}
2170 	}
2171 
2172 	return pi;
2173 
2174 clean:
2175 	/* Take care to put the protocol module's owner before releasing all */
2176 	scmi_protocol_put(proto);
2177 	devres_release_group(handle->dev, gid);
2178 out:
2179 	return ERR_PTR(ret);
2180 }
2181 
2182 /**
2183  * scmi_get_protocol_instance  - Protocol initialization helper.
2184  * @handle: A reference to the SCMI platform instance.
2185  * @protocol_id: The protocol being requested.
2186  *
2187  * In case the required protocol has never been requested before for this
2188  * instance, allocate and initialize all the needed structures while handling
2189  * resource allocation with a dedicated per-protocol devres subgroup.
2190  *
2191  * Return: A reference to an initialized protocol instance or error on failure:
2192  *	   in particular returns -EPROBE_DEFER when the desired protocol could
2193  *	   NOT be found.
2194  */
2195 static struct scmi_protocol_instance * __must_check
2196 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
2197 {
2198 	struct scmi_protocol_instance *pi;
2199 	struct scmi_info *info = handle_to_scmi_info(handle);
2200 
2201 	mutex_lock(&info->protocols_mtx);
2202 	pi = idr_find(&info->protocols, protocol_id);
2203 
2204 	if (pi) {
2205 		refcount_inc(&pi->users);
2206 	} else {
2207 		const struct scmi_protocol *proto;
2208 
2209 		/* Fails if protocol not registered on bus */
2210 		proto = scmi_protocol_get(protocol_id, &info->version);
2211 		if (proto)
2212 			pi = scmi_alloc_init_protocol_instance(info, proto);
2213 		else
2214 			pi = ERR_PTR(-EPROBE_DEFER);
2215 	}
2216 	mutex_unlock(&info->protocols_mtx);
2217 
2218 	return pi;
2219 }
2220 
2221 /**
2222  * scmi_protocol_acquire  - Protocol acquire
2223  * @handle: A reference to the SCMI platform instance.
2224  * @protocol_id: The protocol being requested.
2225  *
2226  * Register a new user for the requested protocol on the specified SCMI
2227  * platform instance, possibly triggering its initialization on first user.
2228  *
2229  * Return: 0 if protocol was acquired successfully.
2230  */
2231 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
2232 {
2233 	return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
2234 }
2235 
2236 /**
2237  * scmi_protocol_release  - Protocol de-initialization helper.
2238  * @handle: A reference to the SCMI platform instance.
2239  * @protocol_id: The protocol being requested.
2240  *
2241  * Remove one user for the specified protocol and triggers de-initialization
2242  * and resources de-allocation once the last user has gone.
2243  */
2244 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
2245 {
2246 	struct scmi_info *info = handle_to_scmi_info(handle);
2247 	struct scmi_protocol_instance *pi;
2248 
2249 	mutex_lock(&info->protocols_mtx);
2250 	pi = idr_find(&info->protocols, protocol_id);
2251 	if (WARN_ON(!pi))
2252 		goto out;
2253 
2254 	if (refcount_dec_and_test(&pi->users)) {
2255 		void *gid = pi->gid;
2256 
2257 		if (pi->proto->events)
2258 			scmi_deregister_protocol_events(handle, protocol_id);
2259 
2260 		if (pi->proto->instance_deinit)
2261 			pi->proto->instance_deinit(&pi->ph);
2262 
2263 		idr_remove(&info->protocols, protocol_id);
2264 
2265 		scmi_protocol_put(pi->proto);
2266 
2267 		devres_release_group(handle->dev, gid);
2268 		dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
2269 			protocol_id);
2270 	}
2271 
2272 out:
2273 	mutex_unlock(&info->protocols_mtx);
2274 }
2275 
2276 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
2277 				     u8 *prot_imp)
2278 {
2279 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2280 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
2281 
2282 	info->protocols_imp = prot_imp;
2283 }
2284 
2285 static bool
2286 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
2287 {
2288 	int i;
2289 	struct scmi_info *info = handle_to_scmi_info(handle);
2290 	struct scmi_revision_info *rev = handle->version;
2291 
2292 	if (!info->protocols_imp)
2293 		return false;
2294 
2295 	for (i = 0; i < rev->num_protocols; i++)
2296 		if (info->protocols_imp[i] == prot_id)
2297 			return true;
2298 	return false;
2299 }
2300 
2301 struct scmi_protocol_devres {
2302 	const struct scmi_handle *handle;
2303 	u8 protocol_id;
2304 };
2305 
2306 static void scmi_devm_release_protocol(struct device *dev, void *res)
2307 {
2308 	struct scmi_protocol_devres *dres = res;
2309 
2310 	scmi_protocol_release(dres->handle, dres->protocol_id);
2311 }
2312 
2313 static struct scmi_protocol_instance __must_check *
2314 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
2315 {
2316 	struct scmi_protocol_instance *pi;
2317 	struct scmi_protocol_devres *dres;
2318 
2319 	dres = devres_alloc(scmi_devm_release_protocol,
2320 			    sizeof(*dres), GFP_KERNEL);
2321 	if (!dres)
2322 		return ERR_PTR(-ENOMEM);
2323 
2324 	pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2325 	if (IS_ERR(pi)) {
2326 		devres_free(dres);
2327 		return pi;
2328 	}
2329 
2330 	dres->handle = sdev->handle;
2331 	dres->protocol_id = protocol_id;
2332 	devres_add(&sdev->dev, dres);
2333 
2334 	return pi;
2335 }
2336 
2337 /**
2338  * scmi_devm_protocol_get  - Devres managed get protocol operations and handle
2339  * @sdev: A reference to an scmi_device whose embedded struct device is to
2340  *	  be used for devres accounting.
2341  * @protocol_id: The protocol being requested.
2342  * @ph: A pointer reference used to pass back the associated protocol handle.
2343  *
2344  * Get hold of a protocol accounting for its usage, eventually triggering its
2345  * initialization, and returning the protocol specific operations and related
2346  * protocol handle which will be used as first argument in most of the
2347  * protocols operations methods.
2348  * Being a devres based managed method, protocol hold will be automatically
2349  * released, and possibly de-initialized on last user, once the SCMI driver
2350  * owning the scmi_device is unbound from it.
2351  *
2352  * Return: A reference to the requested protocol operations or error.
2353  *	   Must be checked for errors by caller.
2354  */
2355 static const void __must_check *
2356 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2357 		       struct scmi_protocol_handle **ph)
2358 {
2359 	struct scmi_protocol_instance *pi;
2360 
2361 	if (!ph)
2362 		return ERR_PTR(-EINVAL);
2363 
2364 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2365 	if (IS_ERR(pi))
2366 		return pi;
2367 
2368 	*ph = &pi->ph;
2369 
2370 	return pi->proto->ops;
2371 }
2372 
2373 /**
2374  * scmi_devm_protocol_acquire  - Devres managed helper to get hold of a protocol
2375  * @sdev: A reference to an scmi_device whose embedded struct device is to
2376  *	  be used for devres accounting.
2377  * @protocol_id: The protocol being requested.
2378  *
2379  * Get hold of a protocol accounting for its usage, possibly triggering its
2380  * initialization but without getting access to its protocol specific operations
2381  * and handle.
2382  *
2383  * Being a devres based managed method, protocol hold will be automatically
2384  * released, and possibly de-initialized on last user, once the SCMI driver
2385  * owning the scmi_device is unbound from it.
2386  *
2387  * Return: 0 on SUCCESS
2388  */
2389 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2390 						   u8 protocol_id)
2391 {
2392 	struct scmi_protocol_instance *pi;
2393 
2394 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2395 	if (IS_ERR(pi))
2396 		return PTR_ERR(pi);
2397 
2398 	return 0;
2399 }
2400 
2401 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2402 {
2403 	struct scmi_protocol_devres *dres = res;
2404 
2405 	if (WARN_ON(!dres || !data))
2406 		return 0;
2407 
2408 	return dres->protocol_id == *((u8 *)data);
2409 }
2410 
2411 /**
2412  * scmi_devm_protocol_put  - Devres managed put protocol operations and handle
2413  * @sdev: A reference to an scmi_device whose embedded struct device is to
2414  *	  be used for devres accounting.
2415  * @protocol_id: The protocol being requested.
2416  *
2417  * Explicitly release a protocol hold previously obtained calling the above
2418  * @scmi_devm_protocol_get.
2419  */
2420 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2421 {
2422 	int ret;
2423 
2424 	ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2425 			     scmi_devm_protocol_match, &protocol_id);
2426 	WARN_ON(ret);
2427 }
2428 
2429 /**
2430  * scmi_is_transport_atomic  - Method to check if underlying transport for an
2431  * SCMI instance is configured as atomic.
2432  *
2433  * @handle: A reference to the SCMI platform instance.
2434  * @atomic_threshold: An optional return value for the system wide currently
2435  *		      configured threshold for atomic operations.
2436  *
2437  * Return: True if transport is configured as atomic
2438  */
2439 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2440 				     unsigned int *atomic_threshold)
2441 {
2442 	bool ret;
2443 	struct scmi_info *info = handle_to_scmi_info(handle);
2444 
2445 	ret = info->desc->atomic_enabled &&
2446 		is_transport_polling_capable(info->desc);
2447 	if (ret && atomic_threshold)
2448 		*atomic_threshold = info->atomic_threshold;
2449 
2450 	return ret;
2451 }
2452 
2453 /**
2454  * scmi_handle_get() - Get the SCMI handle for a device
2455  *
2456  * @dev: pointer to device for which we want SCMI handle
2457  *
2458  * NOTE: The function does not track individual clients of the framework
2459  * and is expected to be maintained by caller of SCMI protocol library.
2460  * scmi_handle_put must be balanced with successful scmi_handle_get
2461  *
2462  * Return: pointer to handle if successful, NULL on error
2463  */
2464 static struct scmi_handle *scmi_handle_get(struct device *dev)
2465 {
2466 	struct list_head *p;
2467 	struct scmi_info *info;
2468 	struct scmi_handle *handle = NULL;
2469 
2470 	mutex_lock(&scmi_list_mutex);
2471 	list_for_each(p, &scmi_list) {
2472 		info = list_entry(p, struct scmi_info, node);
2473 		if (dev->parent == info->dev) {
2474 			info->users++;
2475 			handle = &info->handle;
2476 			break;
2477 		}
2478 	}
2479 	mutex_unlock(&scmi_list_mutex);
2480 
2481 	return handle;
2482 }
2483 
2484 /**
2485  * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2486  *
2487  * @handle: handle acquired by scmi_handle_get
2488  *
2489  * NOTE: The function does not track individual clients of the framework
2490  * and is expected to be maintained by caller of SCMI protocol library.
2491  * scmi_handle_put must be balanced with successful scmi_handle_get
2492  *
2493  * Return: 0 is successfully released
2494  *	if null was passed, it returns -EINVAL;
2495  */
2496 static int scmi_handle_put(const struct scmi_handle *handle)
2497 {
2498 	struct scmi_info *info;
2499 
2500 	if (!handle)
2501 		return -EINVAL;
2502 
2503 	info = handle_to_scmi_info(handle);
2504 	mutex_lock(&scmi_list_mutex);
2505 	if (!WARN_ON(!info->users))
2506 		info->users--;
2507 	mutex_unlock(&scmi_list_mutex);
2508 
2509 	return 0;
2510 }
2511 
2512 static void scmi_device_link_add(struct device *consumer,
2513 				 struct device *supplier)
2514 {
2515 	struct device_link *link;
2516 
2517 	link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2518 
2519 	WARN_ON(!link);
2520 }
2521 
2522 static void scmi_set_handle(struct scmi_device *scmi_dev)
2523 {
2524 	scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2525 	if (scmi_dev->handle)
2526 		scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2527 }
2528 
2529 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2530 				 struct scmi_xfers_info *info)
2531 {
2532 	int i;
2533 	struct scmi_xfer *xfer;
2534 	struct device *dev = sinfo->dev;
2535 	const struct scmi_desc *desc = sinfo->desc;
2536 
2537 	/* Pre-allocated messages, no more than what hdr.seq can support */
2538 	if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2539 		dev_err(dev,
2540 			"Invalid maximum messages %d, not in range [1 - %lu]\n",
2541 			info->max_msg, MSG_TOKEN_MAX);
2542 		return -EINVAL;
2543 	}
2544 
2545 	hash_init(info->pending_xfers);
2546 
2547 	/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2548 	info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2549 						    GFP_KERNEL);
2550 	if (!info->xfer_alloc_table)
2551 		return -ENOMEM;
2552 
2553 	/*
2554 	 * Preallocate a number of xfers equal to max inflight messages,
2555 	 * pre-initialize the buffer pointer to pre-allocated buffers and
2556 	 * attach all of them to the free list
2557 	 */
2558 	INIT_HLIST_HEAD(&info->free_xfers);
2559 	for (i = 0; i < info->max_msg; i++) {
2560 		xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2561 		if (!xfer)
2562 			return -ENOMEM;
2563 
2564 		xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2565 					    GFP_KERNEL);
2566 		if (!xfer->rx.buf)
2567 			return -ENOMEM;
2568 
2569 		xfer->tx.buf = xfer->rx.buf;
2570 		init_completion(&xfer->done);
2571 		spin_lock_init(&xfer->lock);
2572 
2573 		/* Add initialized xfer to the free list */
2574 		hlist_add_head(&xfer->node, &info->free_xfers);
2575 	}
2576 
2577 	spin_lock_init(&info->xfer_lock);
2578 
2579 	return 0;
2580 }
2581 
2582 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2583 {
2584 	const struct scmi_desc *desc = sinfo->desc;
2585 
2586 	if (!desc->ops->get_max_msg) {
2587 		sinfo->tx_minfo.max_msg = desc->max_msg;
2588 		sinfo->rx_minfo.max_msg = desc->max_msg;
2589 	} else {
2590 		struct scmi_chan_info *base_cinfo;
2591 
2592 		base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2593 		if (!base_cinfo)
2594 			return -EINVAL;
2595 		sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2596 
2597 		/* RX channel is optional so can be skipped */
2598 		base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2599 		if (base_cinfo)
2600 			sinfo->rx_minfo.max_msg =
2601 				desc->ops->get_max_msg(base_cinfo);
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2608 {
2609 	int ret;
2610 
2611 	ret = scmi_channels_max_msg_configure(sinfo);
2612 	if (ret)
2613 		return ret;
2614 
2615 	ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2616 	if (!ret && !idr_is_empty(&sinfo->rx_idr))
2617 		ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2618 
2619 	return ret;
2620 }
2621 
2622 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2623 			   int prot_id, bool tx)
2624 {
2625 	int ret, idx;
2626 	char name[32];
2627 	struct scmi_chan_info *cinfo;
2628 	struct idr *idr;
2629 	struct scmi_device *tdev = NULL;
2630 
2631 	/* Transmit channel is first entry i.e. index 0 */
2632 	idx = tx ? 0 : 1;
2633 	idr = tx ? &info->tx_idr : &info->rx_idr;
2634 
2635 	if (!info->desc->ops->chan_available(of_node, idx)) {
2636 		cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2637 		if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2638 			return -EINVAL;
2639 		goto idr_alloc;
2640 	}
2641 
2642 	cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2643 	if (!cinfo)
2644 		return -ENOMEM;
2645 
2646 	cinfo->is_p2a = !tx;
2647 	cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2648 
2649 	/* Create a unique name for this transport device */
2650 	snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2651 		 idx ? "rx" : "tx", prot_id);
2652 	/* Create a uniquely named, dedicated transport device for this chan */
2653 	tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2654 	if (!tdev) {
2655 		dev_err(info->dev,
2656 			"failed to create transport device (%s)\n", name);
2657 		devm_kfree(info->dev, cinfo);
2658 		return -EINVAL;
2659 	}
2660 	of_node_get(of_node);
2661 
2662 	cinfo->id = prot_id;
2663 	cinfo->dev = &tdev->dev;
2664 	ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2665 	if (ret) {
2666 		of_node_put(of_node);
2667 		scmi_device_destroy(info->dev, prot_id, name);
2668 		devm_kfree(info->dev, cinfo);
2669 		return ret;
2670 	}
2671 
2672 	if (tx && is_polling_required(cinfo, info->desc)) {
2673 		if (is_transport_polling_capable(info->desc))
2674 			dev_info(&tdev->dev,
2675 				 "Enabled polling mode TX channel - prot_id:%d\n",
2676 				 prot_id);
2677 		else
2678 			dev_warn(&tdev->dev,
2679 				 "Polling mode NOT supported by transport.\n");
2680 	}
2681 
2682 idr_alloc:
2683 	ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2684 	if (ret != prot_id) {
2685 		dev_err(info->dev,
2686 			"unable to allocate SCMI idr slot err %d\n", ret);
2687 		/* Destroy channel and device only if created by this call. */
2688 		if (tdev) {
2689 			of_node_put(of_node);
2690 			scmi_device_destroy(info->dev, prot_id, name);
2691 			devm_kfree(info->dev, cinfo);
2692 		}
2693 		return ret;
2694 	}
2695 
2696 	cinfo->handle = &info->handle;
2697 	return 0;
2698 }
2699 
2700 static inline int
2701 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2702 		int prot_id)
2703 {
2704 	int ret = scmi_chan_setup(info, of_node, prot_id, true);
2705 
2706 	if (!ret) {
2707 		/* Rx is optional, report only memory errors */
2708 		ret = scmi_chan_setup(info, of_node, prot_id, false);
2709 		if (ret && ret != -ENOMEM)
2710 			ret = 0;
2711 	}
2712 
2713 	if (ret)
2714 		dev_err(info->dev,
2715 			"failed to setup channel for protocol:0x%X\n", prot_id);
2716 
2717 	return ret;
2718 }
2719 
2720 /**
2721  * scmi_channels_setup  - Helper to initialize all required channels
2722  *
2723  * @info: The SCMI instance descriptor.
2724  *
2725  * Initialize all the channels found described in the DT against the underlying
2726  * configured transport using custom defined dedicated devices instead of
2727  * borrowing devices from the SCMI drivers; this way channels are initialized
2728  * upfront during core SCMI stack probing and are no more coupled with SCMI
2729  * devices used by SCMI drivers.
2730  *
2731  * Note that, even though a pair of TX/RX channels is associated to each
2732  * protocol defined in the DT, a distinct freshly initialized channel is
2733  * created only if the DT node for the protocol at hand describes a dedicated
2734  * channel: in all the other cases the common BASE protocol channel is reused.
2735  *
2736  * Return: 0 on Success
2737  */
2738 static int scmi_channels_setup(struct scmi_info *info)
2739 {
2740 	int ret;
2741 	struct device_node *top_np = info->dev->of_node;
2742 
2743 	/* Initialize a common generic channel at first */
2744 	ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2745 	if (ret)
2746 		return ret;
2747 
2748 	for_each_available_child_of_node_scoped(top_np, child) {
2749 		u32 prot_id;
2750 
2751 		if (of_property_read_u32(child, "reg", &prot_id))
2752 			continue;
2753 
2754 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2755 			dev_err(info->dev,
2756 				"Out of range protocol %d\n", prot_id);
2757 
2758 		ret = scmi_txrx_setup(info, child, prot_id);
2759 		if (ret)
2760 			return ret;
2761 	}
2762 
2763 	return 0;
2764 }
2765 
2766 static int scmi_chan_destroy(int id, void *p, void *idr)
2767 {
2768 	struct scmi_chan_info *cinfo = p;
2769 
2770 	if (cinfo->dev) {
2771 		struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2772 		struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2773 
2774 		of_node_put(cinfo->dev->of_node);
2775 		scmi_device_destroy(info->dev, id, sdev->name);
2776 		cinfo->dev = NULL;
2777 	}
2778 
2779 	idr_remove(idr, id);
2780 
2781 	return 0;
2782 }
2783 
2784 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2785 {
2786 	/* At first free all channels at the transport layer ... */
2787 	idr_for_each(idr, info->desc->ops->chan_free, idr);
2788 
2789 	/* ...then destroy all underlying devices */
2790 	idr_for_each(idr, scmi_chan_destroy, idr);
2791 
2792 	idr_destroy(idr);
2793 }
2794 
2795 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2796 {
2797 	scmi_cleanup_channels(info, &info->tx_idr);
2798 
2799 	scmi_cleanup_channels(info, &info->rx_idr);
2800 }
2801 
2802 static int scmi_bus_notifier(struct notifier_block *nb,
2803 			     unsigned long action, void *data)
2804 {
2805 	struct scmi_info *info = bus_nb_to_scmi_info(nb);
2806 	struct scmi_device *sdev = to_scmi_dev(data);
2807 
2808 	/* Skip transport devices and devices of different SCMI instances */
2809 	if (!strncmp(sdev->name, "__scmi_transport_device", 23) ||
2810 	    sdev->dev.parent != info->dev)
2811 		return NOTIFY_DONE;
2812 
2813 	switch (action) {
2814 	case BUS_NOTIFY_BIND_DRIVER:
2815 		/* setup handle now as the transport is ready */
2816 		scmi_set_handle(sdev);
2817 		break;
2818 	case BUS_NOTIFY_UNBOUND_DRIVER:
2819 		scmi_handle_put(sdev->handle);
2820 		sdev->handle = NULL;
2821 		break;
2822 	default:
2823 		return NOTIFY_DONE;
2824 	}
2825 
2826 	dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2827 		sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2828 		"about to be BOUND." : "UNBOUND.");
2829 
2830 	return NOTIFY_OK;
2831 }
2832 
2833 static int scmi_device_request_notifier(struct notifier_block *nb,
2834 					unsigned long action, void *data)
2835 {
2836 	struct device_node *np;
2837 	struct scmi_device_id *id_table = data;
2838 	struct scmi_info *info = req_nb_to_scmi_info(nb);
2839 
2840 	np = idr_find(&info->active_protocols, id_table->protocol_id);
2841 	if (!np)
2842 		return NOTIFY_DONE;
2843 
2844 	dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2845 		action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2846 		id_table->name, id_table->protocol_id);
2847 
2848 	switch (action) {
2849 	case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2850 		scmi_create_protocol_devices(np, info, id_table->protocol_id,
2851 					     id_table->name);
2852 		break;
2853 	case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2854 		scmi_destroy_protocol_devices(info, id_table->protocol_id,
2855 					      id_table->name);
2856 		break;
2857 	default:
2858 		return NOTIFY_DONE;
2859 	}
2860 
2861 	return NOTIFY_OK;
2862 }
2863 
2864 static const char * const dbg_counter_strs[] = {
2865 	"sent_ok",
2866 	"sent_fail",
2867 	"sent_fail_polling_unsupported",
2868 	"sent_fail_channel_not_found",
2869 	"response_ok",
2870 	"notification_ok",
2871 	"delayed_response_ok",
2872 	"xfers_response_timeout",
2873 	"xfers_response_polled_timeout",
2874 	"response_polled_ok",
2875 	"err_msg_unexpected",
2876 	"err_msg_invalid",
2877 	"err_msg_nomem",
2878 	"err_protocol",
2879 };
2880 
2881 static ssize_t reset_all_on_write(struct file *filp, const char __user *buf,
2882 				  size_t count, loff_t *ppos)
2883 {
2884 	struct scmi_debug_info *dbg = filp->private_data;
2885 
2886 	for (int i = 0; i < SCMI_DEBUG_COUNTERS_LAST; i++)
2887 		atomic_set(&dbg->counters[i], 0);
2888 
2889 	return count;
2890 }
2891 
2892 static const struct file_operations fops_reset_counts = {
2893 	.owner = THIS_MODULE,
2894 	.open = simple_open,
2895 	.write = reset_all_on_write,
2896 };
2897 
2898 static void scmi_debugfs_counters_setup(struct scmi_debug_info *dbg,
2899 					struct dentry *trans)
2900 {
2901 	struct dentry *counters;
2902 	int idx;
2903 
2904 	counters = debugfs_create_dir("counters", trans);
2905 
2906 	for (idx = 0; idx < SCMI_DEBUG_COUNTERS_LAST; idx++)
2907 		debugfs_create_atomic_t(dbg_counter_strs[idx], 0600, counters,
2908 					&dbg->counters[idx]);
2909 
2910 	debugfs_create_file("reset", 0200, counters, dbg, &fops_reset_counts);
2911 }
2912 
2913 static void scmi_debugfs_common_cleanup(void *d)
2914 {
2915 	struct scmi_debug_info *dbg = d;
2916 
2917 	if (!dbg)
2918 		return;
2919 
2920 	debugfs_remove_recursive(dbg->top_dentry);
2921 	kfree(dbg->name);
2922 	kfree(dbg->type);
2923 }
2924 
2925 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2926 {
2927 	char top_dir[16];
2928 	struct dentry *trans, *top_dentry;
2929 	struct scmi_debug_info *dbg;
2930 	const char *c_ptr = NULL;
2931 
2932 	dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2933 	if (!dbg)
2934 		return NULL;
2935 
2936 	dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2937 	if (!dbg->name) {
2938 		devm_kfree(info->dev, dbg);
2939 		return NULL;
2940 	}
2941 
2942 	of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2943 	dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2944 	if (!dbg->type) {
2945 		kfree(dbg->name);
2946 		devm_kfree(info->dev, dbg);
2947 		return NULL;
2948 	}
2949 
2950 	snprintf(top_dir, 16, "%d", info->id);
2951 	top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2952 	trans = debugfs_create_dir("transport", top_dentry);
2953 
2954 	dbg->is_atomic = info->desc->atomic_enabled &&
2955 				is_transport_polling_capable(info->desc);
2956 
2957 	debugfs_create_str("instance_name", 0400, top_dentry,
2958 			   (char **)&dbg->name);
2959 
2960 	debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2961 			   &info->atomic_threshold);
2962 
2963 	debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
2964 
2965 	debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
2966 
2967 	debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
2968 			   (u32 *)&info->desc->max_rx_timeout_ms);
2969 
2970 	debugfs_create_u32("max_msg_size", 0400, trans,
2971 			   (u32 *)&info->desc->max_msg_size);
2972 
2973 	debugfs_create_u32("tx_max_msg", 0400, trans,
2974 			   (u32 *)&info->tx_minfo.max_msg);
2975 
2976 	debugfs_create_u32("rx_max_msg", 0400, trans,
2977 			   (u32 *)&info->rx_minfo.max_msg);
2978 
2979 	if (IS_ENABLED(CONFIG_ARM_SCMI_DEBUG_COUNTERS))
2980 		scmi_debugfs_counters_setup(dbg, trans);
2981 
2982 	dbg->top_dentry = top_dentry;
2983 
2984 	if (devm_add_action_or_reset(info->dev,
2985 				     scmi_debugfs_common_cleanup, dbg))
2986 		return NULL;
2987 
2988 	return dbg;
2989 }
2990 
2991 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
2992 {
2993 	int id, num_chans = 0, ret = 0;
2994 	struct scmi_chan_info *cinfo;
2995 	u8 channels[SCMI_MAX_CHANNELS] = {};
2996 	DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
2997 
2998 	if (!info->dbg)
2999 		return -EINVAL;
3000 
3001 	/* Enumerate all channels to collect their ids */
3002 	idr_for_each_entry(&info->tx_idr, cinfo, id) {
3003 		/*
3004 		 * Cannot happen, but be defensive.
3005 		 * Zero as num_chans is ok, warn and carry on.
3006 		 */
3007 		if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
3008 			dev_warn(info->dev,
3009 				 "SCMI RAW - Error enumerating channels\n");
3010 			break;
3011 		}
3012 
3013 		if (!test_bit(cinfo->id, protos)) {
3014 			channels[num_chans++] = cinfo->id;
3015 			set_bit(cinfo->id, protos);
3016 		}
3017 	}
3018 
3019 	info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
3020 				       info->id, channels, num_chans,
3021 				       info->desc, info->tx_minfo.max_msg);
3022 	if (IS_ERR(info->raw)) {
3023 		dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
3024 		ret = PTR_ERR(info->raw);
3025 		info->raw = NULL;
3026 	}
3027 
3028 	return ret;
3029 }
3030 
3031 static const struct scmi_desc *scmi_transport_setup(struct device *dev)
3032 {
3033 	struct scmi_transport *trans;
3034 	int ret;
3035 
3036 	trans = dev_get_platdata(dev);
3037 	if (!trans || !trans->desc || !trans->supplier || !trans->core_ops)
3038 		return NULL;
3039 
3040 	if (!device_link_add(dev, trans->supplier, DL_FLAG_AUTOREMOVE_CONSUMER)) {
3041 		dev_err(dev,
3042 			"Adding link to supplier transport device failed\n");
3043 		return NULL;
3044 	}
3045 
3046 	/* Provide core transport ops */
3047 	*trans->core_ops = &scmi_trans_core_ops;
3048 
3049 	dev_info(dev, "Using %s\n", dev_driver_string(trans->supplier));
3050 
3051 	ret = of_property_read_u32(dev->of_node, "arm,max-rx-timeout-ms",
3052 				   &trans->desc->max_rx_timeout_ms);
3053 	if (ret && ret != -EINVAL)
3054 		dev_err(dev, "Malformed arm,max-rx-timeout-ms DT property.\n");
3055 
3056 	dev_info(dev, "SCMI max-rx-timeout: %dms\n",
3057 		 trans->desc->max_rx_timeout_ms);
3058 
3059 	return trans->desc;
3060 }
3061 
3062 static int scmi_probe(struct platform_device *pdev)
3063 {
3064 	int ret;
3065 	char *err_str = "probe failure\n";
3066 	struct scmi_handle *handle;
3067 	const struct scmi_desc *desc;
3068 	struct scmi_info *info;
3069 	bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
3070 	struct device *dev = &pdev->dev;
3071 	struct device_node *child, *np = dev->of_node;
3072 
3073 	desc = scmi_transport_setup(dev);
3074 	if (!desc) {
3075 		err_str = "transport invalid\n";
3076 		ret = -EINVAL;
3077 		goto out_err;
3078 	}
3079 
3080 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
3081 	if (!info)
3082 		return -ENOMEM;
3083 
3084 	info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
3085 	if (info->id < 0)
3086 		return info->id;
3087 
3088 	info->dev = dev;
3089 	info->desc = desc;
3090 	info->bus_nb.notifier_call = scmi_bus_notifier;
3091 	info->dev_req_nb.notifier_call = scmi_device_request_notifier;
3092 	INIT_LIST_HEAD(&info->node);
3093 	idr_init(&info->protocols);
3094 	mutex_init(&info->protocols_mtx);
3095 	idr_init(&info->active_protocols);
3096 	mutex_init(&info->devreq_mtx);
3097 
3098 	platform_set_drvdata(pdev, info);
3099 	idr_init(&info->tx_idr);
3100 	idr_init(&info->rx_idr);
3101 
3102 	handle = &info->handle;
3103 	handle->dev = info->dev;
3104 	handle->version = &info->version;
3105 	handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
3106 	handle->devm_protocol_get = scmi_devm_protocol_get;
3107 	handle->devm_protocol_put = scmi_devm_protocol_put;
3108 
3109 	/* System wide atomic threshold for atomic ops .. if any */
3110 	if (!of_property_read_u32(np, "atomic-threshold-us",
3111 				  &info->atomic_threshold))
3112 		dev_info(dev,
3113 			 "SCMI System wide atomic threshold set to %d us\n",
3114 			 info->atomic_threshold);
3115 	handle->is_transport_atomic = scmi_is_transport_atomic;
3116 
3117 	/* Setup all channels described in the DT at first */
3118 	ret = scmi_channels_setup(info);
3119 	if (ret) {
3120 		err_str = "failed to setup channels\n";
3121 		goto clear_ida;
3122 	}
3123 
3124 	ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
3125 	if (ret) {
3126 		err_str = "failed to register bus notifier\n";
3127 		goto clear_txrx_setup;
3128 	}
3129 
3130 	ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
3131 					       &info->dev_req_nb);
3132 	if (ret) {
3133 		err_str = "failed to register device notifier\n";
3134 		goto clear_bus_notifier;
3135 	}
3136 
3137 	ret = scmi_xfer_info_init(info);
3138 	if (ret) {
3139 		err_str = "failed to init xfers pool\n";
3140 		goto clear_dev_req_notifier;
3141 	}
3142 
3143 	if (scmi_top_dentry) {
3144 		info->dbg = scmi_debugfs_common_setup(info);
3145 		if (!info->dbg)
3146 			dev_warn(dev, "Failed to setup SCMI debugfs.\n");
3147 
3148 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
3149 			ret = scmi_debugfs_raw_mode_setup(info);
3150 			if (!coex) {
3151 				if (ret)
3152 					goto clear_dev_req_notifier;
3153 
3154 				/* Bail out anyway when coex disabled. */
3155 				return 0;
3156 			}
3157 
3158 			/* Coex enabled, carry on in any case. */
3159 			dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
3160 		}
3161 	}
3162 
3163 	if (scmi_notification_init(handle))
3164 		dev_err(dev, "SCMI Notifications NOT available.\n");
3165 
3166 	if (info->desc->atomic_enabled &&
3167 	    !is_transport_polling_capable(info->desc))
3168 		dev_err(dev,
3169 			"Transport is not polling capable. Atomic mode not supported.\n");
3170 
3171 	/*
3172 	 * Trigger SCMI Base protocol initialization.
3173 	 * It's mandatory and won't be ever released/deinit until the
3174 	 * SCMI stack is shutdown/unloaded as a whole.
3175 	 */
3176 	ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
3177 	if (ret) {
3178 		err_str = "unable to communicate with SCMI\n";
3179 		if (coex) {
3180 			dev_err(dev, "%s", err_str);
3181 			return 0;
3182 		}
3183 		goto notification_exit;
3184 	}
3185 
3186 	mutex_lock(&scmi_list_mutex);
3187 	list_add_tail(&info->node, &scmi_list);
3188 	mutex_unlock(&scmi_list_mutex);
3189 
3190 	for_each_available_child_of_node(np, child) {
3191 		u32 prot_id;
3192 
3193 		if (of_property_read_u32(child, "reg", &prot_id))
3194 			continue;
3195 
3196 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
3197 			dev_err(dev, "Out of range protocol %d\n", prot_id);
3198 
3199 		if (!scmi_is_protocol_implemented(handle, prot_id)) {
3200 			dev_err(dev, "SCMI protocol %d not implemented\n",
3201 				prot_id);
3202 			continue;
3203 		}
3204 
3205 		/*
3206 		 * Save this valid DT protocol descriptor amongst
3207 		 * @active_protocols for this SCMI instance/
3208 		 */
3209 		ret = idr_alloc(&info->active_protocols, child,
3210 				prot_id, prot_id + 1, GFP_KERNEL);
3211 		if (ret != prot_id) {
3212 			dev_err(dev, "SCMI protocol %d already activated. Skip\n",
3213 				prot_id);
3214 			continue;
3215 		}
3216 
3217 		of_node_get(child);
3218 		scmi_create_protocol_devices(child, info, prot_id, NULL);
3219 	}
3220 
3221 	return 0;
3222 
3223 notification_exit:
3224 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
3225 		scmi_raw_mode_cleanup(info->raw);
3226 	scmi_notification_exit(&info->handle);
3227 clear_dev_req_notifier:
3228 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
3229 					   &info->dev_req_nb);
3230 clear_bus_notifier:
3231 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
3232 clear_txrx_setup:
3233 	scmi_cleanup_txrx_channels(info);
3234 clear_ida:
3235 	ida_free(&scmi_id, info->id);
3236 
3237 out_err:
3238 	return dev_err_probe(dev, ret, "%s", err_str);
3239 }
3240 
3241 static void scmi_remove(struct platform_device *pdev)
3242 {
3243 	int id;
3244 	struct scmi_info *info = platform_get_drvdata(pdev);
3245 	struct device_node *child;
3246 
3247 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
3248 		scmi_raw_mode_cleanup(info->raw);
3249 
3250 	mutex_lock(&scmi_list_mutex);
3251 	if (info->users)
3252 		dev_warn(&pdev->dev,
3253 			 "Still active SCMI users will be forcibly unbound.\n");
3254 	list_del(&info->node);
3255 	mutex_unlock(&scmi_list_mutex);
3256 
3257 	scmi_notification_exit(&info->handle);
3258 
3259 	mutex_lock(&info->protocols_mtx);
3260 	idr_destroy(&info->protocols);
3261 	mutex_unlock(&info->protocols_mtx);
3262 
3263 	idr_for_each_entry(&info->active_protocols, child, id)
3264 		of_node_put(child);
3265 	idr_destroy(&info->active_protocols);
3266 
3267 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
3268 					   &info->dev_req_nb);
3269 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
3270 
3271 	/* Safe to free channels since no more users */
3272 	scmi_cleanup_txrx_channels(info);
3273 
3274 	ida_free(&scmi_id, info->id);
3275 }
3276 
3277 static ssize_t protocol_version_show(struct device *dev,
3278 				     struct device_attribute *attr, char *buf)
3279 {
3280 	struct scmi_info *info = dev_get_drvdata(dev);
3281 
3282 	return sprintf(buf, "%u.%u\n", info->version.major_ver,
3283 		       info->version.minor_ver);
3284 }
3285 static DEVICE_ATTR_RO(protocol_version);
3286 
3287 static ssize_t firmware_version_show(struct device *dev,
3288 				     struct device_attribute *attr, char *buf)
3289 {
3290 	struct scmi_info *info = dev_get_drvdata(dev);
3291 
3292 	return sprintf(buf, "0x%x\n", info->version.impl_ver);
3293 }
3294 static DEVICE_ATTR_RO(firmware_version);
3295 
3296 static ssize_t vendor_id_show(struct device *dev,
3297 			      struct device_attribute *attr, char *buf)
3298 {
3299 	struct scmi_info *info = dev_get_drvdata(dev);
3300 
3301 	return sprintf(buf, "%s\n", info->version.vendor_id);
3302 }
3303 static DEVICE_ATTR_RO(vendor_id);
3304 
3305 static ssize_t sub_vendor_id_show(struct device *dev,
3306 				  struct device_attribute *attr, char *buf)
3307 {
3308 	struct scmi_info *info = dev_get_drvdata(dev);
3309 
3310 	return sprintf(buf, "%s\n", info->version.sub_vendor_id);
3311 }
3312 static DEVICE_ATTR_RO(sub_vendor_id);
3313 
3314 static struct attribute *versions_attrs[] = {
3315 	&dev_attr_firmware_version.attr,
3316 	&dev_attr_protocol_version.attr,
3317 	&dev_attr_vendor_id.attr,
3318 	&dev_attr_sub_vendor_id.attr,
3319 	NULL,
3320 };
3321 ATTRIBUTE_GROUPS(versions);
3322 
3323 static struct platform_driver scmi_driver = {
3324 	.driver = {
3325 		   .name = "arm-scmi",
3326 		   .suppress_bind_attrs = true,
3327 		   .dev_groups = versions_groups,
3328 		   },
3329 	.probe = scmi_probe,
3330 	.remove_new = scmi_remove,
3331 };
3332 
3333 static struct dentry *scmi_debugfs_init(void)
3334 {
3335 	struct dentry *d;
3336 
3337 	d = debugfs_create_dir("scmi", NULL);
3338 	if (IS_ERR(d)) {
3339 		pr_err("Could NOT create SCMI top dentry.\n");
3340 		return NULL;
3341 	}
3342 
3343 	return d;
3344 }
3345 
3346 static int __init scmi_driver_init(void)
3347 {
3348 	/* Bail out if no SCMI transport was configured */
3349 	if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3350 		return -EINVAL;
3351 
3352 	if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_SHMEM))
3353 		scmi_trans_core_ops.shmem = scmi_shared_mem_operations_get();
3354 
3355 	if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_MSG))
3356 		scmi_trans_core_ops.msg = scmi_message_operations_get();
3357 
3358 	if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3359 		scmi_top_dentry = scmi_debugfs_init();
3360 
3361 	scmi_base_register();
3362 
3363 	scmi_clock_register();
3364 	scmi_perf_register();
3365 	scmi_power_register();
3366 	scmi_reset_register();
3367 	scmi_sensors_register();
3368 	scmi_voltage_register();
3369 	scmi_system_register();
3370 	scmi_powercap_register();
3371 	scmi_pinctrl_register();
3372 
3373 	return platform_driver_register(&scmi_driver);
3374 }
3375 module_init(scmi_driver_init);
3376 
3377 static void __exit scmi_driver_exit(void)
3378 {
3379 	scmi_base_unregister();
3380 
3381 	scmi_clock_unregister();
3382 	scmi_perf_unregister();
3383 	scmi_power_unregister();
3384 	scmi_reset_unregister();
3385 	scmi_sensors_unregister();
3386 	scmi_voltage_unregister();
3387 	scmi_system_unregister();
3388 	scmi_powercap_unregister();
3389 	scmi_pinctrl_unregister();
3390 
3391 	platform_driver_unregister(&scmi_driver);
3392 
3393 	debugfs_remove_recursive(scmi_top_dentry);
3394 }
3395 module_exit(scmi_driver_exit);
3396 
3397 MODULE_ALIAS("platform:arm-scmi");
3398 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3399 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3400 MODULE_LICENSE("GPL v2");
3401