1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Control and Management Interface (SCMI) Message Protocol driver 4 * 5 * SCMI Message Protocol is used between the System Control Processor(SCP) 6 * and the Application Processors(AP). The Message Handling Unit(MHU) 7 * provides a mechanism for inter-processor communication between SCP's 8 * Cortex M3 and AP. 9 * 10 * SCP offers control and management of the core/cluster power states, 11 * various power domain DVFS including the core/cluster, certain system 12 * clocks configuration, thermal sensors and many others. 13 * 14 * Copyright (C) 2018-2021 ARM Ltd. 15 */ 16 17 #include <linux/bitmap.h> 18 #include <linux/device.h> 19 #include <linux/export.h> 20 #include <linux/idr.h> 21 #include <linux/io.h> 22 #include <linux/io-64-nonatomic-hi-lo.h> 23 #include <linux/kernel.h> 24 #include <linux/ktime.h> 25 #include <linux/hashtable.h> 26 #include <linux/list.h> 27 #include <linux/module.h> 28 #include <linux/of_address.h> 29 #include <linux/of_device.h> 30 #include <linux/processor.h> 31 #include <linux/refcount.h> 32 #include <linux/slab.h> 33 34 #include "common.h" 35 #include "notify.h" 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/scmi.h> 39 40 enum scmi_error_codes { 41 SCMI_SUCCESS = 0, /* Success */ 42 SCMI_ERR_SUPPORT = -1, /* Not supported */ 43 SCMI_ERR_PARAMS = -2, /* Invalid Parameters */ 44 SCMI_ERR_ACCESS = -3, /* Invalid access/permission denied */ 45 SCMI_ERR_ENTRY = -4, /* Not found */ 46 SCMI_ERR_RANGE = -5, /* Value out of range */ 47 SCMI_ERR_BUSY = -6, /* Device busy */ 48 SCMI_ERR_COMMS = -7, /* Communication Error */ 49 SCMI_ERR_GENERIC = -8, /* Generic Error */ 50 SCMI_ERR_HARDWARE = -9, /* Hardware Error */ 51 SCMI_ERR_PROTOCOL = -10,/* Protocol Error */ 52 }; 53 54 /* List of all SCMI devices active in system */ 55 static LIST_HEAD(scmi_list); 56 /* Protection for the entire list */ 57 static DEFINE_MUTEX(scmi_list_mutex); 58 /* Track the unique id for the transfers for debug & profiling purpose */ 59 static atomic_t transfer_last_id; 60 61 static DEFINE_IDR(scmi_requested_devices); 62 static DEFINE_MUTEX(scmi_requested_devices_mtx); 63 64 /* Track globally the creation of SCMI SystemPower related devices */ 65 static bool scmi_syspower_registered; 66 /* Protect access to scmi_syspower_registered */ 67 static DEFINE_MUTEX(scmi_syspower_mtx); 68 69 struct scmi_requested_dev { 70 const struct scmi_device_id *id_table; 71 struct list_head node; 72 }; 73 74 /** 75 * struct scmi_xfers_info - Structure to manage transfer information 76 * 77 * @xfer_alloc_table: Bitmap table for allocated messages. 78 * Index of this bitmap table is also used for message 79 * sequence identifier. 80 * @xfer_lock: Protection for message allocation 81 * @max_msg: Maximum number of messages that can be pending 82 * @free_xfers: A free list for available to use xfers. It is initialized with 83 * a number of xfers equal to the maximum allowed in-flight 84 * messages. 85 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the 86 * currently in-flight messages. 87 */ 88 struct scmi_xfers_info { 89 unsigned long *xfer_alloc_table; 90 spinlock_t xfer_lock; 91 int max_msg; 92 struct hlist_head free_xfers; 93 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ); 94 }; 95 96 /** 97 * struct scmi_protocol_instance - Describe an initialized protocol instance. 98 * @handle: Reference to the SCMI handle associated to this protocol instance. 99 * @proto: A reference to the protocol descriptor. 100 * @gid: A reference for per-protocol devres management. 101 * @users: A refcount to track effective users of this protocol. 102 * @priv: Reference for optional protocol private data. 103 * @ph: An embedded protocol handle that will be passed down to protocol 104 * initialization code to identify this instance. 105 * 106 * Each protocol is initialized independently once for each SCMI platform in 107 * which is defined by DT and implemented by the SCMI server fw. 108 */ 109 struct scmi_protocol_instance { 110 const struct scmi_handle *handle; 111 const struct scmi_protocol *proto; 112 void *gid; 113 refcount_t users; 114 void *priv; 115 struct scmi_protocol_handle ph; 116 }; 117 118 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph) 119 120 /** 121 * struct scmi_info - Structure representing a SCMI instance 122 * 123 * @dev: Device pointer 124 * @desc: SoC description for this instance 125 * @version: SCMI revision information containing protocol version, 126 * implementation version and (sub-)vendor identification. 127 * @handle: Instance of SCMI handle to send to clients 128 * @tx_minfo: Universal Transmit Message management info 129 * @rx_minfo: Universal Receive Message management info 130 * @tx_idr: IDR object to map protocol id to Tx channel info pointer 131 * @rx_idr: IDR object to map protocol id to Rx channel info pointer 132 * @protocols: IDR for protocols' instance descriptors initialized for 133 * this SCMI instance: populated on protocol's first attempted 134 * usage. 135 * @protocols_mtx: A mutex to protect protocols instances initialization. 136 * @protocols_imp: List of protocols implemented, currently maximum of 137 * scmi_revision_info.num_protocols elements allocated by the 138 * base protocol 139 * @active_protocols: IDR storing device_nodes for protocols actually defined 140 * in the DT and confirmed as implemented by fw. 141 * @atomic_threshold: Optional system wide DT-configured threshold, expressed 142 * in microseconds, for atomic operations. 143 * Only SCMI synchronous commands reported by the platform 144 * to have an execution latency lesser-equal to the threshold 145 * should be considered for atomic mode operation: such 146 * decision is finally left up to the SCMI drivers. 147 * @notify_priv: Pointer to private data structure specific to notifications. 148 * @node: List head 149 * @users: Number of users of this instance 150 */ 151 struct scmi_info { 152 struct device *dev; 153 const struct scmi_desc *desc; 154 struct scmi_revision_info version; 155 struct scmi_handle handle; 156 struct scmi_xfers_info tx_minfo; 157 struct scmi_xfers_info rx_minfo; 158 struct idr tx_idr; 159 struct idr rx_idr; 160 struct idr protocols; 161 /* Ensure mutual exclusive access to protocols instance array */ 162 struct mutex protocols_mtx; 163 u8 *protocols_imp; 164 struct idr active_protocols; 165 unsigned int atomic_threshold; 166 void *notify_priv; 167 struct list_head node; 168 int users; 169 }; 170 171 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle) 172 173 static const int scmi_linux_errmap[] = { 174 /* better than switch case as long as return value is continuous */ 175 0, /* SCMI_SUCCESS */ 176 -EOPNOTSUPP, /* SCMI_ERR_SUPPORT */ 177 -EINVAL, /* SCMI_ERR_PARAM */ 178 -EACCES, /* SCMI_ERR_ACCESS */ 179 -ENOENT, /* SCMI_ERR_ENTRY */ 180 -ERANGE, /* SCMI_ERR_RANGE */ 181 -EBUSY, /* SCMI_ERR_BUSY */ 182 -ECOMM, /* SCMI_ERR_COMMS */ 183 -EIO, /* SCMI_ERR_GENERIC */ 184 -EREMOTEIO, /* SCMI_ERR_HARDWARE */ 185 -EPROTO, /* SCMI_ERR_PROTOCOL */ 186 }; 187 188 static inline int scmi_to_linux_errno(int errno) 189 { 190 int err_idx = -errno; 191 192 if (err_idx >= SCMI_SUCCESS && err_idx < ARRAY_SIZE(scmi_linux_errmap)) 193 return scmi_linux_errmap[err_idx]; 194 return -EIO; 195 } 196 197 void scmi_notification_instance_data_set(const struct scmi_handle *handle, 198 void *priv) 199 { 200 struct scmi_info *info = handle_to_scmi_info(handle); 201 202 info->notify_priv = priv; 203 /* Ensure updated protocol private date are visible */ 204 smp_wmb(); 205 } 206 207 void *scmi_notification_instance_data_get(const struct scmi_handle *handle) 208 { 209 struct scmi_info *info = handle_to_scmi_info(handle); 210 211 /* Ensure protocols_private_data has been updated */ 212 smp_rmb(); 213 return info->notify_priv; 214 } 215 216 /** 217 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand 218 * 219 * @minfo: Pointer to Tx/Rx Message management info based on channel type 220 * @xfer: The xfer to act upon 221 * 222 * Pick the next unused monotonically increasing token and set it into 223 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate 224 * reuse of freshly completed or timed-out xfers, thus mitigating the risk 225 * of incorrect association of a late and expired xfer with a live in-flight 226 * transaction, both happening to re-use the same token identifier. 227 * 228 * Since platform is NOT required to answer our request in-order we should 229 * account for a few rare but possible scenarios: 230 * 231 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token 232 * using find_next_zero_bit() starting from candidate next_token bit 233 * 234 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we 235 * are plenty of free tokens at start, so try a second pass using 236 * find_next_zero_bit() and starting from 0. 237 * 238 * X = used in-flight 239 * 240 * Normal 241 * ------ 242 * 243 * |- xfer_id picked 244 * -----------+---------------------------------------------------------- 245 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X| 246 * ---------------------------------------------------------------------- 247 * ^ 248 * |- next_token 249 * 250 * Out-of-order pending at start 251 * ----------------------------- 252 * 253 * |- xfer_id picked, last_token fixed 254 * -----+---------------------------------------------------------------- 255 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| | 256 * ---------------------------------------------------------------------- 257 * ^ 258 * |- next_token 259 * 260 * 261 * Out-of-order pending at end 262 * --------------------------- 263 * 264 * |- xfer_id picked, last_token fixed 265 * -----+---------------------------------------------------------------- 266 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X| 267 * ---------------------------------------------------------------------- 268 * ^ 269 * |- next_token 270 * 271 * Context: Assumes to be called with @xfer_lock already acquired. 272 * 273 * Return: 0 on Success or error 274 */ 275 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo, 276 struct scmi_xfer *xfer) 277 { 278 unsigned long xfer_id, next_token; 279 280 /* 281 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1] 282 * using the pre-allocated transfer_id as a base. 283 * Note that the global transfer_id is shared across all message types 284 * so there could be holes in the allocated set of monotonic sequence 285 * numbers, but that is going to limit the effectiveness of the 286 * mitigation only in very rare limit conditions. 287 */ 288 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1)); 289 290 /* Pick the next available xfer_id >= next_token */ 291 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 292 MSG_TOKEN_MAX, next_token); 293 if (xfer_id == MSG_TOKEN_MAX) { 294 /* 295 * After heavily out-of-order responses, there are no free 296 * tokens ahead, but only at start of xfer_alloc_table so 297 * try again from the beginning. 298 */ 299 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 300 MSG_TOKEN_MAX, 0); 301 /* 302 * Something is wrong if we got here since there can be a 303 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages 304 * but we have not found any free token [0, MSG_TOKEN_MAX - 1]. 305 */ 306 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX)) 307 return -ENOMEM; 308 } 309 310 /* Update +/- last_token accordingly if we skipped some hole */ 311 if (xfer_id != next_token) 312 atomic_add((int)(xfer_id - next_token), &transfer_last_id); 313 314 /* Set in-flight */ 315 set_bit(xfer_id, minfo->xfer_alloc_table); 316 xfer->hdr.seq = (u16)xfer_id; 317 318 return 0; 319 } 320 321 /** 322 * scmi_xfer_token_clear - Release the token 323 * 324 * @minfo: Pointer to Tx/Rx Message management info based on channel type 325 * @xfer: The xfer to act upon 326 */ 327 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo, 328 struct scmi_xfer *xfer) 329 { 330 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 331 } 332 333 /** 334 * scmi_xfer_get() - Allocate one message 335 * 336 * @handle: Pointer to SCMI entity handle 337 * @minfo: Pointer to Tx/Rx Message management info based on channel type 338 * @set_pending: If true a monotonic token is picked and the xfer is added to 339 * the pending hash table. 340 * 341 * Helper function which is used by various message functions that are 342 * exposed to clients of this driver for allocating a message traffic event. 343 * 344 * Picks an xfer from the free list @free_xfers (if any available) and, if 345 * required, sets a monotonically increasing token and stores the inflight xfer 346 * into the @pending_xfers hashtable for later retrieval. 347 * 348 * The successfully initialized xfer is refcounted. 349 * 350 * Context: Holds @xfer_lock while manipulating @xfer_alloc_table and 351 * @free_xfers. 352 * 353 * Return: 0 if all went fine, else corresponding error. 354 */ 355 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle, 356 struct scmi_xfers_info *minfo, 357 bool set_pending) 358 { 359 int ret; 360 unsigned long flags; 361 struct scmi_xfer *xfer; 362 363 spin_lock_irqsave(&minfo->xfer_lock, flags); 364 if (hlist_empty(&minfo->free_xfers)) { 365 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 366 return ERR_PTR(-ENOMEM); 367 } 368 369 /* grab an xfer from the free_list */ 370 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node); 371 hlist_del_init(&xfer->node); 372 373 /* 374 * Allocate transfer_id early so that can be used also as base for 375 * monotonic sequence number generation if needed. 376 */ 377 xfer->transfer_id = atomic_inc_return(&transfer_last_id); 378 379 if (set_pending) { 380 /* Pick and set monotonic token */ 381 ret = scmi_xfer_token_set(minfo, xfer); 382 if (!ret) { 383 hash_add(minfo->pending_xfers, &xfer->node, 384 xfer->hdr.seq); 385 xfer->pending = true; 386 } else { 387 dev_err(handle->dev, 388 "Failed to get monotonic token %d\n", ret); 389 hlist_add_head(&xfer->node, &minfo->free_xfers); 390 xfer = ERR_PTR(ret); 391 } 392 } 393 394 if (!IS_ERR(xfer)) { 395 refcount_set(&xfer->users, 1); 396 atomic_set(&xfer->busy, SCMI_XFER_FREE); 397 } 398 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 399 400 return xfer; 401 } 402 403 /** 404 * __scmi_xfer_put() - Release a message 405 * 406 * @minfo: Pointer to Tx/Rx Message management info based on channel type 407 * @xfer: message that was reserved by scmi_xfer_get 408 * 409 * After refcount check, possibly release an xfer, clearing the token slot, 410 * removing xfer from @pending_xfers and putting it back into free_xfers. 411 * 412 * This holds a spinlock to maintain integrity of internal data structures. 413 */ 414 static void 415 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer) 416 { 417 unsigned long flags; 418 419 spin_lock_irqsave(&minfo->xfer_lock, flags); 420 if (refcount_dec_and_test(&xfer->users)) { 421 if (xfer->pending) { 422 scmi_xfer_token_clear(minfo, xfer); 423 hash_del(&xfer->node); 424 xfer->pending = false; 425 } 426 hlist_add_head(&xfer->node, &minfo->free_xfers); 427 } 428 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 429 } 430 431 /** 432 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id 433 * 434 * @minfo: Pointer to Tx/Rx Message management info based on channel type 435 * @xfer_id: Token ID to lookup in @pending_xfers 436 * 437 * Refcounting is untouched. 438 * 439 * Context: Assumes to be called with @xfer_lock already acquired. 440 * 441 * Return: A valid xfer on Success or error otherwise 442 */ 443 static struct scmi_xfer * 444 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id) 445 { 446 struct scmi_xfer *xfer = NULL; 447 448 if (test_bit(xfer_id, minfo->xfer_alloc_table)) 449 xfer = XFER_FIND(minfo->pending_xfers, xfer_id); 450 451 return xfer ?: ERR_PTR(-EINVAL); 452 } 453 454 /** 455 * scmi_msg_response_validate - Validate message type against state of related 456 * xfer 457 * 458 * @cinfo: A reference to the channel descriptor. 459 * @msg_type: Message type to check 460 * @xfer: A reference to the xfer to validate against @msg_type 461 * 462 * This function checks if @msg_type is congruent with the current state of 463 * a pending @xfer; if an asynchronous delayed response is received before the 464 * related synchronous response (Out-of-Order Delayed Response) the missing 465 * synchronous response is assumed to be OK and completed, carrying on with the 466 * Delayed Response: this is done to address the case in which the underlying 467 * SCMI transport can deliver such out-of-order responses. 468 * 469 * Context: Assumes to be called with xfer->lock already acquired. 470 * 471 * Return: 0 on Success, error otherwise 472 */ 473 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo, 474 u8 msg_type, 475 struct scmi_xfer *xfer) 476 { 477 /* 478 * Even if a response was indeed expected on this slot at this point, 479 * a buggy platform could wrongly reply feeding us an unexpected 480 * delayed response we're not prepared to handle: bail-out safely 481 * blaming firmware. 482 */ 483 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) { 484 dev_err(cinfo->dev, 485 "Delayed Response for %d not expected! Buggy F/W ?\n", 486 xfer->hdr.seq); 487 return -EINVAL; 488 } 489 490 switch (xfer->state) { 491 case SCMI_XFER_SENT_OK: 492 if (msg_type == MSG_TYPE_DELAYED_RESP) { 493 /* 494 * Delayed Response expected but delivered earlier. 495 * Assume message RESPONSE was OK and skip state. 496 */ 497 xfer->hdr.status = SCMI_SUCCESS; 498 xfer->state = SCMI_XFER_RESP_OK; 499 complete(&xfer->done); 500 dev_warn(cinfo->dev, 501 "Received valid OoO Delayed Response for %d\n", 502 xfer->hdr.seq); 503 } 504 break; 505 case SCMI_XFER_RESP_OK: 506 if (msg_type != MSG_TYPE_DELAYED_RESP) 507 return -EINVAL; 508 break; 509 case SCMI_XFER_DRESP_OK: 510 /* No further message expected once in SCMI_XFER_DRESP_OK */ 511 return -EINVAL; 512 } 513 514 return 0; 515 } 516 517 /** 518 * scmi_xfer_state_update - Update xfer state 519 * 520 * @xfer: A reference to the xfer to update 521 * @msg_type: Type of message being processed. 522 * 523 * Note that this message is assumed to have been already successfully validated 524 * by @scmi_msg_response_validate(), so here we just update the state. 525 * 526 * Context: Assumes to be called on an xfer exclusively acquired using the 527 * busy flag. 528 */ 529 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type) 530 { 531 xfer->hdr.type = msg_type; 532 533 /* Unknown command types were already discarded earlier */ 534 if (xfer->hdr.type == MSG_TYPE_COMMAND) 535 xfer->state = SCMI_XFER_RESP_OK; 536 else 537 xfer->state = SCMI_XFER_DRESP_OK; 538 } 539 540 static bool scmi_xfer_acquired(struct scmi_xfer *xfer) 541 { 542 int ret; 543 544 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY); 545 546 return ret == SCMI_XFER_FREE; 547 } 548 549 /** 550 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer 551 * 552 * @cinfo: A reference to the channel descriptor. 553 * @msg_hdr: A message header to use as lookup key 554 * 555 * When a valid xfer is found for the sequence number embedded in the provided 556 * msg_hdr, reference counting is properly updated and exclusive access to this 557 * xfer is granted till released with @scmi_xfer_command_release. 558 * 559 * Return: A valid @xfer on Success or error otherwise. 560 */ 561 static inline struct scmi_xfer * 562 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr) 563 { 564 int ret; 565 unsigned long flags; 566 struct scmi_xfer *xfer; 567 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 568 struct scmi_xfers_info *minfo = &info->tx_minfo; 569 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 570 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr); 571 572 /* Are we even expecting this? */ 573 spin_lock_irqsave(&minfo->xfer_lock, flags); 574 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id); 575 if (IS_ERR(xfer)) { 576 dev_err(cinfo->dev, 577 "Message for %d type %d is not expected!\n", 578 xfer_id, msg_type); 579 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 580 return xfer; 581 } 582 refcount_inc(&xfer->users); 583 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 584 585 spin_lock_irqsave(&xfer->lock, flags); 586 ret = scmi_msg_response_validate(cinfo, msg_type, xfer); 587 /* 588 * If a pending xfer was found which was also in a congruent state with 589 * the received message, acquire exclusive access to it setting the busy 590 * flag. 591 * Spins only on the rare limit condition of concurrent reception of 592 * RESP and DRESP for the same xfer. 593 */ 594 if (!ret) { 595 spin_until_cond(scmi_xfer_acquired(xfer)); 596 scmi_xfer_state_update(xfer, msg_type); 597 } 598 spin_unlock_irqrestore(&xfer->lock, flags); 599 600 if (ret) { 601 dev_err(cinfo->dev, 602 "Invalid message type:%d for %d - HDR:0x%X state:%d\n", 603 msg_type, xfer_id, msg_hdr, xfer->state); 604 /* On error the refcount incremented above has to be dropped */ 605 __scmi_xfer_put(minfo, xfer); 606 xfer = ERR_PTR(-EINVAL); 607 } 608 609 return xfer; 610 } 611 612 static inline void scmi_xfer_command_release(struct scmi_info *info, 613 struct scmi_xfer *xfer) 614 { 615 atomic_set(&xfer->busy, SCMI_XFER_FREE); 616 __scmi_xfer_put(&info->tx_minfo, xfer); 617 } 618 619 static inline void scmi_clear_channel(struct scmi_info *info, 620 struct scmi_chan_info *cinfo) 621 { 622 if (info->desc->ops->clear_channel) 623 info->desc->ops->clear_channel(cinfo); 624 } 625 626 static inline bool is_polling_required(struct scmi_chan_info *cinfo, 627 struct scmi_info *info) 628 { 629 return cinfo->no_completion_irq || info->desc->force_polling; 630 } 631 632 static inline bool is_transport_polling_capable(struct scmi_info *info) 633 { 634 return info->desc->ops->poll_done || 635 info->desc->sync_cmds_completed_on_ret; 636 } 637 638 static inline bool is_polling_enabled(struct scmi_chan_info *cinfo, 639 struct scmi_info *info) 640 { 641 return is_polling_required(cinfo, info) && 642 is_transport_polling_capable(info); 643 } 644 645 static void scmi_handle_notification(struct scmi_chan_info *cinfo, 646 u32 msg_hdr, void *priv) 647 { 648 struct scmi_xfer *xfer; 649 struct device *dev = cinfo->dev; 650 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 651 struct scmi_xfers_info *minfo = &info->rx_minfo; 652 ktime_t ts; 653 654 ts = ktime_get_boottime(); 655 xfer = scmi_xfer_get(cinfo->handle, minfo, false); 656 if (IS_ERR(xfer)) { 657 dev_err(dev, "failed to get free message slot (%ld)\n", 658 PTR_ERR(xfer)); 659 scmi_clear_channel(info, cinfo); 660 return; 661 } 662 663 unpack_scmi_header(msg_hdr, &xfer->hdr); 664 if (priv) 665 /* Ensure order between xfer->priv store and following ops */ 666 smp_store_mb(xfer->priv, priv); 667 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size, 668 xfer); 669 670 trace_scmi_msg_dump(xfer->hdr.protocol_id, xfer->hdr.id, "NOTI", 671 xfer->hdr.seq, xfer->hdr.status, 672 xfer->rx.buf, xfer->rx.len); 673 674 scmi_notify(cinfo->handle, xfer->hdr.protocol_id, 675 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts); 676 677 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 678 xfer->hdr.protocol_id, xfer->hdr.seq, 679 MSG_TYPE_NOTIFICATION); 680 681 __scmi_xfer_put(minfo, xfer); 682 683 scmi_clear_channel(info, cinfo); 684 } 685 686 static void scmi_handle_response(struct scmi_chan_info *cinfo, 687 u32 msg_hdr, void *priv) 688 { 689 struct scmi_xfer *xfer; 690 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 691 692 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr); 693 if (IS_ERR(xfer)) { 694 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP) 695 scmi_clear_channel(info, cinfo); 696 return; 697 } 698 699 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */ 700 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) 701 xfer->rx.len = info->desc->max_msg_size; 702 703 if (priv) 704 /* Ensure order between xfer->priv store and following ops */ 705 smp_store_mb(xfer->priv, priv); 706 info->desc->ops->fetch_response(cinfo, xfer); 707 708 trace_scmi_msg_dump(xfer->hdr.protocol_id, xfer->hdr.id, 709 xfer->hdr.type == MSG_TYPE_DELAYED_RESP ? 710 "DLYD" : "RESP", 711 xfer->hdr.seq, xfer->hdr.status, 712 xfer->rx.buf, xfer->rx.len); 713 714 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 715 xfer->hdr.protocol_id, xfer->hdr.seq, 716 xfer->hdr.type); 717 718 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) { 719 scmi_clear_channel(info, cinfo); 720 complete(xfer->async_done); 721 } else { 722 complete(&xfer->done); 723 } 724 725 scmi_xfer_command_release(info, xfer); 726 } 727 728 /** 729 * scmi_rx_callback() - callback for receiving messages 730 * 731 * @cinfo: SCMI channel info 732 * @msg_hdr: Message header 733 * @priv: Transport specific private data. 734 * 735 * Processes one received message to appropriate transfer information and 736 * signals completion of the transfer. 737 * 738 * NOTE: This function will be invoked in IRQ context, hence should be 739 * as optimal as possible. 740 */ 741 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv) 742 { 743 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 744 745 switch (msg_type) { 746 case MSG_TYPE_NOTIFICATION: 747 scmi_handle_notification(cinfo, msg_hdr, priv); 748 break; 749 case MSG_TYPE_COMMAND: 750 case MSG_TYPE_DELAYED_RESP: 751 scmi_handle_response(cinfo, msg_hdr, priv); 752 break; 753 default: 754 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type); 755 break; 756 } 757 } 758 759 /** 760 * xfer_put() - Release a transmit message 761 * 762 * @ph: Pointer to SCMI protocol handle 763 * @xfer: message that was reserved by xfer_get_init 764 */ 765 static void xfer_put(const struct scmi_protocol_handle *ph, 766 struct scmi_xfer *xfer) 767 { 768 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 769 struct scmi_info *info = handle_to_scmi_info(pi->handle); 770 771 __scmi_xfer_put(&info->tx_minfo, xfer); 772 } 773 774 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo, 775 struct scmi_xfer *xfer, ktime_t stop) 776 { 777 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 778 779 /* 780 * Poll also on xfer->done so that polling can be forcibly terminated 781 * in case of out-of-order receptions of delayed responses 782 */ 783 return info->desc->ops->poll_done(cinfo, xfer) || 784 try_wait_for_completion(&xfer->done) || 785 ktime_after(ktime_get(), stop); 786 } 787 788 /** 789 * scmi_wait_for_message_response - An helper to group all the possible ways of 790 * waiting for a synchronous message response. 791 * 792 * @cinfo: SCMI channel info 793 * @xfer: Reference to the transfer being waited for. 794 * 795 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on 796 * configuration flags like xfer->hdr.poll_completion. 797 * 798 * Return: 0 on Success, error otherwise. 799 */ 800 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo, 801 struct scmi_xfer *xfer) 802 { 803 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 804 struct device *dev = info->dev; 805 int ret = 0, timeout_ms = info->desc->max_rx_timeout_ms; 806 807 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id, 808 xfer->hdr.protocol_id, xfer->hdr.seq, 809 timeout_ms, 810 xfer->hdr.poll_completion); 811 812 if (xfer->hdr.poll_completion) { 813 /* 814 * Real polling is needed only if transport has NOT declared 815 * itself to support synchronous commands replies. 816 */ 817 if (!info->desc->sync_cmds_completed_on_ret) { 818 /* 819 * Poll on xfer using transport provided .poll_done(); 820 * assumes no completion interrupt was available. 821 */ 822 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms); 823 824 spin_until_cond(scmi_xfer_done_no_timeout(cinfo, 825 xfer, stop)); 826 if (ktime_after(ktime_get(), stop)) { 827 dev_err(dev, 828 "timed out in resp(caller: %pS) - polling\n", 829 (void *)_RET_IP_); 830 ret = -ETIMEDOUT; 831 } 832 } 833 834 if (!ret) { 835 unsigned long flags; 836 837 /* 838 * Do not fetch_response if an out-of-order delayed 839 * response is being processed. 840 */ 841 spin_lock_irqsave(&xfer->lock, flags); 842 if (xfer->state == SCMI_XFER_SENT_OK) { 843 info->desc->ops->fetch_response(cinfo, xfer); 844 xfer->state = SCMI_XFER_RESP_OK; 845 } 846 spin_unlock_irqrestore(&xfer->lock, flags); 847 848 /* Trace polled replies. */ 849 trace_scmi_msg_dump(xfer->hdr.protocol_id, xfer->hdr.id, 850 "RESP", 851 xfer->hdr.seq, xfer->hdr.status, 852 xfer->rx.buf, xfer->rx.len); 853 } 854 } else { 855 /* And we wait for the response. */ 856 if (!wait_for_completion_timeout(&xfer->done, 857 msecs_to_jiffies(timeout_ms))) { 858 dev_err(dev, "timed out in resp(caller: %pS)\n", 859 (void *)_RET_IP_); 860 ret = -ETIMEDOUT; 861 } 862 } 863 864 return ret; 865 } 866 867 /** 868 * do_xfer() - Do one transfer 869 * 870 * @ph: Pointer to SCMI protocol handle 871 * @xfer: Transfer to initiate and wait for response 872 * 873 * Return: -ETIMEDOUT in case of no response, if transmit error, 874 * return corresponding error, else if all goes well, 875 * return 0. 876 */ 877 static int do_xfer(const struct scmi_protocol_handle *ph, 878 struct scmi_xfer *xfer) 879 { 880 int ret; 881 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 882 struct scmi_info *info = handle_to_scmi_info(pi->handle); 883 struct device *dev = info->dev; 884 struct scmi_chan_info *cinfo; 885 886 /* Check for polling request on custom command xfers at first */ 887 if (xfer->hdr.poll_completion && !is_transport_polling_capable(info)) { 888 dev_warn_once(dev, 889 "Polling mode is not supported by transport.\n"); 890 return -EINVAL; 891 } 892 893 cinfo = idr_find(&info->tx_idr, pi->proto->id); 894 if (unlikely(!cinfo)) 895 return -EINVAL; 896 897 /* True ONLY if also supported by transport. */ 898 if (is_polling_enabled(cinfo, info)) 899 xfer->hdr.poll_completion = true; 900 901 /* 902 * Initialise protocol id now from protocol handle to avoid it being 903 * overridden by mistake (or malice) by the protocol code mangling with 904 * the scmi_xfer structure prior to this. 905 */ 906 xfer->hdr.protocol_id = pi->proto->id; 907 reinit_completion(&xfer->done); 908 909 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id, 910 xfer->hdr.protocol_id, xfer->hdr.seq, 911 xfer->hdr.poll_completion); 912 913 xfer->state = SCMI_XFER_SENT_OK; 914 /* 915 * Even though spinlocking is not needed here since no race is possible 916 * on xfer->state due to the monotonically increasing tokens allocation, 917 * we must anyway ensure xfer->state initialization is not re-ordered 918 * after the .send_message() to be sure that on the RX path an early 919 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state. 920 */ 921 smp_mb(); 922 923 ret = info->desc->ops->send_message(cinfo, xfer); 924 if (ret < 0) { 925 dev_dbg(dev, "Failed to send message %d\n", ret); 926 return ret; 927 } 928 929 trace_scmi_msg_dump(xfer->hdr.protocol_id, xfer->hdr.id, "CMND", 930 xfer->hdr.seq, xfer->hdr.status, 931 xfer->tx.buf, xfer->tx.len); 932 933 ret = scmi_wait_for_message_response(cinfo, xfer); 934 if (!ret && xfer->hdr.status) 935 ret = scmi_to_linux_errno(xfer->hdr.status); 936 937 if (info->desc->ops->mark_txdone) 938 info->desc->ops->mark_txdone(cinfo, ret, xfer); 939 940 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id, 941 xfer->hdr.protocol_id, xfer->hdr.seq, ret); 942 943 return ret; 944 } 945 946 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph, 947 struct scmi_xfer *xfer) 948 { 949 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 950 struct scmi_info *info = handle_to_scmi_info(pi->handle); 951 952 xfer->rx.len = info->desc->max_msg_size; 953 } 954 955 #define SCMI_MAX_RESPONSE_TIMEOUT (2 * MSEC_PER_SEC) 956 957 /** 958 * do_xfer_with_response() - Do one transfer and wait until the delayed 959 * response is received 960 * 961 * @ph: Pointer to SCMI protocol handle 962 * @xfer: Transfer to initiate and wait for response 963 * 964 * Using asynchronous commands in atomic/polling mode should be avoided since 965 * it could cause long busy-waiting here, so ignore polling for the delayed 966 * response and WARN if it was requested for this command transaction since 967 * upper layers should refrain from issuing such kind of requests. 968 * 969 * The only other option would have been to refrain from using any asynchronous 970 * command even if made available, when an atomic transport is detected, and 971 * instead forcibly use the synchronous version (thing that can be easily 972 * attained at the protocol layer), but this would also have led to longer 973 * stalls of the channel for synchronous commands and possibly timeouts. 974 * (in other words there is usually a good reason if a platform provides an 975 * asynchronous version of a command and we should prefer to use it...just not 976 * when using atomic/polling mode) 977 * 978 * Return: -ETIMEDOUT in case of no delayed response, if transmit error, 979 * return corresponding error, else if all goes well, return 0. 980 */ 981 static int do_xfer_with_response(const struct scmi_protocol_handle *ph, 982 struct scmi_xfer *xfer) 983 { 984 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT); 985 DECLARE_COMPLETION_ONSTACK(async_response); 986 987 xfer->async_done = &async_response; 988 989 /* 990 * Delayed responses should not be polled, so an async command should 991 * not have been used when requiring an atomic/poll context; WARN and 992 * perform instead a sleeping wait. 993 * (Note Async + IgnoreDelayedResponses are sent via do_xfer) 994 */ 995 WARN_ON_ONCE(xfer->hdr.poll_completion); 996 997 ret = do_xfer(ph, xfer); 998 if (!ret) { 999 if (!wait_for_completion_timeout(xfer->async_done, timeout)) { 1000 dev_err(ph->dev, 1001 "timed out in delayed resp(caller: %pS)\n", 1002 (void *)_RET_IP_); 1003 ret = -ETIMEDOUT; 1004 } else if (xfer->hdr.status) { 1005 ret = scmi_to_linux_errno(xfer->hdr.status); 1006 } 1007 } 1008 1009 xfer->async_done = NULL; 1010 return ret; 1011 } 1012 1013 /** 1014 * xfer_get_init() - Allocate and initialise one message for transmit 1015 * 1016 * @ph: Pointer to SCMI protocol handle 1017 * @msg_id: Message identifier 1018 * @tx_size: transmit message size 1019 * @rx_size: receive message size 1020 * @p: pointer to the allocated and initialised message 1021 * 1022 * This function allocates the message using @scmi_xfer_get and 1023 * initialise the header. 1024 * 1025 * Return: 0 if all went fine with @p pointing to message, else 1026 * corresponding error. 1027 */ 1028 static int xfer_get_init(const struct scmi_protocol_handle *ph, 1029 u8 msg_id, size_t tx_size, size_t rx_size, 1030 struct scmi_xfer **p) 1031 { 1032 int ret; 1033 struct scmi_xfer *xfer; 1034 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1035 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1036 struct scmi_xfers_info *minfo = &info->tx_minfo; 1037 struct device *dev = info->dev; 1038 1039 /* Ensure we have sane transfer sizes */ 1040 if (rx_size > info->desc->max_msg_size || 1041 tx_size > info->desc->max_msg_size) 1042 return -ERANGE; 1043 1044 xfer = scmi_xfer_get(pi->handle, minfo, true); 1045 if (IS_ERR(xfer)) { 1046 ret = PTR_ERR(xfer); 1047 dev_err(dev, "failed to get free message slot(%d)\n", ret); 1048 return ret; 1049 } 1050 1051 xfer->tx.len = tx_size; 1052 xfer->rx.len = rx_size ? : info->desc->max_msg_size; 1053 xfer->hdr.type = MSG_TYPE_COMMAND; 1054 xfer->hdr.id = msg_id; 1055 xfer->hdr.poll_completion = false; 1056 1057 *p = xfer; 1058 1059 return 0; 1060 } 1061 1062 /** 1063 * version_get() - command to get the revision of the SCMI entity 1064 * 1065 * @ph: Pointer to SCMI protocol handle 1066 * @version: Holds returned version of protocol. 1067 * 1068 * Updates the SCMI information in the internal data structure. 1069 * 1070 * Return: 0 if all went fine, else return appropriate error. 1071 */ 1072 static int version_get(const struct scmi_protocol_handle *ph, u32 *version) 1073 { 1074 int ret; 1075 __le32 *rev_info; 1076 struct scmi_xfer *t; 1077 1078 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t); 1079 if (ret) 1080 return ret; 1081 1082 ret = do_xfer(ph, t); 1083 if (!ret) { 1084 rev_info = t->rx.buf; 1085 *version = le32_to_cpu(*rev_info); 1086 } 1087 1088 xfer_put(ph, t); 1089 return ret; 1090 } 1091 1092 /** 1093 * scmi_set_protocol_priv - Set protocol specific data at init time 1094 * 1095 * @ph: A reference to the protocol handle. 1096 * @priv: The private data to set. 1097 * 1098 * Return: 0 on Success 1099 */ 1100 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph, 1101 void *priv) 1102 { 1103 struct scmi_protocol_instance *pi = ph_to_pi(ph); 1104 1105 pi->priv = priv; 1106 1107 return 0; 1108 } 1109 1110 /** 1111 * scmi_get_protocol_priv - Set protocol specific data at init time 1112 * 1113 * @ph: A reference to the protocol handle. 1114 * 1115 * Return: Protocol private data if any was set. 1116 */ 1117 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph) 1118 { 1119 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1120 1121 return pi->priv; 1122 } 1123 1124 static const struct scmi_xfer_ops xfer_ops = { 1125 .version_get = version_get, 1126 .xfer_get_init = xfer_get_init, 1127 .reset_rx_to_maxsz = reset_rx_to_maxsz, 1128 .do_xfer = do_xfer, 1129 .do_xfer_with_response = do_xfer_with_response, 1130 .xfer_put = xfer_put, 1131 }; 1132 1133 struct scmi_msg_resp_domain_name_get { 1134 __le32 flags; 1135 u8 name[SCMI_MAX_STR_SIZE]; 1136 }; 1137 1138 /** 1139 * scmi_common_extended_name_get - Common helper to get extended resources name 1140 * @ph: A protocol handle reference. 1141 * @cmd_id: The specific command ID to use. 1142 * @res_id: The specific resource ID to use. 1143 * @name: A pointer to the preallocated area where the retrieved name will be 1144 * stored as a NULL terminated string. 1145 * @len: The len in bytes of the @name char array. 1146 * 1147 * Return: 0 on Succcess 1148 */ 1149 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph, 1150 u8 cmd_id, u32 res_id, char *name, 1151 size_t len) 1152 { 1153 int ret; 1154 struct scmi_xfer *t; 1155 struct scmi_msg_resp_domain_name_get *resp; 1156 1157 ret = ph->xops->xfer_get_init(ph, cmd_id, sizeof(res_id), 1158 sizeof(*resp), &t); 1159 if (ret) 1160 goto out; 1161 1162 put_unaligned_le32(res_id, t->tx.buf); 1163 resp = t->rx.buf; 1164 1165 ret = ph->xops->do_xfer(ph, t); 1166 if (!ret) 1167 strscpy(name, resp->name, len); 1168 1169 ph->xops->xfer_put(ph, t); 1170 out: 1171 if (ret) 1172 dev_warn(ph->dev, 1173 "Failed to get extended name - id:%u (ret:%d). Using %s\n", 1174 res_id, ret, name); 1175 return ret; 1176 } 1177 1178 /** 1179 * struct scmi_iterator - Iterator descriptor 1180 * @msg: A reference to the message TX buffer; filled by @prepare_message with 1181 * a proper custom command payload for each multi-part command request. 1182 * @resp: A reference to the response RX buffer; used by @update_state and 1183 * @process_response to parse the multi-part replies. 1184 * @t: A reference to the underlying xfer initialized and used transparently by 1185 * the iterator internal routines. 1186 * @ph: A reference to the associated protocol handle to be used. 1187 * @ops: A reference to the custom provided iterator operations. 1188 * @state: The current iterator state; used and updated in turn by the iterators 1189 * internal routines and by the caller-provided @scmi_iterator_ops. 1190 * @priv: A reference to optional private data as provided by the caller and 1191 * passed back to the @@scmi_iterator_ops. 1192 */ 1193 struct scmi_iterator { 1194 void *msg; 1195 void *resp; 1196 struct scmi_xfer *t; 1197 const struct scmi_protocol_handle *ph; 1198 struct scmi_iterator_ops *ops; 1199 struct scmi_iterator_state state; 1200 void *priv; 1201 }; 1202 1203 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph, 1204 struct scmi_iterator_ops *ops, 1205 unsigned int max_resources, u8 msg_id, 1206 size_t tx_size, void *priv) 1207 { 1208 int ret; 1209 struct scmi_iterator *i; 1210 1211 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL); 1212 if (!i) 1213 return ERR_PTR(-ENOMEM); 1214 1215 i->ph = ph; 1216 i->ops = ops; 1217 i->priv = priv; 1218 1219 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t); 1220 if (ret) { 1221 devm_kfree(ph->dev, i); 1222 return ERR_PTR(ret); 1223 } 1224 1225 i->state.max_resources = max_resources; 1226 i->msg = i->t->tx.buf; 1227 i->resp = i->t->rx.buf; 1228 1229 return i; 1230 } 1231 1232 static int scmi_iterator_run(void *iter) 1233 { 1234 int ret = -EINVAL; 1235 struct scmi_iterator_ops *iops; 1236 const struct scmi_protocol_handle *ph; 1237 struct scmi_iterator_state *st; 1238 struct scmi_iterator *i = iter; 1239 1240 if (!i || !i->ops || !i->ph) 1241 return ret; 1242 1243 iops = i->ops; 1244 ph = i->ph; 1245 st = &i->state; 1246 1247 do { 1248 iops->prepare_message(i->msg, st->desc_index, i->priv); 1249 ret = ph->xops->do_xfer(ph, i->t); 1250 if (ret) 1251 break; 1252 1253 st->rx_len = i->t->rx.len; 1254 ret = iops->update_state(st, i->resp, i->priv); 1255 if (ret) 1256 break; 1257 1258 if (st->num_returned > st->max_resources - st->desc_index) { 1259 dev_err(ph->dev, 1260 "No. of resources can't exceed %d\n", 1261 st->max_resources); 1262 ret = -EINVAL; 1263 break; 1264 } 1265 1266 for (st->loop_idx = 0; st->loop_idx < st->num_returned; 1267 st->loop_idx++) { 1268 ret = iops->process_response(ph, i->resp, st, i->priv); 1269 if (ret) 1270 goto out; 1271 } 1272 1273 st->desc_index += st->num_returned; 1274 ph->xops->reset_rx_to_maxsz(ph, i->t); 1275 /* 1276 * check for both returned and remaining to avoid infinite 1277 * loop due to buggy firmware 1278 */ 1279 } while (st->num_returned && st->num_remaining); 1280 1281 out: 1282 /* Finalize and destroy iterator */ 1283 ph->xops->xfer_put(ph, i->t); 1284 devm_kfree(ph->dev, i); 1285 1286 return ret; 1287 } 1288 1289 struct scmi_msg_get_fc_info { 1290 __le32 domain; 1291 __le32 message_id; 1292 }; 1293 1294 struct scmi_msg_resp_desc_fc { 1295 __le32 attr; 1296 #define SUPPORTS_DOORBELL(x) ((x) & BIT(0)) 1297 #define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x)) 1298 __le32 rate_limit; 1299 __le32 chan_addr_low; 1300 __le32 chan_addr_high; 1301 __le32 chan_size; 1302 __le32 db_addr_low; 1303 __le32 db_addr_high; 1304 __le32 db_set_lmask; 1305 __le32 db_set_hmask; 1306 __le32 db_preserve_lmask; 1307 __le32 db_preserve_hmask; 1308 }; 1309 1310 static void 1311 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph, 1312 u8 describe_id, u32 message_id, u32 valid_size, 1313 u32 domain, void __iomem **p_addr, 1314 struct scmi_fc_db_info **p_db) 1315 { 1316 int ret; 1317 u32 flags; 1318 u64 phys_addr; 1319 u8 size; 1320 void __iomem *addr; 1321 struct scmi_xfer *t; 1322 struct scmi_fc_db_info *db = NULL; 1323 struct scmi_msg_get_fc_info *info; 1324 struct scmi_msg_resp_desc_fc *resp; 1325 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1326 1327 if (!p_addr) { 1328 ret = -EINVAL; 1329 goto err_out; 1330 } 1331 1332 ret = ph->xops->xfer_get_init(ph, describe_id, 1333 sizeof(*info), sizeof(*resp), &t); 1334 if (ret) 1335 goto err_out; 1336 1337 info = t->tx.buf; 1338 info->domain = cpu_to_le32(domain); 1339 info->message_id = cpu_to_le32(message_id); 1340 1341 /* 1342 * Bail out on error leaving fc_info addresses zeroed; this includes 1343 * the case in which the requested domain/message_id does NOT support 1344 * fastchannels at all. 1345 */ 1346 ret = ph->xops->do_xfer(ph, t); 1347 if (ret) 1348 goto err_xfer; 1349 1350 resp = t->rx.buf; 1351 flags = le32_to_cpu(resp->attr); 1352 size = le32_to_cpu(resp->chan_size); 1353 if (size != valid_size) { 1354 ret = -EINVAL; 1355 goto err_xfer; 1356 } 1357 1358 phys_addr = le32_to_cpu(resp->chan_addr_low); 1359 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32; 1360 addr = devm_ioremap(ph->dev, phys_addr, size); 1361 if (!addr) { 1362 ret = -EADDRNOTAVAIL; 1363 goto err_xfer; 1364 } 1365 1366 *p_addr = addr; 1367 1368 if (p_db && SUPPORTS_DOORBELL(flags)) { 1369 db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL); 1370 if (!db) { 1371 ret = -ENOMEM; 1372 goto err_db; 1373 } 1374 1375 size = 1 << DOORBELL_REG_WIDTH(flags); 1376 phys_addr = le32_to_cpu(resp->db_addr_low); 1377 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32; 1378 addr = devm_ioremap(ph->dev, phys_addr, size); 1379 if (!addr) { 1380 ret = -EADDRNOTAVAIL; 1381 goto err_db_mem; 1382 } 1383 1384 db->addr = addr; 1385 db->width = size; 1386 db->set = le32_to_cpu(resp->db_set_lmask); 1387 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32; 1388 db->mask = le32_to_cpu(resp->db_preserve_lmask); 1389 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32; 1390 1391 *p_db = db; 1392 } 1393 1394 ph->xops->xfer_put(ph, t); 1395 1396 dev_dbg(ph->dev, 1397 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n", 1398 pi->proto->id, message_id, domain); 1399 1400 return; 1401 1402 err_db_mem: 1403 devm_kfree(ph->dev, db); 1404 1405 err_db: 1406 *p_addr = NULL; 1407 1408 err_xfer: 1409 ph->xops->xfer_put(ph, t); 1410 1411 err_out: 1412 dev_warn(ph->dev, 1413 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n", 1414 pi->proto->id, message_id, domain, ret); 1415 } 1416 1417 #define SCMI_PROTO_FC_RING_DB(w) \ 1418 do { \ 1419 u##w val = 0; \ 1420 \ 1421 if (db->mask) \ 1422 val = ioread##w(db->addr) & db->mask; \ 1423 iowrite##w((u##w)db->set | val, db->addr); \ 1424 } while (0) 1425 1426 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db) 1427 { 1428 if (!db || !db->addr) 1429 return; 1430 1431 if (db->width == 1) 1432 SCMI_PROTO_FC_RING_DB(8); 1433 else if (db->width == 2) 1434 SCMI_PROTO_FC_RING_DB(16); 1435 else if (db->width == 4) 1436 SCMI_PROTO_FC_RING_DB(32); 1437 else /* db->width == 8 */ 1438 #ifdef CONFIG_64BIT 1439 SCMI_PROTO_FC_RING_DB(64); 1440 #else 1441 { 1442 u64 val = 0; 1443 1444 if (db->mask) 1445 val = ioread64_hi_lo(db->addr) & db->mask; 1446 iowrite64_hi_lo(db->set | val, db->addr); 1447 } 1448 #endif 1449 } 1450 1451 static const struct scmi_proto_helpers_ops helpers_ops = { 1452 .extended_name_get = scmi_common_extended_name_get, 1453 .iter_response_init = scmi_iterator_init, 1454 .iter_response_run = scmi_iterator_run, 1455 .fastchannel_init = scmi_common_fastchannel_init, 1456 .fastchannel_db_ring = scmi_common_fastchannel_db_ring, 1457 }; 1458 1459 /** 1460 * scmi_revision_area_get - Retrieve version memory area. 1461 * 1462 * @ph: A reference to the protocol handle. 1463 * 1464 * A helper to grab the version memory area reference during SCMI Base protocol 1465 * initialization. 1466 * 1467 * Return: A reference to the version memory area associated to the SCMI 1468 * instance underlying this protocol handle. 1469 */ 1470 struct scmi_revision_info * 1471 scmi_revision_area_get(const struct scmi_protocol_handle *ph) 1472 { 1473 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1474 1475 return pi->handle->version; 1476 } 1477 1478 /** 1479 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol 1480 * instance descriptor. 1481 * @info: The reference to the related SCMI instance. 1482 * @proto: The protocol descriptor. 1483 * 1484 * Allocate a new protocol instance descriptor, using the provided @proto 1485 * description, against the specified SCMI instance @info, and initialize it; 1486 * all resources management is handled via a dedicated per-protocol devres 1487 * group. 1488 * 1489 * Context: Assumes to be called with @protocols_mtx already acquired. 1490 * Return: A reference to a freshly allocated and initialized protocol instance 1491 * or ERR_PTR on failure. On failure the @proto reference is at first 1492 * put using @scmi_protocol_put() before releasing all the devres group. 1493 */ 1494 static struct scmi_protocol_instance * 1495 scmi_alloc_init_protocol_instance(struct scmi_info *info, 1496 const struct scmi_protocol *proto) 1497 { 1498 int ret = -ENOMEM; 1499 void *gid; 1500 struct scmi_protocol_instance *pi; 1501 const struct scmi_handle *handle = &info->handle; 1502 1503 /* Protocol specific devres group */ 1504 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL); 1505 if (!gid) { 1506 scmi_protocol_put(proto->id); 1507 goto out; 1508 } 1509 1510 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL); 1511 if (!pi) 1512 goto clean; 1513 1514 pi->gid = gid; 1515 pi->proto = proto; 1516 pi->handle = handle; 1517 pi->ph.dev = handle->dev; 1518 pi->ph.xops = &xfer_ops; 1519 pi->ph.hops = &helpers_ops; 1520 pi->ph.set_priv = scmi_set_protocol_priv; 1521 pi->ph.get_priv = scmi_get_protocol_priv; 1522 refcount_set(&pi->users, 1); 1523 /* proto->init is assured NON NULL by scmi_protocol_register */ 1524 ret = pi->proto->instance_init(&pi->ph); 1525 if (ret) 1526 goto clean; 1527 1528 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1, 1529 GFP_KERNEL); 1530 if (ret != proto->id) 1531 goto clean; 1532 1533 /* 1534 * Warn but ignore events registration errors since we do not want 1535 * to skip whole protocols if their notifications are messed up. 1536 */ 1537 if (pi->proto->events) { 1538 ret = scmi_register_protocol_events(handle, pi->proto->id, 1539 &pi->ph, 1540 pi->proto->events); 1541 if (ret) 1542 dev_warn(handle->dev, 1543 "Protocol:%X - Events Registration Failed - err:%d\n", 1544 pi->proto->id, ret); 1545 } 1546 1547 devres_close_group(handle->dev, pi->gid); 1548 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id); 1549 1550 return pi; 1551 1552 clean: 1553 /* Take care to put the protocol module's owner before releasing all */ 1554 scmi_protocol_put(proto->id); 1555 devres_release_group(handle->dev, gid); 1556 out: 1557 return ERR_PTR(ret); 1558 } 1559 1560 /** 1561 * scmi_get_protocol_instance - Protocol initialization helper. 1562 * @handle: A reference to the SCMI platform instance. 1563 * @protocol_id: The protocol being requested. 1564 * 1565 * In case the required protocol has never been requested before for this 1566 * instance, allocate and initialize all the needed structures while handling 1567 * resource allocation with a dedicated per-protocol devres subgroup. 1568 * 1569 * Return: A reference to an initialized protocol instance or error on failure: 1570 * in particular returns -EPROBE_DEFER when the desired protocol could 1571 * NOT be found. 1572 */ 1573 static struct scmi_protocol_instance * __must_check 1574 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id) 1575 { 1576 struct scmi_protocol_instance *pi; 1577 struct scmi_info *info = handle_to_scmi_info(handle); 1578 1579 mutex_lock(&info->protocols_mtx); 1580 pi = idr_find(&info->protocols, protocol_id); 1581 1582 if (pi) { 1583 refcount_inc(&pi->users); 1584 } else { 1585 const struct scmi_protocol *proto; 1586 1587 /* Fails if protocol not registered on bus */ 1588 proto = scmi_protocol_get(protocol_id); 1589 if (proto) 1590 pi = scmi_alloc_init_protocol_instance(info, proto); 1591 else 1592 pi = ERR_PTR(-EPROBE_DEFER); 1593 } 1594 mutex_unlock(&info->protocols_mtx); 1595 1596 return pi; 1597 } 1598 1599 /** 1600 * scmi_protocol_acquire - Protocol acquire 1601 * @handle: A reference to the SCMI platform instance. 1602 * @protocol_id: The protocol being requested. 1603 * 1604 * Register a new user for the requested protocol on the specified SCMI 1605 * platform instance, possibly triggering its initialization on first user. 1606 * 1607 * Return: 0 if protocol was acquired successfully. 1608 */ 1609 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id) 1610 { 1611 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id)); 1612 } 1613 1614 /** 1615 * scmi_protocol_release - Protocol de-initialization helper. 1616 * @handle: A reference to the SCMI platform instance. 1617 * @protocol_id: The protocol being requested. 1618 * 1619 * Remove one user for the specified protocol and triggers de-initialization 1620 * and resources de-allocation once the last user has gone. 1621 */ 1622 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id) 1623 { 1624 struct scmi_info *info = handle_to_scmi_info(handle); 1625 struct scmi_protocol_instance *pi; 1626 1627 mutex_lock(&info->protocols_mtx); 1628 pi = idr_find(&info->protocols, protocol_id); 1629 if (WARN_ON(!pi)) 1630 goto out; 1631 1632 if (refcount_dec_and_test(&pi->users)) { 1633 void *gid = pi->gid; 1634 1635 if (pi->proto->events) 1636 scmi_deregister_protocol_events(handle, protocol_id); 1637 1638 if (pi->proto->instance_deinit) 1639 pi->proto->instance_deinit(&pi->ph); 1640 1641 idr_remove(&info->protocols, protocol_id); 1642 1643 scmi_protocol_put(protocol_id); 1644 1645 devres_release_group(handle->dev, gid); 1646 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n", 1647 protocol_id); 1648 } 1649 1650 out: 1651 mutex_unlock(&info->protocols_mtx); 1652 } 1653 1654 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph, 1655 u8 *prot_imp) 1656 { 1657 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1658 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1659 1660 info->protocols_imp = prot_imp; 1661 } 1662 1663 static bool 1664 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id) 1665 { 1666 int i; 1667 struct scmi_info *info = handle_to_scmi_info(handle); 1668 struct scmi_revision_info *rev = handle->version; 1669 1670 if (!info->protocols_imp) 1671 return false; 1672 1673 for (i = 0; i < rev->num_protocols; i++) 1674 if (info->protocols_imp[i] == prot_id) 1675 return true; 1676 return false; 1677 } 1678 1679 struct scmi_protocol_devres { 1680 const struct scmi_handle *handle; 1681 u8 protocol_id; 1682 }; 1683 1684 static void scmi_devm_release_protocol(struct device *dev, void *res) 1685 { 1686 struct scmi_protocol_devres *dres = res; 1687 1688 scmi_protocol_release(dres->handle, dres->protocol_id); 1689 } 1690 1691 static struct scmi_protocol_instance __must_check * 1692 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id) 1693 { 1694 struct scmi_protocol_instance *pi; 1695 struct scmi_protocol_devres *dres; 1696 1697 dres = devres_alloc(scmi_devm_release_protocol, 1698 sizeof(*dres), GFP_KERNEL); 1699 if (!dres) 1700 return ERR_PTR(-ENOMEM); 1701 1702 pi = scmi_get_protocol_instance(sdev->handle, protocol_id); 1703 if (IS_ERR(pi)) { 1704 devres_free(dres); 1705 return pi; 1706 } 1707 1708 dres->handle = sdev->handle; 1709 dres->protocol_id = protocol_id; 1710 devres_add(&sdev->dev, dres); 1711 1712 return pi; 1713 } 1714 1715 /** 1716 * scmi_devm_protocol_get - Devres managed get protocol operations and handle 1717 * @sdev: A reference to an scmi_device whose embedded struct device is to 1718 * be used for devres accounting. 1719 * @protocol_id: The protocol being requested. 1720 * @ph: A pointer reference used to pass back the associated protocol handle. 1721 * 1722 * Get hold of a protocol accounting for its usage, eventually triggering its 1723 * initialization, and returning the protocol specific operations and related 1724 * protocol handle which will be used as first argument in most of the 1725 * protocols operations methods. 1726 * Being a devres based managed method, protocol hold will be automatically 1727 * released, and possibly de-initialized on last user, once the SCMI driver 1728 * owning the scmi_device is unbound from it. 1729 * 1730 * Return: A reference to the requested protocol operations or error. 1731 * Must be checked for errors by caller. 1732 */ 1733 static const void __must_check * 1734 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id, 1735 struct scmi_protocol_handle **ph) 1736 { 1737 struct scmi_protocol_instance *pi; 1738 1739 if (!ph) 1740 return ERR_PTR(-EINVAL); 1741 1742 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 1743 if (IS_ERR(pi)) 1744 return pi; 1745 1746 *ph = &pi->ph; 1747 1748 return pi->proto->ops; 1749 } 1750 1751 /** 1752 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol 1753 * @sdev: A reference to an scmi_device whose embedded struct device is to 1754 * be used for devres accounting. 1755 * @protocol_id: The protocol being requested. 1756 * 1757 * Get hold of a protocol accounting for its usage, possibly triggering its 1758 * initialization but without getting access to its protocol specific operations 1759 * and handle. 1760 * 1761 * Being a devres based managed method, protocol hold will be automatically 1762 * released, and possibly de-initialized on last user, once the SCMI driver 1763 * owning the scmi_device is unbound from it. 1764 * 1765 * Return: 0 on SUCCESS 1766 */ 1767 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev, 1768 u8 protocol_id) 1769 { 1770 struct scmi_protocol_instance *pi; 1771 1772 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 1773 if (IS_ERR(pi)) 1774 return PTR_ERR(pi); 1775 1776 return 0; 1777 } 1778 1779 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data) 1780 { 1781 struct scmi_protocol_devres *dres = res; 1782 1783 if (WARN_ON(!dres || !data)) 1784 return 0; 1785 1786 return dres->protocol_id == *((u8 *)data); 1787 } 1788 1789 /** 1790 * scmi_devm_protocol_put - Devres managed put protocol operations and handle 1791 * @sdev: A reference to an scmi_device whose embedded struct device is to 1792 * be used for devres accounting. 1793 * @protocol_id: The protocol being requested. 1794 * 1795 * Explicitly release a protocol hold previously obtained calling the above 1796 * @scmi_devm_protocol_get. 1797 */ 1798 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id) 1799 { 1800 int ret; 1801 1802 ret = devres_release(&sdev->dev, scmi_devm_release_protocol, 1803 scmi_devm_protocol_match, &protocol_id); 1804 WARN_ON(ret); 1805 } 1806 1807 /** 1808 * scmi_is_transport_atomic - Method to check if underlying transport for an 1809 * SCMI instance is configured as atomic. 1810 * 1811 * @handle: A reference to the SCMI platform instance. 1812 * @atomic_threshold: An optional return value for the system wide currently 1813 * configured threshold for atomic operations. 1814 * 1815 * Return: True if transport is configured as atomic 1816 */ 1817 static bool scmi_is_transport_atomic(const struct scmi_handle *handle, 1818 unsigned int *atomic_threshold) 1819 { 1820 bool ret; 1821 struct scmi_info *info = handle_to_scmi_info(handle); 1822 1823 ret = info->desc->atomic_enabled && is_transport_polling_capable(info); 1824 if (ret && atomic_threshold) 1825 *atomic_threshold = info->atomic_threshold; 1826 1827 return ret; 1828 } 1829 1830 static inline 1831 struct scmi_handle *scmi_handle_get_from_info_unlocked(struct scmi_info *info) 1832 { 1833 info->users++; 1834 return &info->handle; 1835 } 1836 1837 /** 1838 * scmi_handle_get() - Get the SCMI handle for a device 1839 * 1840 * @dev: pointer to device for which we want SCMI handle 1841 * 1842 * NOTE: The function does not track individual clients of the framework 1843 * and is expected to be maintained by caller of SCMI protocol library. 1844 * scmi_handle_put must be balanced with successful scmi_handle_get 1845 * 1846 * Return: pointer to handle if successful, NULL on error 1847 */ 1848 struct scmi_handle *scmi_handle_get(struct device *dev) 1849 { 1850 struct list_head *p; 1851 struct scmi_info *info; 1852 struct scmi_handle *handle = NULL; 1853 1854 mutex_lock(&scmi_list_mutex); 1855 list_for_each(p, &scmi_list) { 1856 info = list_entry(p, struct scmi_info, node); 1857 if (dev->parent == info->dev) { 1858 handle = scmi_handle_get_from_info_unlocked(info); 1859 break; 1860 } 1861 } 1862 mutex_unlock(&scmi_list_mutex); 1863 1864 return handle; 1865 } 1866 1867 /** 1868 * scmi_handle_put() - Release the handle acquired by scmi_handle_get 1869 * 1870 * @handle: handle acquired by scmi_handle_get 1871 * 1872 * NOTE: The function does not track individual clients of the framework 1873 * and is expected to be maintained by caller of SCMI protocol library. 1874 * scmi_handle_put must be balanced with successful scmi_handle_get 1875 * 1876 * Return: 0 is successfully released 1877 * if null was passed, it returns -EINVAL; 1878 */ 1879 int scmi_handle_put(const struct scmi_handle *handle) 1880 { 1881 struct scmi_info *info; 1882 1883 if (!handle) 1884 return -EINVAL; 1885 1886 info = handle_to_scmi_info(handle); 1887 mutex_lock(&scmi_list_mutex); 1888 if (!WARN_ON(!info->users)) 1889 info->users--; 1890 mutex_unlock(&scmi_list_mutex); 1891 1892 return 0; 1893 } 1894 1895 static int __scmi_xfer_info_init(struct scmi_info *sinfo, 1896 struct scmi_xfers_info *info) 1897 { 1898 int i; 1899 struct scmi_xfer *xfer; 1900 struct device *dev = sinfo->dev; 1901 const struct scmi_desc *desc = sinfo->desc; 1902 1903 /* Pre-allocated messages, no more than what hdr.seq can support */ 1904 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) { 1905 dev_err(dev, 1906 "Invalid maximum messages %d, not in range [1 - %lu]\n", 1907 info->max_msg, MSG_TOKEN_MAX); 1908 return -EINVAL; 1909 } 1910 1911 hash_init(info->pending_xfers); 1912 1913 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */ 1914 info->xfer_alloc_table = devm_kcalloc(dev, BITS_TO_LONGS(MSG_TOKEN_MAX), 1915 sizeof(long), GFP_KERNEL); 1916 if (!info->xfer_alloc_table) 1917 return -ENOMEM; 1918 1919 /* 1920 * Preallocate a number of xfers equal to max inflight messages, 1921 * pre-initialize the buffer pointer to pre-allocated buffers and 1922 * attach all of them to the free list 1923 */ 1924 INIT_HLIST_HEAD(&info->free_xfers); 1925 for (i = 0; i < info->max_msg; i++) { 1926 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL); 1927 if (!xfer) 1928 return -ENOMEM; 1929 1930 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size, 1931 GFP_KERNEL); 1932 if (!xfer->rx.buf) 1933 return -ENOMEM; 1934 1935 xfer->tx.buf = xfer->rx.buf; 1936 init_completion(&xfer->done); 1937 spin_lock_init(&xfer->lock); 1938 1939 /* Add initialized xfer to the free list */ 1940 hlist_add_head(&xfer->node, &info->free_xfers); 1941 } 1942 1943 spin_lock_init(&info->xfer_lock); 1944 1945 return 0; 1946 } 1947 1948 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo) 1949 { 1950 const struct scmi_desc *desc = sinfo->desc; 1951 1952 if (!desc->ops->get_max_msg) { 1953 sinfo->tx_minfo.max_msg = desc->max_msg; 1954 sinfo->rx_minfo.max_msg = desc->max_msg; 1955 } else { 1956 struct scmi_chan_info *base_cinfo; 1957 1958 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE); 1959 if (!base_cinfo) 1960 return -EINVAL; 1961 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo); 1962 1963 /* RX channel is optional so can be skipped */ 1964 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE); 1965 if (base_cinfo) 1966 sinfo->rx_minfo.max_msg = 1967 desc->ops->get_max_msg(base_cinfo); 1968 } 1969 1970 return 0; 1971 } 1972 1973 static int scmi_xfer_info_init(struct scmi_info *sinfo) 1974 { 1975 int ret; 1976 1977 ret = scmi_channels_max_msg_configure(sinfo); 1978 if (ret) 1979 return ret; 1980 1981 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo); 1982 if (!ret && idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE)) 1983 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo); 1984 1985 return ret; 1986 } 1987 1988 static int scmi_chan_setup(struct scmi_info *info, struct device *dev, 1989 int prot_id, bool tx) 1990 { 1991 int ret, idx; 1992 struct scmi_chan_info *cinfo; 1993 struct idr *idr; 1994 1995 /* Transmit channel is first entry i.e. index 0 */ 1996 idx = tx ? 0 : 1; 1997 idr = tx ? &info->tx_idr : &info->rx_idr; 1998 1999 /* check if already allocated, used for multiple device per protocol */ 2000 cinfo = idr_find(idr, prot_id); 2001 if (cinfo) 2002 return 0; 2003 2004 if (!info->desc->ops->chan_available(dev, idx)) { 2005 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE); 2006 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */ 2007 return -EINVAL; 2008 goto idr_alloc; 2009 } 2010 2011 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL); 2012 if (!cinfo) 2013 return -ENOMEM; 2014 2015 cinfo->dev = dev; 2016 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms; 2017 2018 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx); 2019 if (ret) 2020 return ret; 2021 2022 if (tx && is_polling_required(cinfo, info)) { 2023 if (is_transport_polling_capable(info)) 2024 dev_info(dev, 2025 "Enabled polling mode TX channel - prot_id:%d\n", 2026 prot_id); 2027 else 2028 dev_warn(dev, 2029 "Polling mode NOT supported by transport.\n"); 2030 } 2031 2032 idr_alloc: 2033 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL); 2034 if (ret != prot_id) { 2035 dev_err(dev, "unable to allocate SCMI idr slot err %d\n", ret); 2036 return ret; 2037 } 2038 2039 cinfo->handle = &info->handle; 2040 return 0; 2041 } 2042 2043 static inline int 2044 scmi_txrx_setup(struct scmi_info *info, struct device *dev, int prot_id) 2045 { 2046 int ret = scmi_chan_setup(info, dev, prot_id, true); 2047 2048 if (!ret) { 2049 /* Rx is optional, report only memory errors */ 2050 ret = scmi_chan_setup(info, dev, prot_id, false); 2051 if (ret && ret != -ENOMEM) 2052 ret = 0; 2053 } 2054 2055 return ret; 2056 } 2057 2058 /** 2059 * scmi_get_protocol_device - Helper to get/create an SCMI device. 2060 * 2061 * @np: A device node representing a valid active protocols for the referred 2062 * SCMI instance. 2063 * @info: The referred SCMI instance for which we are getting/creating this 2064 * device. 2065 * @prot_id: The protocol ID. 2066 * @name: The device name. 2067 * 2068 * Referring to the specific SCMI instance identified by @info, this helper 2069 * takes care to return a properly initialized device matching the requested 2070 * @proto_id and @name: if device was still not existent it is created as a 2071 * child of the specified SCMI instance @info and its transport properly 2072 * initialized as usual. 2073 * 2074 * Return: A properly initialized scmi device, NULL otherwise. 2075 */ 2076 static inline struct scmi_device * 2077 scmi_get_protocol_device(struct device_node *np, struct scmi_info *info, 2078 int prot_id, const char *name) 2079 { 2080 struct scmi_device *sdev; 2081 2082 /* Already created for this parent SCMI instance ? */ 2083 sdev = scmi_child_dev_find(info->dev, prot_id, name); 2084 if (sdev) 2085 return sdev; 2086 2087 mutex_lock(&scmi_syspower_mtx); 2088 if (prot_id == SCMI_PROTOCOL_SYSTEM && scmi_syspower_registered) { 2089 dev_warn(info->dev, 2090 "SCMI SystemPower protocol device must be unique !\n"); 2091 mutex_unlock(&scmi_syspower_mtx); 2092 2093 return NULL; 2094 } 2095 2096 pr_debug("Creating SCMI device (%s) for protocol %x\n", name, prot_id); 2097 2098 sdev = scmi_device_create(np, info->dev, prot_id, name); 2099 if (!sdev) { 2100 dev_err(info->dev, "failed to create %d protocol device\n", 2101 prot_id); 2102 mutex_unlock(&scmi_syspower_mtx); 2103 2104 return NULL; 2105 } 2106 2107 if (scmi_txrx_setup(info, &sdev->dev, prot_id)) { 2108 dev_err(&sdev->dev, "failed to setup transport\n"); 2109 scmi_device_destroy(sdev); 2110 mutex_unlock(&scmi_syspower_mtx); 2111 2112 return NULL; 2113 } 2114 2115 if (prot_id == SCMI_PROTOCOL_SYSTEM) 2116 scmi_syspower_registered = true; 2117 2118 mutex_unlock(&scmi_syspower_mtx); 2119 2120 return sdev; 2121 } 2122 2123 static inline void 2124 scmi_create_protocol_device(struct device_node *np, struct scmi_info *info, 2125 int prot_id, const char *name) 2126 { 2127 struct scmi_device *sdev; 2128 2129 sdev = scmi_get_protocol_device(np, info, prot_id, name); 2130 if (!sdev) 2131 return; 2132 2133 /* setup handle now as the transport is ready */ 2134 scmi_set_handle(sdev); 2135 } 2136 2137 /** 2138 * scmi_create_protocol_devices - Create devices for all pending requests for 2139 * this SCMI instance. 2140 * 2141 * @np: The device node describing the protocol 2142 * @info: The SCMI instance descriptor 2143 * @prot_id: The protocol ID 2144 * 2145 * All devices previously requested for this instance (if any) are found and 2146 * created by scanning the proper @&scmi_requested_devices entry. 2147 */ 2148 static void scmi_create_protocol_devices(struct device_node *np, 2149 struct scmi_info *info, int prot_id) 2150 { 2151 struct list_head *phead; 2152 2153 mutex_lock(&scmi_requested_devices_mtx); 2154 phead = idr_find(&scmi_requested_devices, prot_id); 2155 if (phead) { 2156 struct scmi_requested_dev *rdev; 2157 2158 list_for_each_entry(rdev, phead, node) 2159 scmi_create_protocol_device(np, info, prot_id, 2160 rdev->id_table->name); 2161 } 2162 mutex_unlock(&scmi_requested_devices_mtx); 2163 } 2164 2165 /** 2166 * scmi_protocol_device_request - Helper to request a device 2167 * 2168 * @id_table: A protocol/name pair descriptor for the device to be created. 2169 * 2170 * This helper let an SCMI driver request specific devices identified by the 2171 * @id_table to be created for each active SCMI instance. 2172 * 2173 * The requested device name MUST NOT be already existent for any protocol; 2174 * at first the freshly requested @id_table is annotated in the IDR table 2175 * @scmi_requested_devices, then a matching device is created for each already 2176 * active SCMI instance. (if any) 2177 * 2178 * This way the requested device is created straight-away for all the already 2179 * initialized(probed) SCMI instances (handles) and it remains also annotated 2180 * as pending creation if the requesting SCMI driver was loaded before some 2181 * SCMI instance and related transports were available: when such late instance 2182 * is probed, its probe will take care to scan the list of pending requested 2183 * devices and create those on its own (see @scmi_create_protocol_devices and 2184 * its enclosing loop) 2185 * 2186 * Return: 0 on Success 2187 */ 2188 int scmi_protocol_device_request(const struct scmi_device_id *id_table) 2189 { 2190 int ret = 0; 2191 unsigned int id = 0; 2192 struct list_head *head, *phead = NULL; 2193 struct scmi_requested_dev *rdev; 2194 struct scmi_info *info; 2195 2196 pr_debug("Requesting SCMI device (%s) for protocol %x\n", 2197 id_table->name, id_table->protocol_id); 2198 2199 /* 2200 * Search for the matching protocol rdev list and then search 2201 * of any existent equally named device...fails if any duplicate found. 2202 */ 2203 mutex_lock(&scmi_requested_devices_mtx); 2204 idr_for_each_entry(&scmi_requested_devices, head, id) { 2205 if (!phead) { 2206 /* A list found registered in the IDR is never empty */ 2207 rdev = list_first_entry(head, struct scmi_requested_dev, 2208 node); 2209 if (rdev->id_table->protocol_id == 2210 id_table->protocol_id) 2211 phead = head; 2212 } 2213 list_for_each_entry(rdev, head, node) { 2214 if (!strcmp(rdev->id_table->name, id_table->name)) { 2215 pr_err("Ignoring duplicate request [%d] %s\n", 2216 rdev->id_table->protocol_id, 2217 rdev->id_table->name); 2218 ret = -EINVAL; 2219 goto out; 2220 } 2221 } 2222 } 2223 2224 /* 2225 * No duplicate found for requested id_table, so let's create a new 2226 * requested device entry for this new valid request. 2227 */ 2228 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2229 if (!rdev) { 2230 ret = -ENOMEM; 2231 goto out; 2232 } 2233 rdev->id_table = id_table; 2234 2235 /* 2236 * Append the new requested device table descriptor to the head of the 2237 * related protocol list, eventually creating such head if not already 2238 * there. 2239 */ 2240 if (!phead) { 2241 phead = kzalloc(sizeof(*phead), GFP_KERNEL); 2242 if (!phead) { 2243 kfree(rdev); 2244 ret = -ENOMEM; 2245 goto out; 2246 } 2247 INIT_LIST_HEAD(phead); 2248 2249 ret = idr_alloc(&scmi_requested_devices, (void *)phead, 2250 id_table->protocol_id, 2251 id_table->protocol_id + 1, GFP_KERNEL); 2252 if (ret != id_table->protocol_id) { 2253 pr_err("Failed to save SCMI device - ret:%d\n", ret); 2254 kfree(rdev); 2255 kfree(phead); 2256 ret = -EINVAL; 2257 goto out; 2258 } 2259 ret = 0; 2260 } 2261 list_add(&rdev->node, phead); 2262 2263 /* 2264 * Now effectively create and initialize the requested device for every 2265 * already initialized SCMI instance which has registered the requested 2266 * protocol as a valid active one: i.e. defined in DT and supported by 2267 * current platform FW. 2268 */ 2269 mutex_lock(&scmi_list_mutex); 2270 list_for_each_entry(info, &scmi_list, node) { 2271 struct device_node *child; 2272 2273 child = idr_find(&info->active_protocols, 2274 id_table->protocol_id); 2275 if (child) { 2276 struct scmi_device *sdev; 2277 2278 sdev = scmi_get_protocol_device(child, info, 2279 id_table->protocol_id, 2280 id_table->name); 2281 if (sdev) { 2282 /* Set handle if not already set: device existed */ 2283 if (!sdev->handle) 2284 sdev->handle = 2285 scmi_handle_get_from_info_unlocked(info); 2286 /* Relink consumer and suppliers */ 2287 if (sdev->handle) 2288 scmi_device_link_add(&sdev->dev, 2289 sdev->handle->dev); 2290 } 2291 } else { 2292 dev_err(info->dev, 2293 "Failed. SCMI protocol %d not active.\n", 2294 id_table->protocol_id); 2295 } 2296 } 2297 mutex_unlock(&scmi_list_mutex); 2298 2299 out: 2300 mutex_unlock(&scmi_requested_devices_mtx); 2301 2302 return ret; 2303 } 2304 2305 /** 2306 * scmi_protocol_device_unrequest - Helper to unrequest a device 2307 * 2308 * @id_table: A protocol/name pair descriptor for the device to be unrequested. 2309 * 2310 * An helper to let an SCMI driver release its request about devices; note that 2311 * devices are created and initialized once the first SCMI driver request them 2312 * but they destroyed only on SCMI core unloading/unbinding. 2313 * 2314 * The current SCMI transport layer uses such devices as internal references and 2315 * as such they could be shared as same transport between multiple drivers so 2316 * that cannot be safely destroyed till the whole SCMI stack is removed. 2317 * (unless adding further burden of refcounting.) 2318 */ 2319 void scmi_protocol_device_unrequest(const struct scmi_device_id *id_table) 2320 { 2321 struct list_head *phead; 2322 2323 pr_debug("Unrequesting SCMI device (%s) for protocol %x\n", 2324 id_table->name, id_table->protocol_id); 2325 2326 mutex_lock(&scmi_requested_devices_mtx); 2327 phead = idr_find(&scmi_requested_devices, id_table->protocol_id); 2328 if (phead) { 2329 struct scmi_requested_dev *victim, *tmp; 2330 2331 list_for_each_entry_safe(victim, tmp, phead, node) { 2332 if (!strcmp(victim->id_table->name, id_table->name)) { 2333 list_del(&victim->node); 2334 kfree(victim); 2335 break; 2336 } 2337 } 2338 2339 if (list_empty(phead)) { 2340 idr_remove(&scmi_requested_devices, 2341 id_table->protocol_id); 2342 kfree(phead); 2343 } 2344 } 2345 mutex_unlock(&scmi_requested_devices_mtx); 2346 } 2347 2348 static int scmi_cleanup_txrx_channels(struct scmi_info *info) 2349 { 2350 int ret; 2351 struct idr *idr = &info->tx_idr; 2352 2353 ret = idr_for_each(idr, info->desc->ops->chan_free, idr); 2354 idr_destroy(&info->tx_idr); 2355 2356 idr = &info->rx_idr; 2357 ret = idr_for_each(idr, info->desc->ops->chan_free, idr); 2358 idr_destroy(&info->rx_idr); 2359 2360 return ret; 2361 } 2362 2363 static int scmi_probe(struct platform_device *pdev) 2364 { 2365 int ret; 2366 struct scmi_handle *handle; 2367 const struct scmi_desc *desc; 2368 struct scmi_info *info; 2369 struct device *dev = &pdev->dev; 2370 struct device_node *child, *np = dev->of_node; 2371 2372 desc = of_device_get_match_data(dev); 2373 if (!desc) 2374 return -EINVAL; 2375 2376 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); 2377 if (!info) 2378 return -ENOMEM; 2379 2380 info->dev = dev; 2381 info->desc = desc; 2382 INIT_LIST_HEAD(&info->node); 2383 idr_init(&info->protocols); 2384 mutex_init(&info->protocols_mtx); 2385 idr_init(&info->active_protocols); 2386 2387 platform_set_drvdata(pdev, info); 2388 idr_init(&info->tx_idr); 2389 idr_init(&info->rx_idr); 2390 2391 handle = &info->handle; 2392 handle->dev = info->dev; 2393 handle->version = &info->version; 2394 handle->devm_protocol_acquire = scmi_devm_protocol_acquire; 2395 handle->devm_protocol_get = scmi_devm_protocol_get; 2396 handle->devm_protocol_put = scmi_devm_protocol_put; 2397 2398 /* System wide atomic threshold for atomic ops .. if any */ 2399 if (!of_property_read_u32(np, "atomic-threshold-us", 2400 &info->atomic_threshold)) 2401 dev_info(dev, 2402 "SCMI System wide atomic threshold set to %d us\n", 2403 info->atomic_threshold); 2404 handle->is_transport_atomic = scmi_is_transport_atomic; 2405 2406 if (desc->ops->link_supplier) { 2407 ret = desc->ops->link_supplier(dev); 2408 if (ret) 2409 return ret; 2410 } 2411 2412 ret = scmi_txrx_setup(info, dev, SCMI_PROTOCOL_BASE); 2413 if (ret) 2414 return ret; 2415 2416 ret = scmi_xfer_info_init(info); 2417 if (ret) 2418 goto clear_txrx_setup; 2419 2420 if (scmi_notification_init(handle)) 2421 dev_err(dev, "SCMI Notifications NOT available.\n"); 2422 2423 if (info->desc->atomic_enabled && !is_transport_polling_capable(info)) 2424 dev_err(dev, 2425 "Transport is not polling capable. Atomic mode not supported.\n"); 2426 2427 /* 2428 * Trigger SCMI Base protocol initialization. 2429 * It's mandatory and won't be ever released/deinit until the 2430 * SCMI stack is shutdown/unloaded as a whole. 2431 */ 2432 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE); 2433 if (ret) { 2434 dev_err(dev, "unable to communicate with SCMI\n"); 2435 goto notification_exit; 2436 } 2437 2438 mutex_lock(&scmi_list_mutex); 2439 list_add_tail(&info->node, &scmi_list); 2440 mutex_unlock(&scmi_list_mutex); 2441 2442 for_each_available_child_of_node(np, child) { 2443 u32 prot_id; 2444 2445 if (of_property_read_u32(child, "reg", &prot_id)) 2446 continue; 2447 2448 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 2449 dev_err(dev, "Out of range protocol %d\n", prot_id); 2450 2451 if (!scmi_is_protocol_implemented(handle, prot_id)) { 2452 dev_err(dev, "SCMI protocol %d not implemented\n", 2453 prot_id); 2454 continue; 2455 } 2456 2457 /* 2458 * Save this valid DT protocol descriptor amongst 2459 * @active_protocols for this SCMI instance/ 2460 */ 2461 ret = idr_alloc(&info->active_protocols, child, 2462 prot_id, prot_id + 1, GFP_KERNEL); 2463 if (ret != prot_id) { 2464 dev_err(dev, "SCMI protocol %d already activated. Skip\n", 2465 prot_id); 2466 continue; 2467 } 2468 2469 of_node_get(child); 2470 scmi_create_protocol_devices(child, info, prot_id); 2471 } 2472 2473 return 0; 2474 2475 notification_exit: 2476 scmi_notification_exit(&info->handle); 2477 clear_txrx_setup: 2478 scmi_cleanup_txrx_channels(info); 2479 return ret; 2480 } 2481 2482 void scmi_free_channel(struct scmi_chan_info *cinfo, struct idr *idr, int id) 2483 { 2484 idr_remove(idr, id); 2485 } 2486 2487 static int scmi_remove(struct platform_device *pdev) 2488 { 2489 int ret, id; 2490 struct scmi_info *info = platform_get_drvdata(pdev); 2491 struct device_node *child; 2492 2493 mutex_lock(&scmi_list_mutex); 2494 if (info->users) 2495 dev_warn(&pdev->dev, 2496 "Still active SCMI users will be forcibly unbound.\n"); 2497 list_del(&info->node); 2498 mutex_unlock(&scmi_list_mutex); 2499 2500 scmi_notification_exit(&info->handle); 2501 2502 mutex_lock(&info->protocols_mtx); 2503 idr_destroy(&info->protocols); 2504 mutex_unlock(&info->protocols_mtx); 2505 2506 idr_for_each_entry(&info->active_protocols, child, id) 2507 of_node_put(child); 2508 idr_destroy(&info->active_protocols); 2509 2510 /* Safe to free channels since no more users */ 2511 ret = scmi_cleanup_txrx_channels(info); 2512 if (ret) 2513 dev_warn(&pdev->dev, "Failed to cleanup SCMI channels.\n"); 2514 2515 return 0; 2516 } 2517 2518 static ssize_t protocol_version_show(struct device *dev, 2519 struct device_attribute *attr, char *buf) 2520 { 2521 struct scmi_info *info = dev_get_drvdata(dev); 2522 2523 return sprintf(buf, "%u.%u\n", info->version.major_ver, 2524 info->version.minor_ver); 2525 } 2526 static DEVICE_ATTR_RO(protocol_version); 2527 2528 static ssize_t firmware_version_show(struct device *dev, 2529 struct device_attribute *attr, char *buf) 2530 { 2531 struct scmi_info *info = dev_get_drvdata(dev); 2532 2533 return sprintf(buf, "0x%x\n", info->version.impl_ver); 2534 } 2535 static DEVICE_ATTR_RO(firmware_version); 2536 2537 static ssize_t vendor_id_show(struct device *dev, 2538 struct device_attribute *attr, char *buf) 2539 { 2540 struct scmi_info *info = dev_get_drvdata(dev); 2541 2542 return sprintf(buf, "%s\n", info->version.vendor_id); 2543 } 2544 static DEVICE_ATTR_RO(vendor_id); 2545 2546 static ssize_t sub_vendor_id_show(struct device *dev, 2547 struct device_attribute *attr, char *buf) 2548 { 2549 struct scmi_info *info = dev_get_drvdata(dev); 2550 2551 return sprintf(buf, "%s\n", info->version.sub_vendor_id); 2552 } 2553 static DEVICE_ATTR_RO(sub_vendor_id); 2554 2555 static struct attribute *versions_attrs[] = { 2556 &dev_attr_firmware_version.attr, 2557 &dev_attr_protocol_version.attr, 2558 &dev_attr_vendor_id.attr, 2559 &dev_attr_sub_vendor_id.attr, 2560 NULL, 2561 }; 2562 ATTRIBUTE_GROUPS(versions); 2563 2564 /* Each compatible listed below must have descriptor associated with it */ 2565 static const struct of_device_id scmi_of_match[] = { 2566 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX 2567 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc }, 2568 #endif 2569 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE 2570 { .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc }, 2571 #endif 2572 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC 2573 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc}, 2574 #endif 2575 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO 2576 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc}, 2577 #endif 2578 { /* Sentinel */ }, 2579 }; 2580 2581 MODULE_DEVICE_TABLE(of, scmi_of_match); 2582 2583 static struct platform_driver scmi_driver = { 2584 .driver = { 2585 .name = "arm-scmi", 2586 .suppress_bind_attrs = true, 2587 .of_match_table = scmi_of_match, 2588 .dev_groups = versions_groups, 2589 }, 2590 .probe = scmi_probe, 2591 .remove = scmi_remove, 2592 }; 2593 2594 /** 2595 * __scmi_transports_setup - Common helper to call transport-specific 2596 * .init/.exit code if provided. 2597 * 2598 * @init: A flag to distinguish between init and exit. 2599 * 2600 * Note that, if provided, we invoke .init/.exit functions for all the 2601 * transports currently compiled in. 2602 * 2603 * Return: 0 on Success. 2604 */ 2605 static inline int __scmi_transports_setup(bool init) 2606 { 2607 int ret = 0; 2608 const struct of_device_id *trans; 2609 2610 for (trans = scmi_of_match; trans->data; trans++) { 2611 const struct scmi_desc *tdesc = trans->data; 2612 2613 if ((init && !tdesc->transport_init) || 2614 (!init && !tdesc->transport_exit)) 2615 continue; 2616 2617 if (init) 2618 ret = tdesc->transport_init(); 2619 else 2620 tdesc->transport_exit(); 2621 2622 if (ret) { 2623 pr_err("SCMI transport %s FAILED initialization!\n", 2624 trans->compatible); 2625 break; 2626 } 2627 } 2628 2629 return ret; 2630 } 2631 2632 static int __init scmi_transports_init(void) 2633 { 2634 return __scmi_transports_setup(true); 2635 } 2636 2637 static void __exit scmi_transports_exit(void) 2638 { 2639 __scmi_transports_setup(false); 2640 } 2641 2642 static int __init scmi_driver_init(void) 2643 { 2644 int ret; 2645 2646 /* Bail out if no SCMI transport was configured */ 2647 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT))) 2648 return -EINVAL; 2649 2650 scmi_bus_init(); 2651 2652 /* Initialize any compiled-in transport which provided an init/exit */ 2653 ret = scmi_transports_init(); 2654 if (ret) 2655 return ret; 2656 2657 scmi_base_register(); 2658 2659 scmi_clock_register(); 2660 scmi_perf_register(); 2661 scmi_power_register(); 2662 scmi_reset_register(); 2663 scmi_sensors_register(); 2664 scmi_voltage_register(); 2665 scmi_system_register(); 2666 scmi_powercap_register(); 2667 2668 return platform_driver_register(&scmi_driver); 2669 } 2670 subsys_initcall(scmi_driver_init); 2671 2672 static void __exit scmi_driver_exit(void) 2673 { 2674 scmi_base_unregister(); 2675 2676 scmi_clock_unregister(); 2677 scmi_perf_unregister(); 2678 scmi_power_unregister(); 2679 scmi_reset_unregister(); 2680 scmi_sensors_unregister(); 2681 scmi_voltage_unregister(); 2682 scmi_system_unregister(); 2683 scmi_powercap_unregister(); 2684 2685 scmi_bus_exit(); 2686 2687 scmi_transports_exit(); 2688 2689 platform_driver_unregister(&scmi_driver); 2690 } 2691 module_exit(scmi_driver_exit); 2692 2693 MODULE_ALIAS("platform:arm-scmi"); 2694 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 2695 MODULE_DESCRIPTION("ARM SCMI protocol driver"); 2696 MODULE_LICENSE("GPL v2"); 2697