1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Control and Management Interface (SCMI) Message Protocol driver 4 * 5 * SCMI Message Protocol is used between the System Control Processor(SCP) 6 * and the Application Processors(AP). The Message Handling Unit(MHU) 7 * provides a mechanism for inter-processor communication between SCP's 8 * Cortex M3 and AP. 9 * 10 * SCP offers control and management of the core/cluster power states, 11 * various power domain DVFS including the core/cluster, certain system 12 * clocks configuration, thermal sensors and many others. 13 * 14 * Copyright (C) 2018-2021 ARM Ltd. 15 */ 16 17 #include <linux/bitmap.h> 18 #include <linux/device.h> 19 #include <linux/export.h> 20 #include <linux/idr.h> 21 #include <linux/io.h> 22 #include <linux/io-64-nonatomic-hi-lo.h> 23 #include <linux/kernel.h> 24 #include <linux/ktime.h> 25 #include <linux/hashtable.h> 26 #include <linux/list.h> 27 #include <linux/module.h> 28 #include <linux/of_address.h> 29 #include <linux/of_device.h> 30 #include <linux/processor.h> 31 #include <linux/refcount.h> 32 #include <linux/slab.h> 33 34 #include "common.h" 35 #include "notify.h" 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/scmi.h> 39 40 enum scmi_error_codes { 41 SCMI_SUCCESS = 0, /* Success */ 42 SCMI_ERR_SUPPORT = -1, /* Not supported */ 43 SCMI_ERR_PARAMS = -2, /* Invalid Parameters */ 44 SCMI_ERR_ACCESS = -3, /* Invalid access/permission denied */ 45 SCMI_ERR_ENTRY = -4, /* Not found */ 46 SCMI_ERR_RANGE = -5, /* Value out of range */ 47 SCMI_ERR_BUSY = -6, /* Device busy */ 48 SCMI_ERR_COMMS = -7, /* Communication Error */ 49 SCMI_ERR_GENERIC = -8, /* Generic Error */ 50 SCMI_ERR_HARDWARE = -9, /* Hardware Error */ 51 SCMI_ERR_PROTOCOL = -10,/* Protocol Error */ 52 }; 53 54 /* List of all SCMI devices active in system */ 55 static LIST_HEAD(scmi_list); 56 /* Protection for the entire list */ 57 static DEFINE_MUTEX(scmi_list_mutex); 58 /* Track the unique id for the transfers for debug & profiling purpose */ 59 static atomic_t transfer_last_id; 60 61 static DEFINE_IDR(scmi_requested_devices); 62 static DEFINE_MUTEX(scmi_requested_devices_mtx); 63 64 /* Track globally the creation of SCMI SystemPower related devices */ 65 static bool scmi_syspower_registered; 66 /* Protect access to scmi_syspower_registered */ 67 static DEFINE_MUTEX(scmi_syspower_mtx); 68 69 struct scmi_requested_dev { 70 const struct scmi_device_id *id_table; 71 struct list_head node; 72 }; 73 74 /** 75 * struct scmi_xfers_info - Structure to manage transfer information 76 * 77 * @xfer_alloc_table: Bitmap table for allocated messages. 78 * Index of this bitmap table is also used for message 79 * sequence identifier. 80 * @xfer_lock: Protection for message allocation 81 * @max_msg: Maximum number of messages that can be pending 82 * @free_xfers: A free list for available to use xfers. It is initialized with 83 * a number of xfers equal to the maximum allowed in-flight 84 * messages. 85 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the 86 * currently in-flight messages. 87 */ 88 struct scmi_xfers_info { 89 unsigned long *xfer_alloc_table; 90 spinlock_t xfer_lock; 91 int max_msg; 92 struct hlist_head free_xfers; 93 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ); 94 }; 95 96 /** 97 * struct scmi_protocol_instance - Describe an initialized protocol instance. 98 * @handle: Reference to the SCMI handle associated to this protocol instance. 99 * @proto: A reference to the protocol descriptor. 100 * @gid: A reference for per-protocol devres management. 101 * @users: A refcount to track effective users of this protocol. 102 * @priv: Reference for optional protocol private data. 103 * @ph: An embedded protocol handle that will be passed down to protocol 104 * initialization code to identify this instance. 105 * 106 * Each protocol is initialized independently once for each SCMI platform in 107 * which is defined by DT and implemented by the SCMI server fw. 108 */ 109 struct scmi_protocol_instance { 110 const struct scmi_handle *handle; 111 const struct scmi_protocol *proto; 112 void *gid; 113 refcount_t users; 114 void *priv; 115 struct scmi_protocol_handle ph; 116 }; 117 118 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph) 119 120 /** 121 * struct scmi_info - Structure representing a SCMI instance 122 * 123 * @dev: Device pointer 124 * @desc: SoC description for this instance 125 * @version: SCMI revision information containing protocol version, 126 * implementation version and (sub-)vendor identification. 127 * @handle: Instance of SCMI handle to send to clients 128 * @tx_minfo: Universal Transmit Message management info 129 * @rx_minfo: Universal Receive Message management info 130 * @tx_idr: IDR object to map protocol id to Tx channel info pointer 131 * @rx_idr: IDR object to map protocol id to Rx channel info pointer 132 * @protocols: IDR for protocols' instance descriptors initialized for 133 * this SCMI instance: populated on protocol's first attempted 134 * usage. 135 * @protocols_mtx: A mutex to protect protocols instances initialization. 136 * @protocols_imp: List of protocols implemented, currently maximum of 137 * scmi_revision_info.num_protocols elements allocated by the 138 * base protocol 139 * @active_protocols: IDR storing device_nodes for protocols actually defined 140 * in the DT and confirmed as implemented by fw. 141 * @atomic_threshold: Optional system wide DT-configured threshold, expressed 142 * in microseconds, for atomic operations. 143 * Only SCMI synchronous commands reported by the platform 144 * to have an execution latency lesser-equal to the threshold 145 * should be considered for atomic mode operation: such 146 * decision is finally left up to the SCMI drivers. 147 * @notify_priv: Pointer to private data structure specific to notifications. 148 * @node: List head 149 * @users: Number of users of this instance 150 */ 151 struct scmi_info { 152 struct device *dev; 153 const struct scmi_desc *desc; 154 struct scmi_revision_info version; 155 struct scmi_handle handle; 156 struct scmi_xfers_info tx_minfo; 157 struct scmi_xfers_info rx_minfo; 158 struct idr tx_idr; 159 struct idr rx_idr; 160 struct idr protocols; 161 /* Ensure mutual exclusive access to protocols instance array */ 162 struct mutex protocols_mtx; 163 u8 *protocols_imp; 164 struct idr active_protocols; 165 unsigned int atomic_threshold; 166 void *notify_priv; 167 struct list_head node; 168 int users; 169 }; 170 171 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle) 172 173 static const int scmi_linux_errmap[] = { 174 /* better than switch case as long as return value is continuous */ 175 0, /* SCMI_SUCCESS */ 176 -EOPNOTSUPP, /* SCMI_ERR_SUPPORT */ 177 -EINVAL, /* SCMI_ERR_PARAM */ 178 -EACCES, /* SCMI_ERR_ACCESS */ 179 -ENOENT, /* SCMI_ERR_ENTRY */ 180 -ERANGE, /* SCMI_ERR_RANGE */ 181 -EBUSY, /* SCMI_ERR_BUSY */ 182 -ECOMM, /* SCMI_ERR_COMMS */ 183 -EIO, /* SCMI_ERR_GENERIC */ 184 -EREMOTEIO, /* SCMI_ERR_HARDWARE */ 185 -EPROTO, /* SCMI_ERR_PROTOCOL */ 186 }; 187 188 static inline int scmi_to_linux_errno(int errno) 189 { 190 int err_idx = -errno; 191 192 if (err_idx >= SCMI_SUCCESS && err_idx < ARRAY_SIZE(scmi_linux_errmap)) 193 return scmi_linux_errmap[err_idx]; 194 return -EIO; 195 } 196 197 void scmi_notification_instance_data_set(const struct scmi_handle *handle, 198 void *priv) 199 { 200 struct scmi_info *info = handle_to_scmi_info(handle); 201 202 info->notify_priv = priv; 203 /* Ensure updated protocol private date are visible */ 204 smp_wmb(); 205 } 206 207 void *scmi_notification_instance_data_get(const struct scmi_handle *handle) 208 { 209 struct scmi_info *info = handle_to_scmi_info(handle); 210 211 /* Ensure protocols_private_data has been updated */ 212 smp_rmb(); 213 return info->notify_priv; 214 } 215 216 /** 217 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand 218 * 219 * @minfo: Pointer to Tx/Rx Message management info based on channel type 220 * @xfer: The xfer to act upon 221 * 222 * Pick the next unused monotonically increasing token and set it into 223 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate 224 * reuse of freshly completed or timed-out xfers, thus mitigating the risk 225 * of incorrect association of a late and expired xfer with a live in-flight 226 * transaction, both happening to re-use the same token identifier. 227 * 228 * Since platform is NOT required to answer our request in-order we should 229 * account for a few rare but possible scenarios: 230 * 231 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token 232 * using find_next_zero_bit() starting from candidate next_token bit 233 * 234 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we 235 * are plenty of free tokens at start, so try a second pass using 236 * find_next_zero_bit() and starting from 0. 237 * 238 * X = used in-flight 239 * 240 * Normal 241 * ------ 242 * 243 * |- xfer_id picked 244 * -----------+---------------------------------------------------------- 245 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X| 246 * ---------------------------------------------------------------------- 247 * ^ 248 * |- next_token 249 * 250 * Out-of-order pending at start 251 * ----------------------------- 252 * 253 * |- xfer_id picked, last_token fixed 254 * -----+---------------------------------------------------------------- 255 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| | 256 * ---------------------------------------------------------------------- 257 * ^ 258 * |- next_token 259 * 260 * 261 * Out-of-order pending at end 262 * --------------------------- 263 * 264 * |- xfer_id picked, last_token fixed 265 * -----+---------------------------------------------------------------- 266 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X| 267 * ---------------------------------------------------------------------- 268 * ^ 269 * |- next_token 270 * 271 * Context: Assumes to be called with @xfer_lock already acquired. 272 * 273 * Return: 0 on Success or error 274 */ 275 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo, 276 struct scmi_xfer *xfer) 277 { 278 unsigned long xfer_id, next_token; 279 280 /* 281 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1] 282 * using the pre-allocated transfer_id as a base. 283 * Note that the global transfer_id is shared across all message types 284 * so there could be holes in the allocated set of monotonic sequence 285 * numbers, but that is going to limit the effectiveness of the 286 * mitigation only in very rare limit conditions. 287 */ 288 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1)); 289 290 /* Pick the next available xfer_id >= next_token */ 291 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 292 MSG_TOKEN_MAX, next_token); 293 if (xfer_id == MSG_TOKEN_MAX) { 294 /* 295 * After heavily out-of-order responses, there are no free 296 * tokens ahead, but only at start of xfer_alloc_table so 297 * try again from the beginning. 298 */ 299 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 300 MSG_TOKEN_MAX, 0); 301 /* 302 * Something is wrong if we got here since there can be a 303 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages 304 * but we have not found any free token [0, MSG_TOKEN_MAX - 1]. 305 */ 306 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX)) 307 return -ENOMEM; 308 } 309 310 /* Update +/- last_token accordingly if we skipped some hole */ 311 if (xfer_id != next_token) 312 atomic_add((int)(xfer_id - next_token), &transfer_last_id); 313 314 /* Set in-flight */ 315 set_bit(xfer_id, minfo->xfer_alloc_table); 316 xfer->hdr.seq = (u16)xfer_id; 317 318 return 0; 319 } 320 321 /** 322 * scmi_xfer_token_clear - Release the token 323 * 324 * @minfo: Pointer to Tx/Rx Message management info based on channel type 325 * @xfer: The xfer to act upon 326 */ 327 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo, 328 struct scmi_xfer *xfer) 329 { 330 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 331 } 332 333 /** 334 * scmi_xfer_get() - Allocate one message 335 * 336 * @handle: Pointer to SCMI entity handle 337 * @minfo: Pointer to Tx/Rx Message management info based on channel type 338 * @set_pending: If true a monotonic token is picked and the xfer is added to 339 * the pending hash table. 340 * 341 * Helper function which is used by various message functions that are 342 * exposed to clients of this driver for allocating a message traffic event. 343 * 344 * Picks an xfer from the free list @free_xfers (if any available) and, if 345 * required, sets a monotonically increasing token and stores the inflight xfer 346 * into the @pending_xfers hashtable for later retrieval. 347 * 348 * The successfully initialized xfer is refcounted. 349 * 350 * Context: Holds @xfer_lock while manipulating @xfer_alloc_table and 351 * @free_xfers. 352 * 353 * Return: 0 if all went fine, else corresponding error. 354 */ 355 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle, 356 struct scmi_xfers_info *minfo, 357 bool set_pending) 358 { 359 int ret; 360 unsigned long flags; 361 struct scmi_xfer *xfer; 362 363 spin_lock_irqsave(&minfo->xfer_lock, flags); 364 if (hlist_empty(&minfo->free_xfers)) { 365 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 366 return ERR_PTR(-ENOMEM); 367 } 368 369 /* grab an xfer from the free_list */ 370 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node); 371 hlist_del_init(&xfer->node); 372 373 /* 374 * Allocate transfer_id early so that can be used also as base for 375 * monotonic sequence number generation if needed. 376 */ 377 xfer->transfer_id = atomic_inc_return(&transfer_last_id); 378 379 if (set_pending) { 380 /* Pick and set monotonic token */ 381 ret = scmi_xfer_token_set(minfo, xfer); 382 if (!ret) { 383 hash_add(minfo->pending_xfers, &xfer->node, 384 xfer->hdr.seq); 385 xfer->pending = true; 386 } else { 387 dev_err(handle->dev, 388 "Failed to get monotonic token %d\n", ret); 389 hlist_add_head(&xfer->node, &minfo->free_xfers); 390 xfer = ERR_PTR(ret); 391 } 392 } 393 394 if (!IS_ERR(xfer)) { 395 refcount_set(&xfer->users, 1); 396 atomic_set(&xfer->busy, SCMI_XFER_FREE); 397 } 398 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 399 400 return xfer; 401 } 402 403 /** 404 * __scmi_xfer_put() - Release a message 405 * 406 * @minfo: Pointer to Tx/Rx Message management info based on channel type 407 * @xfer: message that was reserved by scmi_xfer_get 408 * 409 * After refcount check, possibly release an xfer, clearing the token slot, 410 * removing xfer from @pending_xfers and putting it back into free_xfers. 411 * 412 * This holds a spinlock to maintain integrity of internal data structures. 413 */ 414 static void 415 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer) 416 { 417 unsigned long flags; 418 419 spin_lock_irqsave(&minfo->xfer_lock, flags); 420 if (refcount_dec_and_test(&xfer->users)) { 421 if (xfer->pending) { 422 scmi_xfer_token_clear(minfo, xfer); 423 hash_del(&xfer->node); 424 xfer->pending = false; 425 } 426 hlist_add_head(&xfer->node, &minfo->free_xfers); 427 } 428 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 429 } 430 431 /** 432 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id 433 * 434 * @minfo: Pointer to Tx/Rx Message management info based on channel type 435 * @xfer_id: Token ID to lookup in @pending_xfers 436 * 437 * Refcounting is untouched. 438 * 439 * Context: Assumes to be called with @xfer_lock already acquired. 440 * 441 * Return: A valid xfer on Success or error otherwise 442 */ 443 static struct scmi_xfer * 444 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id) 445 { 446 struct scmi_xfer *xfer = NULL; 447 448 if (test_bit(xfer_id, minfo->xfer_alloc_table)) 449 xfer = XFER_FIND(minfo->pending_xfers, xfer_id); 450 451 return xfer ?: ERR_PTR(-EINVAL); 452 } 453 454 /** 455 * scmi_msg_response_validate - Validate message type against state of related 456 * xfer 457 * 458 * @cinfo: A reference to the channel descriptor. 459 * @msg_type: Message type to check 460 * @xfer: A reference to the xfer to validate against @msg_type 461 * 462 * This function checks if @msg_type is congruent with the current state of 463 * a pending @xfer; if an asynchronous delayed response is received before the 464 * related synchronous response (Out-of-Order Delayed Response) the missing 465 * synchronous response is assumed to be OK and completed, carrying on with the 466 * Delayed Response: this is done to address the case in which the underlying 467 * SCMI transport can deliver such out-of-order responses. 468 * 469 * Context: Assumes to be called with xfer->lock already acquired. 470 * 471 * Return: 0 on Success, error otherwise 472 */ 473 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo, 474 u8 msg_type, 475 struct scmi_xfer *xfer) 476 { 477 /* 478 * Even if a response was indeed expected on this slot at this point, 479 * a buggy platform could wrongly reply feeding us an unexpected 480 * delayed response we're not prepared to handle: bail-out safely 481 * blaming firmware. 482 */ 483 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) { 484 dev_err(cinfo->dev, 485 "Delayed Response for %d not expected! Buggy F/W ?\n", 486 xfer->hdr.seq); 487 return -EINVAL; 488 } 489 490 switch (xfer->state) { 491 case SCMI_XFER_SENT_OK: 492 if (msg_type == MSG_TYPE_DELAYED_RESP) { 493 /* 494 * Delayed Response expected but delivered earlier. 495 * Assume message RESPONSE was OK and skip state. 496 */ 497 xfer->hdr.status = SCMI_SUCCESS; 498 xfer->state = SCMI_XFER_RESP_OK; 499 complete(&xfer->done); 500 dev_warn(cinfo->dev, 501 "Received valid OoO Delayed Response for %d\n", 502 xfer->hdr.seq); 503 } 504 break; 505 case SCMI_XFER_RESP_OK: 506 if (msg_type != MSG_TYPE_DELAYED_RESP) 507 return -EINVAL; 508 break; 509 case SCMI_XFER_DRESP_OK: 510 /* No further message expected once in SCMI_XFER_DRESP_OK */ 511 return -EINVAL; 512 } 513 514 return 0; 515 } 516 517 /** 518 * scmi_xfer_state_update - Update xfer state 519 * 520 * @xfer: A reference to the xfer to update 521 * @msg_type: Type of message being processed. 522 * 523 * Note that this message is assumed to have been already successfully validated 524 * by @scmi_msg_response_validate(), so here we just update the state. 525 * 526 * Context: Assumes to be called on an xfer exclusively acquired using the 527 * busy flag. 528 */ 529 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type) 530 { 531 xfer->hdr.type = msg_type; 532 533 /* Unknown command types were already discarded earlier */ 534 if (xfer->hdr.type == MSG_TYPE_COMMAND) 535 xfer->state = SCMI_XFER_RESP_OK; 536 else 537 xfer->state = SCMI_XFER_DRESP_OK; 538 } 539 540 static bool scmi_xfer_acquired(struct scmi_xfer *xfer) 541 { 542 int ret; 543 544 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY); 545 546 return ret == SCMI_XFER_FREE; 547 } 548 549 /** 550 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer 551 * 552 * @cinfo: A reference to the channel descriptor. 553 * @msg_hdr: A message header to use as lookup key 554 * 555 * When a valid xfer is found for the sequence number embedded in the provided 556 * msg_hdr, reference counting is properly updated and exclusive access to this 557 * xfer is granted till released with @scmi_xfer_command_release. 558 * 559 * Return: A valid @xfer on Success or error otherwise. 560 */ 561 static inline struct scmi_xfer * 562 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr) 563 { 564 int ret; 565 unsigned long flags; 566 struct scmi_xfer *xfer; 567 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 568 struct scmi_xfers_info *minfo = &info->tx_minfo; 569 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 570 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr); 571 572 /* Are we even expecting this? */ 573 spin_lock_irqsave(&minfo->xfer_lock, flags); 574 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id); 575 if (IS_ERR(xfer)) { 576 dev_err(cinfo->dev, 577 "Message for %d type %d is not expected!\n", 578 xfer_id, msg_type); 579 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 580 return xfer; 581 } 582 refcount_inc(&xfer->users); 583 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 584 585 spin_lock_irqsave(&xfer->lock, flags); 586 ret = scmi_msg_response_validate(cinfo, msg_type, xfer); 587 /* 588 * If a pending xfer was found which was also in a congruent state with 589 * the received message, acquire exclusive access to it setting the busy 590 * flag. 591 * Spins only on the rare limit condition of concurrent reception of 592 * RESP and DRESP for the same xfer. 593 */ 594 if (!ret) { 595 spin_until_cond(scmi_xfer_acquired(xfer)); 596 scmi_xfer_state_update(xfer, msg_type); 597 } 598 spin_unlock_irqrestore(&xfer->lock, flags); 599 600 if (ret) { 601 dev_err(cinfo->dev, 602 "Invalid message type:%d for %d - HDR:0x%X state:%d\n", 603 msg_type, xfer_id, msg_hdr, xfer->state); 604 /* On error the refcount incremented above has to be dropped */ 605 __scmi_xfer_put(minfo, xfer); 606 xfer = ERR_PTR(-EINVAL); 607 } 608 609 return xfer; 610 } 611 612 static inline void scmi_xfer_command_release(struct scmi_info *info, 613 struct scmi_xfer *xfer) 614 { 615 atomic_set(&xfer->busy, SCMI_XFER_FREE); 616 __scmi_xfer_put(&info->tx_minfo, xfer); 617 } 618 619 static inline void scmi_clear_channel(struct scmi_info *info, 620 struct scmi_chan_info *cinfo) 621 { 622 if (info->desc->ops->clear_channel) 623 info->desc->ops->clear_channel(cinfo); 624 } 625 626 static inline bool is_polling_required(struct scmi_chan_info *cinfo, 627 struct scmi_info *info) 628 { 629 return cinfo->no_completion_irq || info->desc->force_polling; 630 } 631 632 static inline bool is_transport_polling_capable(struct scmi_info *info) 633 { 634 return info->desc->ops->poll_done || 635 info->desc->sync_cmds_completed_on_ret; 636 } 637 638 static inline bool is_polling_enabled(struct scmi_chan_info *cinfo, 639 struct scmi_info *info) 640 { 641 return is_polling_required(cinfo, info) && 642 is_transport_polling_capable(info); 643 } 644 645 static void scmi_handle_notification(struct scmi_chan_info *cinfo, 646 u32 msg_hdr, void *priv) 647 { 648 struct scmi_xfer *xfer; 649 struct device *dev = cinfo->dev; 650 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 651 struct scmi_xfers_info *minfo = &info->rx_minfo; 652 ktime_t ts; 653 654 ts = ktime_get_boottime(); 655 xfer = scmi_xfer_get(cinfo->handle, minfo, false); 656 if (IS_ERR(xfer)) { 657 dev_err(dev, "failed to get free message slot (%ld)\n", 658 PTR_ERR(xfer)); 659 scmi_clear_channel(info, cinfo); 660 return; 661 } 662 663 unpack_scmi_header(msg_hdr, &xfer->hdr); 664 if (priv) 665 /* Ensure order between xfer->priv store and following ops */ 666 smp_store_mb(xfer->priv, priv); 667 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size, 668 xfer); 669 670 trace_scmi_msg_dump(xfer->hdr.protocol_id, xfer->hdr.id, "NOTI", 671 xfer->hdr.seq, xfer->hdr.status, 672 xfer->rx.buf, xfer->rx.len); 673 674 scmi_notify(cinfo->handle, xfer->hdr.protocol_id, 675 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts); 676 677 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 678 xfer->hdr.protocol_id, xfer->hdr.seq, 679 MSG_TYPE_NOTIFICATION); 680 681 __scmi_xfer_put(minfo, xfer); 682 683 scmi_clear_channel(info, cinfo); 684 } 685 686 static void scmi_handle_response(struct scmi_chan_info *cinfo, 687 u32 msg_hdr, void *priv) 688 { 689 struct scmi_xfer *xfer; 690 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 691 692 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr); 693 if (IS_ERR(xfer)) { 694 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP) 695 scmi_clear_channel(info, cinfo); 696 return; 697 } 698 699 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */ 700 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) 701 xfer->rx.len = info->desc->max_msg_size; 702 703 if (priv) 704 /* Ensure order between xfer->priv store and following ops */ 705 smp_store_mb(xfer->priv, priv); 706 info->desc->ops->fetch_response(cinfo, xfer); 707 708 trace_scmi_msg_dump(xfer->hdr.protocol_id, xfer->hdr.id, 709 xfer->hdr.type == MSG_TYPE_DELAYED_RESP ? 710 "DLYD" : "RESP", 711 xfer->hdr.seq, xfer->hdr.status, 712 xfer->rx.buf, xfer->rx.len); 713 714 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 715 xfer->hdr.protocol_id, xfer->hdr.seq, 716 xfer->hdr.type); 717 718 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) { 719 scmi_clear_channel(info, cinfo); 720 complete(xfer->async_done); 721 } else { 722 complete(&xfer->done); 723 } 724 725 scmi_xfer_command_release(info, xfer); 726 } 727 728 /** 729 * scmi_rx_callback() - callback for receiving messages 730 * 731 * @cinfo: SCMI channel info 732 * @msg_hdr: Message header 733 * @priv: Transport specific private data. 734 * 735 * Processes one received message to appropriate transfer information and 736 * signals completion of the transfer. 737 * 738 * NOTE: This function will be invoked in IRQ context, hence should be 739 * as optimal as possible. 740 */ 741 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv) 742 { 743 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 744 745 switch (msg_type) { 746 case MSG_TYPE_NOTIFICATION: 747 scmi_handle_notification(cinfo, msg_hdr, priv); 748 break; 749 case MSG_TYPE_COMMAND: 750 case MSG_TYPE_DELAYED_RESP: 751 scmi_handle_response(cinfo, msg_hdr, priv); 752 break; 753 default: 754 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type); 755 break; 756 } 757 } 758 759 /** 760 * xfer_put() - Release a transmit message 761 * 762 * @ph: Pointer to SCMI protocol handle 763 * @xfer: message that was reserved by xfer_get_init 764 */ 765 static void xfer_put(const struct scmi_protocol_handle *ph, 766 struct scmi_xfer *xfer) 767 { 768 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 769 struct scmi_info *info = handle_to_scmi_info(pi->handle); 770 771 __scmi_xfer_put(&info->tx_minfo, xfer); 772 } 773 774 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo, 775 struct scmi_xfer *xfer, ktime_t stop) 776 { 777 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 778 779 /* 780 * Poll also on xfer->done so that polling can be forcibly terminated 781 * in case of out-of-order receptions of delayed responses 782 */ 783 return info->desc->ops->poll_done(cinfo, xfer) || 784 try_wait_for_completion(&xfer->done) || 785 ktime_after(ktime_get(), stop); 786 } 787 788 /** 789 * scmi_wait_for_message_response - An helper to group all the possible ways of 790 * waiting for a synchronous message response. 791 * 792 * @cinfo: SCMI channel info 793 * @xfer: Reference to the transfer being waited for. 794 * 795 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on 796 * configuration flags like xfer->hdr.poll_completion. 797 * 798 * Return: 0 on Success, error otherwise. 799 */ 800 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo, 801 struct scmi_xfer *xfer) 802 { 803 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 804 struct device *dev = info->dev; 805 int ret = 0, timeout_ms = info->desc->max_rx_timeout_ms; 806 807 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id, 808 xfer->hdr.protocol_id, xfer->hdr.seq, 809 timeout_ms, 810 xfer->hdr.poll_completion); 811 812 if (xfer->hdr.poll_completion) { 813 /* 814 * Real polling is needed only if transport has NOT declared 815 * itself to support synchronous commands replies. 816 */ 817 if (!info->desc->sync_cmds_completed_on_ret) { 818 /* 819 * Poll on xfer using transport provided .poll_done(); 820 * assumes no completion interrupt was available. 821 */ 822 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms); 823 824 spin_until_cond(scmi_xfer_done_no_timeout(cinfo, 825 xfer, stop)); 826 if (ktime_after(ktime_get(), stop)) { 827 dev_err(dev, 828 "timed out in resp(caller: %pS) - polling\n", 829 (void *)_RET_IP_); 830 ret = -ETIMEDOUT; 831 } 832 } 833 834 if (!ret) { 835 unsigned long flags; 836 837 /* 838 * Do not fetch_response if an out-of-order delayed 839 * response is being processed. 840 */ 841 spin_lock_irqsave(&xfer->lock, flags); 842 if (xfer->state == SCMI_XFER_SENT_OK) { 843 info->desc->ops->fetch_response(cinfo, xfer); 844 xfer->state = SCMI_XFER_RESP_OK; 845 } 846 spin_unlock_irqrestore(&xfer->lock, flags); 847 848 /* Trace polled replies. */ 849 trace_scmi_msg_dump(xfer->hdr.protocol_id, xfer->hdr.id, 850 "RESP", 851 xfer->hdr.seq, xfer->hdr.status, 852 xfer->rx.buf, xfer->rx.len); 853 } 854 } else { 855 /* And we wait for the response. */ 856 if (!wait_for_completion_timeout(&xfer->done, 857 msecs_to_jiffies(timeout_ms))) { 858 dev_err(dev, "timed out in resp(caller: %pS)\n", 859 (void *)_RET_IP_); 860 ret = -ETIMEDOUT; 861 } 862 } 863 864 return ret; 865 } 866 867 /** 868 * do_xfer() - Do one transfer 869 * 870 * @ph: Pointer to SCMI protocol handle 871 * @xfer: Transfer to initiate and wait for response 872 * 873 * Return: -ETIMEDOUT in case of no response, if transmit error, 874 * return corresponding error, else if all goes well, 875 * return 0. 876 */ 877 static int do_xfer(const struct scmi_protocol_handle *ph, 878 struct scmi_xfer *xfer) 879 { 880 int ret; 881 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 882 struct scmi_info *info = handle_to_scmi_info(pi->handle); 883 struct device *dev = info->dev; 884 struct scmi_chan_info *cinfo; 885 886 /* Check for polling request on custom command xfers at first */ 887 if (xfer->hdr.poll_completion && !is_transport_polling_capable(info)) { 888 dev_warn_once(dev, 889 "Polling mode is not supported by transport.\n"); 890 return -EINVAL; 891 } 892 893 cinfo = idr_find(&info->tx_idr, pi->proto->id); 894 if (unlikely(!cinfo)) 895 return -EINVAL; 896 897 /* True ONLY if also supported by transport. */ 898 if (is_polling_enabled(cinfo, info)) 899 xfer->hdr.poll_completion = true; 900 901 /* 902 * Initialise protocol id now from protocol handle to avoid it being 903 * overridden by mistake (or malice) by the protocol code mangling with 904 * the scmi_xfer structure prior to this. 905 */ 906 xfer->hdr.protocol_id = pi->proto->id; 907 reinit_completion(&xfer->done); 908 909 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id, 910 xfer->hdr.protocol_id, xfer->hdr.seq, 911 xfer->hdr.poll_completion); 912 913 /* Clear any stale status */ 914 xfer->hdr.status = SCMI_SUCCESS; 915 xfer->state = SCMI_XFER_SENT_OK; 916 /* 917 * Even though spinlocking is not needed here since no race is possible 918 * on xfer->state due to the monotonically increasing tokens allocation, 919 * we must anyway ensure xfer->state initialization is not re-ordered 920 * after the .send_message() to be sure that on the RX path an early 921 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state. 922 */ 923 smp_mb(); 924 925 ret = info->desc->ops->send_message(cinfo, xfer); 926 if (ret < 0) { 927 dev_dbg(dev, "Failed to send message %d\n", ret); 928 return ret; 929 } 930 931 trace_scmi_msg_dump(xfer->hdr.protocol_id, xfer->hdr.id, "CMND", 932 xfer->hdr.seq, xfer->hdr.status, 933 xfer->tx.buf, xfer->tx.len); 934 935 ret = scmi_wait_for_message_response(cinfo, xfer); 936 if (!ret && xfer->hdr.status) 937 ret = scmi_to_linux_errno(xfer->hdr.status); 938 939 if (info->desc->ops->mark_txdone) 940 info->desc->ops->mark_txdone(cinfo, ret, xfer); 941 942 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id, 943 xfer->hdr.protocol_id, xfer->hdr.seq, ret); 944 945 return ret; 946 } 947 948 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph, 949 struct scmi_xfer *xfer) 950 { 951 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 952 struct scmi_info *info = handle_to_scmi_info(pi->handle); 953 954 xfer->rx.len = info->desc->max_msg_size; 955 } 956 957 #define SCMI_MAX_RESPONSE_TIMEOUT (2 * MSEC_PER_SEC) 958 959 /** 960 * do_xfer_with_response() - Do one transfer and wait until the delayed 961 * response is received 962 * 963 * @ph: Pointer to SCMI protocol handle 964 * @xfer: Transfer to initiate and wait for response 965 * 966 * Using asynchronous commands in atomic/polling mode should be avoided since 967 * it could cause long busy-waiting here, so ignore polling for the delayed 968 * response and WARN if it was requested for this command transaction since 969 * upper layers should refrain from issuing such kind of requests. 970 * 971 * The only other option would have been to refrain from using any asynchronous 972 * command even if made available, when an atomic transport is detected, and 973 * instead forcibly use the synchronous version (thing that can be easily 974 * attained at the protocol layer), but this would also have led to longer 975 * stalls of the channel for synchronous commands and possibly timeouts. 976 * (in other words there is usually a good reason if a platform provides an 977 * asynchronous version of a command and we should prefer to use it...just not 978 * when using atomic/polling mode) 979 * 980 * Return: -ETIMEDOUT in case of no delayed response, if transmit error, 981 * return corresponding error, else if all goes well, return 0. 982 */ 983 static int do_xfer_with_response(const struct scmi_protocol_handle *ph, 984 struct scmi_xfer *xfer) 985 { 986 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT); 987 DECLARE_COMPLETION_ONSTACK(async_response); 988 989 xfer->async_done = &async_response; 990 991 /* 992 * Delayed responses should not be polled, so an async command should 993 * not have been used when requiring an atomic/poll context; WARN and 994 * perform instead a sleeping wait. 995 * (Note Async + IgnoreDelayedResponses are sent via do_xfer) 996 */ 997 WARN_ON_ONCE(xfer->hdr.poll_completion); 998 999 ret = do_xfer(ph, xfer); 1000 if (!ret) { 1001 if (!wait_for_completion_timeout(xfer->async_done, timeout)) { 1002 dev_err(ph->dev, 1003 "timed out in delayed resp(caller: %pS)\n", 1004 (void *)_RET_IP_); 1005 ret = -ETIMEDOUT; 1006 } else if (xfer->hdr.status) { 1007 ret = scmi_to_linux_errno(xfer->hdr.status); 1008 } 1009 } 1010 1011 xfer->async_done = NULL; 1012 return ret; 1013 } 1014 1015 /** 1016 * xfer_get_init() - Allocate and initialise one message for transmit 1017 * 1018 * @ph: Pointer to SCMI protocol handle 1019 * @msg_id: Message identifier 1020 * @tx_size: transmit message size 1021 * @rx_size: receive message size 1022 * @p: pointer to the allocated and initialised message 1023 * 1024 * This function allocates the message using @scmi_xfer_get and 1025 * initialise the header. 1026 * 1027 * Return: 0 if all went fine with @p pointing to message, else 1028 * corresponding error. 1029 */ 1030 static int xfer_get_init(const struct scmi_protocol_handle *ph, 1031 u8 msg_id, size_t tx_size, size_t rx_size, 1032 struct scmi_xfer **p) 1033 { 1034 int ret; 1035 struct scmi_xfer *xfer; 1036 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1037 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1038 struct scmi_xfers_info *minfo = &info->tx_minfo; 1039 struct device *dev = info->dev; 1040 1041 /* Ensure we have sane transfer sizes */ 1042 if (rx_size > info->desc->max_msg_size || 1043 tx_size > info->desc->max_msg_size) 1044 return -ERANGE; 1045 1046 xfer = scmi_xfer_get(pi->handle, minfo, true); 1047 if (IS_ERR(xfer)) { 1048 ret = PTR_ERR(xfer); 1049 dev_err(dev, "failed to get free message slot(%d)\n", ret); 1050 return ret; 1051 } 1052 1053 xfer->tx.len = tx_size; 1054 xfer->rx.len = rx_size ? : info->desc->max_msg_size; 1055 xfer->hdr.type = MSG_TYPE_COMMAND; 1056 xfer->hdr.id = msg_id; 1057 xfer->hdr.poll_completion = false; 1058 1059 *p = xfer; 1060 1061 return 0; 1062 } 1063 1064 /** 1065 * version_get() - command to get the revision of the SCMI entity 1066 * 1067 * @ph: Pointer to SCMI protocol handle 1068 * @version: Holds returned version of protocol. 1069 * 1070 * Updates the SCMI information in the internal data structure. 1071 * 1072 * Return: 0 if all went fine, else return appropriate error. 1073 */ 1074 static int version_get(const struct scmi_protocol_handle *ph, u32 *version) 1075 { 1076 int ret; 1077 __le32 *rev_info; 1078 struct scmi_xfer *t; 1079 1080 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t); 1081 if (ret) 1082 return ret; 1083 1084 ret = do_xfer(ph, t); 1085 if (!ret) { 1086 rev_info = t->rx.buf; 1087 *version = le32_to_cpu(*rev_info); 1088 } 1089 1090 xfer_put(ph, t); 1091 return ret; 1092 } 1093 1094 /** 1095 * scmi_set_protocol_priv - Set protocol specific data at init time 1096 * 1097 * @ph: A reference to the protocol handle. 1098 * @priv: The private data to set. 1099 * 1100 * Return: 0 on Success 1101 */ 1102 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph, 1103 void *priv) 1104 { 1105 struct scmi_protocol_instance *pi = ph_to_pi(ph); 1106 1107 pi->priv = priv; 1108 1109 return 0; 1110 } 1111 1112 /** 1113 * scmi_get_protocol_priv - Set protocol specific data at init time 1114 * 1115 * @ph: A reference to the protocol handle. 1116 * 1117 * Return: Protocol private data if any was set. 1118 */ 1119 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph) 1120 { 1121 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1122 1123 return pi->priv; 1124 } 1125 1126 static const struct scmi_xfer_ops xfer_ops = { 1127 .version_get = version_get, 1128 .xfer_get_init = xfer_get_init, 1129 .reset_rx_to_maxsz = reset_rx_to_maxsz, 1130 .do_xfer = do_xfer, 1131 .do_xfer_with_response = do_xfer_with_response, 1132 .xfer_put = xfer_put, 1133 }; 1134 1135 struct scmi_msg_resp_domain_name_get { 1136 __le32 flags; 1137 u8 name[SCMI_MAX_STR_SIZE]; 1138 }; 1139 1140 /** 1141 * scmi_common_extended_name_get - Common helper to get extended resources name 1142 * @ph: A protocol handle reference. 1143 * @cmd_id: The specific command ID to use. 1144 * @res_id: The specific resource ID to use. 1145 * @name: A pointer to the preallocated area where the retrieved name will be 1146 * stored as a NULL terminated string. 1147 * @len: The len in bytes of the @name char array. 1148 * 1149 * Return: 0 on Succcess 1150 */ 1151 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph, 1152 u8 cmd_id, u32 res_id, char *name, 1153 size_t len) 1154 { 1155 int ret; 1156 struct scmi_xfer *t; 1157 struct scmi_msg_resp_domain_name_get *resp; 1158 1159 ret = ph->xops->xfer_get_init(ph, cmd_id, sizeof(res_id), 1160 sizeof(*resp), &t); 1161 if (ret) 1162 goto out; 1163 1164 put_unaligned_le32(res_id, t->tx.buf); 1165 resp = t->rx.buf; 1166 1167 ret = ph->xops->do_xfer(ph, t); 1168 if (!ret) 1169 strscpy(name, resp->name, len); 1170 1171 ph->xops->xfer_put(ph, t); 1172 out: 1173 if (ret) 1174 dev_warn(ph->dev, 1175 "Failed to get extended name - id:%u (ret:%d). Using %s\n", 1176 res_id, ret, name); 1177 return ret; 1178 } 1179 1180 /** 1181 * struct scmi_iterator - Iterator descriptor 1182 * @msg: A reference to the message TX buffer; filled by @prepare_message with 1183 * a proper custom command payload for each multi-part command request. 1184 * @resp: A reference to the response RX buffer; used by @update_state and 1185 * @process_response to parse the multi-part replies. 1186 * @t: A reference to the underlying xfer initialized and used transparently by 1187 * the iterator internal routines. 1188 * @ph: A reference to the associated protocol handle to be used. 1189 * @ops: A reference to the custom provided iterator operations. 1190 * @state: The current iterator state; used and updated in turn by the iterators 1191 * internal routines and by the caller-provided @scmi_iterator_ops. 1192 * @priv: A reference to optional private data as provided by the caller and 1193 * passed back to the @@scmi_iterator_ops. 1194 */ 1195 struct scmi_iterator { 1196 void *msg; 1197 void *resp; 1198 struct scmi_xfer *t; 1199 const struct scmi_protocol_handle *ph; 1200 struct scmi_iterator_ops *ops; 1201 struct scmi_iterator_state state; 1202 void *priv; 1203 }; 1204 1205 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph, 1206 struct scmi_iterator_ops *ops, 1207 unsigned int max_resources, u8 msg_id, 1208 size_t tx_size, void *priv) 1209 { 1210 int ret; 1211 struct scmi_iterator *i; 1212 1213 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL); 1214 if (!i) 1215 return ERR_PTR(-ENOMEM); 1216 1217 i->ph = ph; 1218 i->ops = ops; 1219 i->priv = priv; 1220 1221 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t); 1222 if (ret) { 1223 devm_kfree(ph->dev, i); 1224 return ERR_PTR(ret); 1225 } 1226 1227 i->state.max_resources = max_resources; 1228 i->msg = i->t->tx.buf; 1229 i->resp = i->t->rx.buf; 1230 1231 return i; 1232 } 1233 1234 static int scmi_iterator_run(void *iter) 1235 { 1236 int ret = -EINVAL; 1237 struct scmi_iterator_ops *iops; 1238 const struct scmi_protocol_handle *ph; 1239 struct scmi_iterator_state *st; 1240 struct scmi_iterator *i = iter; 1241 1242 if (!i || !i->ops || !i->ph) 1243 return ret; 1244 1245 iops = i->ops; 1246 ph = i->ph; 1247 st = &i->state; 1248 1249 do { 1250 iops->prepare_message(i->msg, st->desc_index, i->priv); 1251 ret = ph->xops->do_xfer(ph, i->t); 1252 if (ret) 1253 break; 1254 1255 st->rx_len = i->t->rx.len; 1256 ret = iops->update_state(st, i->resp, i->priv); 1257 if (ret) 1258 break; 1259 1260 if (st->num_returned > st->max_resources - st->desc_index) { 1261 dev_err(ph->dev, 1262 "No. of resources can't exceed %d\n", 1263 st->max_resources); 1264 ret = -EINVAL; 1265 break; 1266 } 1267 1268 for (st->loop_idx = 0; st->loop_idx < st->num_returned; 1269 st->loop_idx++) { 1270 ret = iops->process_response(ph, i->resp, st, i->priv); 1271 if (ret) 1272 goto out; 1273 } 1274 1275 st->desc_index += st->num_returned; 1276 ph->xops->reset_rx_to_maxsz(ph, i->t); 1277 /* 1278 * check for both returned and remaining to avoid infinite 1279 * loop due to buggy firmware 1280 */ 1281 } while (st->num_returned && st->num_remaining); 1282 1283 out: 1284 /* Finalize and destroy iterator */ 1285 ph->xops->xfer_put(ph, i->t); 1286 devm_kfree(ph->dev, i); 1287 1288 return ret; 1289 } 1290 1291 struct scmi_msg_get_fc_info { 1292 __le32 domain; 1293 __le32 message_id; 1294 }; 1295 1296 struct scmi_msg_resp_desc_fc { 1297 __le32 attr; 1298 #define SUPPORTS_DOORBELL(x) ((x) & BIT(0)) 1299 #define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x)) 1300 __le32 rate_limit; 1301 __le32 chan_addr_low; 1302 __le32 chan_addr_high; 1303 __le32 chan_size; 1304 __le32 db_addr_low; 1305 __le32 db_addr_high; 1306 __le32 db_set_lmask; 1307 __le32 db_set_hmask; 1308 __le32 db_preserve_lmask; 1309 __le32 db_preserve_hmask; 1310 }; 1311 1312 static void 1313 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph, 1314 u8 describe_id, u32 message_id, u32 valid_size, 1315 u32 domain, void __iomem **p_addr, 1316 struct scmi_fc_db_info **p_db) 1317 { 1318 int ret; 1319 u32 flags; 1320 u64 phys_addr; 1321 u8 size; 1322 void __iomem *addr; 1323 struct scmi_xfer *t; 1324 struct scmi_fc_db_info *db = NULL; 1325 struct scmi_msg_get_fc_info *info; 1326 struct scmi_msg_resp_desc_fc *resp; 1327 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1328 1329 if (!p_addr) { 1330 ret = -EINVAL; 1331 goto err_out; 1332 } 1333 1334 ret = ph->xops->xfer_get_init(ph, describe_id, 1335 sizeof(*info), sizeof(*resp), &t); 1336 if (ret) 1337 goto err_out; 1338 1339 info = t->tx.buf; 1340 info->domain = cpu_to_le32(domain); 1341 info->message_id = cpu_to_le32(message_id); 1342 1343 /* 1344 * Bail out on error leaving fc_info addresses zeroed; this includes 1345 * the case in which the requested domain/message_id does NOT support 1346 * fastchannels at all. 1347 */ 1348 ret = ph->xops->do_xfer(ph, t); 1349 if (ret) 1350 goto err_xfer; 1351 1352 resp = t->rx.buf; 1353 flags = le32_to_cpu(resp->attr); 1354 size = le32_to_cpu(resp->chan_size); 1355 if (size != valid_size) { 1356 ret = -EINVAL; 1357 goto err_xfer; 1358 } 1359 1360 phys_addr = le32_to_cpu(resp->chan_addr_low); 1361 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32; 1362 addr = devm_ioremap(ph->dev, phys_addr, size); 1363 if (!addr) { 1364 ret = -EADDRNOTAVAIL; 1365 goto err_xfer; 1366 } 1367 1368 *p_addr = addr; 1369 1370 if (p_db && SUPPORTS_DOORBELL(flags)) { 1371 db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL); 1372 if (!db) { 1373 ret = -ENOMEM; 1374 goto err_db; 1375 } 1376 1377 size = 1 << DOORBELL_REG_WIDTH(flags); 1378 phys_addr = le32_to_cpu(resp->db_addr_low); 1379 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32; 1380 addr = devm_ioremap(ph->dev, phys_addr, size); 1381 if (!addr) { 1382 ret = -EADDRNOTAVAIL; 1383 goto err_db_mem; 1384 } 1385 1386 db->addr = addr; 1387 db->width = size; 1388 db->set = le32_to_cpu(resp->db_set_lmask); 1389 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32; 1390 db->mask = le32_to_cpu(resp->db_preserve_lmask); 1391 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32; 1392 1393 *p_db = db; 1394 } 1395 1396 ph->xops->xfer_put(ph, t); 1397 1398 dev_dbg(ph->dev, 1399 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n", 1400 pi->proto->id, message_id, domain); 1401 1402 return; 1403 1404 err_db_mem: 1405 devm_kfree(ph->dev, db); 1406 1407 err_db: 1408 *p_addr = NULL; 1409 1410 err_xfer: 1411 ph->xops->xfer_put(ph, t); 1412 1413 err_out: 1414 dev_warn(ph->dev, 1415 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n", 1416 pi->proto->id, message_id, domain, ret); 1417 } 1418 1419 #define SCMI_PROTO_FC_RING_DB(w) \ 1420 do { \ 1421 u##w val = 0; \ 1422 \ 1423 if (db->mask) \ 1424 val = ioread##w(db->addr) & db->mask; \ 1425 iowrite##w((u##w)db->set | val, db->addr); \ 1426 } while (0) 1427 1428 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db) 1429 { 1430 if (!db || !db->addr) 1431 return; 1432 1433 if (db->width == 1) 1434 SCMI_PROTO_FC_RING_DB(8); 1435 else if (db->width == 2) 1436 SCMI_PROTO_FC_RING_DB(16); 1437 else if (db->width == 4) 1438 SCMI_PROTO_FC_RING_DB(32); 1439 else /* db->width == 8 */ 1440 #ifdef CONFIG_64BIT 1441 SCMI_PROTO_FC_RING_DB(64); 1442 #else 1443 { 1444 u64 val = 0; 1445 1446 if (db->mask) 1447 val = ioread64_hi_lo(db->addr) & db->mask; 1448 iowrite64_hi_lo(db->set | val, db->addr); 1449 } 1450 #endif 1451 } 1452 1453 static const struct scmi_proto_helpers_ops helpers_ops = { 1454 .extended_name_get = scmi_common_extended_name_get, 1455 .iter_response_init = scmi_iterator_init, 1456 .iter_response_run = scmi_iterator_run, 1457 .fastchannel_init = scmi_common_fastchannel_init, 1458 .fastchannel_db_ring = scmi_common_fastchannel_db_ring, 1459 }; 1460 1461 /** 1462 * scmi_revision_area_get - Retrieve version memory area. 1463 * 1464 * @ph: A reference to the protocol handle. 1465 * 1466 * A helper to grab the version memory area reference during SCMI Base protocol 1467 * initialization. 1468 * 1469 * Return: A reference to the version memory area associated to the SCMI 1470 * instance underlying this protocol handle. 1471 */ 1472 struct scmi_revision_info * 1473 scmi_revision_area_get(const struct scmi_protocol_handle *ph) 1474 { 1475 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1476 1477 return pi->handle->version; 1478 } 1479 1480 /** 1481 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol 1482 * instance descriptor. 1483 * @info: The reference to the related SCMI instance. 1484 * @proto: The protocol descriptor. 1485 * 1486 * Allocate a new protocol instance descriptor, using the provided @proto 1487 * description, against the specified SCMI instance @info, and initialize it; 1488 * all resources management is handled via a dedicated per-protocol devres 1489 * group. 1490 * 1491 * Context: Assumes to be called with @protocols_mtx already acquired. 1492 * Return: A reference to a freshly allocated and initialized protocol instance 1493 * or ERR_PTR on failure. On failure the @proto reference is at first 1494 * put using @scmi_protocol_put() before releasing all the devres group. 1495 */ 1496 static struct scmi_protocol_instance * 1497 scmi_alloc_init_protocol_instance(struct scmi_info *info, 1498 const struct scmi_protocol *proto) 1499 { 1500 int ret = -ENOMEM; 1501 void *gid; 1502 struct scmi_protocol_instance *pi; 1503 const struct scmi_handle *handle = &info->handle; 1504 1505 /* Protocol specific devres group */ 1506 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL); 1507 if (!gid) { 1508 scmi_protocol_put(proto->id); 1509 goto out; 1510 } 1511 1512 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL); 1513 if (!pi) 1514 goto clean; 1515 1516 pi->gid = gid; 1517 pi->proto = proto; 1518 pi->handle = handle; 1519 pi->ph.dev = handle->dev; 1520 pi->ph.xops = &xfer_ops; 1521 pi->ph.hops = &helpers_ops; 1522 pi->ph.set_priv = scmi_set_protocol_priv; 1523 pi->ph.get_priv = scmi_get_protocol_priv; 1524 refcount_set(&pi->users, 1); 1525 /* proto->init is assured NON NULL by scmi_protocol_register */ 1526 ret = pi->proto->instance_init(&pi->ph); 1527 if (ret) 1528 goto clean; 1529 1530 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1, 1531 GFP_KERNEL); 1532 if (ret != proto->id) 1533 goto clean; 1534 1535 /* 1536 * Warn but ignore events registration errors since we do not want 1537 * to skip whole protocols if their notifications are messed up. 1538 */ 1539 if (pi->proto->events) { 1540 ret = scmi_register_protocol_events(handle, pi->proto->id, 1541 &pi->ph, 1542 pi->proto->events); 1543 if (ret) 1544 dev_warn(handle->dev, 1545 "Protocol:%X - Events Registration Failed - err:%d\n", 1546 pi->proto->id, ret); 1547 } 1548 1549 devres_close_group(handle->dev, pi->gid); 1550 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id); 1551 1552 return pi; 1553 1554 clean: 1555 /* Take care to put the protocol module's owner before releasing all */ 1556 scmi_protocol_put(proto->id); 1557 devres_release_group(handle->dev, gid); 1558 out: 1559 return ERR_PTR(ret); 1560 } 1561 1562 /** 1563 * scmi_get_protocol_instance - Protocol initialization helper. 1564 * @handle: A reference to the SCMI platform instance. 1565 * @protocol_id: The protocol being requested. 1566 * 1567 * In case the required protocol has never been requested before for this 1568 * instance, allocate and initialize all the needed structures while handling 1569 * resource allocation with a dedicated per-protocol devres subgroup. 1570 * 1571 * Return: A reference to an initialized protocol instance or error on failure: 1572 * in particular returns -EPROBE_DEFER when the desired protocol could 1573 * NOT be found. 1574 */ 1575 static struct scmi_protocol_instance * __must_check 1576 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id) 1577 { 1578 struct scmi_protocol_instance *pi; 1579 struct scmi_info *info = handle_to_scmi_info(handle); 1580 1581 mutex_lock(&info->protocols_mtx); 1582 pi = idr_find(&info->protocols, protocol_id); 1583 1584 if (pi) { 1585 refcount_inc(&pi->users); 1586 } else { 1587 const struct scmi_protocol *proto; 1588 1589 /* Fails if protocol not registered on bus */ 1590 proto = scmi_protocol_get(protocol_id); 1591 if (proto) 1592 pi = scmi_alloc_init_protocol_instance(info, proto); 1593 else 1594 pi = ERR_PTR(-EPROBE_DEFER); 1595 } 1596 mutex_unlock(&info->protocols_mtx); 1597 1598 return pi; 1599 } 1600 1601 /** 1602 * scmi_protocol_acquire - Protocol acquire 1603 * @handle: A reference to the SCMI platform instance. 1604 * @protocol_id: The protocol being requested. 1605 * 1606 * Register a new user for the requested protocol on the specified SCMI 1607 * platform instance, possibly triggering its initialization on first user. 1608 * 1609 * Return: 0 if protocol was acquired successfully. 1610 */ 1611 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id) 1612 { 1613 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id)); 1614 } 1615 1616 /** 1617 * scmi_protocol_release - Protocol de-initialization helper. 1618 * @handle: A reference to the SCMI platform instance. 1619 * @protocol_id: The protocol being requested. 1620 * 1621 * Remove one user for the specified protocol and triggers de-initialization 1622 * and resources de-allocation once the last user has gone. 1623 */ 1624 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id) 1625 { 1626 struct scmi_info *info = handle_to_scmi_info(handle); 1627 struct scmi_protocol_instance *pi; 1628 1629 mutex_lock(&info->protocols_mtx); 1630 pi = idr_find(&info->protocols, protocol_id); 1631 if (WARN_ON(!pi)) 1632 goto out; 1633 1634 if (refcount_dec_and_test(&pi->users)) { 1635 void *gid = pi->gid; 1636 1637 if (pi->proto->events) 1638 scmi_deregister_protocol_events(handle, protocol_id); 1639 1640 if (pi->proto->instance_deinit) 1641 pi->proto->instance_deinit(&pi->ph); 1642 1643 idr_remove(&info->protocols, protocol_id); 1644 1645 scmi_protocol_put(protocol_id); 1646 1647 devres_release_group(handle->dev, gid); 1648 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n", 1649 protocol_id); 1650 } 1651 1652 out: 1653 mutex_unlock(&info->protocols_mtx); 1654 } 1655 1656 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph, 1657 u8 *prot_imp) 1658 { 1659 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1660 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1661 1662 info->protocols_imp = prot_imp; 1663 } 1664 1665 static bool 1666 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id) 1667 { 1668 int i; 1669 struct scmi_info *info = handle_to_scmi_info(handle); 1670 struct scmi_revision_info *rev = handle->version; 1671 1672 if (!info->protocols_imp) 1673 return false; 1674 1675 for (i = 0; i < rev->num_protocols; i++) 1676 if (info->protocols_imp[i] == prot_id) 1677 return true; 1678 return false; 1679 } 1680 1681 struct scmi_protocol_devres { 1682 const struct scmi_handle *handle; 1683 u8 protocol_id; 1684 }; 1685 1686 static void scmi_devm_release_protocol(struct device *dev, void *res) 1687 { 1688 struct scmi_protocol_devres *dres = res; 1689 1690 scmi_protocol_release(dres->handle, dres->protocol_id); 1691 } 1692 1693 static struct scmi_protocol_instance __must_check * 1694 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id) 1695 { 1696 struct scmi_protocol_instance *pi; 1697 struct scmi_protocol_devres *dres; 1698 1699 dres = devres_alloc(scmi_devm_release_protocol, 1700 sizeof(*dres), GFP_KERNEL); 1701 if (!dres) 1702 return ERR_PTR(-ENOMEM); 1703 1704 pi = scmi_get_protocol_instance(sdev->handle, protocol_id); 1705 if (IS_ERR(pi)) { 1706 devres_free(dres); 1707 return pi; 1708 } 1709 1710 dres->handle = sdev->handle; 1711 dres->protocol_id = protocol_id; 1712 devres_add(&sdev->dev, dres); 1713 1714 return pi; 1715 } 1716 1717 /** 1718 * scmi_devm_protocol_get - Devres managed get protocol operations and handle 1719 * @sdev: A reference to an scmi_device whose embedded struct device is to 1720 * be used for devres accounting. 1721 * @protocol_id: The protocol being requested. 1722 * @ph: A pointer reference used to pass back the associated protocol handle. 1723 * 1724 * Get hold of a protocol accounting for its usage, eventually triggering its 1725 * initialization, and returning the protocol specific operations and related 1726 * protocol handle which will be used as first argument in most of the 1727 * protocols operations methods. 1728 * Being a devres based managed method, protocol hold will be automatically 1729 * released, and possibly de-initialized on last user, once the SCMI driver 1730 * owning the scmi_device is unbound from it. 1731 * 1732 * Return: A reference to the requested protocol operations or error. 1733 * Must be checked for errors by caller. 1734 */ 1735 static const void __must_check * 1736 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id, 1737 struct scmi_protocol_handle **ph) 1738 { 1739 struct scmi_protocol_instance *pi; 1740 1741 if (!ph) 1742 return ERR_PTR(-EINVAL); 1743 1744 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 1745 if (IS_ERR(pi)) 1746 return pi; 1747 1748 *ph = &pi->ph; 1749 1750 return pi->proto->ops; 1751 } 1752 1753 /** 1754 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol 1755 * @sdev: A reference to an scmi_device whose embedded struct device is to 1756 * be used for devres accounting. 1757 * @protocol_id: The protocol being requested. 1758 * 1759 * Get hold of a protocol accounting for its usage, possibly triggering its 1760 * initialization but without getting access to its protocol specific operations 1761 * and handle. 1762 * 1763 * Being a devres based managed method, protocol hold will be automatically 1764 * released, and possibly de-initialized on last user, once the SCMI driver 1765 * owning the scmi_device is unbound from it. 1766 * 1767 * Return: 0 on SUCCESS 1768 */ 1769 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev, 1770 u8 protocol_id) 1771 { 1772 struct scmi_protocol_instance *pi; 1773 1774 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 1775 if (IS_ERR(pi)) 1776 return PTR_ERR(pi); 1777 1778 return 0; 1779 } 1780 1781 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data) 1782 { 1783 struct scmi_protocol_devres *dres = res; 1784 1785 if (WARN_ON(!dres || !data)) 1786 return 0; 1787 1788 return dres->protocol_id == *((u8 *)data); 1789 } 1790 1791 /** 1792 * scmi_devm_protocol_put - Devres managed put protocol operations and handle 1793 * @sdev: A reference to an scmi_device whose embedded struct device is to 1794 * be used for devres accounting. 1795 * @protocol_id: The protocol being requested. 1796 * 1797 * Explicitly release a protocol hold previously obtained calling the above 1798 * @scmi_devm_protocol_get. 1799 */ 1800 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id) 1801 { 1802 int ret; 1803 1804 ret = devres_release(&sdev->dev, scmi_devm_release_protocol, 1805 scmi_devm_protocol_match, &protocol_id); 1806 WARN_ON(ret); 1807 } 1808 1809 /** 1810 * scmi_is_transport_atomic - Method to check if underlying transport for an 1811 * SCMI instance is configured as atomic. 1812 * 1813 * @handle: A reference to the SCMI platform instance. 1814 * @atomic_threshold: An optional return value for the system wide currently 1815 * configured threshold for atomic operations. 1816 * 1817 * Return: True if transport is configured as atomic 1818 */ 1819 static bool scmi_is_transport_atomic(const struct scmi_handle *handle, 1820 unsigned int *atomic_threshold) 1821 { 1822 bool ret; 1823 struct scmi_info *info = handle_to_scmi_info(handle); 1824 1825 ret = info->desc->atomic_enabled && is_transport_polling_capable(info); 1826 if (ret && atomic_threshold) 1827 *atomic_threshold = info->atomic_threshold; 1828 1829 return ret; 1830 } 1831 1832 static inline 1833 struct scmi_handle *scmi_handle_get_from_info_unlocked(struct scmi_info *info) 1834 { 1835 info->users++; 1836 return &info->handle; 1837 } 1838 1839 /** 1840 * scmi_handle_get() - Get the SCMI handle for a device 1841 * 1842 * @dev: pointer to device for which we want SCMI handle 1843 * 1844 * NOTE: The function does not track individual clients of the framework 1845 * and is expected to be maintained by caller of SCMI protocol library. 1846 * scmi_handle_put must be balanced with successful scmi_handle_get 1847 * 1848 * Return: pointer to handle if successful, NULL on error 1849 */ 1850 struct scmi_handle *scmi_handle_get(struct device *dev) 1851 { 1852 struct list_head *p; 1853 struct scmi_info *info; 1854 struct scmi_handle *handle = NULL; 1855 1856 mutex_lock(&scmi_list_mutex); 1857 list_for_each(p, &scmi_list) { 1858 info = list_entry(p, struct scmi_info, node); 1859 if (dev->parent == info->dev) { 1860 handle = scmi_handle_get_from_info_unlocked(info); 1861 break; 1862 } 1863 } 1864 mutex_unlock(&scmi_list_mutex); 1865 1866 return handle; 1867 } 1868 1869 /** 1870 * scmi_handle_put() - Release the handle acquired by scmi_handle_get 1871 * 1872 * @handle: handle acquired by scmi_handle_get 1873 * 1874 * NOTE: The function does not track individual clients of the framework 1875 * and is expected to be maintained by caller of SCMI protocol library. 1876 * scmi_handle_put must be balanced with successful scmi_handle_get 1877 * 1878 * Return: 0 is successfully released 1879 * if null was passed, it returns -EINVAL; 1880 */ 1881 int scmi_handle_put(const struct scmi_handle *handle) 1882 { 1883 struct scmi_info *info; 1884 1885 if (!handle) 1886 return -EINVAL; 1887 1888 info = handle_to_scmi_info(handle); 1889 mutex_lock(&scmi_list_mutex); 1890 if (!WARN_ON(!info->users)) 1891 info->users--; 1892 mutex_unlock(&scmi_list_mutex); 1893 1894 return 0; 1895 } 1896 1897 static int __scmi_xfer_info_init(struct scmi_info *sinfo, 1898 struct scmi_xfers_info *info) 1899 { 1900 int i; 1901 struct scmi_xfer *xfer; 1902 struct device *dev = sinfo->dev; 1903 const struct scmi_desc *desc = sinfo->desc; 1904 1905 /* Pre-allocated messages, no more than what hdr.seq can support */ 1906 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) { 1907 dev_err(dev, 1908 "Invalid maximum messages %d, not in range [1 - %lu]\n", 1909 info->max_msg, MSG_TOKEN_MAX); 1910 return -EINVAL; 1911 } 1912 1913 hash_init(info->pending_xfers); 1914 1915 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */ 1916 info->xfer_alloc_table = devm_kcalloc(dev, BITS_TO_LONGS(MSG_TOKEN_MAX), 1917 sizeof(long), GFP_KERNEL); 1918 if (!info->xfer_alloc_table) 1919 return -ENOMEM; 1920 1921 /* 1922 * Preallocate a number of xfers equal to max inflight messages, 1923 * pre-initialize the buffer pointer to pre-allocated buffers and 1924 * attach all of them to the free list 1925 */ 1926 INIT_HLIST_HEAD(&info->free_xfers); 1927 for (i = 0; i < info->max_msg; i++) { 1928 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL); 1929 if (!xfer) 1930 return -ENOMEM; 1931 1932 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size, 1933 GFP_KERNEL); 1934 if (!xfer->rx.buf) 1935 return -ENOMEM; 1936 1937 xfer->tx.buf = xfer->rx.buf; 1938 init_completion(&xfer->done); 1939 spin_lock_init(&xfer->lock); 1940 1941 /* Add initialized xfer to the free list */ 1942 hlist_add_head(&xfer->node, &info->free_xfers); 1943 } 1944 1945 spin_lock_init(&info->xfer_lock); 1946 1947 return 0; 1948 } 1949 1950 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo) 1951 { 1952 const struct scmi_desc *desc = sinfo->desc; 1953 1954 if (!desc->ops->get_max_msg) { 1955 sinfo->tx_minfo.max_msg = desc->max_msg; 1956 sinfo->rx_minfo.max_msg = desc->max_msg; 1957 } else { 1958 struct scmi_chan_info *base_cinfo; 1959 1960 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE); 1961 if (!base_cinfo) 1962 return -EINVAL; 1963 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo); 1964 1965 /* RX channel is optional so can be skipped */ 1966 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE); 1967 if (base_cinfo) 1968 sinfo->rx_minfo.max_msg = 1969 desc->ops->get_max_msg(base_cinfo); 1970 } 1971 1972 return 0; 1973 } 1974 1975 static int scmi_xfer_info_init(struct scmi_info *sinfo) 1976 { 1977 int ret; 1978 1979 ret = scmi_channels_max_msg_configure(sinfo); 1980 if (ret) 1981 return ret; 1982 1983 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo); 1984 if (!ret && idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE)) 1985 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo); 1986 1987 return ret; 1988 } 1989 1990 static int scmi_chan_setup(struct scmi_info *info, struct device *dev, 1991 int prot_id, bool tx) 1992 { 1993 int ret, idx; 1994 struct scmi_chan_info *cinfo; 1995 struct idr *idr; 1996 1997 /* Transmit channel is first entry i.e. index 0 */ 1998 idx = tx ? 0 : 1; 1999 idr = tx ? &info->tx_idr : &info->rx_idr; 2000 2001 /* check if already allocated, used for multiple device per protocol */ 2002 cinfo = idr_find(idr, prot_id); 2003 if (cinfo) 2004 return 0; 2005 2006 if (!info->desc->ops->chan_available(dev, idx)) { 2007 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE); 2008 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */ 2009 return -EINVAL; 2010 goto idr_alloc; 2011 } 2012 2013 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL); 2014 if (!cinfo) 2015 return -ENOMEM; 2016 2017 cinfo->dev = dev; 2018 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms; 2019 2020 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx); 2021 if (ret) 2022 return ret; 2023 2024 if (tx && is_polling_required(cinfo, info)) { 2025 if (is_transport_polling_capable(info)) 2026 dev_info(dev, 2027 "Enabled polling mode TX channel - prot_id:%d\n", 2028 prot_id); 2029 else 2030 dev_warn(dev, 2031 "Polling mode NOT supported by transport.\n"); 2032 } 2033 2034 idr_alloc: 2035 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL); 2036 if (ret != prot_id) { 2037 dev_err(dev, "unable to allocate SCMI idr slot err %d\n", ret); 2038 return ret; 2039 } 2040 2041 cinfo->handle = &info->handle; 2042 return 0; 2043 } 2044 2045 static inline int 2046 scmi_txrx_setup(struct scmi_info *info, struct device *dev, int prot_id) 2047 { 2048 int ret = scmi_chan_setup(info, dev, prot_id, true); 2049 2050 if (!ret) { 2051 /* Rx is optional, report only memory errors */ 2052 ret = scmi_chan_setup(info, dev, prot_id, false); 2053 if (ret && ret != -ENOMEM) 2054 ret = 0; 2055 } 2056 2057 return ret; 2058 } 2059 2060 /** 2061 * scmi_get_protocol_device - Helper to get/create an SCMI device. 2062 * 2063 * @np: A device node representing a valid active protocols for the referred 2064 * SCMI instance. 2065 * @info: The referred SCMI instance for which we are getting/creating this 2066 * device. 2067 * @prot_id: The protocol ID. 2068 * @name: The device name. 2069 * 2070 * Referring to the specific SCMI instance identified by @info, this helper 2071 * takes care to return a properly initialized device matching the requested 2072 * @proto_id and @name: if device was still not existent it is created as a 2073 * child of the specified SCMI instance @info and its transport properly 2074 * initialized as usual. 2075 * 2076 * Return: A properly initialized scmi device, NULL otherwise. 2077 */ 2078 static inline struct scmi_device * 2079 scmi_get_protocol_device(struct device_node *np, struct scmi_info *info, 2080 int prot_id, const char *name) 2081 { 2082 struct scmi_device *sdev; 2083 2084 /* Already created for this parent SCMI instance ? */ 2085 sdev = scmi_child_dev_find(info->dev, prot_id, name); 2086 if (sdev) 2087 return sdev; 2088 2089 mutex_lock(&scmi_syspower_mtx); 2090 if (prot_id == SCMI_PROTOCOL_SYSTEM && scmi_syspower_registered) { 2091 dev_warn(info->dev, 2092 "SCMI SystemPower protocol device must be unique !\n"); 2093 mutex_unlock(&scmi_syspower_mtx); 2094 2095 return NULL; 2096 } 2097 2098 pr_debug("Creating SCMI device (%s) for protocol %x\n", name, prot_id); 2099 2100 sdev = scmi_device_create(np, info->dev, prot_id, name); 2101 if (!sdev) { 2102 dev_err(info->dev, "failed to create %d protocol device\n", 2103 prot_id); 2104 mutex_unlock(&scmi_syspower_mtx); 2105 2106 return NULL; 2107 } 2108 2109 if (scmi_txrx_setup(info, &sdev->dev, prot_id)) { 2110 dev_err(&sdev->dev, "failed to setup transport\n"); 2111 scmi_device_destroy(sdev); 2112 mutex_unlock(&scmi_syspower_mtx); 2113 2114 return NULL; 2115 } 2116 2117 if (prot_id == SCMI_PROTOCOL_SYSTEM) 2118 scmi_syspower_registered = true; 2119 2120 mutex_unlock(&scmi_syspower_mtx); 2121 2122 return sdev; 2123 } 2124 2125 static inline void 2126 scmi_create_protocol_device(struct device_node *np, struct scmi_info *info, 2127 int prot_id, const char *name) 2128 { 2129 struct scmi_device *sdev; 2130 2131 sdev = scmi_get_protocol_device(np, info, prot_id, name); 2132 if (!sdev) 2133 return; 2134 2135 /* setup handle now as the transport is ready */ 2136 scmi_set_handle(sdev); 2137 } 2138 2139 /** 2140 * scmi_create_protocol_devices - Create devices for all pending requests for 2141 * this SCMI instance. 2142 * 2143 * @np: The device node describing the protocol 2144 * @info: The SCMI instance descriptor 2145 * @prot_id: The protocol ID 2146 * 2147 * All devices previously requested for this instance (if any) are found and 2148 * created by scanning the proper @&scmi_requested_devices entry. 2149 */ 2150 static void scmi_create_protocol_devices(struct device_node *np, 2151 struct scmi_info *info, int prot_id) 2152 { 2153 struct list_head *phead; 2154 2155 mutex_lock(&scmi_requested_devices_mtx); 2156 phead = idr_find(&scmi_requested_devices, prot_id); 2157 if (phead) { 2158 struct scmi_requested_dev *rdev; 2159 2160 list_for_each_entry(rdev, phead, node) 2161 scmi_create_protocol_device(np, info, prot_id, 2162 rdev->id_table->name); 2163 } 2164 mutex_unlock(&scmi_requested_devices_mtx); 2165 } 2166 2167 /** 2168 * scmi_protocol_device_request - Helper to request a device 2169 * 2170 * @id_table: A protocol/name pair descriptor for the device to be created. 2171 * 2172 * This helper let an SCMI driver request specific devices identified by the 2173 * @id_table to be created for each active SCMI instance. 2174 * 2175 * The requested device name MUST NOT be already existent for any protocol; 2176 * at first the freshly requested @id_table is annotated in the IDR table 2177 * @scmi_requested_devices, then a matching device is created for each already 2178 * active SCMI instance. (if any) 2179 * 2180 * This way the requested device is created straight-away for all the already 2181 * initialized(probed) SCMI instances (handles) and it remains also annotated 2182 * as pending creation if the requesting SCMI driver was loaded before some 2183 * SCMI instance and related transports were available: when such late instance 2184 * is probed, its probe will take care to scan the list of pending requested 2185 * devices and create those on its own (see @scmi_create_protocol_devices and 2186 * its enclosing loop) 2187 * 2188 * Return: 0 on Success 2189 */ 2190 int scmi_protocol_device_request(const struct scmi_device_id *id_table) 2191 { 2192 int ret = 0; 2193 unsigned int id = 0; 2194 struct list_head *head, *phead = NULL; 2195 struct scmi_requested_dev *rdev; 2196 struct scmi_info *info; 2197 2198 pr_debug("Requesting SCMI device (%s) for protocol %x\n", 2199 id_table->name, id_table->protocol_id); 2200 2201 /* 2202 * Search for the matching protocol rdev list and then search 2203 * of any existent equally named device...fails if any duplicate found. 2204 */ 2205 mutex_lock(&scmi_requested_devices_mtx); 2206 idr_for_each_entry(&scmi_requested_devices, head, id) { 2207 if (!phead) { 2208 /* A list found registered in the IDR is never empty */ 2209 rdev = list_first_entry(head, struct scmi_requested_dev, 2210 node); 2211 if (rdev->id_table->protocol_id == 2212 id_table->protocol_id) 2213 phead = head; 2214 } 2215 list_for_each_entry(rdev, head, node) { 2216 if (!strcmp(rdev->id_table->name, id_table->name)) { 2217 pr_err("Ignoring duplicate request [%d] %s\n", 2218 rdev->id_table->protocol_id, 2219 rdev->id_table->name); 2220 ret = -EINVAL; 2221 goto out; 2222 } 2223 } 2224 } 2225 2226 /* 2227 * No duplicate found for requested id_table, so let's create a new 2228 * requested device entry for this new valid request. 2229 */ 2230 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2231 if (!rdev) { 2232 ret = -ENOMEM; 2233 goto out; 2234 } 2235 rdev->id_table = id_table; 2236 2237 /* 2238 * Append the new requested device table descriptor to the head of the 2239 * related protocol list, eventually creating such head if not already 2240 * there. 2241 */ 2242 if (!phead) { 2243 phead = kzalloc(sizeof(*phead), GFP_KERNEL); 2244 if (!phead) { 2245 kfree(rdev); 2246 ret = -ENOMEM; 2247 goto out; 2248 } 2249 INIT_LIST_HEAD(phead); 2250 2251 ret = idr_alloc(&scmi_requested_devices, (void *)phead, 2252 id_table->protocol_id, 2253 id_table->protocol_id + 1, GFP_KERNEL); 2254 if (ret != id_table->protocol_id) { 2255 pr_err("Failed to save SCMI device - ret:%d\n", ret); 2256 kfree(rdev); 2257 kfree(phead); 2258 ret = -EINVAL; 2259 goto out; 2260 } 2261 ret = 0; 2262 } 2263 list_add(&rdev->node, phead); 2264 2265 /* 2266 * Now effectively create and initialize the requested device for every 2267 * already initialized SCMI instance which has registered the requested 2268 * protocol as a valid active one: i.e. defined in DT and supported by 2269 * current platform FW. 2270 */ 2271 mutex_lock(&scmi_list_mutex); 2272 list_for_each_entry(info, &scmi_list, node) { 2273 struct device_node *child; 2274 2275 child = idr_find(&info->active_protocols, 2276 id_table->protocol_id); 2277 if (child) { 2278 struct scmi_device *sdev; 2279 2280 sdev = scmi_get_protocol_device(child, info, 2281 id_table->protocol_id, 2282 id_table->name); 2283 if (sdev) { 2284 /* Set handle if not already set: device existed */ 2285 if (!sdev->handle) 2286 sdev->handle = 2287 scmi_handle_get_from_info_unlocked(info); 2288 /* Relink consumer and suppliers */ 2289 if (sdev->handle) 2290 scmi_device_link_add(&sdev->dev, 2291 sdev->handle->dev); 2292 } 2293 } else { 2294 dev_err(info->dev, 2295 "Failed. SCMI protocol %d not active.\n", 2296 id_table->protocol_id); 2297 } 2298 } 2299 mutex_unlock(&scmi_list_mutex); 2300 2301 out: 2302 mutex_unlock(&scmi_requested_devices_mtx); 2303 2304 return ret; 2305 } 2306 2307 /** 2308 * scmi_protocol_device_unrequest - Helper to unrequest a device 2309 * 2310 * @id_table: A protocol/name pair descriptor for the device to be unrequested. 2311 * 2312 * An helper to let an SCMI driver release its request about devices; note that 2313 * devices are created and initialized once the first SCMI driver request them 2314 * but they destroyed only on SCMI core unloading/unbinding. 2315 * 2316 * The current SCMI transport layer uses such devices as internal references and 2317 * as such they could be shared as same transport between multiple drivers so 2318 * that cannot be safely destroyed till the whole SCMI stack is removed. 2319 * (unless adding further burden of refcounting.) 2320 */ 2321 void scmi_protocol_device_unrequest(const struct scmi_device_id *id_table) 2322 { 2323 struct list_head *phead; 2324 2325 pr_debug("Unrequesting SCMI device (%s) for protocol %x\n", 2326 id_table->name, id_table->protocol_id); 2327 2328 mutex_lock(&scmi_requested_devices_mtx); 2329 phead = idr_find(&scmi_requested_devices, id_table->protocol_id); 2330 if (phead) { 2331 struct scmi_requested_dev *victim, *tmp; 2332 2333 list_for_each_entry_safe(victim, tmp, phead, node) { 2334 if (!strcmp(victim->id_table->name, id_table->name)) { 2335 list_del(&victim->node); 2336 kfree(victim); 2337 break; 2338 } 2339 } 2340 2341 if (list_empty(phead)) { 2342 idr_remove(&scmi_requested_devices, 2343 id_table->protocol_id); 2344 kfree(phead); 2345 } 2346 } 2347 mutex_unlock(&scmi_requested_devices_mtx); 2348 } 2349 2350 static int scmi_cleanup_txrx_channels(struct scmi_info *info) 2351 { 2352 int ret; 2353 struct idr *idr = &info->tx_idr; 2354 2355 ret = idr_for_each(idr, info->desc->ops->chan_free, idr); 2356 idr_destroy(&info->tx_idr); 2357 2358 idr = &info->rx_idr; 2359 ret = idr_for_each(idr, info->desc->ops->chan_free, idr); 2360 idr_destroy(&info->rx_idr); 2361 2362 return ret; 2363 } 2364 2365 static int scmi_probe(struct platform_device *pdev) 2366 { 2367 int ret; 2368 struct scmi_handle *handle; 2369 const struct scmi_desc *desc; 2370 struct scmi_info *info; 2371 struct device *dev = &pdev->dev; 2372 struct device_node *child, *np = dev->of_node; 2373 2374 desc = of_device_get_match_data(dev); 2375 if (!desc) 2376 return -EINVAL; 2377 2378 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); 2379 if (!info) 2380 return -ENOMEM; 2381 2382 info->dev = dev; 2383 info->desc = desc; 2384 INIT_LIST_HEAD(&info->node); 2385 idr_init(&info->protocols); 2386 mutex_init(&info->protocols_mtx); 2387 idr_init(&info->active_protocols); 2388 2389 platform_set_drvdata(pdev, info); 2390 idr_init(&info->tx_idr); 2391 idr_init(&info->rx_idr); 2392 2393 handle = &info->handle; 2394 handle->dev = info->dev; 2395 handle->version = &info->version; 2396 handle->devm_protocol_acquire = scmi_devm_protocol_acquire; 2397 handle->devm_protocol_get = scmi_devm_protocol_get; 2398 handle->devm_protocol_put = scmi_devm_protocol_put; 2399 2400 /* System wide atomic threshold for atomic ops .. if any */ 2401 if (!of_property_read_u32(np, "atomic-threshold-us", 2402 &info->atomic_threshold)) 2403 dev_info(dev, 2404 "SCMI System wide atomic threshold set to %d us\n", 2405 info->atomic_threshold); 2406 handle->is_transport_atomic = scmi_is_transport_atomic; 2407 2408 if (desc->ops->link_supplier) { 2409 ret = desc->ops->link_supplier(dev); 2410 if (ret) 2411 return ret; 2412 } 2413 2414 ret = scmi_txrx_setup(info, dev, SCMI_PROTOCOL_BASE); 2415 if (ret) 2416 return ret; 2417 2418 ret = scmi_xfer_info_init(info); 2419 if (ret) 2420 goto clear_txrx_setup; 2421 2422 if (scmi_notification_init(handle)) 2423 dev_err(dev, "SCMI Notifications NOT available.\n"); 2424 2425 if (info->desc->atomic_enabled && !is_transport_polling_capable(info)) 2426 dev_err(dev, 2427 "Transport is not polling capable. Atomic mode not supported.\n"); 2428 2429 /* 2430 * Trigger SCMI Base protocol initialization. 2431 * It's mandatory and won't be ever released/deinit until the 2432 * SCMI stack is shutdown/unloaded as a whole. 2433 */ 2434 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE); 2435 if (ret) { 2436 dev_err(dev, "unable to communicate with SCMI\n"); 2437 goto notification_exit; 2438 } 2439 2440 mutex_lock(&scmi_list_mutex); 2441 list_add_tail(&info->node, &scmi_list); 2442 mutex_unlock(&scmi_list_mutex); 2443 2444 for_each_available_child_of_node(np, child) { 2445 u32 prot_id; 2446 2447 if (of_property_read_u32(child, "reg", &prot_id)) 2448 continue; 2449 2450 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 2451 dev_err(dev, "Out of range protocol %d\n", prot_id); 2452 2453 if (!scmi_is_protocol_implemented(handle, prot_id)) { 2454 dev_err(dev, "SCMI protocol %d not implemented\n", 2455 prot_id); 2456 continue; 2457 } 2458 2459 /* 2460 * Save this valid DT protocol descriptor amongst 2461 * @active_protocols for this SCMI instance/ 2462 */ 2463 ret = idr_alloc(&info->active_protocols, child, 2464 prot_id, prot_id + 1, GFP_KERNEL); 2465 if (ret != prot_id) { 2466 dev_err(dev, "SCMI protocol %d already activated. Skip\n", 2467 prot_id); 2468 continue; 2469 } 2470 2471 of_node_get(child); 2472 scmi_create_protocol_devices(child, info, prot_id); 2473 } 2474 2475 return 0; 2476 2477 notification_exit: 2478 scmi_notification_exit(&info->handle); 2479 clear_txrx_setup: 2480 scmi_cleanup_txrx_channels(info); 2481 return ret; 2482 } 2483 2484 void scmi_free_channel(struct scmi_chan_info *cinfo, struct idr *idr, int id) 2485 { 2486 idr_remove(idr, id); 2487 } 2488 2489 static int scmi_remove(struct platform_device *pdev) 2490 { 2491 int ret, id; 2492 struct scmi_info *info = platform_get_drvdata(pdev); 2493 struct device_node *child; 2494 2495 mutex_lock(&scmi_list_mutex); 2496 if (info->users) 2497 dev_warn(&pdev->dev, 2498 "Still active SCMI users will be forcibly unbound.\n"); 2499 list_del(&info->node); 2500 mutex_unlock(&scmi_list_mutex); 2501 2502 scmi_notification_exit(&info->handle); 2503 2504 mutex_lock(&info->protocols_mtx); 2505 idr_destroy(&info->protocols); 2506 mutex_unlock(&info->protocols_mtx); 2507 2508 idr_for_each_entry(&info->active_protocols, child, id) 2509 of_node_put(child); 2510 idr_destroy(&info->active_protocols); 2511 2512 /* Safe to free channels since no more users */ 2513 ret = scmi_cleanup_txrx_channels(info); 2514 if (ret) 2515 dev_warn(&pdev->dev, "Failed to cleanup SCMI channels.\n"); 2516 2517 return 0; 2518 } 2519 2520 static ssize_t protocol_version_show(struct device *dev, 2521 struct device_attribute *attr, char *buf) 2522 { 2523 struct scmi_info *info = dev_get_drvdata(dev); 2524 2525 return sprintf(buf, "%u.%u\n", info->version.major_ver, 2526 info->version.minor_ver); 2527 } 2528 static DEVICE_ATTR_RO(protocol_version); 2529 2530 static ssize_t firmware_version_show(struct device *dev, 2531 struct device_attribute *attr, char *buf) 2532 { 2533 struct scmi_info *info = dev_get_drvdata(dev); 2534 2535 return sprintf(buf, "0x%x\n", info->version.impl_ver); 2536 } 2537 static DEVICE_ATTR_RO(firmware_version); 2538 2539 static ssize_t vendor_id_show(struct device *dev, 2540 struct device_attribute *attr, char *buf) 2541 { 2542 struct scmi_info *info = dev_get_drvdata(dev); 2543 2544 return sprintf(buf, "%s\n", info->version.vendor_id); 2545 } 2546 static DEVICE_ATTR_RO(vendor_id); 2547 2548 static ssize_t sub_vendor_id_show(struct device *dev, 2549 struct device_attribute *attr, char *buf) 2550 { 2551 struct scmi_info *info = dev_get_drvdata(dev); 2552 2553 return sprintf(buf, "%s\n", info->version.sub_vendor_id); 2554 } 2555 static DEVICE_ATTR_RO(sub_vendor_id); 2556 2557 static struct attribute *versions_attrs[] = { 2558 &dev_attr_firmware_version.attr, 2559 &dev_attr_protocol_version.attr, 2560 &dev_attr_vendor_id.attr, 2561 &dev_attr_sub_vendor_id.attr, 2562 NULL, 2563 }; 2564 ATTRIBUTE_GROUPS(versions); 2565 2566 /* Each compatible listed below must have descriptor associated with it */ 2567 static const struct of_device_id scmi_of_match[] = { 2568 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX 2569 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc }, 2570 #endif 2571 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE 2572 { .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc }, 2573 #endif 2574 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC 2575 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc}, 2576 #endif 2577 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO 2578 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc}, 2579 #endif 2580 { /* Sentinel */ }, 2581 }; 2582 2583 MODULE_DEVICE_TABLE(of, scmi_of_match); 2584 2585 static struct platform_driver scmi_driver = { 2586 .driver = { 2587 .name = "arm-scmi", 2588 .suppress_bind_attrs = true, 2589 .of_match_table = scmi_of_match, 2590 .dev_groups = versions_groups, 2591 }, 2592 .probe = scmi_probe, 2593 .remove = scmi_remove, 2594 }; 2595 2596 /** 2597 * __scmi_transports_setup - Common helper to call transport-specific 2598 * .init/.exit code if provided. 2599 * 2600 * @init: A flag to distinguish between init and exit. 2601 * 2602 * Note that, if provided, we invoke .init/.exit functions for all the 2603 * transports currently compiled in. 2604 * 2605 * Return: 0 on Success. 2606 */ 2607 static inline int __scmi_transports_setup(bool init) 2608 { 2609 int ret = 0; 2610 const struct of_device_id *trans; 2611 2612 for (trans = scmi_of_match; trans->data; trans++) { 2613 const struct scmi_desc *tdesc = trans->data; 2614 2615 if ((init && !tdesc->transport_init) || 2616 (!init && !tdesc->transport_exit)) 2617 continue; 2618 2619 if (init) 2620 ret = tdesc->transport_init(); 2621 else 2622 tdesc->transport_exit(); 2623 2624 if (ret) { 2625 pr_err("SCMI transport %s FAILED initialization!\n", 2626 trans->compatible); 2627 break; 2628 } 2629 } 2630 2631 return ret; 2632 } 2633 2634 static int __init scmi_transports_init(void) 2635 { 2636 return __scmi_transports_setup(true); 2637 } 2638 2639 static void __exit scmi_transports_exit(void) 2640 { 2641 __scmi_transports_setup(false); 2642 } 2643 2644 static int __init scmi_driver_init(void) 2645 { 2646 int ret; 2647 2648 /* Bail out if no SCMI transport was configured */ 2649 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT))) 2650 return -EINVAL; 2651 2652 scmi_bus_init(); 2653 2654 /* Initialize any compiled-in transport which provided an init/exit */ 2655 ret = scmi_transports_init(); 2656 if (ret) 2657 return ret; 2658 2659 scmi_base_register(); 2660 2661 scmi_clock_register(); 2662 scmi_perf_register(); 2663 scmi_power_register(); 2664 scmi_reset_register(); 2665 scmi_sensors_register(); 2666 scmi_voltage_register(); 2667 scmi_system_register(); 2668 scmi_powercap_register(); 2669 2670 return platform_driver_register(&scmi_driver); 2671 } 2672 subsys_initcall(scmi_driver_init); 2673 2674 static void __exit scmi_driver_exit(void) 2675 { 2676 scmi_base_unregister(); 2677 2678 scmi_clock_unregister(); 2679 scmi_perf_unregister(); 2680 scmi_power_unregister(); 2681 scmi_reset_unregister(); 2682 scmi_sensors_unregister(); 2683 scmi_voltage_unregister(); 2684 scmi_system_unregister(); 2685 scmi_powercap_unregister(); 2686 2687 scmi_bus_exit(); 2688 2689 scmi_transports_exit(); 2690 2691 platform_driver_unregister(&scmi_driver); 2692 } 2693 module_exit(scmi_driver_exit); 2694 2695 MODULE_ALIAS("platform:arm-scmi"); 2696 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 2697 MODULE_DESCRIPTION("ARM SCMI protocol driver"); 2698 MODULE_LICENSE("GPL v2"); 2699