1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Control and Management Interface (SCMI) Message Protocol driver 4 * 5 * SCMI Message Protocol is used between the System Control Processor(SCP) 6 * and the Application Processors(AP). The Message Handling Unit(MHU) 7 * provides a mechanism for inter-processor communication between SCP's 8 * Cortex M3 and AP. 9 * 10 * SCP offers control and management of the core/cluster power states, 11 * various power domain DVFS including the core/cluster, certain system 12 * clocks configuration, thermal sensors and many others. 13 * 14 * Copyright (C) 2018-2025 ARM Ltd. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/debugfs.h> 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/idr.h> 24 #include <linux/io.h> 25 #include <linux/io-64-nonatomic-hi-lo.h> 26 #include <linux/kernel.h> 27 #include <linux/kmod.h> 28 #include <linux/ktime.h> 29 #include <linux/hashtable.h> 30 #include <linux/list.h> 31 #include <linux/module.h> 32 #include <linux/of.h> 33 #include <linux/platform_device.h> 34 #include <linux/processor.h> 35 #include <linux/refcount.h> 36 #include <linux/slab.h> 37 #include <linux/xarray.h> 38 39 #include "common.h" 40 #include "notify.h" 41 #include "quirks.h" 42 43 #include "raw_mode.h" 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/scmi.h> 47 48 #define SCMI_VENDOR_MODULE_ALIAS_FMT "scmi-protocol-0x%02x-%s" 49 50 static DEFINE_IDA(scmi_id); 51 52 static DEFINE_XARRAY(scmi_protocols); 53 54 /* List of all SCMI devices active in system */ 55 static LIST_HEAD(scmi_list); 56 /* Protection for the entire list */ 57 static DEFINE_MUTEX(scmi_list_mutex); 58 /* Track the unique id for the transfers for debug & profiling purpose */ 59 static atomic_t transfer_last_id; 60 61 static struct dentry *scmi_top_dentry; 62 63 /** 64 * struct scmi_xfers_info - Structure to manage transfer information 65 * 66 * @xfer_alloc_table: Bitmap table for allocated messages. 67 * Index of this bitmap table is also used for message 68 * sequence identifier. 69 * @xfer_lock: Protection for message allocation 70 * @max_msg: Maximum number of messages that can be pending 71 * @free_xfers: A free list for available to use xfers. It is initialized with 72 * a number of xfers equal to the maximum allowed in-flight 73 * messages. 74 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the 75 * currently in-flight messages. 76 */ 77 struct scmi_xfers_info { 78 unsigned long *xfer_alloc_table; 79 spinlock_t xfer_lock; 80 int max_msg; 81 struct hlist_head free_xfers; 82 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ); 83 }; 84 85 /** 86 * struct scmi_protocol_instance - Describe an initialized protocol instance. 87 * @handle: Reference to the SCMI handle associated to this protocol instance. 88 * @proto: A reference to the protocol descriptor. 89 * @gid: A reference for per-protocol devres management. 90 * @users: A refcount to track effective users of this protocol. 91 * @priv: Reference for optional protocol private data. 92 * @version: Protocol version supported by the platform as detected at runtime. 93 * @negotiated_version: When the platform supports a newer protocol version, 94 * the agent will try to negotiate with the platform the 95 * usage of the newest version known to it, since 96 * backward compatibility is NOT automatically assured. 97 * This field is NON-zero when a successful negotiation 98 * has completed. 99 * @ph: An embedded protocol handle that will be passed down to protocol 100 * initialization code to identify this instance. 101 * 102 * Each protocol is initialized independently once for each SCMI platform in 103 * which is defined by DT and implemented by the SCMI server fw. 104 */ 105 struct scmi_protocol_instance { 106 const struct scmi_handle *handle; 107 const struct scmi_protocol *proto; 108 void *gid; 109 refcount_t users; 110 void *priv; 111 unsigned int version; 112 unsigned int negotiated_version; 113 struct scmi_protocol_handle ph; 114 }; 115 116 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph) 117 118 /** 119 * struct scmi_debug_info - Debug common info 120 * @top_dentry: A reference to the top debugfs dentry 121 * @name: Name of this SCMI instance 122 * @type: Type of this SCMI instance 123 * @is_atomic: Flag to state if the transport of this instance is atomic 124 * @counters: An array of atomic_c's used for tracking statistics (if enabled) 125 */ 126 struct scmi_debug_info { 127 struct dentry *top_dentry; 128 const char *name; 129 const char *type; 130 bool is_atomic; 131 atomic_t counters[SCMI_DEBUG_COUNTERS_LAST]; 132 }; 133 134 /** 135 * struct scmi_info - Structure representing a SCMI instance 136 * 137 * @id: A sequence number starting from zero identifying this instance 138 * @dev: Device pointer 139 * @desc: SoC description for this instance 140 * @version: SCMI revision information containing protocol version, 141 * implementation version and (sub-)vendor identification. 142 * @handle: Instance of SCMI handle to send to clients 143 * @tx_minfo: Universal Transmit Message management info 144 * @rx_minfo: Universal Receive Message management info 145 * @tx_idr: IDR object to map protocol id to Tx channel info pointer 146 * @rx_idr: IDR object to map protocol id to Rx channel info pointer 147 * @protocols: IDR for protocols' instance descriptors initialized for 148 * this SCMI instance: populated on protocol's first attempted 149 * usage. 150 * @protocols_mtx: A mutex to protect protocols instances initialization. 151 * @protocols_imp: List of protocols implemented, currently maximum of 152 * scmi_revision_info.num_protocols elements allocated by the 153 * base protocol 154 * @active_protocols: IDR storing device_nodes for protocols actually defined 155 * in the DT and confirmed as implemented by fw. 156 * @notify_priv: Pointer to private data structure specific to notifications. 157 * @node: List head 158 * @users: Number of users of this instance 159 * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus 160 * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi 161 * bus 162 * @devreq_mtx: A mutex to serialize device creation for this SCMI instance 163 * @dbg: A pointer to debugfs related data (if any) 164 * @raw: An opaque reference handle used by SCMI Raw mode. 165 */ 166 struct scmi_info { 167 int id; 168 struct device *dev; 169 const struct scmi_desc *desc; 170 struct scmi_revision_info version; 171 struct scmi_handle handle; 172 struct scmi_xfers_info tx_minfo; 173 struct scmi_xfers_info rx_minfo; 174 struct idr tx_idr; 175 struct idr rx_idr; 176 struct idr protocols; 177 /* Ensure mutual exclusive access to protocols instance array */ 178 struct mutex protocols_mtx; 179 u8 *protocols_imp; 180 struct idr active_protocols; 181 void *notify_priv; 182 struct list_head node; 183 int users; 184 struct notifier_block bus_nb; 185 struct notifier_block dev_req_nb; 186 /* Serialize device creation process for this instance */ 187 struct mutex devreq_mtx; 188 struct scmi_debug_info *dbg; 189 void *raw; 190 }; 191 192 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle) 193 #define tx_minfo_to_scmi_info(h) container_of(h, struct scmi_info, tx_minfo) 194 #define bus_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, bus_nb) 195 #define req_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, dev_req_nb) 196 197 static void scmi_rx_callback(struct scmi_chan_info *cinfo, 198 u32 msg_hdr, void *priv); 199 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo, 200 u32 msg_hdr, enum scmi_bad_msg err); 201 202 static struct scmi_transport_core_operations scmi_trans_core_ops = { 203 .bad_message_trace = scmi_bad_message_trace, 204 .rx_callback = scmi_rx_callback, 205 }; 206 207 static unsigned long 208 scmi_vendor_protocol_signature(unsigned int protocol_id, char *vendor_id, 209 char *sub_vendor_id, u32 impl_ver) 210 { 211 char *signature, *p; 212 unsigned long hash = 0; 213 214 /* vendor_id/sub_vendor_id guaranteed <= SCMI_SHORT_NAME_MAX_SIZE */ 215 signature = kasprintf(GFP_KERNEL, "%02X|%s|%s|0x%08X", protocol_id, 216 vendor_id ?: "", sub_vendor_id ?: "", impl_ver); 217 if (!signature) 218 return 0; 219 220 p = signature; 221 while (*p) 222 hash = partial_name_hash(tolower(*p++), hash); 223 hash = end_name_hash(hash); 224 225 kfree(signature); 226 227 return hash; 228 } 229 230 static unsigned long 231 scmi_protocol_key_calculate(int protocol_id, char *vendor_id, 232 char *sub_vendor_id, u32 impl_ver) 233 { 234 if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE) 235 return protocol_id; 236 else 237 return scmi_vendor_protocol_signature(protocol_id, vendor_id, 238 sub_vendor_id, impl_ver); 239 } 240 241 static const struct scmi_protocol * 242 __scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id, 243 char *sub_vendor_id, u32 impl_ver) 244 { 245 unsigned long key; 246 struct scmi_protocol *proto = NULL; 247 248 key = scmi_protocol_key_calculate(protocol_id, vendor_id, 249 sub_vendor_id, impl_ver); 250 if (key) 251 proto = xa_load(&scmi_protocols, key); 252 253 return proto; 254 } 255 256 static const struct scmi_protocol * 257 scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id, 258 char *sub_vendor_id, u32 impl_ver) 259 { 260 const struct scmi_protocol *proto = NULL; 261 262 /* Searching for closest match ...*/ 263 proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id, 264 sub_vendor_id, impl_ver); 265 if (proto) 266 return proto; 267 268 /* Any match just on vendor/sub_vendor ? */ 269 if (impl_ver) { 270 proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id, 271 sub_vendor_id, 0); 272 if (proto) 273 return proto; 274 } 275 276 /* Any match just on the vendor ? */ 277 if (sub_vendor_id) 278 proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id, 279 NULL, 0); 280 return proto; 281 } 282 283 static const struct scmi_protocol * 284 scmi_vendor_protocol_get(int protocol_id, struct scmi_revision_info *version) 285 { 286 const struct scmi_protocol *proto; 287 288 proto = scmi_vendor_protocol_lookup(protocol_id, version->vendor_id, 289 version->sub_vendor_id, 290 version->impl_ver); 291 if (!proto) { 292 int ret; 293 294 pr_debug("Looking for '" SCMI_VENDOR_MODULE_ALIAS_FMT "'\n", 295 protocol_id, version->vendor_id); 296 297 /* Note that vendor_id is mandatory for vendor protocols */ 298 ret = request_module(SCMI_VENDOR_MODULE_ALIAS_FMT, 299 protocol_id, version->vendor_id); 300 if (ret) { 301 pr_warn("Problem loading module for protocol 0x%x\n", 302 protocol_id); 303 return NULL; 304 } 305 306 /* Lookup again, once modules loaded */ 307 proto = scmi_vendor_protocol_lookup(protocol_id, 308 version->vendor_id, 309 version->sub_vendor_id, 310 version->impl_ver); 311 } 312 313 if (proto) 314 pr_info("Loaded SCMI Vendor Protocol 0x%x - %s %s %X\n", 315 protocol_id, proto->vendor_id ?: "", 316 proto->sub_vendor_id ?: "", proto->impl_ver); 317 318 return proto; 319 } 320 321 static const struct scmi_protocol * 322 scmi_protocol_get(int protocol_id, struct scmi_revision_info *version) 323 { 324 const struct scmi_protocol *proto = NULL; 325 326 if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE) 327 proto = xa_load(&scmi_protocols, protocol_id); 328 else 329 proto = scmi_vendor_protocol_get(protocol_id, version); 330 331 if (!proto || !try_module_get(proto->owner)) { 332 pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id); 333 return NULL; 334 } 335 336 pr_debug("Found SCMI Protocol 0x%x\n", protocol_id); 337 338 return proto; 339 } 340 341 static void scmi_protocol_put(const struct scmi_protocol *proto) 342 { 343 if (proto) 344 module_put(proto->owner); 345 } 346 347 static int scmi_vendor_protocol_check(const struct scmi_protocol *proto) 348 { 349 if (!proto->vendor_id) { 350 pr_err("missing vendor_id for protocol 0x%x\n", proto->id); 351 return -EINVAL; 352 } 353 354 if (strlen(proto->vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) { 355 pr_err("malformed vendor_id for protocol 0x%x\n", proto->id); 356 return -EINVAL; 357 } 358 359 if (proto->sub_vendor_id && 360 strlen(proto->sub_vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) { 361 pr_err("malformed sub_vendor_id for protocol 0x%x\n", 362 proto->id); 363 return -EINVAL; 364 } 365 366 return 0; 367 } 368 369 int scmi_protocol_register(const struct scmi_protocol *proto) 370 { 371 int ret; 372 unsigned long key; 373 374 if (!proto) { 375 pr_err("invalid protocol\n"); 376 return -EINVAL; 377 } 378 379 if (!proto->instance_init) { 380 pr_err("missing init for protocol 0x%x\n", proto->id); 381 return -EINVAL; 382 } 383 384 if (proto->id >= SCMI_PROTOCOL_VENDOR_BASE && 385 scmi_vendor_protocol_check(proto)) 386 return -EINVAL; 387 388 /* 389 * Calculate a protocol key to register this protocol with the core; 390 * key value 0 is considered invalid. 391 */ 392 key = scmi_protocol_key_calculate(proto->id, proto->vendor_id, 393 proto->sub_vendor_id, 394 proto->impl_ver); 395 if (!key) 396 return -EINVAL; 397 398 ret = xa_insert(&scmi_protocols, key, (void *)proto, GFP_KERNEL); 399 if (ret) { 400 pr_err("unable to allocate SCMI protocol slot for 0x%x - err %d\n", 401 proto->id, ret); 402 return ret; 403 } 404 405 pr_debug("Registered SCMI Protocol 0x%x - %s %s 0x%08X\n", 406 proto->id, proto->vendor_id, proto->sub_vendor_id, 407 proto->impl_ver); 408 409 return 0; 410 } 411 EXPORT_SYMBOL_GPL(scmi_protocol_register); 412 413 void scmi_protocol_unregister(const struct scmi_protocol *proto) 414 { 415 unsigned long key; 416 417 key = scmi_protocol_key_calculate(proto->id, proto->vendor_id, 418 proto->sub_vendor_id, 419 proto->impl_ver); 420 if (!key) 421 return; 422 423 xa_erase(&scmi_protocols, key); 424 425 pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id); 426 } 427 EXPORT_SYMBOL_GPL(scmi_protocol_unregister); 428 429 /** 430 * scmi_create_protocol_devices - Create devices for all pending requests for 431 * this SCMI instance. 432 * 433 * @np: The device node describing the protocol 434 * @info: The SCMI instance descriptor 435 * @prot_id: The protocol ID 436 * @name: The optional name of the device to be created: if not provided this 437 * call will lead to the creation of all the devices currently requested 438 * for the specified protocol. 439 */ 440 static void scmi_create_protocol_devices(struct device_node *np, 441 struct scmi_info *info, 442 int prot_id, const char *name) 443 { 444 mutex_lock(&info->devreq_mtx); 445 scmi_device_create(np, info->dev, prot_id, name); 446 mutex_unlock(&info->devreq_mtx); 447 } 448 449 static void scmi_destroy_protocol_devices(struct scmi_info *info, 450 int prot_id, const char *name) 451 { 452 mutex_lock(&info->devreq_mtx); 453 scmi_device_destroy(info->dev, prot_id, name); 454 mutex_unlock(&info->devreq_mtx); 455 } 456 457 void scmi_notification_instance_data_set(const struct scmi_handle *handle, 458 void *priv) 459 { 460 struct scmi_info *info = handle_to_scmi_info(handle); 461 462 info->notify_priv = priv; 463 /* Ensure updated protocol private date are visible */ 464 smp_wmb(); 465 } 466 467 void *scmi_notification_instance_data_get(const struct scmi_handle *handle) 468 { 469 struct scmi_info *info = handle_to_scmi_info(handle); 470 471 /* Ensure protocols_private_data has been updated */ 472 smp_rmb(); 473 return info->notify_priv; 474 } 475 476 /** 477 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand 478 * 479 * @minfo: Pointer to Tx/Rx Message management info based on channel type 480 * @xfer: The xfer to act upon 481 * 482 * Pick the next unused monotonically increasing token and set it into 483 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate 484 * reuse of freshly completed or timed-out xfers, thus mitigating the risk 485 * of incorrect association of a late and expired xfer with a live in-flight 486 * transaction, both happening to re-use the same token identifier. 487 * 488 * Since platform is NOT required to answer our request in-order we should 489 * account for a few rare but possible scenarios: 490 * 491 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token 492 * using find_next_zero_bit() starting from candidate next_token bit 493 * 494 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we 495 * are plenty of free tokens at start, so try a second pass using 496 * find_next_zero_bit() and starting from 0. 497 * 498 * X = used in-flight 499 * 500 * Normal 501 * ------ 502 * 503 * |- xfer_id picked 504 * -----------+---------------------------------------------------------- 505 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X| 506 * ---------------------------------------------------------------------- 507 * ^ 508 * |- next_token 509 * 510 * Out-of-order pending at start 511 * ----------------------------- 512 * 513 * |- xfer_id picked, last_token fixed 514 * -----+---------------------------------------------------------------- 515 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| | 516 * ---------------------------------------------------------------------- 517 * ^ 518 * |- next_token 519 * 520 * 521 * Out-of-order pending at end 522 * --------------------------- 523 * 524 * |- xfer_id picked, last_token fixed 525 * -----+---------------------------------------------------------------- 526 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X| 527 * ---------------------------------------------------------------------- 528 * ^ 529 * |- next_token 530 * 531 * Context: Assumes to be called with @xfer_lock already acquired. 532 * 533 * Return: 0 on Success or error 534 */ 535 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo, 536 struct scmi_xfer *xfer) 537 { 538 unsigned long xfer_id, next_token; 539 540 /* 541 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1] 542 * using the pre-allocated transfer_id as a base. 543 * Note that the global transfer_id is shared across all message types 544 * so there could be holes in the allocated set of monotonic sequence 545 * numbers, but that is going to limit the effectiveness of the 546 * mitigation only in very rare limit conditions. 547 */ 548 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1)); 549 550 /* Pick the next available xfer_id >= next_token */ 551 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 552 MSG_TOKEN_MAX, next_token); 553 if (xfer_id == MSG_TOKEN_MAX) { 554 /* 555 * After heavily out-of-order responses, there are no free 556 * tokens ahead, but only at start of xfer_alloc_table so 557 * try again from the beginning. 558 */ 559 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 560 MSG_TOKEN_MAX, 0); 561 /* 562 * Something is wrong if we got here since there can be a 563 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages 564 * but we have not found any free token [0, MSG_TOKEN_MAX - 1]. 565 */ 566 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX)) 567 return -ENOMEM; 568 } 569 570 /* Update +/- last_token accordingly if we skipped some hole */ 571 if (xfer_id != next_token) 572 atomic_add((int)(xfer_id - next_token), &transfer_last_id); 573 574 xfer->hdr.seq = (u16)xfer_id; 575 576 return 0; 577 } 578 579 /** 580 * scmi_xfer_token_clear - Release the token 581 * 582 * @minfo: Pointer to Tx/Rx Message management info based on channel type 583 * @xfer: The xfer to act upon 584 */ 585 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo, 586 struct scmi_xfer *xfer) 587 { 588 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 589 } 590 591 /** 592 * scmi_xfer_inflight_register_unlocked - Register the xfer as in-flight 593 * 594 * @xfer: The xfer to register 595 * @minfo: Pointer to Tx/Rx Message management info based on channel type 596 * 597 * Note that this helper assumes that the xfer to be registered as in-flight 598 * had been built using an xfer sequence number which still corresponds to a 599 * free slot in the xfer_alloc_table. 600 * 601 * Context: Assumes to be called with @xfer_lock already acquired. 602 */ 603 static inline void 604 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer, 605 struct scmi_xfers_info *minfo) 606 { 607 /* In this context minfo will be tx_minfo due to the xfer pending */ 608 struct scmi_info *info = tx_minfo_to_scmi_info(minfo); 609 610 /* Set in-flight */ 611 set_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 612 hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq); 613 scmi_inc_count(info->dbg->counters, XFERS_INFLIGHT); 614 615 xfer->pending = true; 616 } 617 618 /** 619 * scmi_xfer_inflight_register - Try to register an xfer as in-flight 620 * 621 * @xfer: The xfer to register 622 * @minfo: Pointer to Tx/Rx Message management info based on channel type 623 * 624 * Note that this helper does NOT assume anything about the sequence number 625 * that was baked into the provided xfer, so it checks at first if it can 626 * be mapped to a free slot and fails with an error if another xfer with the 627 * same sequence number is currently still registered as in-flight. 628 * 629 * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer 630 * could not rbe mapped to a free slot in the xfer_alloc_table. 631 */ 632 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer, 633 struct scmi_xfers_info *minfo) 634 { 635 int ret = 0; 636 unsigned long flags; 637 638 spin_lock_irqsave(&minfo->xfer_lock, flags); 639 if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table)) 640 scmi_xfer_inflight_register_unlocked(xfer, minfo); 641 else 642 ret = -EBUSY; 643 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 644 645 return ret; 646 } 647 648 /** 649 * scmi_xfer_raw_inflight_register - An helper to register the given xfer as in 650 * flight on the TX channel, if possible. 651 * 652 * @handle: Pointer to SCMI entity handle 653 * @xfer: The xfer to register 654 * 655 * Return: 0 on Success, error otherwise 656 */ 657 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle, 658 struct scmi_xfer *xfer) 659 { 660 struct scmi_info *info = handle_to_scmi_info(handle); 661 662 return scmi_xfer_inflight_register(xfer, &info->tx_minfo); 663 } 664 665 /** 666 * scmi_xfer_pending_set - Pick a proper sequence number and mark the xfer 667 * as pending in-flight 668 * 669 * @xfer: The xfer to act upon 670 * @minfo: Pointer to Tx/Rx Message management info based on channel type 671 * 672 * Return: 0 on Success or error otherwise 673 */ 674 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer, 675 struct scmi_xfers_info *minfo) 676 { 677 int ret; 678 unsigned long flags; 679 680 spin_lock_irqsave(&minfo->xfer_lock, flags); 681 /* Set a new monotonic token as the xfer sequence number */ 682 ret = scmi_xfer_token_set(minfo, xfer); 683 if (!ret) 684 scmi_xfer_inflight_register_unlocked(xfer, minfo); 685 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 686 687 return ret; 688 } 689 690 /** 691 * scmi_xfer_get() - Allocate one message 692 * 693 * @handle: Pointer to SCMI entity handle 694 * @minfo: Pointer to Tx/Rx Message management info based on channel type 695 * 696 * Helper function which is used by various message functions that are 697 * exposed to clients of this driver for allocating a message traffic event. 698 * 699 * Picks an xfer from the free list @free_xfers (if any available) and perform 700 * a basic initialization. 701 * 702 * Note that, at this point, still no sequence number is assigned to the 703 * allocated xfer, nor it is registered as a pending transaction. 704 * 705 * The successfully initialized xfer is refcounted. 706 * 707 * Context: Holds @xfer_lock while manipulating @free_xfers. 708 * 709 * Return: An initialized xfer if all went fine, else pointer error. 710 */ 711 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle, 712 struct scmi_xfers_info *minfo) 713 { 714 unsigned long flags; 715 struct scmi_xfer *xfer; 716 717 spin_lock_irqsave(&minfo->xfer_lock, flags); 718 if (hlist_empty(&minfo->free_xfers)) { 719 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 720 return ERR_PTR(-ENOMEM); 721 } 722 723 /* grab an xfer from the free_list */ 724 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node); 725 hlist_del_init(&xfer->node); 726 727 /* 728 * Allocate transfer_id early so that can be used also as base for 729 * monotonic sequence number generation if needed. 730 */ 731 xfer->transfer_id = atomic_inc_return(&transfer_last_id); 732 733 refcount_set(&xfer->users, 1); 734 atomic_set(&xfer->busy, SCMI_XFER_FREE); 735 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 736 737 return xfer; 738 } 739 740 /** 741 * scmi_xfer_raw_get - Helper to get a bare free xfer from the TX channel 742 * 743 * @handle: Pointer to SCMI entity handle 744 * 745 * Note that xfer is taken from the TX channel structures. 746 * 747 * Return: A valid xfer on Success, or an error-pointer otherwise 748 */ 749 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle) 750 { 751 struct scmi_xfer *xfer; 752 struct scmi_info *info = handle_to_scmi_info(handle); 753 754 xfer = scmi_xfer_get(handle, &info->tx_minfo); 755 if (!IS_ERR(xfer)) 756 xfer->flags |= SCMI_XFER_FLAG_IS_RAW; 757 758 return xfer; 759 } 760 761 /** 762 * scmi_xfer_raw_channel_get - Helper to get a reference to the proper channel 763 * to use for a specific protocol_id Raw transaction. 764 * 765 * @handle: Pointer to SCMI entity handle 766 * @protocol_id: Identifier of the protocol 767 * 768 * Note that in a regular SCMI stack, usually, a protocol has to be defined in 769 * the DT to have an associated channel and be usable; but in Raw mode any 770 * protocol in range is allowed, re-using the Base channel, so as to enable 771 * fuzzing on any protocol without the need of a fully compiled DT. 772 * 773 * Return: A reference to the channel to use, or an ERR_PTR 774 */ 775 struct scmi_chan_info * 776 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id) 777 { 778 struct scmi_chan_info *cinfo; 779 struct scmi_info *info = handle_to_scmi_info(handle); 780 781 cinfo = idr_find(&info->tx_idr, protocol_id); 782 if (!cinfo) { 783 if (protocol_id == SCMI_PROTOCOL_BASE) 784 return ERR_PTR(-EINVAL); 785 /* Use Base channel for protocols not defined for DT */ 786 cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE); 787 if (!cinfo) 788 return ERR_PTR(-EINVAL); 789 dev_warn_once(handle->dev, 790 "Using Base channel for protocol 0x%X\n", 791 protocol_id); 792 } 793 794 return cinfo; 795 } 796 797 /** 798 * __scmi_xfer_put() - Release a message 799 * 800 * @minfo: Pointer to Tx/Rx Message management info based on channel type 801 * @xfer: message that was reserved by scmi_xfer_get 802 * 803 * After refcount check, possibly release an xfer, clearing the token slot, 804 * removing xfer from @pending_xfers and putting it back into free_xfers. 805 * 806 * This holds a spinlock to maintain integrity of internal data structures. 807 */ 808 static void 809 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer) 810 { 811 unsigned long flags; 812 813 spin_lock_irqsave(&minfo->xfer_lock, flags); 814 if (refcount_dec_and_test(&xfer->users)) { 815 if (xfer->pending) { 816 struct scmi_info *info = tx_minfo_to_scmi_info(minfo); 817 818 scmi_xfer_token_clear(minfo, xfer); 819 hash_del(&xfer->node); 820 xfer->pending = false; 821 822 scmi_dec_count(info->dbg->counters, XFERS_INFLIGHT); 823 } 824 hlist_add_head(&xfer->node, &minfo->free_xfers); 825 } 826 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 827 } 828 829 /** 830 * scmi_xfer_raw_put - Release an xfer that was taken by @scmi_xfer_raw_get 831 * 832 * @handle: Pointer to SCMI entity handle 833 * @xfer: A reference to the xfer to put 834 * 835 * Note that as with other xfer_put() handlers the xfer is really effectively 836 * released only if there are no more users on the system. 837 */ 838 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer) 839 { 840 struct scmi_info *info = handle_to_scmi_info(handle); 841 842 xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW; 843 xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET; 844 return __scmi_xfer_put(&info->tx_minfo, xfer); 845 } 846 847 /** 848 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id 849 * 850 * @minfo: Pointer to Tx/Rx Message management info based on channel type 851 * @xfer_id: Token ID to lookup in @pending_xfers 852 * 853 * Refcounting is untouched. 854 * 855 * Context: Assumes to be called with @xfer_lock already acquired. 856 * 857 * Return: A valid xfer on Success or error otherwise 858 */ 859 static struct scmi_xfer * 860 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id) 861 { 862 struct scmi_xfer *xfer = NULL; 863 864 if (test_bit(xfer_id, minfo->xfer_alloc_table)) 865 xfer = XFER_FIND(minfo->pending_xfers, xfer_id); 866 867 return xfer ?: ERR_PTR(-EINVAL); 868 } 869 870 /** 871 * scmi_bad_message_trace - A helper to trace weird messages 872 * 873 * @cinfo: A reference to the channel descriptor on which the message was 874 * received 875 * @msg_hdr: Message header to track 876 * @err: A specific error code used as a status value in traces. 877 * 878 * This helper can be used to trace any kind of weird, incomplete, unexpected, 879 * timed-out message that arrives and as such, can be traced only referring to 880 * the header content, since the payload is missing/unreliable. 881 */ 882 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo, u32 msg_hdr, 883 enum scmi_bad_msg err) 884 { 885 char *tag; 886 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 887 888 switch (MSG_XTRACT_TYPE(msg_hdr)) { 889 case MSG_TYPE_COMMAND: 890 tag = "!RESP"; 891 break; 892 case MSG_TYPE_DELAYED_RESP: 893 tag = "!DLYD"; 894 break; 895 case MSG_TYPE_NOTIFICATION: 896 tag = "!NOTI"; 897 break; 898 default: 899 tag = "!UNKN"; 900 break; 901 } 902 903 trace_scmi_msg_dump(info->id, cinfo->id, 904 MSG_XTRACT_PROT_ID(msg_hdr), 905 MSG_XTRACT_ID(msg_hdr), tag, 906 MSG_XTRACT_TOKEN(msg_hdr), err, NULL, 0); 907 } 908 909 /** 910 * scmi_msg_response_validate - Validate message type against state of related 911 * xfer 912 * 913 * @cinfo: A reference to the channel descriptor. 914 * @msg_type: Message type to check 915 * @xfer: A reference to the xfer to validate against @msg_type 916 * 917 * This function checks if @msg_type is congruent with the current state of 918 * a pending @xfer; if an asynchronous delayed response is received before the 919 * related synchronous response (Out-of-Order Delayed Response) the missing 920 * synchronous response is assumed to be OK and completed, carrying on with the 921 * Delayed Response: this is done to address the case in which the underlying 922 * SCMI transport can deliver such out-of-order responses. 923 * 924 * Context: Assumes to be called with xfer->lock already acquired. 925 * 926 * Return: 0 on Success, error otherwise 927 */ 928 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo, 929 u8 msg_type, 930 struct scmi_xfer *xfer) 931 { 932 /* 933 * Even if a response was indeed expected on this slot at this point, 934 * a buggy platform could wrongly reply feeding us an unexpected 935 * delayed response we're not prepared to handle: bail-out safely 936 * blaming firmware. 937 */ 938 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) { 939 dev_err(cinfo->dev, 940 "Delayed Response for %d not expected! Buggy F/W ?\n", 941 xfer->hdr.seq); 942 return -EINVAL; 943 } 944 945 switch (xfer->state) { 946 case SCMI_XFER_SENT_OK: 947 if (msg_type == MSG_TYPE_DELAYED_RESP) { 948 /* 949 * Delayed Response expected but delivered earlier. 950 * Assume message RESPONSE was OK and skip state. 951 */ 952 xfer->hdr.status = SCMI_SUCCESS; 953 xfer->state = SCMI_XFER_RESP_OK; 954 complete(&xfer->done); 955 dev_warn(cinfo->dev, 956 "Received valid OoO Delayed Response for %d\n", 957 xfer->hdr.seq); 958 } 959 break; 960 case SCMI_XFER_RESP_OK: 961 if (msg_type != MSG_TYPE_DELAYED_RESP) 962 return -EINVAL; 963 break; 964 case SCMI_XFER_DRESP_OK: 965 /* No further message expected once in SCMI_XFER_DRESP_OK */ 966 return -EINVAL; 967 } 968 969 return 0; 970 } 971 972 /** 973 * scmi_xfer_state_update - Update xfer state 974 * 975 * @xfer: A reference to the xfer to update 976 * @msg_type: Type of message being processed. 977 * 978 * Note that this message is assumed to have been already successfully validated 979 * by @scmi_msg_response_validate(), so here we just update the state. 980 * 981 * Context: Assumes to be called on an xfer exclusively acquired using the 982 * busy flag. 983 */ 984 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type) 985 { 986 xfer->hdr.type = msg_type; 987 988 /* Unknown command types were already discarded earlier */ 989 if (xfer->hdr.type == MSG_TYPE_COMMAND) 990 xfer->state = SCMI_XFER_RESP_OK; 991 else 992 xfer->state = SCMI_XFER_DRESP_OK; 993 } 994 995 static bool scmi_xfer_acquired(struct scmi_xfer *xfer) 996 { 997 int ret; 998 999 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY); 1000 1001 return ret == SCMI_XFER_FREE; 1002 } 1003 1004 /** 1005 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer 1006 * 1007 * @cinfo: A reference to the channel descriptor. 1008 * @msg_hdr: A message header to use as lookup key 1009 * 1010 * When a valid xfer is found for the sequence number embedded in the provided 1011 * msg_hdr, reference counting is properly updated and exclusive access to this 1012 * xfer is granted till released with @scmi_xfer_command_release. 1013 * 1014 * Return: A valid @xfer on Success or error otherwise. 1015 */ 1016 static inline struct scmi_xfer * 1017 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr) 1018 { 1019 int ret; 1020 unsigned long flags; 1021 struct scmi_xfer *xfer; 1022 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1023 struct scmi_xfers_info *minfo = &info->tx_minfo; 1024 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 1025 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr); 1026 1027 /* Are we even expecting this? */ 1028 spin_lock_irqsave(&minfo->xfer_lock, flags); 1029 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id); 1030 if (IS_ERR(xfer)) { 1031 dev_err(cinfo->dev, 1032 "Message for %d type %d is not expected!\n", 1033 xfer_id, msg_type); 1034 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 1035 1036 scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNEXPECTED); 1037 scmi_inc_count(info->dbg->counters, ERR_MSG_UNEXPECTED); 1038 1039 return xfer; 1040 } 1041 refcount_inc(&xfer->users); 1042 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 1043 1044 spin_lock_irqsave(&xfer->lock, flags); 1045 ret = scmi_msg_response_validate(cinfo, msg_type, xfer); 1046 /* 1047 * If a pending xfer was found which was also in a congruent state with 1048 * the received message, acquire exclusive access to it setting the busy 1049 * flag. 1050 * Spins only on the rare limit condition of concurrent reception of 1051 * RESP and DRESP for the same xfer. 1052 */ 1053 if (!ret) { 1054 spin_until_cond(scmi_xfer_acquired(xfer)); 1055 scmi_xfer_state_update(xfer, msg_type); 1056 } 1057 spin_unlock_irqrestore(&xfer->lock, flags); 1058 1059 if (ret) { 1060 dev_err(cinfo->dev, 1061 "Invalid message type:%d for %d - HDR:0x%X state:%d\n", 1062 msg_type, xfer_id, msg_hdr, xfer->state); 1063 1064 scmi_bad_message_trace(cinfo, msg_hdr, MSG_INVALID); 1065 scmi_inc_count(info->dbg->counters, ERR_MSG_INVALID); 1066 1067 /* On error the refcount incremented above has to be dropped */ 1068 __scmi_xfer_put(minfo, xfer); 1069 xfer = ERR_PTR(-EINVAL); 1070 } 1071 1072 return xfer; 1073 } 1074 1075 static inline void scmi_xfer_command_release(struct scmi_info *info, 1076 struct scmi_xfer *xfer) 1077 { 1078 atomic_set(&xfer->busy, SCMI_XFER_FREE); 1079 __scmi_xfer_put(&info->tx_minfo, xfer); 1080 } 1081 1082 static inline void scmi_clear_channel(struct scmi_info *info, 1083 struct scmi_chan_info *cinfo) 1084 { 1085 if (!cinfo->is_p2a) { 1086 dev_warn(cinfo->dev, "Invalid clear on A2P channel !\n"); 1087 return; 1088 } 1089 1090 if (info->desc->ops->clear_channel) 1091 info->desc->ops->clear_channel(cinfo); 1092 } 1093 1094 static void scmi_handle_notification(struct scmi_chan_info *cinfo, 1095 u32 msg_hdr, void *priv) 1096 { 1097 struct scmi_xfer *xfer; 1098 struct device *dev = cinfo->dev; 1099 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1100 struct scmi_xfers_info *minfo = &info->rx_minfo; 1101 ktime_t ts; 1102 1103 ts = ktime_get_boottime(); 1104 xfer = scmi_xfer_get(cinfo->handle, minfo); 1105 if (IS_ERR(xfer)) { 1106 dev_err(dev, "failed to get free message slot (%ld)\n", 1107 PTR_ERR(xfer)); 1108 1109 scmi_bad_message_trace(cinfo, msg_hdr, MSG_NOMEM); 1110 scmi_inc_count(info->dbg->counters, ERR_MSG_NOMEM); 1111 1112 scmi_clear_channel(info, cinfo); 1113 return; 1114 } 1115 1116 unpack_scmi_header(msg_hdr, &xfer->hdr); 1117 if (priv) 1118 /* Ensure order between xfer->priv store and following ops */ 1119 smp_store_mb(xfer->priv, priv); 1120 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size, 1121 xfer); 1122 1123 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 1124 xfer->hdr.id, "NOTI", xfer->hdr.seq, 1125 xfer->hdr.status, xfer->rx.buf, xfer->rx.len); 1126 scmi_inc_count(info->dbg->counters, NOTIFICATION_OK); 1127 1128 scmi_notify(cinfo->handle, xfer->hdr.protocol_id, 1129 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts); 1130 1131 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 1132 xfer->hdr.protocol_id, xfer->hdr.seq, 1133 MSG_TYPE_NOTIFICATION); 1134 1135 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 1136 xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr); 1137 scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE, 1138 cinfo->id); 1139 } 1140 1141 __scmi_xfer_put(minfo, xfer); 1142 1143 scmi_clear_channel(info, cinfo); 1144 } 1145 1146 static void scmi_handle_response(struct scmi_chan_info *cinfo, 1147 u32 msg_hdr, void *priv) 1148 { 1149 struct scmi_xfer *xfer; 1150 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1151 1152 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr); 1153 if (IS_ERR(xfer)) { 1154 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 1155 scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv); 1156 1157 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP) 1158 scmi_clear_channel(info, cinfo); 1159 return; 1160 } 1161 1162 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */ 1163 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) 1164 xfer->rx.len = info->desc->max_msg_size; 1165 1166 if (priv) 1167 /* Ensure order between xfer->priv store and following ops */ 1168 smp_store_mb(xfer->priv, priv); 1169 info->desc->ops->fetch_response(cinfo, xfer); 1170 1171 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 1172 xfer->hdr.id, 1173 xfer->hdr.type == MSG_TYPE_DELAYED_RESP ? 1174 (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") : 1175 (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"), 1176 xfer->hdr.seq, xfer->hdr.status, 1177 xfer->rx.buf, xfer->rx.len); 1178 1179 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 1180 xfer->hdr.protocol_id, xfer->hdr.seq, 1181 xfer->hdr.type); 1182 1183 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) { 1184 scmi_clear_channel(info, cinfo); 1185 complete(xfer->async_done); 1186 scmi_inc_count(info->dbg->counters, DELAYED_RESPONSE_OK); 1187 } else { 1188 complete(&xfer->done); 1189 scmi_inc_count(info->dbg->counters, RESPONSE_OK); 1190 } 1191 1192 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 1193 /* 1194 * When in polling mode avoid to queue the Raw xfer on the IRQ 1195 * RX path since it will be already queued at the end of the TX 1196 * poll loop. 1197 */ 1198 if (!xfer->hdr.poll_completion || 1199 xfer->hdr.type == MSG_TYPE_DELAYED_RESP) 1200 scmi_raw_message_report(info->raw, xfer, 1201 SCMI_RAW_REPLY_QUEUE, 1202 cinfo->id); 1203 } 1204 1205 scmi_xfer_command_release(info, xfer); 1206 } 1207 1208 /** 1209 * scmi_rx_callback() - callback for receiving messages 1210 * 1211 * @cinfo: SCMI channel info 1212 * @msg_hdr: Message header 1213 * @priv: Transport specific private data. 1214 * 1215 * Processes one received message to appropriate transfer information and 1216 * signals completion of the transfer. 1217 * 1218 * NOTE: This function will be invoked in IRQ context, hence should be 1219 * as optimal as possible. 1220 */ 1221 static void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, 1222 void *priv) 1223 { 1224 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 1225 1226 switch (msg_type) { 1227 case MSG_TYPE_NOTIFICATION: 1228 scmi_handle_notification(cinfo, msg_hdr, priv); 1229 break; 1230 case MSG_TYPE_COMMAND: 1231 case MSG_TYPE_DELAYED_RESP: 1232 scmi_handle_response(cinfo, msg_hdr, priv); 1233 break; 1234 default: 1235 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type); 1236 scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNKNOWN); 1237 break; 1238 } 1239 } 1240 1241 /** 1242 * xfer_put() - Release a transmit message 1243 * 1244 * @ph: Pointer to SCMI protocol handle 1245 * @xfer: message that was reserved by xfer_get_init 1246 */ 1247 static void xfer_put(const struct scmi_protocol_handle *ph, 1248 struct scmi_xfer *xfer) 1249 { 1250 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1251 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1252 1253 __scmi_xfer_put(&info->tx_minfo, xfer); 1254 } 1255 1256 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo, 1257 struct scmi_xfer *xfer, ktime_t stop, 1258 bool *ooo) 1259 { 1260 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1261 1262 /* 1263 * Poll also on xfer->done so that polling can be forcibly terminated 1264 * in case of out-of-order receptions of delayed responses 1265 */ 1266 return info->desc->ops->poll_done(cinfo, xfer) || 1267 (*ooo = try_wait_for_completion(&xfer->done)) || 1268 ktime_after(ktime_get(), stop); 1269 } 1270 1271 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc, 1272 struct scmi_chan_info *cinfo, 1273 struct scmi_xfer *xfer, unsigned int timeout_ms) 1274 { 1275 int ret = 0; 1276 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1277 1278 if (xfer->hdr.poll_completion) { 1279 /* 1280 * Real polling is needed only if transport has NOT declared 1281 * itself to support synchronous commands replies. 1282 */ 1283 if (!desc->sync_cmds_completed_on_ret) { 1284 bool ooo = false; 1285 1286 /* 1287 * Poll on xfer using transport provided .poll_done(); 1288 * assumes no completion interrupt was available. 1289 */ 1290 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms); 1291 1292 spin_until_cond(scmi_xfer_done_no_timeout(cinfo, xfer, 1293 stop, &ooo)); 1294 if (!ooo && !info->desc->ops->poll_done(cinfo, xfer)) { 1295 dev_err(dev, 1296 "timed out in resp(caller: %pS) - polling\n", 1297 (void *)_RET_IP_); 1298 ret = -ETIMEDOUT; 1299 scmi_inc_count(info->dbg->counters, XFERS_RESPONSE_POLLED_TIMEOUT); 1300 } 1301 } 1302 1303 if (!ret) { 1304 unsigned long flags; 1305 1306 /* 1307 * Do not fetch_response if an out-of-order delayed 1308 * response is being processed. 1309 */ 1310 spin_lock_irqsave(&xfer->lock, flags); 1311 if (xfer->state == SCMI_XFER_SENT_OK) { 1312 desc->ops->fetch_response(cinfo, xfer); 1313 xfer->state = SCMI_XFER_RESP_OK; 1314 } 1315 spin_unlock_irqrestore(&xfer->lock, flags); 1316 1317 /* Trace polled replies. */ 1318 trace_scmi_msg_dump(info->id, cinfo->id, 1319 xfer->hdr.protocol_id, xfer->hdr.id, 1320 !SCMI_XFER_IS_RAW(xfer) ? 1321 "RESP" : "resp", 1322 xfer->hdr.seq, xfer->hdr.status, 1323 xfer->rx.buf, xfer->rx.len); 1324 scmi_inc_count(info->dbg->counters, RESPONSE_POLLED_OK); 1325 1326 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 1327 scmi_raw_message_report(info->raw, xfer, 1328 SCMI_RAW_REPLY_QUEUE, 1329 cinfo->id); 1330 } 1331 } 1332 } else { 1333 /* And we wait for the response. */ 1334 if (!wait_for_completion_timeout(&xfer->done, 1335 msecs_to_jiffies(timeout_ms))) { 1336 dev_err(dev, "timed out in resp(caller: %pS)\n", 1337 (void *)_RET_IP_); 1338 ret = -ETIMEDOUT; 1339 scmi_inc_count(info->dbg->counters, XFERS_RESPONSE_TIMEOUT); 1340 } 1341 } 1342 1343 return ret; 1344 } 1345 1346 /** 1347 * scmi_wait_for_message_response - An helper to group all the possible ways of 1348 * waiting for a synchronous message response. 1349 * 1350 * @cinfo: SCMI channel info 1351 * @xfer: Reference to the transfer being waited for. 1352 * 1353 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on 1354 * configuration flags like xfer->hdr.poll_completion. 1355 * 1356 * Return: 0 on Success, error otherwise. 1357 */ 1358 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo, 1359 struct scmi_xfer *xfer) 1360 { 1361 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1362 struct device *dev = info->dev; 1363 1364 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id, 1365 xfer->hdr.protocol_id, xfer->hdr.seq, 1366 info->desc->max_rx_timeout_ms, 1367 xfer->hdr.poll_completion); 1368 1369 return scmi_wait_for_reply(dev, info->desc, cinfo, xfer, 1370 info->desc->max_rx_timeout_ms); 1371 } 1372 1373 /** 1374 * scmi_xfer_raw_wait_for_message_response - An helper to wait for a message 1375 * reply to an xfer raw request on a specific channel for the required timeout. 1376 * 1377 * @cinfo: SCMI channel info 1378 * @xfer: Reference to the transfer being waited for. 1379 * @timeout_ms: The maximum timeout in milliseconds 1380 * 1381 * Return: 0 on Success, error otherwise. 1382 */ 1383 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo, 1384 struct scmi_xfer *xfer, 1385 unsigned int timeout_ms) 1386 { 1387 int ret; 1388 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1389 struct device *dev = info->dev; 1390 1391 ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms); 1392 if (ret) 1393 dev_dbg(dev, "timed out in RAW response - HDR:%08X\n", 1394 pack_scmi_header(&xfer->hdr)); 1395 1396 return ret; 1397 } 1398 1399 /** 1400 * do_xfer() - Do one transfer 1401 * 1402 * @ph: Pointer to SCMI protocol handle 1403 * @xfer: Transfer to initiate and wait for response 1404 * 1405 * Return: -ETIMEDOUT in case of no response, if transmit error, 1406 * return corresponding error, else if all goes well, 1407 * return 0. 1408 */ 1409 static int do_xfer(const struct scmi_protocol_handle *ph, 1410 struct scmi_xfer *xfer) 1411 { 1412 int ret; 1413 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1414 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1415 struct device *dev = info->dev; 1416 struct scmi_chan_info *cinfo; 1417 1418 /* Check for polling request on custom command xfers at first */ 1419 if (xfer->hdr.poll_completion && 1420 !is_transport_polling_capable(info->desc)) { 1421 dev_warn_once(dev, 1422 "Polling mode is not supported by transport.\n"); 1423 scmi_inc_count(info->dbg->counters, SENT_FAIL_POLLING_UNSUPPORTED); 1424 return -EINVAL; 1425 } 1426 1427 cinfo = idr_find(&info->tx_idr, pi->proto->id); 1428 if (unlikely(!cinfo)) { 1429 scmi_inc_count(info->dbg->counters, SENT_FAIL_CHANNEL_NOT_FOUND); 1430 return -EINVAL; 1431 } 1432 /* True ONLY if also supported by transport. */ 1433 if (is_polling_enabled(cinfo, info->desc)) 1434 xfer->hdr.poll_completion = true; 1435 1436 /* 1437 * Initialise protocol id now from protocol handle to avoid it being 1438 * overridden by mistake (or malice) by the protocol code mangling with 1439 * the scmi_xfer structure prior to this. 1440 */ 1441 xfer->hdr.protocol_id = pi->proto->id; 1442 reinit_completion(&xfer->done); 1443 1444 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id, 1445 xfer->hdr.protocol_id, xfer->hdr.seq, 1446 xfer->hdr.poll_completion, 1447 scmi_inflight_count(&info->handle)); 1448 1449 /* Clear any stale status */ 1450 xfer->hdr.status = SCMI_SUCCESS; 1451 xfer->state = SCMI_XFER_SENT_OK; 1452 /* 1453 * Even though spinlocking is not needed here since no race is possible 1454 * on xfer->state due to the monotonically increasing tokens allocation, 1455 * we must anyway ensure xfer->state initialization is not re-ordered 1456 * after the .send_message() to be sure that on the RX path an early 1457 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state. 1458 */ 1459 smp_mb(); 1460 1461 ret = info->desc->ops->send_message(cinfo, xfer); 1462 if (ret < 0) { 1463 dev_dbg(dev, "Failed to send message %d\n", ret); 1464 scmi_inc_count(info->dbg->counters, SENT_FAIL); 1465 return ret; 1466 } 1467 1468 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 1469 xfer->hdr.id, "CMND", xfer->hdr.seq, 1470 xfer->hdr.status, xfer->tx.buf, xfer->tx.len); 1471 scmi_inc_count(info->dbg->counters, SENT_OK); 1472 1473 ret = scmi_wait_for_message_response(cinfo, xfer); 1474 if (!ret && xfer->hdr.status) { 1475 ret = scmi_to_linux_errno(xfer->hdr.status); 1476 scmi_inc_count(info->dbg->counters, ERR_PROTOCOL); 1477 } 1478 1479 if (info->desc->ops->mark_txdone) 1480 info->desc->ops->mark_txdone(cinfo, ret, xfer); 1481 1482 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id, 1483 xfer->hdr.protocol_id, xfer->hdr.seq, ret, 1484 scmi_inflight_count(&info->handle)); 1485 1486 return ret; 1487 } 1488 1489 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph, 1490 struct scmi_xfer *xfer) 1491 { 1492 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1493 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1494 1495 xfer->rx.len = info->desc->max_msg_size; 1496 } 1497 1498 /** 1499 * do_xfer_with_response() - Do one transfer and wait until the delayed 1500 * response is received 1501 * 1502 * @ph: Pointer to SCMI protocol handle 1503 * @xfer: Transfer to initiate and wait for response 1504 * 1505 * Using asynchronous commands in atomic/polling mode should be avoided since 1506 * it could cause long busy-waiting here, so ignore polling for the delayed 1507 * response and WARN if it was requested for this command transaction since 1508 * upper layers should refrain from issuing such kind of requests. 1509 * 1510 * The only other option would have been to refrain from using any asynchronous 1511 * command even if made available, when an atomic transport is detected, and 1512 * instead forcibly use the synchronous version (thing that can be easily 1513 * attained at the protocol layer), but this would also have led to longer 1514 * stalls of the channel for synchronous commands and possibly timeouts. 1515 * (in other words there is usually a good reason if a platform provides an 1516 * asynchronous version of a command and we should prefer to use it...just not 1517 * when using atomic/polling mode) 1518 * 1519 * Return: -ETIMEDOUT in case of no delayed response, if transmit error, 1520 * return corresponding error, else if all goes well, return 0. 1521 */ 1522 static int do_xfer_with_response(const struct scmi_protocol_handle *ph, 1523 struct scmi_xfer *xfer) 1524 { 1525 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT); 1526 DECLARE_COMPLETION_ONSTACK(async_response); 1527 1528 xfer->async_done = &async_response; 1529 1530 /* 1531 * Delayed responses should not be polled, so an async command should 1532 * not have been used when requiring an atomic/poll context; WARN and 1533 * perform instead a sleeping wait. 1534 * (Note Async + IgnoreDelayedResponses are sent via do_xfer) 1535 */ 1536 WARN_ON_ONCE(xfer->hdr.poll_completion); 1537 1538 ret = do_xfer(ph, xfer); 1539 if (!ret) { 1540 if (!wait_for_completion_timeout(xfer->async_done, timeout)) { 1541 dev_err(ph->dev, 1542 "timed out in delayed resp(caller: %pS)\n", 1543 (void *)_RET_IP_); 1544 ret = -ETIMEDOUT; 1545 } else if (xfer->hdr.status) { 1546 ret = scmi_to_linux_errno(xfer->hdr.status); 1547 } 1548 } 1549 1550 xfer->async_done = NULL; 1551 return ret; 1552 } 1553 1554 /** 1555 * xfer_get_init() - Allocate and initialise one message for transmit 1556 * 1557 * @ph: Pointer to SCMI protocol handle 1558 * @msg_id: Message identifier 1559 * @tx_size: transmit message size 1560 * @rx_size: receive message size 1561 * @p: pointer to the allocated and initialised message 1562 * 1563 * This function allocates the message using @scmi_xfer_get and 1564 * initialise the header. 1565 * 1566 * Return: 0 if all went fine with @p pointing to message, else 1567 * corresponding error. 1568 */ 1569 static int xfer_get_init(const struct scmi_protocol_handle *ph, 1570 u8 msg_id, size_t tx_size, size_t rx_size, 1571 struct scmi_xfer **p) 1572 { 1573 int ret; 1574 struct scmi_xfer *xfer; 1575 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1576 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1577 struct scmi_xfers_info *minfo = &info->tx_minfo; 1578 struct device *dev = info->dev; 1579 1580 /* Ensure we have sane transfer sizes */ 1581 if (rx_size > info->desc->max_msg_size || 1582 tx_size > info->desc->max_msg_size) 1583 return -ERANGE; 1584 1585 xfer = scmi_xfer_get(pi->handle, minfo); 1586 if (IS_ERR(xfer)) { 1587 ret = PTR_ERR(xfer); 1588 dev_err(dev, "failed to get free message slot(%d)\n", ret); 1589 return ret; 1590 } 1591 1592 /* Pick a sequence number and register this xfer as in-flight */ 1593 ret = scmi_xfer_pending_set(xfer, minfo); 1594 if (ret) { 1595 dev_err(pi->handle->dev, 1596 "Failed to get monotonic token %d\n", ret); 1597 __scmi_xfer_put(minfo, xfer); 1598 return ret; 1599 } 1600 1601 xfer->tx.len = tx_size; 1602 xfer->rx.len = rx_size ? : info->desc->max_msg_size; 1603 xfer->hdr.type = MSG_TYPE_COMMAND; 1604 xfer->hdr.id = msg_id; 1605 xfer->hdr.poll_completion = false; 1606 1607 *p = xfer; 1608 1609 return 0; 1610 } 1611 1612 /** 1613 * version_get() - command to get the revision of the SCMI entity 1614 * 1615 * @ph: Pointer to SCMI protocol handle 1616 * @version: Holds returned version of protocol. 1617 * 1618 * Updates the SCMI information in the internal data structure. 1619 * 1620 * Return: 0 if all went fine, else return appropriate error. 1621 */ 1622 static int version_get(const struct scmi_protocol_handle *ph, u32 *version) 1623 { 1624 int ret; 1625 __le32 *rev_info; 1626 struct scmi_xfer *t; 1627 1628 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t); 1629 if (ret) 1630 return ret; 1631 1632 ret = do_xfer(ph, t); 1633 if (!ret) { 1634 rev_info = t->rx.buf; 1635 *version = le32_to_cpu(*rev_info); 1636 } 1637 1638 xfer_put(ph, t); 1639 return ret; 1640 } 1641 1642 /** 1643 * scmi_set_protocol_priv - Set protocol specific data at init time 1644 * 1645 * @ph: A reference to the protocol handle. 1646 * @priv: The private data to set. 1647 * @version: The detected protocol version for the core to register. 1648 * 1649 * Return: 0 on Success 1650 */ 1651 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph, 1652 void *priv, u32 version) 1653 { 1654 struct scmi_protocol_instance *pi = ph_to_pi(ph); 1655 1656 pi->priv = priv; 1657 pi->version = version; 1658 1659 return 0; 1660 } 1661 1662 /** 1663 * scmi_get_protocol_priv - Set protocol specific data at init time 1664 * 1665 * @ph: A reference to the protocol handle. 1666 * 1667 * Return: Protocol private data if any was set. 1668 */ 1669 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph) 1670 { 1671 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1672 1673 return pi->priv; 1674 } 1675 1676 static const struct scmi_xfer_ops xfer_ops = { 1677 .version_get = version_get, 1678 .xfer_get_init = xfer_get_init, 1679 .reset_rx_to_maxsz = reset_rx_to_maxsz, 1680 .do_xfer = do_xfer, 1681 .do_xfer_with_response = do_xfer_with_response, 1682 .xfer_put = xfer_put, 1683 }; 1684 1685 struct scmi_msg_resp_domain_name_get { 1686 __le32 flags; 1687 u8 name[SCMI_MAX_STR_SIZE]; 1688 }; 1689 1690 /** 1691 * scmi_common_extended_name_get - Common helper to get extended resources name 1692 * @ph: A protocol handle reference. 1693 * @cmd_id: The specific command ID to use. 1694 * @res_id: The specific resource ID to use. 1695 * @flags: A pointer to specific flags to use, if any. 1696 * @name: A pointer to the preallocated area where the retrieved name will be 1697 * stored as a NULL terminated string. 1698 * @len: The len in bytes of the @name char array. 1699 * 1700 * Return: 0 on Succcess 1701 */ 1702 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph, 1703 u8 cmd_id, u32 res_id, u32 *flags, 1704 char *name, size_t len) 1705 { 1706 int ret; 1707 size_t txlen; 1708 struct scmi_xfer *t; 1709 struct scmi_msg_resp_domain_name_get *resp; 1710 1711 txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags); 1712 ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t); 1713 if (ret) 1714 goto out; 1715 1716 put_unaligned_le32(res_id, t->tx.buf); 1717 if (flags) 1718 put_unaligned_le32(*flags, t->tx.buf + sizeof(res_id)); 1719 resp = t->rx.buf; 1720 1721 ret = ph->xops->do_xfer(ph, t); 1722 if (!ret) 1723 strscpy(name, resp->name, len); 1724 1725 ph->xops->xfer_put(ph, t); 1726 out: 1727 if (ret) 1728 dev_warn(ph->dev, 1729 "Failed to get extended name - id:%u (ret:%d). Using %s\n", 1730 res_id, ret, name); 1731 return ret; 1732 } 1733 1734 /** 1735 * scmi_common_get_max_msg_size - Get maximum message size 1736 * @ph: A protocol handle reference. 1737 * 1738 * Return: Maximum message size for the current protocol. 1739 */ 1740 static int scmi_common_get_max_msg_size(const struct scmi_protocol_handle *ph) 1741 { 1742 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1743 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1744 1745 return info->desc->max_msg_size; 1746 } 1747 1748 /** 1749 * scmi_protocol_msg_check - Check protocol message attributes 1750 * 1751 * @ph: A reference to the protocol handle. 1752 * @message_id: The ID of the message to check. 1753 * @attributes: A parameter to optionally return the retrieved message 1754 * attributes, in case of Success. 1755 * 1756 * An helper to check protocol message attributes for a specific protocol 1757 * and message pair. 1758 * 1759 * Return: 0 on SUCCESS 1760 */ 1761 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph, 1762 u32 message_id, u32 *attributes) 1763 { 1764 int ret; 1765 struct scmi_xfer *t; 1766 1767 ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES, 1768 sizeof(__le32), 0, &t); 1769 if (ret) 1770 return ret; 1771 1772 put_unaligned_le32(message_id, t->tx.buf); 1773 ret = do_xfer(ph, t); 1774 if (!ret && attributes) 1775 *attributes = get_unaligned_le32(t->rx.buf); 1776 xfer_put(ph, t); 1777 1778 return ret; 1779 } 1780 1781 /** 1782 * struct scmi_iterator - Iterator descriptor 1783 * @msg: A reference to the message TX buffer; filled by @prepare_message with 1784 * a proper custom command payload for each multi-part command request. 1785 * @resp: A reference to the response RX buffer; used by @update_state and 1786 * @process_response to parse the multi-part replies. 1787 * @t: A reference to the underlying xfer initialized and used transparently by 1788 * the iterator internal routines. 1789 * @ph: A reference to the associated protocol handle to be used. 1790 * @ops: A reference to the custom provided iterator operations. 1791 * @state: The current iterator state; used and updated in turn by the iterators 1792 * internal routines and by the caller-provided @scmi_iterator_ops. 1793 * @priv: A reference to optional private data as provided by the caller and 1794 * passed back to the @@scmi_iterator_ops. 1795 */ 1796 struct scmi_iterator { 1797 void *msg; 1798 void *resp; 1799 struct scmi_xfer *t; 1800 const struct scmi_protocol_handle *ph; 1801 struct scmi_iterator_ops *ops; 1802 struct scmi_iterator_state state; 1803 void *priv; 1804 }; 1805 1806 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph, 1807 struct scmi_iterator_ops *ops, 1808 unsigned int max_resources, u8 msg_id, 1809 size_t tx_size, void *priv) 1810 { 1811 int ret; 1812 struct scmi_iterator *i; 1813 1814 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL); 1815 if (!i) 1816 return ERR_PTR(-ENOMEM); 1817 1818 i->ph = ph; 1819 i->ops = ops; 1820 i->priv = priv; 1821 1822 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t); 1823 if (ret) { 1824 devm_kfree(ph->dev, i); 1825 return ERR_PTR(ret); 1826 } 1827 1828 i->state.max_resources = max_resources; 1829 i->msg = i->t->tx.buf; 1830 i->resp = i->t->rx.buf; 1831 1832 return i; 1833 } 1834 1835 static int scmi_iterator_run(void *iter) 1836 { 1837 int ret = -EINVAL; 1838 struct scmi_iterator_ops *iops; 1839 const struct scmi_protocol_handle *ph; 1840 struct scmi_iterator_state *st; 1841 struct scmi_iterator *i = iter; 1842 1843 if (!i || !i->ops || !i->ph) 1844 return ret; 1845 1846 iops = i->ops; 1847 ph = i->ph; 1848 st = &i->state; 1849 1850 do { 1851 iops->prepare_message(i->msg, st->desc_index, i->priv); 1852 ret = ph->xops->do_xfer(ph, i->t); 1853 if (ret) 1854 break; 1855 1856 st->rx_len = i->t->rx.len; 1857 ret = iops->update_state(st, i->resp, i->priv); 1858 if (ret) 1859 break; 1860 1861 if (st->num_returned > st->max_resources - st->desc_index) { 1862 dev_err(ph->dev, 1863 "No. of resources can't exceed %d\n", 1864 st->max_resources); 1865 ret = -EINVAL; 1866 break; 1867 } 1868 1869 for (st->loop_idx = 0; st->loop_idx < st->num_returned; 1870 st->loop_idx++) { 1871 ret = iops->process_response(ph, i->resp, st, i->priv); 1872 if (ret) 1873 goto out; 1874 } 1875 1876 st->desc_index += st->num_returned; 1877 ph->xops->reset_rx_to_maxsz(ph, i->t); 1878 /* 1879 * check for both returned and remaining to avoid infinite 1880 * loop due to buggy firmware 1881 */ 1882 } while (st->num_returned && st->num_remaining); 1883 1884 out: 1885 /* Finalize and destroy iterator */ 1886 ph->xops->xfer_put(ph, i->t); 1887 devm_kfree(ph->dev, i); 1888 1889 return ret; 1890 } 1891 1892 struct scmi_msg_get_fc_info { 1893 __le32 domain; 1894 __le32 message_id; 1895 }; 1896 1897 struct scmi_msg_resp_desc_fc { 1898 __le32 attr; 1899 #define SUPPORTS_DOORBELL(x) ((x) & BIT(0)) 1900 #define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x)) 1901 __le32 rate_limit; 1902 __le32 chan_addr_low; 1903 __le32 chan_addr_high; 1904 __le32 chan_size; 1905 __le32 db_addr_low; 1906 __le32 db_addr_high; 1907 __le32 db_set_lmask; 1908 __le32 db_set_hmask; 1909 __le32 db_preserve_lmask; 1910 __le32 db_preserve_hmask; 1911 }; 1912 1913 #define QUIRK_PERF_FC_FORCE \ 1914 ({ \ 1915 if (pi->proto->id == SCMI_PROTOCOL_PERF && \ 1916 message_id == 0x8 /* PERF_LEVEL_GET */) \ 1917 attributes |= BIT(0); \ 1918 }) 1919 1920 static void 1921 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph, 1922 u8 describe_id, u32 message_id, u32 valid_size, 1923 u32 domain, void __iomem **p_addr, 1924 struct scmi_fc_db_info **p_db, u32 *rate_limit) 1925 { 1926 int ret; 1927 u32 flags; 1928 u64 phys_addr; 1929 u32 attributes; 1930 u8 size; 1931 void __iomem *addr; 1932 struct scmi_xfer *t; 1933 struct scmi_fc_db_info *db = NULL; 1934 struct scmi_msg_get_fc_info *info; 1935 struct scmi_msg_resp_desc_fc *resp; 1936 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1937 1938 /* Check if the MSG_ID supports fastchannel */ 1939 ret = scmi_protocol_msg_check(ph, message_id, &attributes); 1940 SCMI_QUIRK(perf_level_get_fc_force, QUIRK_PERF_FC_FORCE); 1941 if (ret || !MSG_SUPPORTS_FASTCHANNEL(attributes)) { 1942 dev_dbg(ph->dev, 1943 "Skip FC init for 0x%02X/%d domain:%d - ret:%d\n", 1944 pi->proto->id, message_id, domain, ret); 1945 return; 1946 } 1947 1948 if (!p_addr) { 1949 ret = -EINVAL; 1950 goto err_out; 1951 } 1952 1953 ret = ph->xops->xfer_get_init(ph, describe_id, 1954 sizeof(*info), sizeof(*resp), &t); 1955 if (ret) 1956 goto err_out; 1957 1958 info = t->tx.buf; 1959 info->domain = cpu_to_le32(domain); 1960 info->message_id = cpu_to_le32(message_id); 1961 1962 /* 1963 * Bail out on error leaving fc_info addresses zeroed; this includes 1964 * the case in which the requested domain/message_id does NOT support 1965 * fastchannels at all. 1966 */ 1967 ret = ph->xops->do_xfer(ph, t); 1968 if (ret) 1969 goto err_xfer; 1970 1971 resp = t->rx.buf; 1972 flags = le32_to_cpu(resp->attr); 1973 size = le32_to_cpu(resp->chan_size); 1974 if (size != valid_size) { 1975 ret = -EINVAL; 1976 goto err_xfer; 1977 } 1978 1979 if (rate_limit) 1980 *rate_limit = le32_to_cpu(resp->rate_limit) & GENMASK(19, 0); 1981 1982 phys_addr = le32_to_cpu(resp->chan_addr_low); 1983 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32; 1984 addr = devm_ioremap(ph->dev, phys_addr, size); 1985 if (!addr) { 1986 ret = -EADDRNOTAVAIL; 1987 goto err_xfer; 1988 } 1989 1990 *p_addr = addr; 1991 1992 if (p_db && SUPPORTS_DOORBELL(flags)) { 1993 db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL); 1994 if (!db) { 1995 ret = -ENOMEM; 1996 goto err_db; 1997 } 1998 1999 size = 1 << DOORBELL_REG_WIDTH(flags); 2000 phys_addr = le32_to_cpu(resp->db_addr_low); 2001 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32; 2002 addr = devm_ioremap(ph->dev, phys_addr, size); 2003 if (!addr) { 2004 ret = -EADDRNOTAVAIL; 2005 goto err_db_mem; 2006 } 2007 2008 db->addr = addr; 2009 db->width = size; 2010 db->set = le32_to_cpu(resp->db_set_lmask); 2011 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32; 2012 db->mask = le32_to_cpu(resp->db_preserve_lmask); 2013 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32; 2014 2015 *p_db = db; 2016 } 2017 2018 ph->xops->xfer_put(ph, t); 2019 2020 dev_dbg(ph->dev, 2021 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n", 2022 pi->proto->id, message_id, domain); 2023 2024 return; 2025 2026 err_db_mem: 2027 devm_kfree(ph->dev, db); 2028 2029 err_db: 2030 *p_addr = NULL; 2031 2032 err_xfer: 2033 ph->xops->xfer_put(ph, t); 2034 2035 err_out: 2036 dev_warn(ph->dev, 2037 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n", 2038 pi->proto->id, message_id, domain, ret); 2039 } 2040 2041 #define SCMI_PROTO_FC_RING_DB(w) \ 2042 do { \ 2043 u##w val = 0; \ 2044 \ 2045 if (db->mask) \ 2046 val = ioread##w(db->addr) & db->mask; \ 2047 iowrite##w((u##w)db->set | val, db->addr); \ 2048 } while (0) 2049 2050 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db) 2051 { 2052 if (!db || !db->addr) 2053 return; 2054 2055 if (db->width == 1) 2056 SCMI_PROTO_FC_RING_DB(8); 2057 else if (db->width == 2) 2058 SCMI_PROTO_FC_RING_DB(16); 2059 else if (db->width == 4) 2060 SCMI_PROTO_FC_RING_DB(32); 2061 else /* db->width == 8 */ 2062 SCMI_PROTO_FC_RING_DB(64); 2063 } 2064 2065 static const struct scmi_proto_helpers_ops helpers_ops = { 2066 .extended_name_get = scmi_common_extended_name_get, 2067 .get_max_msg_size = scmi_common_get_max_msg_size, 2068 .iter_response_init = scmi_iterator_init, 2069 .iter_response_run = scmi_iterator_run, 2070 .protocol_msg_check = scmi_protocol_msg_check, 2071 .fastchannel_init = scmi_common_fastchannel_init, 2072 .fastchannel_db_ring = scmi_common_fastchannel_db_ring, 2073 }; 2074 2075 /** 2076 * scmi_revision_area_get - Retrieve version memory area. 2077 * 2078 * @ph: A reference to the protocol handle. 2079 * 2080 * A helper to grab the version memory area reference during SCMI Base protocol 2081 * initialization. 2082 * 2083 * Return: A reference to the version memory area associated to the SCMI 2084 * instance underlying this protocol handle. 2085 */ 2086 struct scmi_revision_info * 2087 scmi_revision_area_get(const struct scmi_protocol_handle *ph) 2088 { 2089 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 2090 2091 return pi->handle->version; 2092 } 2093 2094 /** 2095 * scmi_protocol_version_negotiate - Negotiate protocol version 2096 * 2097 * @ph: A reference to the protocol handle. 2098 * 2099 * An helper to negotiate a protocol version different from the latest 2100 * advertised as supported from the platform: on Success backward 2101 * compatibility is assured by the platform. 2102 * 2103 * Return: 0 on Success 2104 */ 2105 static int scmi_protocol_version_negotiate(struct scmi_protocol_handle *ph) 2106 { 2107 int ret; 2108 struct scmi_xfer *t; 2109 struct scmi_protocol_instance *pi = ph_to_pi(ph); 2110 2111 /* At first check if NEGOTIATE_PROTOCOL_VERSION is supported ... */ 2112 ret = scmi_protocol_msg_check(ph, NEGOTIATE_PROTOCOL_VERSION, NULL); 2113 if (ret) 2114 return ret; 2115 2116 /* ... then attempt protocol version negotiation */ 2117 ret = xfer_get_init(ph, NEGOTIATE_PROTOCOL_VERSION, 2118 sizeof(__le32), 0, &t); 2119 if (ret) 2120 return ret; 2121 2122 put_unaligned_le32(pi->proto->supported_version, t->tx.buf); 2123 ret = do_xfer(ph, t); 2124 if (!ret) 2125 pi->negotiated_version = pi->proto->supported_version; 2126 2127 xfer_put(ph, t); 2128 2129 return ret; 2130 } 2131 2132 /** 2133 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol 2134 * instance descriptor. 2135 * @info: The reference to the related SCMI instance. 2136 * @proto: The protocol descriptor. 2137 * 2138 * Allocate a new protocol instance descriptor, using the provided @proto 2139 * description, against the specified SCMI instance @info, and initialize it; 2140 * all resources management is handled via a dedicated per-protocol devres 2141 * group. 2142 * 2143 * Context: Assumes to be called with @protocols_mtx already acquired. 2144 * Return: A reference to a freshly allocated and initialized protocol instance 2145 * or ERR_PTR on failure. On failure the @proto reference is at first 2146 * put using @scmi_protocol_put() before releasing all the devres group. 2147 */ 2148 static struct scmi_protocol_instance * 2149 scmi_alloc_init_protocol_instance(struct scmi_info *info, 2150 const struct scmi_protocol *proto) 2151 { 2152 int ret = -ENOMEM; 2153 void *gid; 2154 struct scmi_protocol_instance *pi; 2155 const struct scmi_handle *handle = &info->handle; 2156 2157 /* Protocol specific devres group */ 2158 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL); 2159 if (!gid) { 2160 scmi_protocol_put(proto); 2161 goto out; 2162 } 2163 2164 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL); 2165 if (!pi) 2166 goto clean; 2167 2168 pi->gid = gid; 2169 pi->proto = proto; 2170 pi->handle = handle; 2171 pi->ph.dev = handle->dev; 2172 pi->ph.xops = &xfer_ops; 2173 pi->ph.hops = &helpers_ops; 2174 pi->ph.set_priv = scmi_set_protocol_priv; 2175 pi->ph.get_priv = scmi_get_protocol_priv; 2176 refcount_set(&pi->users, 1); 2177 /* proto->init is assured NON NULL by scmi_protocol_register */ 2178 ret = pi->proto->instance_init(&pi->ph); 2179 if (ret) 2180 goto clean; 2181 2182 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1, 2183 GFP_KERNEL); 2184 if (ret != proto->id) 2185 goto clean; 2186 2187 /* 2188 * Warn but ignore events registration errors since we do not want 2189 * to skip whole protocols if their notifications are messed up. 2190 */ 2191 if (pi->proto->events) { 2192 ret = scmi_register_protocol_events(handle, pi->proto->id, 2193 &pi->ph, 2194 pi->proto->events); 2195 if (ret) 2196 dev_warn(handle->dev, 2197 "Protocol:%X - Events Registration Failed - err:%d\n", 2198 pi->proto->id, ret); 2199 } 2200 2201 devres_close_group(handle->dev, pi->gid); 2202 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id); 2203 2204 if (pi->version > proto->supported_version) { 2205 ret = scmi_protocol_version_negotiate(&pi->ph); 2206 if (!ret) { 2207 dev_info(handle->dev, 2208 "Protocol 0x%X successfully negotiated version 0x%X\n", 2209 proto->id, pi->negotiated_version); 2210 } else { 2211 dev_warn(handle->dev, 2212 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X.\n", 2213 pi->version, pi->proto->id); 2214 dev_warn(handle->dev, 2215 "Trying version 0x%X. Backward compatibility is NOT assured.\n", 2216 pi->proto->supported_version); 2217 } 2218 } 2219 2220 return pi; 2221 2222 clean: 2223 /* Take care to put the protocol module's owner before releasing all */ 2224 scmi_protocol_put(proto); 2225 devres_release_group(handle->dev, gid); 2226 out: 2227 return ERR_PTR(ret); 2228 } 2229 2230 /** 2231 * scmi_get_protocol_instance - Protocol initialization helper. 2232 * @handle: A reference to the SCMI platform instance. 2233 * @protocol_id: The protocol being requested. 2234 * 2235 * In case the required protocol has never been requested before for this 2236 * instance, allocate and initialize all the needed structures while handling 2237 * resource allocation with a dedicated per-protocol devres subgroup. 2238 * 2239 * Return: A reference to an initialized protocol instance or error on failure: 2240 * in particular returns -EPROBE_DEFER when the desired protocol could 2241 * NOT be found. 2242 */ 2243 static struct scmi_protocol_instance * __must_check 2244 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id) 2245 { 2246 struct scmi_protocol_instance *pi; 2247 struct scmi_info *info = handle_to_scmi_info(handle); 2248 2249 mutex_lock(&info->protocols_mtx); 2250 pi = idr_find(&info->protocols, protocol_id); 2251 2252 if (pi) { 2253 refcount_inc(&pi->users); 2254 } else { 2255 const struct scmi_protocol *proto; 2256 2257 /* Fails if protocol not registered on bus */ 2258 proto = scmi_protocol_get(protocol_id, &info->version); 2259 if (proto) 2260 pi = scmi_alloc_init_protocol_instance(info, proto); 2261 else 2262 pi = ERR_PTR(-EPROBE_DEFER); 2263 } 2264 mutex_unlock(&info->protocols_mtx); 2265 2266 return pi; 2267 } 2268 2269 /** 2270 * scmi_protocol_acquire - Protocol acquire 2271 * @handle: A reference to the SCMI platform instance. 2272 * @protocol_id: The protocol being requested. 2273 * 2274 * Register a new user for the requested protocol on the specified SCMI 2275 * platform instance, possibly triggering its initialization on first user. 2276 * 2277 * Return: 0 if protocol was acquired successfully. 2278 */ 2279 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id) 2280 { 2281 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id)); 2282 } 2283 2284 /** 2285 * scmi_protocol_release - Protocol de-initialization helper. 2286 * @handle: A reference to the SCMI platform instance. 2287 * @protocol_id: The protocol being requested. 2288 * 2289 * Remove one user for the specified protocol and triggers de-initialization 2290 * and resources de-allocation once the last user has gone. 2291 */ 2292 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id) 2293 { 2294 struct scmi_info *info = handle_to_scmi_info(handle); 2295 struct scmi_protocol_instance *pi; 2296 2297 mutex_lock(&info->protocols_mtx); 2298 pi = idr_find(&info->protocols, protocol_id); 2299 if (WARN_ON(!pi)) 2300 goto out; 2301 2302 if (refcount_dec_and_test(&pi->users)) { 2303 void *gid = pi->gid; 2304 2305 if (pi->proto->events) 2306 scmi_deregister_protocol_events(handle, protocol_id); 2307 2308 if (pi->proto->instance_deinit) 2309 pi->proto->instance_deinit(&pi->ph); 2310 2311 idr_remove(&info->protocols, protocol_id); 2312 2313 scmi_protocol_put(pi->proto); 2314 2315 devres_release_group(handle->dev, gid); 2316 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n", 2317 protocol_id); 2318 } 2319 2320 out: 2321 mutex_unlock(&info->protocols_mtx); 2322 } 2323 2324 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph, 2325 u8 *prot_imp) 2326 { 2327 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 2328 struct scmi_info *info = handle_to_scmi_info(pi->handle); 2329 2330 info->protocols_imp = prot_imp; 2331 } 2332 2333 static bool 2334 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id) 2335 { 2336 int i; 2337 struct scmi_info *info = handle_to_scmi_info(handle); 2338 struct scmi_revision_info *rev = handle->version; 2339 2340 if (!info->protocols_imp) 2341 return false; 2342 2343 for (i = 0; i < rev->num_protocols; i++) 2344 if (info->protocols_imp[i] == prot_id) 2345 return true; 2346 return false; 2347 } 2348 2349 struct scmi_protocol_devres { 2350 const struct scmi_handle *handle; 2351 u8 protocol_id; 2352 }; 2353 2354 static void scmi_devm_release_protocol(struct device *dev, void *res) 2355 { 2356 struct scmi_protocol_devres *dres = res; 2357 2358 scmi_protocol_release(dres->handle, dres->protocol_id); 2359 } 2360 2361 static struct scmi_protocol_instance __must_check * 2362 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id) 2363 { 2364 struct scmi_protocol_instance *pi; 2365 struct scmi_protocol_devres *dres; 2366 2367 dres = devres_alloc(scmi_devm_release_protocol, 2368 sizeof(*dres), GFP_KERNEL); 2369 if (!dres) 2370 return ERR_PTR(-ENOMEM); 2371 2372 pi = scmi_get_protocol_instance(sdev->handle, protocol_id); 2373 if (IS_ERR(pi)) { 2374 devres_free(dres); 2375 return pi; 2376 } 2377 2378 dres->handle = sdev->handle; 2379 dres->protocol_id = protocol_id; 2380 devres_add(&sdev->dev, dres); 2381 2382 return pi; 2383 } 2384 2385 /** 2386 * scmi_devm_protocol_get - Devres managed get protocol operations and handle 2387 * @sdev: A reference to an scmi_device whose embedded struct device is to 2388 * be used for devres accounting. 2389 * @protocol_id: The protocol being requested. 2390 * @ph: A pointer reference used to pass back the associated protocol handle. 2391 * 2392 * Get hold of a protocol accounting for its usage, eventually triggering its 2393 * initialization, and returning the protocol specific operations and related 2394 * protocol handle which will be used as first argument in most of the 2395 * protocols operations methods. 2396 * Being a devres based managed method, protocol hold will be automatically 2397 * released, and possibly de-initialized on last user, once the SCMI driver 2398 * owning the scmi_device is unbound from it. 2399 * 2400 * Return: A reference to the requested protocol operations or error. 2401 * Must be checked for errors by caller. 2402 */ 2403 static const void __must_check * 2404 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id, 2405 struct scmi_protocol_handle **ph) 2406 { 2407 struct scmi_protocol_instance *pi; 2408 2409 if (!ph) 2410 return ERR_PTR(-EINVAL); 2411 2412 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 2413 if (IS_ERR(pi)) 2414 return pi; 2415 2416 *ph = &pi->ph; 2417 2418 return pi->proto->ops; 2419 } 2420 2421 /** 2422 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol 2423 * @sdev: A reference to an scmi_device whose embedded struct device is to 2424 * be used for devres accounting. 2425 * @protocol_id: The protocol being requested. 2426 * 2427 * Get hold of a protocol accounting for its usage, possibly triggering its 2428 * initialization but without getting access to its protocol specific operations 2429 * and handle. 2430 * 2431 * Being a devres based managed method, protocol hold will be automatically 2432 * released, and possibly de-initialized on last user, once the SCMI driver 2433 * owning the scmi_device is unbound from it. 2434 * 2435 * Return: 0 on SUCCESS 2436 */ 2437 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev, 2438 u8 protocol_id) 2439 { 2440 struct scmi_protocol_instance *pi; 2441 2442 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 2443 if (IS_ERR(pi)) 2444 return PTR_ERR(pi); 2445 2446 return 0; 2447 } 2448 2449 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data) 2450 { 2451 struct scmi_protocol_devres *dres = res; 2452 2453 if (WARN_ON(!dres || !data)) 2454 return 0; 2455 2456 return dres->protocol_id == *((u8 *)data); 2457 } 2458 2459 /** 2460 * scmi_devm_protocol_put - Devres managed put protocol operations and handle 2461 * @sdev: A reference to an scmi_device whose embedded struct device is to 2462 * be used for devres accounting. 2463 * @protocol_id: The protocol being requested. 2464 * 2465 * Explicitly release a protocol hold previously obtained calling the above 2466 * @scmi_devm_protocol_get. 2467 */ 2468 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id) 2469 { 2470 int ret; 2471 2472 ret = devres_release(&sdev->dev, scmi_devm_release_protocol, 2473 scmi_devm_protocol_match, &protocol_id); 2474 WARN_ON(ret); 2475 } 2476 2477 /** 2478 * scmi_is_transport_atomic - Method to check if underlying transport for an 2479 * SCMI instance is configured as atomic. 2480 * 2481 * @handle: A reference to the SCMI platform instance. 2482 * @atomic_threshold: An optional return value for the system wide currently 2483 * configured threshold for atomic operations. 2484 * 2485 * Return: True if transport is configured as atomic 2486 */ 2487 static bool scmi_is_transport_atomic(const struct scmi_handle *handle, 2488 unsigned int *atomic_threshold) 2489 { 2490 bool ret; 2491 struct scmi_info *info = handle_to_scmi_info(handle); 2492 2493 ret = info->desc->atomic_enabled && 2494 is_transport_polling_capable(info->desc); 2495 if (ret && atomic_threshold) 2496 *atomic_threshold = info->desc->atomic_threshold; 2497 2498 return ret; 2499 } 2500 2501 /** 2502 * scmi_handle_get() - Get the SCMI handle for a device 2503 * 2504 * @dev: pointer to device for which we want SCMI handle 2505 * 2506 * NOTE: The function does not track individual clients of the framework 2507 * and is expected to be maintained by caller of SCMI protocol library. 2508 * scmi_handle_put must be balanced with successful scmi_handle_get 2509 * 2510 * Return: pointer to handle if successful, NULL on error 2511 */ 2512 static struct scmi_handle *scmi_handle_get(struct device *dev) 2513 { 2514 struct list_head *p; 2515 struct scmi_info *info; 2516 struct scmi_handle *handle = NULL; 2517 2518 mutex_lock(&scmi_list_mutex); 2519 list_for_each(p, &scmi_list) { 2520 info = list_entry(p, struct scmi_info, node); 2521 if (dev->parent == info->dev) { 2522 info->users++; 2523 handle = &info->handle; 2524 break; 2525 } 2526 } 2527 mutex_unlock(&scmi_list_mutex); 2528 2529 return handle; 2530 } 2531 2532 /** 2533 * scmi_handle_put() - Release the handle acquired by scmi_handle_get 2534 * 2535 * @handle: handle acquired by scmi_handle_get 2536 * 2537 * NOTE: The function does not track individual clients of the framework 2538 * and is expected to be maintained by caller of SCMI protocol library. 2539 * scmi_handle_put must be balanced with successful scmi_handle_get 2540 * 2541 * Return: 0 is successfully released 2542 * if null was passed, it returns -EINVAL; 2543 */ 2544 static int scmi_handle_put(const struct scmi_handle *handle) 2545 { 2546 struct scmi_info *info; 2547 2548 if (!handle) 2549 return -EINVAL; 2550 2551 info = handle_to_scmi_info(handle); 2552 mutex_lock(&scmi_list_mutex); 2553 if (!WARN_ON(!info->users)) 2554 info->users--; 2555 mutex_unlock(&scmi_list_mutex); 2556 2557 return 0; 2558 } 2559 2560 static void scmi_device_link_add(struct device *consumer, 2561 struct device *supplier) 2562 { 2563 struct device_link *link; 2564 2565 link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER); 2566 2567 WARN_ON(!link); 2568 } 2569 2570 static void scmi_set_handle(struct scmi_device *scmi_dev) 2571 { 2572 scmi_dev->handle = scmi_handle_get(&scmi_dev->dev); 2573 if (scmi_dev->handle) 2574 scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev); 2575 } 2576 2577 static int __scmi_xfer_info_init(struct scmi_info *sinfo, 2578 struct scmi_xfers_info *info) 2579 { 2580 int i; 2581 struct scmi_xfer *xfer; 2582 struct device *dev = sinfo->dev; 2583 const struct scmi_desc *desc = sinfo->desc; 2584 2585 /* Pre-allocated messages, no more than what hdr.seq can support */ 2586 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) { 2587 dev_err(dev, 2588 "Invalid maximum messages %d, not in range [1 - %lu]\n", 2589 info->max_msg, MSG_TOKEN_MAX); 2590 return -EINVAL; 2591 } 2592 2593 hash_init(info->pending_xfers); 2594 2595 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */ 2596 info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX, 2597 GFP_KERNEL); 2598 if (!info->xfer_alloc_table) 2599 return -ENOMEM; 2600 2601 /* 2602 * Preallocate a number of xfers equal to max inflight messages, 2603 * pre-initialize the buffer pointer to pre-allocated buffers and 2604 * attach all of them to the free list 2605 */ 2606 INIT_HLIST_HEAD(&info->free_xfers); 2607 for (i = 0; i < info->max_msg; i++) { 2608 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL); 2609 if (!xfer) 2610 return -ENOMEM; 2611 2612 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size, 2613 GFP_KERNEL); 2614 if (!xfer->rx.buf) 2615 return -ENOMEM; 2616 2617 xfer->tx.buf = xfer->rx.buf; 2618 init_completion(&xfer->done); 2619 spin_lock_init(&xfer->lock); 2620 2621 /* Add initialized xfer to the free list */ 2622 hlist_add_head(&xfer->node, &info->free_xfers); 2623 } 2624 2625 spin_lock_init(&info->xfer_lock); 2626 2627 return 0; 2628 } 2629 2630 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo) 2631 { 2632 const struct scmi_desc *desc = sinfo->desc; 2633 2634 if (!desc->ops->get_max_msg) { 2635 sinfo->tx_minfo.max_msg = desc->max_msg; 2636 sinfo->rx_minfo.max_msg = desc->max_msg; 2637 } else { 2638 struct scmi_chan_info *base_cinfo; 2639 2640 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE); 2641 if (!base_cinfo) 2642 return -EINVAL; 2643 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo); 2644 2645 /* RX channel is optional so can be skipped */ 2646 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE); 2647 if (base_cinfo) 2648 sinfo->rx_minfo.max_msg = 2649 desc->ops->get_max_msg(base_cinfo); 2650 } 2651 2652 return 0; 2653 } 2654 2655 static int scmi_xfer_info_init(struct scmi_info *sinfo) 2656 { 2657 int ret; 2658 2659 ret = scmi_channels_max_msg_configure(sinfo); 2660 if (ret) 2661 return ret; 2662 2663 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo); 2664 if (!ret && !idr_is_empty(&sinfo->rx_idr)) 2665 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo); 2666 2667 return ret; 2668 } 2669 2670 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node, 2671 int prot_id, bool tx) 2672 { 2673 int ret, idx; 2674 char name[32]; 2675 struct scmi_chan_info *cinfo; 2676 struct idr *idr; 2677 struct scmi_device *tdev = NULL; 2678 2679 /* Transmit channel is first entry i.e. index 0 */ 2680 idx = tx ? 0 : 1; 2681 idr = tx ? &info->tx_idr : &info->rx_idr; 2682 2683 if (!info->desc->ops->chan_available(of_node, idx)) { 2684 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE); 2685 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */ 2686 return -EINVAL; 2687 goto idr_alloc; 2688 } 2689 2690 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL); 2691 if (!cinfo) 2692 return -ENOMEM; 2693 2694 cinfo->is_p2a = !tx; 2695 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms; 2696 cinfo->max_msg_size = info->desc->max_msg_size; 2697 2698 /* Create a unique name for this transport device */ 2699 snprintf(name, 32, "__scmi_transport_device_%s_%02X", 2700 idx ? "rx" : "tx", prot_id); 2701 /* Create a uniquely named, dedicated transport device for this chan */ 2702 tdev = scmi_device_create(of_node, info->dev, prot_id, name); 2703 if (!tdev) { 2704 dev_err(info->dev, 2705 "failed to create transport device (%s)\n", name); 2706 devm_kfree(info->dev, cinfo); 2707 return -EINVAL; 2708 } 2709 of_node_get(of_node); 2710 2711 cinfo->id = prot_id; 2712 cinfo->dev = &tdev->dev; 2713 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx); 2714 if (ret) { 2715 of_node_put(of_node); 2716 scmi_device_destroy(info->dev, prot_id, name); 2717 devm_kfree(info->dev, cinfo); 2718 return ret; 2719 } 2720 2721 if (tx && is_polling_required(cinfo, info->desc)) { 2722 if (is_transport_polling_capable(info->desc)) 2723 dev_info(&tdev->dev, 2724 "Enabled polling mode TX channel - prot_id:%d\n", 2725 prot_id); 2726 else 2727 dev_warn(&tdev->dev, 2728 "Polling mode NOT supported by transport.\n"); 2729 } 2730 2731 idr_alloc: 2732 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL); 2733 if (ret != prot_id) { 2734 dev_err(info->dev, 2735 "unable to allocate SCMI idr slot err %d\n", ret); 2736 /* Destroy channel and device only if created by this call. */ 2737 if (tdev) { 2738 of_node_put(of_node); 2739 scmi_device_destroy(info->dev, prot_id, name); 2740 devm_kfree(info->dev, cinfo); 2741 } 2742 return ret; 2743 } 2744 2745 cinfo->handle = &info->handle; 2746 return 0; 2747 } 2748 2749 static inline int 2750 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node, 2751 int prot_id) 2752 { 2753 int ret = scmi_chan_setup(info, of_node, prot_id, true); 2754 2755 if (!ret) { 2756 /* Rx is optional, report only memory errors */ 2757 ret = scmi_chan_setup(info, of_node, prot_id, false); 2758 if (ret && ret != -ENOMEM) 2759 ret = 0; 2760 } 2761 2762 if (ret) 2763 dev_err(info->dev, 2764 "failed to setup channel for protocol:0x%X\n", prot_id); 2765 2766 return ret; 2767 } 2768 2769 /** 2770 * scmi_channels_setup - Helper to initialize all required channels 2771 * 2772 * @info: The SCMI instance descriptor. 2773 * 2774 * Initialize all the channels found described in the DT against the underlying 2775 * configured transport using custom defined dedicated devices instead of 2776 * borrowing devices from the SCMI drivers; this way channels are initialized 2777 * upfront during core SCMI stack probing and are no more coupled with SCMI 2778 * devices used by SCMI drivers. 2779 * 2780 * Note that, even though a pair of TX/RX channels is associated to each 2781 * protocol defined in the DT, a distinct freshly initialized channel is 2782 * created only if the DT node for the protocol at hand describes a dedicated 2783 * channel: in all the other cases the common BASE protocol channel is reused. 2784 * 2785 * Return: 0 on Success 2786 */ 2787 static int scmi_channels_setup(struct scmi_info *info) 2788 { 2789 int ret; 2790 struct device_node *top_np = info->dev->of_node; 2791 2792 /* Initialize a common generic channel at first */ 2793 ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE); 2794 if (ret) 2795 return ret; 2796 2797 for_each_available_child_of_node_scoped(top_np, child) { 2798 u32 prot_id; 2799 2800 if (of_property_read_u32(child, "reg", &prot_id)) 2801 continue; 2802 2803 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 2804 dev_err(info->dev, 2805 "Out of range protocol %d\n", prot_id); 2806 2807 ret = scmi_txrx_setup(info, child, prot_id); 2808 if (ret) 2809 return ret; 2810 } 2811 2812 return 0; 2813 } 2814 2815 static int scmi_chan_destroy(int id, void *p, void *idr) 2816 { 2817 struct scmi_chan_info *cinfo = p; 2818 2819 if (cinfo->dev) { 2820 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 2821 struct scmi_device *sdev = to_scmi_dev(cinfo->dev); 2822 2823 of_node_put(cinfo->dev->of_node); 2824 scmi_device_destroy(info->dev, id, sdev->name); 2825 cinfo->dev = NULL; 2826 } 2827 2828 idr_remove(idr, id); 2829 2830 return 0; 2831 } 2832 2833 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr) 2834 { 2835 /* At first free all channels at the transport layer ... */ 2836 idr_for_each(idr, info->desc->ops->chan_free, idr); 2837 2838 /* ...then destroy all underlying devices */ 2839 idr_for_each(idr, scmi_chan_destroy, idr); 2840 2841 idr_destroy(idr); 2842 } 2843 2844 static void scmi_cleanup_txrx_channels(struct scmi_info *info) 2845 { 2846 scmi_cleanup_channels(info, &info->tx_idr); 2847 2848 scmi_cleanup_channels(info, &info->rx_idr); 2849 } 2850 2851 static int scmi_bus_notifier(struct notifier_block *nb, 2852 unsigned long action, void *data) 2853 { 2854 struct scmi_info *info = bus_nb_to_scmi_info(nb); 2855 struct scmi_device *sdev = to_scmi_dev(data); 2856 2857 /* Skip devices of different SCMI instances */ 2858 if (sdev->dev.parent != info->dev) 2859 return NOTIFY_DONE; 2860 2861 switch (action) { 2862 case BUS_NOTIFY_BIND_DRIVER: 2863 /* setup handle now as the transport is ready */ 2864 scmi_set_handle(sdev); 2865 break; 2866 case BUS_NOTIFY_UNBOUND_DRIVER: 2867 scmi_handle_put(sdev->handle); 2868 sdev->handle = NULL; 2869 break; 2870 default: 2871 return NOTIFY_DONE; 2872 } 2873 2874 dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev), 2875 sdev->name, action == BUS_NOTIFY_BIND_DRIVER ? 2876 "about to be BOUND." : "UNBOUND."); 2877 2878 return NOTIFY_OK; 2879 } 2880 2881 static int scmi_device_request_notifier(struct notifier_block *nb, 2882 unsigned long action, void *data) 2883 { 2884 struct device_node *np; 2885 struct scmi_device_id *id_table = data; 2886 struct scmi_info *info = req_nb_to_scmi_info(nb); 2887 2888 np = idr_find(&info->active_protocols, id_table->protocol_id); 2889 if (!np) 2890 return NOTIFY_DONE; 2891 2892 dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n", 2893 action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-", 2894 id_table->name, id_table->protocol_id); 2895 2896 switch (action) { 2897 case SCMI_BUS_NOTIFY_DEVICE_REQUEST: 2898 scmi_create_protocol_devices(np, info, id_table->protocol_id, 2899 id_table->name); 2900 break; 2901 case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST: 2902 scmi_destroy_protocol_devices(info, id_table->protocol_id, 2903 id_table->name); 2904 break; 2905 default: 2906 return NOTIFY_DONE; 2907 } 2908 2909 return NOTIFY_OK; 2910 } 2911 2912 static const char * const dbg_counter_strs[] = { 2913 "sent_ok", 2914 "sent_fail", 2915 "sent_fail_polling_unsupported", 2916 "sent_fail_channel_not_found", 2917 "response_ok", 2918 "notification_ok", 2919 "delayed_response_ok", 2920 "xfers_response_timeout", 2921 "xfers_response_polled_timeout", 2922 "response_polled_ok", 2923 "err_msg_unexpected", 2924 "err_msg_invalid", 2925 "err_msg_nomem", 2926 "err_protocol", 2927 "xfers_inflight", 2928 }; 2929 2930 static ssize_t reset_all_on_write(struct file *filp, const char __user *buf, 2931 size_t count, loff_t *ppos) 2932 { 2933 struct scmi_debug_info *dbg = filp->private_data; 2934 2935 for (int i = 0; i < SCMI_DEBUG_COUNTERS_LAST; i++) 2936 atomic_set(&dbg->counters[i], 0); 2937 2938 return count; 2939 } 2940 2941 static const struct file_operations fops_reset_counts = { 2942 .owner = THIS_MODULE, 2943 .open = simple_open, 2944 .write = reset_all_on_write, 2945 }; 2946 2947 static void scmi_debugfs_counters_setup(struct scmi_debug_info *dbg, 2948 struct dentry *trans) 2949 { 2950 struct dentry *counters; 2951 int idx; 2952 2953 counters = debugfs_create_dir("counters", trans); 2954 2955 for (idx = 0; idx < SCMI_DEBUG_COUNTERS_LAST; idx++) 2956 debugfs_create_atomic_t(dbg_counter_strs[idx], 0600, counters, 2957 &dbg->counters[idx]); 2958 2959 debugfs_create_file("reset", 0200, counters, dbg, &fops_reset_counts); 2960 } 2961 2962 static void scmi_debugfs_common_cleanup(void *d) 2963 { 2964 struct scmi_debug_info *dbg = d; 2965 2966 if (!dbg) 2967 return; 2968 2969 debugfs_remove_recursive(dbg->top_dentry); 2970 kfree(dbg->name); 2971 kfree(dbg->type); 2972 } 2973 2974 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info) 2975 { 2976 char top_dir[16]; 2977 struct dentry *trans, *top_dentry; 2978 struct scmi_debug_info *dbg; 2979 const char *c_ptr = NULL; 2980 2981 dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL); 2982 if (!dbg) 2983 return NULL; 2984 2985 dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL); 2986 if (!dbg->name) { 2987 devm_kfree(info->dev, dbg); 2988 return NULL; 2989 } 2990 2991 of_property_read_string(info->dev->of_node, "compatible", &c_ptr); 2992 dbg->type = kstrdup(c_ptr, GFP_KERNEL); 2993 if (!dbg->type) { 2994 kfree(dbg->name); 2995 devm_kfree(info->dev, dbg); 2996 return NULL; 2997 } 2998 2999 snprintf(top_dir, 16, "%d", info->id); 3000 top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry); 3001 trans = debugfs_create_dir("transport", top_dentry); 3002 3003 dbg->is_atomic = info->desc->atomic_enabled && 3004 is_transport_polling_capable(info->desc); 3005 3006 debugfs_create_str("instance_name", 0400, top_dentry, 3007 (char **)&dbg->name); 3008 3009 debugfs_create_u32("atomic_threshold_us", 0400, top_dentry, 3010 (u32 *)&info->desc->atomic_threshold); 3011 3012 debugfs_create_str("type", 0400, trans, (char **)&dbg->type); 3013 3014 debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic); 3015 3016 debugfs_create_u32("max_rx_timeout_ms", 0400, trans, 3017 (u32 *)&info->desc->max_rx_timeout_ms); 3018 3019 debugfs_create_u32("max_msg_size", 0400, trans, 3020 (u32 *)&info->desc->max_msg_size); 3021 3022 debugfs_create_u32("tx_max_msg", 0400, trans, 3023 (u32 *)&info->tx_minfo.max_msg); 3024 3025 debugfs_create_u32("rx_max_msg", 0400, trans, 3026 (u32 *)&info->rx_minfo.max_msg); 3027 3028 if (IS_ENABLED(CONFIG_ARM_SCMI_DEBUG_COUNTERS)) 3029 scmi_debugfs_counters_setup(dbg, trans); 3030 3031 dbg->top_dentry = top_dentry; 3032 3033 if (devm_add_action_or_reset(info->dev, 3034 scmi_debugfs_common_cleanup, dbg)) 3035 return NULL; 3036 3037 return dbg; 3038 } 3039 3040 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info) 3041 { 3042 int id, num_chans = 0, ret = 0; 3043 struct scmi_chan_info *cinfo; 3044 u8 channels[SCMI_MAX_CHANNELS] = {}; 3045 DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {}; 3046 3047 if (!info->dbg) 3048 return -EINVAL; 3049 3050 /* Enumerate all channels to collect their ids */ 3051 idr_for_each_entry(&info->tx_idr, cinfo, id) { 3052 /* 3053 * Cannot happen, but be defensive. 3054 * Zero as num_chans is ok, warn and carry on. 3055 */ 3056 if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) { 3057 dev_warn(info->dev, 3058 "SCMI RAW - Error enumerating channels\n"); 3059 break; 3060 } 3061 3062 if (!test_bit(cinfo->id, protos)) { 3063 channels[num_chans++] = cinfo->id; 3064 set_bit(cinfo->id, protos); 3065 } 3066 } 3067 3068 info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry, 3069 info->id, channels, num_chans, 3070 info->desc, info->tx_minfo.max_msg); 3071 if (IS_ERR(info->raw)) { 3072 dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n"); 3073 ret = PTR_ERR(info->raw); 3074 info->raw = NULL; 3075 } 3076 3077 return ret; 3078 } 3079 3080 static const struct scmi_desc *scmi_transport_setup(struct device *dev) 3081 { 3082 struct scmi_transport *trans; 3083 int ret; 3084 3085 trans = dev_get_platdata(dev); 3086 if (!trans || !trans->supplier || !trans->core_ops) 3087 return NULL; 3088 3089 if (!device_link_add(dev, trans->supplier, DL_FLAG_AUTOREMOVE_CONSUMER)) { 3090 dev_err(dev, 3091 "Adding link to supplier transport device failed\n"); 3092 return NULL; 3093 } 3094 3095 /* Provide core transport ops */ 3096 *trans->core_ops = &scmi_trans_core_ops; 3097 3098 dev_info(dev, "Using %s\n", dev_driver_string(trans->supplier)); 3099 3100 ret = of_property_read_u32(dev->of_node, "arm,max-rx-timeout-ms", 3101 &trans->desc.max_rx_timeout_ms); 3102 if (ret && ret != -EINVAL) 3103 dev_err(dev, "Malformed arm,max-rx-timeout-ms DT property.\n"); 3104 3105 ret = of_property_read_u32(dev->of_node, "arm,max-msg-size", 3106 &trans->desc.max_msg_size); 3107 if (ret && ret != -EINVAL) 3108 dev_err(dev, "Malformed arm,max-msg-size DT property.\n"); 3109 3110 ret = of_property_read_u32(dev->of_node, "arm,max-msg", 3111 &trans->desc.max_msg); 3112 if (ret && ret != -EINVAL) 3113 dev_err(dev, "Malformed arm,max-msg DT property.\n"); 3114 3115 dev_info(dev, 3116 "SCMI max-rx-timeout: %dms / max-msg-size: %dbytes / max-msg: %d\n", 3117 trans->desc.max_rx_timeout_ms, trans->desc.max_msg_size, 3118 trans->desc.max_msg); 3119 3120 /* System wide atomic threshold for atomic ops .. if any */ 3121 if (!of_property_read_u32(dev->of_node, "atomic-threshold-us", 3122 &trans->desc.atomic_threshold)) 3123 dev_info(dev, 3124 "SCMI System wide atomic threshold set to %u us\n", 3125 trans->desc.atomic_threshold); 3126 3127 return &trans->desc; 3128 } 3129 3130 static void scmi_enable_matching_quirks(struct scmi_info *info) 3131 { 3132 struct scmi_revision_info *rev = &info->version; 3133 3134 dev_dbg(info->dev, "Looking for quirks matching: %s/%s/0x%08X\n", 3135 rev->vendor_id, rev->sub_vendor_id, rev->impl_ver); 3136 3137 /* Enable applicable quirks */ 3138 scmi_quirks_enable(info->dev, rev->vendor_id, 3139 rev->sub_vendor_id, rev->impl_ver); 3140 } 3141 3142 static int scmi_probe(struct platform_device *pdev) 3143 { 3144 int ret; 3145 char *err_str = "probe failure\n"; 3146 struct scmi_handle *handle; 3147 const struct scmi_desc *desc; 3148 struct scmi_info *info; 3149 bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX); 3150 struct device *dev = &pdev->dev; 3151 struct device_node *child, *np = dev->of_node; 3152 3153 desc = scmi_transport_setup(dev); 3154 if (!desc) { 3155 err_str = "transport invalid\n"; 3156 ret = -EINVAL; 3157 goto out_err; 3158 } 3159 3160 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); 3161 if (!info) 3162 return -ENOMEM; 3163 3164 info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL); 3165 if (info->id < 0) 3166 return info->id; 3167 3168 info->dev = dev; 3169 info->desc = desc; 3170 info->bus_nb.notifier_call = scmi_bus_notifier; 3171 info->dev_req_nb.notifier_call = scmi_device_request_notifier; 3172 INIT_LIST_HEAD(&info->node); 3173 idr_init(&info->protocols); 3174 mutex_init(&info->protocols_mtx); 3175 idr_init(&info->active_protocols); 3176 mutex_init(&info->devreq_mtx); 3177 3178 platform_set_drvdata(pdev, info); 3179 idr_init(&info->tx_idr); 3180 idr_init(&info->rx_idr); 3181 3182 handle = &info->handle; 3183 handle->dev = info->dev; 3184 handle->version = &info->version; 3185 handle->devm_protocol_acquire = scmi_devm_protocol_acquire; 3186 handle->devm_protocol_get = scmi_devm_protocol_get; 3187 handle->devm_protocol_put = scmi_devm_protocol_put; 3188 handle->is_transport_atomic = scmi_is_transport_atomic; 3189 3190 /* Setup all channels described in the DT at first */ 3191 ret = scmi_channels_setup(info); 3192 if (ret) { 3193 err_str = "failed to setup channels\n"; 3194 goto clear_ida; 3195 } 3196 3197 ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb); 3198 if (ret) { 3199 err_str = "failed to register bus notifier\n"; 3200 goto clear_txrx_setup; 3201 } 3202 3203 ret = blocking_notifier_chain_register(&scmi_requested_devices_nh, 3204 &info->dev_req_nb); 3205 if (ret) { 3206 err_str = "failed to register device notifier\n"; 3207 goto clear_bus_notifier; 3208 } 3209 3210 ret = scmi_xfer_info_init(info); 3211 if (ret) { 3212 err_str = "failed to init xfers pool\n"; 3213 goto clear_dev_req_notifier; 3214 } 3215 3216 if (scmi_top_dentry) { 3217 info->dbg = scmi_debugfs_common_setup(info); 3218 if (!info->dbg) 3219 dev_warn(dev, "Failed to setup SCMI debugfs.\n"); 3220 3221 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 3222 ret = scmi_debugfs_raw_mode_setup(info); 3223 if (!coex) { 3224 if (ret) 3225 goto clear_dev_req_notifier; 3226 3227 /* Bail out anyway when coex disabled. */ 3228 return 0; 3229 } 3230 3231 /* Coex enabled, carry on in any case. */ 3232 dev_info(dev, "SCMI RAW Mode COEX enabled !\n"); 3233 } 3234 } 3235 3236 if (scmi_notification_init(handle)) 3237 dev_err(dev, "SCMI Notifications NOT available.\n"); 3238 3239 if (info->desc->atomic_enabled && 3240 !is_transport_polling_capable(info->desc)) 3241 dev_err(dev, 3242 "Transport is not polling capable. Atomic mode not supported.\n"); 3243 3244 /* 3245 * Trigger SCMI Base protocol initialization. 3246 * It's mandatory and won't be ever released/deinit until the 3247 * SCMI stack is shutdown/unloaded as a whole. 3248 */ 3249 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE); 3250 if (ret) { 3251 err_str = "unable to communicate with SCMI\n"; 3252 if (coex) { 3253 dev_err(dev, "%s", err_str); 3254 return 0; 3255 } 3256 goto notification_exit; 3257 } 3258 3259 mutex_lock(&scmi_list_mutex); 3260 list_add_tail(&info->node, &scmi_list); 3261 mutex_unlock(&scmi_list_mutex); 3262 3263 scmi_enable_matching_quirks(info); 3264 3265 for_each_available_child_of_node(np, child) { 3266 u32 prot_id; 3267 3268 if (of_property_read_u32(child, "reg", &prot_id)) 3269 continue; 3270 3271 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 3272 dev_err(dev, "Out of range protocol %d\n", prot_id); 3273 3274 if (!scmi_is_protocol_implemented(handle, prot_id)) { 3275 dev_err(dev, "SCMI protocol %d not implemented\n", 3276 prot_id); 3277 continue; 3278 } 3279 3280 /* 3281 * Save this valid DT protocol descriptor amongst 3282 * @active_protocols for this SCMI instance/ 3283 */ 3284 ret = idr_alloc(&info->active_protocols, child, 3285 prot_id, prot_id + 1, GFP_KERNEL); 3286 if (ret != prot_id) { 3287 dev_err(dev, "SCMI protocol %d already activated. Skip\n", 3288 prot_id); 3289 continue; 3290 } 3291 3292 of_node_get(child); 3293 scmi_create_protocol_devices(child, info, prot_id, NULL); 3294 } 3295 3296 return 0; 3297 3298 notification_exit: 3299 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 3300 scmi_raw_mode_cleanup(info->raw); 3301 scmi_notification_exit(&info->handle); 3302 clear_dev_req_notifier: 3303 blocking_notifier_chain_unregister(&scmi_requested_devices_nh, 3304 &info->dev_req_nb); 3305 clear_bus_notifier: 3306 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb); 3307 clear_txrx_setup: 3308 scmi_cleanup_txrx_channels(info); 3309 clear_ida: 3310 ida_free(&scmi_id, info->id); 3311 3312 out_err: 3313 return dev_err_probe(dev, ret, "%s", err_str); 3314 } 3315 3316 static void scmi_remove(struct platform_device *pdev) 3317 { 3318 int id; 3319 struct scmi_info *info = platform_get_drvdata(pdev); 3320 struct device_node *child; 3321 3322 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 3323 scmi_raw_mode_cleanup(info->raw); 3324 3325 mutex_lock(&scmi_list_mutex); 3326 if (info->users) 3327 dev_warn(&pdev->dev, 3328 "Still active SCMI users will be forcibly unbound.\n"); 3329 list_del(&info->node); 3330 mutex_unlock(&scmi_list_mutex); 3331 3332 scmi_notification_exit(&info->handle); 3333 3334 mutex_lock(&info->protocols_mtx); 3335 idr_destroy(&info->protocols); 3336 mutex_unlock(&info->protocols_mtx); 3337 3338 idr_for_each_entry(&info->active_protocols, child, id) 3339 of_node_put(child); 3340 idr_destroy(&info->active_protocols); 3341 3342 blocking_notifier_chain_unregister(&scmi_requested_devices_nh, 3343 &info->dev_req_nb); 3344 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb); 3345 3346 /* Safe to free channels since no more users */ 3347 scmi_cleanup_txrx_channels(info); 3348 3349 ida_free(&scmi_id, info->id); 3350 } 3351 3352 static ssize_t protocol_version_show(struct device *dev, 3353 struct device_attribute *attr, char *buf) 3354 { 3355 struct scmi_info *info = dev_get_drvdata(dev); 3356 3357 return sprintf(buf, "%u.%u\n", info->version.major_ver, 3358 info->version.minor_ver); 3359 } 3360 static DEVICE_ATTR_RO(protocol_version); 3361 3362 static ssize_t firmware_version_show(struct device *dev, 3363 struct device_attribute *attr, char *buf) 3364 { 3365 struct scmi_info *info = dev_get_drvdata(dev); 3366 3367 return sprintf(buf, "0x%x\n", info->version.impl_ver); 3368 } 3369 static DEVICE_ATTR_RO(firmware_version); 3370 3371 static ssize_t vendor_id_show(struct device *dev, 3372 struct device_attribute *attr, char *buf) 3373 { 3374 struct scmi_info *info = dev_get_drvdata(dev); 3375 3376 return sprintf(buf, "%s\n", info->version.vendor_id); 3377 } 3378 static DEVICE_ATTR_RO(vendor_id); 3379 3380 static ssize_t sub_vendor_id_show(struct device *dev, 3381 struct device_attribute *attr, char *buf) 3382 { 3383 struct scmi_info *info = dev_get_drvdata(dev); 3384 3385 return sprintf(buf, "%s\n", info->version.sub_vendor_id); 3386 } 3387 static DEVICE_ATTR_RO(sub_vendor_id); 3388 3389 static struct attribute *versions_attrs[] = { 3390 &dev_attr_firmware_version.attr, 3391 &dev_attr_protocol_version.attr, 3392 &dev_attr_vendor_id.attr, 3393 &dev_attr_sub_vendor_id.attr, 3394 NULL, 3395 }; 3396 ATTRIBUTE_GROUPS(versions); 3397 3398 static struct platform_driver scmi_driver = { 3399 .driver = { 3400 .name = "arm-scmi", 3401 .suppress_bind_attrs = true, 3402 .dev_groups = versions_groups, 3403 }, 3404 .probe = scmi_probe, 3405 .remove = scmi_remove, 3406 }; 3407 3408 static struct dentry *scmi_debugfs_init(void) 3409 { 3410 struct dentry *d; 3411 3412 d = debugfs_create_dir("scmi", NULL); 3413 if (IS_ERR(d)) { 3414 pr_err("Could NOT create SCMI top dentry.\n"); 3415 return NULL; 3416 } 3417 3418 return d; 3419 } 3420 3421 int scmi_inflight_count(const struct scmi_handle *handle) 3422 { 3423 if (IS_ENABLED(CONFIG_ARM_SCMI_DEBUG_COUNTERS)) { 3424 struct scmi_info *info = handle_to_scmi_info(handle); 3425 3426 return atomic_read(&info->dbg->counters[XFERS_INFLIGHT]); 3427 } else { 3428 return 0; 3429 } 3430 } 3431 3432 static int __init scmi_driver_init(void) 3433 { 3434 scmi_quirks_initialize(); 3435 3436 /* Bail out if no SCMI transport was configured */ 3437 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT))) 3438 return -EINVAL; 3439 3440 if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_SHMEM)) 3441 scmi_trans_core_ops.shmem = scmi_shared_mem_operations_get(); 3442 3443 if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_MSG)) 3444 scmi_trans_core_ops.msg = scmi_message_operations_get(); 3445 3446 if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS)) 3447 scmi_top_dentry = scmi_debugfs_init(); 3448 3449 scmi_base_register(); 3450 3451 scmi_clock_register(); 3452 scmi_perf_register(); 3453 scmi_power_register(); 3454 scmi_reset_register(); 3455 scmi_sensors_register(); 3456 scmi_voltage_register(); 3457 scmi_system_register(); 3458 scmi_powercap_register(); 3459 scmi_pinctrl_register(); 3460 3461 return platform_driver_register(&scmi_driver); 3462 } 3463 module_init(scmi_driver_init); 3464 3465 static void __exit scmi_driver_exit(void) 3466 { 3467 scmi_base_unregister(); 3468 3469 scmi_clock_unregister(); 3470 scmi_perf_unregister(); 3471 scmi_power_unregister(); 3472 scmi_reset_unregister(); 3473 scmi_sensors_unregister(); 3474 scmi_voltage_unregister(); 3475 scmi_system_unregister(); 3476 scmi_powercap_unregister(); 3477 scmi_pinctrl_unregister(); 3478 3479 platform_driver_unregister(&scmi_driver); 3480 3481 debugfs_remove_recursive(scmi_top_dentry); 3482 } 3483 module_exit(scmi_driver_exit); 3484 3485 MODULE_ALIAS("platform:arm-scmi"); 3486 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 3487 MODULE_DESCRIPTION("ARM SCMI protocol driver"); 3488 MODULE_LICENSE("GPL v2"); 3489