xref: /linux/drivers/firmware/arm_scmi/driver.c (revision 20a72af11f411bb74c14bd424f33b02e03937cf6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Message Protocol driver
4  *
5  * SCMI Message Protocol is used between the System Control Processor(SCP)
6  * and the Application Processors(AP). The Message Handling Unit(MHU)
7  * provides a mechanism for inter-processor communication between SCP's
8  * Cortex M3 and AP.
9  *
10  * SCP offers control and management of the core/cluster power states,
11  * various power domain DVFS including the core/cluster, certain system
12  * clocks configuration, thermal sensors and many others.
13  *
14  * Copyright (C) 2018-2021 ARM Ltd.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/hashtable.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of_address.h>
32 #include <linux/of_device.h>
33 #include <linux/processor.h>
34 #include <linux/refcount.h>
35 #include <linux/slab.h>
36 
37 #include "common.h"
38 #include "notify.h"
39 
40 #include "raw_mode.h"
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/scmi.h>
44 
45 static DEFINE_IDA(scmi_id);
46 
47 static DEFINE_IDR(scmi_protocols);
48 static DEFINE_SPINLOCK(protocol_lock);
49 
50 /* List of all SCMI devices active in system */
51 static LIST_HEAD(scmi_list);
52 /* Protection for the entire list */
53 static DEFINE_MUTEX(scmi_list_mutex);
54 /* Track the unique id for the transfers for debug & profiling purpose */
55 static atomic_t transfer_last_id;
56 
57 static struct dentry *scmi_top_dentry;
58 
59 /**
60  * struct scmi_xfers_info - Structure to manage transfer information
61  *
62  * @xfer_alloc_table: Bitmap table for allocated messages.
63  *	Index of this bitmap table is also used for message
64  *	sequence identifier.
65  * @xfer_lock: Protection for message allocation
66  * @max_msg: Maximum number of messages that can be pending
67  * @free_xfers: A free list for available to use xfers. It is initialized with
68  *		a number of xfers equal to the maximum allowed in-flight
69  *		messages.
70  * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
71  *		   currently in-flight messages.
72  */
73 struct scmi_xfers_info {
74 	unsigned long *xfer_alloc_table;
75 	spinlock_t xfer_lock;
76 	int max_msg;
77 	struct hlist_head free_xfers;
78 	DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
79 };
80 
81 /**
82  * struct scmi_protocol_instance  - Describe an initialized protocol instance.
83  * @handle: Reference to the SCMI handle associated to this protocol instance.
84  * @proto: A reference to the protocol descriptor.
85  * @gid: A reference for per-protocol devres management.
86  * @users: A refcount to track effective users of this protocol.
87  * @priv: Reference for optional protocol private data.
88  * @ph: An embedded protocol handle that will be passed down to protocol
89  *	initialization code to identify this instance.
90  *
91  * Each protocol is initialized independently once for each SCMI platform in
92  * which is defined by DT and implemented by the SCMI server fw.
93  */
94 struct scmi_protocol_instance {
95 	const struct scmi_handle	*handle;
96 	const struct scmi_protocol	*proto;
97 	void				*gid;
98 	refcount_t			users;
99 	void				*priv;
100 	struct scmi_protocol_handle	ph;
101 };
102 
103 #define ph_to_pi(h)	container_of(h, struct scmi_protocol_instance, ph)
104 
105 /**
106  * struct scmi_debug_info  - Debug common info
107  * @top_dentry: A reference to the top debugfs dentry
108  * @name: Name of this SCMI instance
109  * @type: Type of this SCMI instance
110  * @is_atomic: Flag to state if the transport of this instance is atomic
111  */
112 struct scmi_debug_info {
113 	struct dentry *top_dentry;
114 	const char *name;
115 	const char *type;
116 	bool is_atomic;
117 };
118 
119 /**
120  * struct scmi_info - Structure representing a SCMI instance
121  *
122  * @id: A sequence number starting from zero identifying this instance
123  * @dev: Device pointer
124  * @desc: SoC description for this instance
125  * @version: SCMI revision information containing protocol version,
126  *	implementation version and (sub-)vendor identification.
127  * @handle: Instance of SCMI handle to send to clients
128  * @tx_minfo: Universal Transmit Message management info
129  * @rx_minfo: Universal Receive Message management info
130  * @tx_idr: IDR object to map protocol id to Tx channel info pointer
131  * @rx_idr: IDR object to map protocol id to Rx channel info pointer
132  * @protocols: IDR for protocols' instance descriptors initialized for
133  *	       this SCMI instance: populated on protocol's first attempted
134  *	       usage.
135  * @protocols_mtx: A mutex to protect protocols instances initialization.
136  * @protocols_imp: List of protocols implemented, currently maximum of
137  *		   scmi_revision_info.num_protocols elements allocated by the
138  *		   base protocol
139  * @active_protocols: IDR storing device_nodes for protocols actually defined
140  *		      in the DT and confirmed as implemented by fw.
141  * @atomic_threshold: Optional system wide DT-configured threshold, expressed
142  *		      in microseconds, for atomic operations.
143  *		      Only SCMI synchronous commands reported by the platform
144  *		      to have an execution latency lesser-equal to the threshold
145  *		      should be considered for atomic mode operation: such
146  *		      decision is finally left up to the SCMI drivers.
147  * @notify_priv: Pointer to private data structure specific to notifications.
148  * @node: List head
149  * @users: Number of users of this instance
150  * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
151  * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
152  *		bus
153  * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
154  * @dbg: A pointer to debugfs related data (if any)
155  * @raw: An opaque reference handle used by SCMI Raw mode.
156  */
157 struct scmi_info {
158 	int id;
159 	struct device *dev;
160 	const struct scmi_desc *desc;
161 	struct scmi_revision_info version;
162 	struct scmi_handle handle;
163 	struct scmi_xfers_info tx_minfo;
164 	struct scmi_xfers_info rx_minfo;
165 	struct idr tx_idr;
166 	struct idr rx_idr;
167 	struct idr protocols;
168 	/* Ensure mutual exclusive access to protocols instance array */
169 	struct mutex protocols_mtx;
170 	u8 *protocols_imp;
171 	struct idr active_protocols;
172 	unsigned int atomic_threshold;
173 	void *notify_priv;
174 	struct list_head node;
175 	int users;
176 	struct notifier_block bus_nb;
177 	struct notifier_block dev_req_nb;
178 	/* Serialize device creation process for this instance */
179 	struct mutex devreq_mtx;
180 	struct scmi_debug_info *dbg;
181 	void *raw;
182 };
183 
184 #define handle_to_scmi_info(h)	container_of(h, struct scmi_info, handle)
185 #define bus_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, bus_nb)
186 #define req_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, dev_req_nb)
187 
188 static const struct scmi_protocol *scmi_protocol_get(int protocol_id)
189 {
190 	const struct scmi_protocol *proto;
191 
192 	proto = idr_find(&scmi_protocols, protocol_id);
193 	if (!proto || !try_module_get(proto->owner)) {
194 		pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
195 		return NULL;
196 	}
197 
198 	pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
199 
200 	return proto;
201 }
202 
203 static void scmi_protocol_put(int protocol_id)
204 {
205 	const struct scmi_protocol *proto;
206 
207 	proto = idr_find(&scmi_protocols, protocol_id);
208 	if (proto)
209 		module_put(proto->owner);
210 }
211 
212 int scmi_protocol_register(const struct scmi_protocol *proto)
213 {
214 	int ret;
215 
216 	if (!proto) {
217 		pr_err("invalid protocol\n");
218 		return -EINVAL;
219 	}
220 
221 	if (!proto->instance_init) {
222 		pr_err("missing init for protocol 0x%x\n", proto->id);
223 		return -EINVAL;
224 	}
225 
226 	spin_lock(&protocol_lock);
227 	ret = idr_alloc(&scmi_protocols, (void *)proto,
228 			proto->id, proto->id + 1, GFP_ATOMIC);
229 	spin_unlock(&protocol_lock);
230 	if (ret != proto->id) {
231 		pr_err("unable to allocate SCMI idr slot for 0x%x - err %d\n",
232 		       proto->id, ret);
233 		return ret;
234 	}
235 
236 	pr_debug("Registered SCMI Protocol 0x%x\n", proto->id);
237 
238 	return 0;
239 }
240 EXPORT_SYMBOL_GPL(scmi_protocol_register);
241 
242 void scmi_protocol_unregister(const struct scmi_protocol *proto)
243 {
244 	spin_lock(&protocol_lock);
245 	idr_remove(&scmi_protocols, proto->id);
246 	spin_unlock(&protocol_lock);
247 
248 	pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
249 }
250 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
251 
252 /**
253  * scmi_create_protocol_devices  - Create devices for all pending requests for
254  * this SCMI instance.
255  *
256  * @np: The device node describing the protocol
257  * @info: The SCMI instance descriptor
258  * @prot_id: The protocol ID
259  * @name: The optional name of the device to be created: if not provided this
260  *	  call will lead to the creation of all the devices currently requested
261  *	  for the specified protocol.
262  */
263 static void scmi_create_protocol_devices(struct device_node *np,
264 					 struct scmi_info *info,
265 					 int prot_id, const char *name)
266 {
267 	struct scmi_device *sdev;
268 
269 	mutex_lock(&info->devreq_mtx);
270 	sdev = scmi_device_create(np, info->dev, prot_id, name);
271 	if (name && !sdev)
272 		dev_err(info->dev,
273 			"failed to create device for protocol 0x%X (%s)\n",
274 			prot_id, name);
275 	mutex_unlock(&info->devreq_mtx);
276 }
277 
278 static void scmi_destroy_protocol_devices(struct scmi_info *info,
279 					  int prot_id, const char *name)
280 {
281 	mutex_lock(&info->devreq_mtx);
282 	scmi_device_destroy(info->dev, prot_id, name);
283 	mutex_unlock(&info->devreq_mtx);
284 }
285 
286 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
287 					 void *priv)
288 {
289 	struct scmi_info *info = handle_to_scmi_info(handle);
290 
291 	info->notify_priv = priv;
292 	/* Ensure updated protocol private date are visible */
293 	smp_wmb();
294 }
295 
296 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
297 {
298 	struct scmi_info *info = handle_to_scmi_info(handle);
299 
300 	/* Ensure protocols_private_data has been updated */
301 	smp_rmb();
302 	return info->notify_priv;
303 }
304 
305 /**
306  * scmi_xfer_token_set  - Reserve and set new token for the xfer at hand
307  *
308  * @minfo: Pointer to Tx/Rx Message management info based on channel type
309  * @xfer: The xfer to act upon
310  *
311  * Pick the next unused monotonically increasing token and set it into
312  * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
313  * reuse of freshly completed or timed-out xfers, thus mitigating the risk
314  * of incorrect association of a late and expired xfer with a live in-flight
315  * transaction, both happening to re-use the same token identifier.
316  *
317  * Since platform is NOT required to answer our request in-order we should
318  * account for a few rare but possible scenarios:
319  *
320  *  - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
321  *    using find_next_zero_bit() starting from candidate next_token bit
322  *
323  *  - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
324  *    are plenty of free tokens at start, so try a second pass using
325  *    find_next_zero_bit() and starting from 0.
326  *
327  *  X = used in-flight
328  *
329  * Normal
330  * ------
331  *
332  *		|- xfer_id picked
333  *   -----------+----------------------------------------------------------
334  *   | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
335  *   ----------------------------------------------------------------------
336  *		^
337  *		|- next_token
338  *
339  * Out-of-order pending at start
340  * -----------------------------
341  *
342  *	  |- xfer_id picked, last_token fixed
343  *   -----+----------------------------------------------------------------
344  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
345  *   ----------------------------------------------------------------------
346  *    ^
347  *    |- next_token
348  *
349  *
350  * Out-of-order pending at end
351  * ---------------------------
352  *
353  *	  |- xfer_id picked, last_token fixed
354  *   -----+----------------------------------------------------------------
355  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
356  *   ----------------------------------------------------------------------
357  *								^
358  *								|- next_token
359  *
360  * Context: Assumes to be called with @xfer_lock already acquired.
361  *
362  * Return: 0 on Success or error
363  */
364 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
365 			       struct scmi_xfer *xfer)
366 {
367 	unsigned long xfer_id, next_token;
368 
369 	/*
370 	 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
371 	 * using the pre-allocated transfer_id as a base.
372 	 * Note that the global transfer_id is shared across all message types
373 	 * so there could be holes in the allocated set of monotonic sequence
374 	 * numbers, but that is going to limit the effectiveness of the
375 	 * mitigation only in very rare limit conditions.
376 	 */
377 	next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
378 
379 	/* Pick the next available xfer_id >= next_token */
380 	xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
381 				     MSG_TOKEN_MAX, next_token);
382 	if (xfer_id == MSG_TOKEN_MAX) {
383 		/*
384 		 * After heavily out-of-order responses, there are no free
385 		 * tokens ahead, but only at start of xfer_alloc_table so
386 		 * try again from the beginning.
387 		 */
388 		xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
389 					     MSG_TOKEN_MAX, 0);
390 		/*
391 		 * Something is wrong if we got here since there can be a
392 		 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
393 		 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
394 		 */
395 		if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
396 			return -ENOMEM;
397 	}
398 
399 	/* Update +/- last_token accordingly if we skipped some hole */
400 	if (xfer_id != next_token)
401 		atomic_add((int)(xfer_id - next_token), &transfer_last_id);
402 
403 	xfer->hdr.seq = (u16)xfer_id;
404 
405 	return 0;
406 }
407 
408 /**
409  * scmi_xfer_token_clear  - Release the token
410  *
411  * @minfo: Pointer to Tx/Rx Message management info based on channel type
412  * @xfer: The xfer to act upon
413  */
414 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
415 					 struct scmi_xfer *xfer)
416 {
417 	clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
418 }
419 
420 /**
421  * scmi_xfer_inflight_register_unlocked  - Register the xfer as in-flight
422  *
423  * @xfer: The xfer to register
424  * @minfo: Pointer to Tx/Rx Message management info based on channel type
425  *
426  * Note that this helper assumes that the xfer to be registered as in-flight
427  * had been built using an xfer sequence number which still corresponds to a
428  * free slot in the xfer_alloc_table.
429  *
430  * Context: Assumes to be called with @xfer_lock already acquired.
431  */
432 static inline void
433 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
434 				     struct scmi_xfers_info *minfo)
435 {
436 	/* Set in-flight */
437 	set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
438 	hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
439 	xfer->pending = true;
440 }
441 
442 /**
443  * scmi_xfer_inflight_register  - Try to register an xfer as in-flight
444  *
445  * @xfer: The xfer to register
446  * @minfo: Pointer to Tx/Rx Message management info based on channel type
447  *
448  * Note that this helper does NOT assume anything about the sequence number
449  * that was baked into the provided xfer, so it checks at first if it can
450  * be mapped to a free slot and fails with an error if another xfer with the
451  * same sequence number is currently still registered as in-flight.
452  *
453  * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
454  *	   could not rbe mapped to a free slot in the xfer_alloc_table.
455  */
456 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
457 				       struct scmi_xfers_info *minfo)
458 {
459 	int ret = 0;
460 	unsigned long flags;
461 
462 	spin_lock_irqsave(&minfo->xfer_lock, flags);
463 	if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
464 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
465 	else
466 		ret = -EBUSY;
467 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
468 
469 	return ret;
470 }
471 
472 /**
473  * scmi_xfer_raw_inflight_register  - An helper to register the given xfer as in
474  * flight on the TX channel, if possible.
475  *
476  * @handle: Pointer to SCMI entity handle
477  * @xfer: The xfer to register
478  *
479  * Return: 0 on Success, error otherwise
480  */
481 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
482 				    struct scmi_xfer *xfer)
483 {
484 	struct scmi_info *info = handle_to_scmi_info(handle);
485 
486 	return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
487 }
488 
489 /**
490  * scmi_xfer_pending_set  - Pick a proper sequence number and mark the xfer
491  * as pending in-flight
492  *
493  * @xfer: The xfer to act upon
494  * @minfo: Pointer to Tx/Rx Message management info based on channel type
495  *
496  * Return: 0 on Success or error otherwise
497  */
498 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
499 					struct scmi_xfers_info *minfo)
500 {
501 	int ret;
502 	unsigned long flags;
503 
504 	spin_lock_irqsave(&minfo->xfer_lock, flags);
505 	/* Set a new monotonic token as the xfer sequence number */
506 	ret = scmi_xfer_token_set(minfo, xfer);
507 	if (!ret)
508 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
509 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
510 
511 	return ret;
512 }
513 
514 /**
515  * scmi_xfer_get() - Allocate one message
516  *
517  * @handle: Pointer to SCMI entity handle
518  * @minfo: Pointer to Tx/Rx Message management info based on channel type
519  *
520  * Helper function which is used by various message functions that are
521  * exposed to clients of this driver for allocating a message traffic event.
522  *
523  * Picks an xfer from the free list @free_xfers (if any available) and perform
524  * a basic initialization.
525  *
526  * Note that, at this point, still no sequence number is assigned to the
527  * allocated xfer, nor it is registered as a pending transaction.
528  *
529  * The successfully initialized xfer is refcounted.
530  *
531  * Context: Holds @xfer_lock while manipulating @free_xfers.
532  *
533  * Return: An initialized xfer if all went fine, else pointer error.
534  */
535 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
536 				       struct scmi_xfers_info *minfo)
537 {
538 	unsigned long flags;
539 	struct scmi_xfer *xfer;
540 
541 	spin_lock_irqsave(&minfo->xfer_lock, flags);
542 	if (hlist_empty(&minfo->free_xfers)) {
543 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
544 		return ERR_PTR(-ENOMEM);
545 	}
546 
547 	/* grab an xfer from the free_list */
548 	xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
549 	hlist_del_init(&xfer->node);
550 
551 	/*
552 	 * Allocate transfer_id early so that can be used also as base for
553 	 * monotonic sequence number generation if needed.
554 	 */
555 	xfer->transfer_id = atomic_inc_return(&transfer_last_id);
556 
557 	refcount_set(&xfer->users, 1);
558 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
559 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
560 
561 	return xfer;
562 }
563 
564 /**
565  * scmi_xfer_raw_get  - Helper to get a bare free xfer from the TX channel
566  *
567  * @handle: Pointer to SCMI entity handle
568  *
569  * Note that xfer is taken from the TX channel structures.
570  *
571  * Return: A valid xfer on Success, or an error-pointer otherwise
572  */
573 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
574 {
575 	struct scmi_xfer *xfer;
576 	struct scmi_info *info = handle_to_scmi_info(handle);
577 
578 	xfer = scmi_xfer_get(handle, &info->tx_minfo);
579 	if (!IS_ERR(xfer))
580 		xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
581 
582 	return xfer;
583 }
584 
585 /**
586  * scmi_xfer_raw_channel_get  - Helper to get a reference to the proper channel
587  * to use for a specific protocol_id Raw transaction.
588  *
589  * @handle: Pointer to SCMI entity handle
590  * @protocol_id: Identifier of the protocol
591  *
592  * Note that in a regular SCMI stack, usually, a protocol has to be defined in
593  * the DT to have an associated channel and be usable; but in Raw mode any
594  * protocol in range is allowed, re-using the Base channel, so as to enable
595  * fuzzing on any protocol without the need of a fully compiled DT.
596  *
597  * Return: A reference to the channel to use, or an ERR_PTR
598  */
599 struct scmi_chan_info *
600 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
601 {
602 	struct scmi_chan_info *cinfo;
603 	struct scmi_info *info = handle_to_scmi_info(handle);
604 
605 	cinfo = idr_find(&info->tx_idr, protocol_id);
606 	if (!cinfo) {
607 		if (protocol_id == SCMI_PROTOCOL_BASE)
608 			return ERR_PTR(-EINVAL);
609 		/* Use Base channel for protocols not defined for DT */
610 		cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
611 		if (!cinfo)
612 			return ERR_PTR(-EINVAL);
613 		dev_warn_once(handle->dev,
614 			      "Using Base channel for protocol 0x%X\n",
615 			      protocol_id);
616 	}
617 
618 	return cinfo;
619 }
620 
621 /**
622  * __scmi_xfer_put() - Release a message
623  *
624  * @minfo: Pointer to Tx/Rx Message management info based on channel type
625  * @xfer: message that was reserved by scmi_xfer_get
626  *
627  * After refcount check, possibly release an xfer, clearing the token slot,
628  * removing xfer from @pending_xfers and putting it back into free_xfers.
629  *
630  * This holds a spinlock to maintain integrity of internal data structures.
631  */
632 static void
633 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
634 {
635 	unsigned long flags;
636 
637 	spin_lock_irqsave(&minfo->xfer_lock, flags);
638 	if (refcount_dec_and_test(&xfer->users)) {
639 		if (xfer->pending) {
640 			scmi_xfer_token_clear(minfo, xfer);
641 			hash_del(&xfer->node);
642 			xfer->pending = false;
643 		}
644 		hlist_add_head(&xfer->node, &minfo->free_xfers);
645 	}
646 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
647 }
648 
649 /**
650  * scmi_xfer_raw_put  - Release an xfer that was taken by @scmi_xfer_raw_get
651  *
652  * @handle: Pointer to SCMI entity handle
653  * @xfer: A reference to the xfer to put
654  *
655  * Note that as with other xfer_put() handlers the xfer is really effectively
656  * released only if there are no more users on the system.
657  */
658 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
659 {
660 	struct scmi_info *info = handle_to_scmi_info(handle);
661 
662 	xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
663 	xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
664 	return __scmi_xfer_put(&info->tx_minfo, xfer);
665 }
666 
667 /**
668  * scmi_xfer_lookup_unlocked  -  Helper to lookup an xfer_id
669  *
670  * @minfo: Pointer to Tx/Rx Message management info based on channel type
671  * @xfer_id: Token ID to lookup in @pending_xfers
672  *
673  * Refcounting is untouched.
674  *
675  * Context: Assumes to be called with @xfer_lock already acquired.
676  *
677  * Return: A valid xfer on Success or error otherwise
678  */
679 static struct scmi_xfer *
680 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
681 {
682 	struct scmi_xfer *xfer = NULL;
683 
684 	if (test_bit(xfer_id, minfo->xfer_alloc_table))
685 		xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
686 
687 	return xfer ?: ERR_PTR(-EINVAL);
688 }
689 
690 /**
691  * scmi_msg_response_validate  - Validate message type against state of related
692  * xfer
693  *
694  * @cinfo: A reference to the channel descriptor.
695  * @msg_type: Message type to check
696  * @xfer: A reference to the xfer to validate against @msg_type
697  *
698  * This function checks if @msg_type is congruent with the current state of
699  * a pending @xfer; if an asynchronous delayed response is received before the
700  * related synchronous response (Out-of-Order Delayed Response) the missing
701  * synchronous response is assumed to be OK and completed, carrying on with the
702  * Delayed Response: this is done to address the case in which the underlying
703  * SCMI transport can deliver such out-of-order responses.
704  *
705  * Context: Assumes to be called with xfer->lock already acquired.
706  *
707  * Return: 0 on Success, error otherwise
708  */
709 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
710 					     u8 msg_type,
711 					     struct scmi_xfer *xfer)
712 {
713 	/*
714 	 * Even if a response was indeed expected on this slot at this point,
715 	 * a buggy platform could wrongly reply feeding us an unexpected
716 	 * delayed response we're not prepared to handle: bail-out safely
717 	 * blaming firmware.
718 	 */
719 	if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
720 		dev_err(cinfo->dev,
721 			"Delayed Response for %d not expected! Buggy F/W ?\n",
722 			xfer->hdr.seq);
723 		return -EINVAL;
724 	}
725 
726 	switch (xfer->state) {
727 	case SCMI_XFER_SENT_OK:
728 		if (msg_type == MSG_TYPE_DELAYED_RESP) {
729 			/*
730 			 * Delayed Response expected but delivered earlier.
731 			 * Assume message RESPONSE was OK and skip state.
732 			 */
733 			xfer->hdr.status = SCMI_SUCCESS;
734 			xfer->state = SCMI_XFER_RESP_OK;
735 			complete(&xfer->done);
736 			dev_warn(cinfo->dev,
737 				 "Received valid OoO Delayed Response for %d\n",
738 				 xfer->hdr.seq);
739 		}
740 		break;
741 	case SCMI_XFER_RESP_OK:
742 		if (msg_type != MSG_TYPE_DELAYED_RESP)
743 			return -EINVAL;
744 		break;
745 	case SCMI_XFER_DRESP_OK:
746 		/* No further message expected once in SCMI_XFER_DRESP_OK */
747 		return -EINVAL;
748 	}
749 
750 	return 0;
751 }
752 
753 /**
754  * scmi_xfer_state_update  - Update xfer state
755  *
756  * @xfer: A reference to the xfer to update
757  * @msg_type: Type of message being processed.
758  *
759  * Note that this message is assumed to have been already successfully validated
760  * by @scmi_msg_response_validate(), so here we just update the state.
761  *
762  * Context: Assumes to be called on an xfer exclusively acquired using the
763  *	    busy flag.
764  */
765 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
766 {
767 	xfer->hdr.type = msg_type;
768 
769 	/* Unknown command types were already discarded earlier */
770 	if (xfer->hdr.type == MSG_TYPE_COMMAND)
771 		xfer->state = SCMI_XFER_RESP_OK;
772 	else
773 		xfer->state = SCMI_XFER_DRESP_OK;
774 }
775 
776 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
777 {
778 	int ret;
779 
780 	ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
781 
782 	return ret == SCMI_XFER_FREE;
783 }
784 
785 /**
786  * scmi_xfer_command_acquire  -  Helper to lookup and acquire a command xfer
787  *
788  * @cinfo: A reference to the channel descriptor.
789  * @msg_hdr: A message header to use as lookup key
790  *
791  * When a valid xfer is found for the sequence number embedded in the provided
792  * msg_hdr, reference counting is properly updated and exclusive access to this
793  * xfer is granted till released with @scmi_xfer_command_release.
794  *
795  * Return: A valid @xfer on Success or error otherwise.
796  */
797 static inline struct scmi_xfer *
798 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
799 {
800 	int ret;
801 	unsigned long flags;
802 	struct scmi_xfer *xfer;
803 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
804 	struct scmi_xfers_info *minfo = &info->tx_minfo;
805 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
806 	u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
807 
808 	/* Are we even expecting this? */
809 	spin_lock_irqsave(&minfo->xfer_lock, flags);
810 	xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
811 	if (IS_ERR(xfer)) {
812 		dev_err(cinfo->dev,
813 			"Message for %d type %d is not expected!\n",
814 			xfer_id, msg_type);
815 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
816 		return xfer;
817 	}
818 	refcount_inc(&xfer->users);
819 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
820 
821 	spin_lock_irqsave(&xfer->lock, flags);
822 	ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
823 	/*
824 	 * If a pending xfer was found which was also in a congruent state with
825 	 * the received message, acquire exclusive access to it setting the busy
826 	 * flag.
827 	 * Spins only on the rare limit condition of concurrent reception of
828 	 * RESP and DRESP for the same xfer.
829 	 */
830 	if (!ret) {
831 		spin_until_cond(scmi_xfer_acquired(xfer));
832 		scmi_xfer_state_update(xfer, msg_type);
833 	}
834 	spin_unlock_irqrestore(&xfer->lock, flags);
835 
836 	if (ret) {
837 		dev_err(cinfo->dev,
838 			"Invalid message type:%d for %d - HDR:0x%X  state:%d\n",
839 			msg_type, xfer_id, msg_hdr, xfer->state);
840 		/* On error the refcount incremented above has to be dropped */
841 		__scmi_xfer_put(minfo, xfer);
842 		xfer = ERR_PTR(-EINVAL);
843 	}
844 
845 	return xfer;
846 }
847 
848 static inline void scmi_xfer_command_release(struct scmi_info *info,
849 					     struct scmi_xfer *xfer)
850 {
851 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
852 	__scmi_xfer_put(&info->tx_minfo, xfer);
853 }
854 
855 static inline void scmi_clear_channel(struct scmi_info *info,
856 				      struct scmi_chan_info *cinfo)
857 {
858 	if (info->desc->ops->clear_channel)
859 		info->desc->ops->clear_channel(cinfo);
860 }
861 
862 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
863 				     u32 msg_hdr, void *priv)
864 {
865 	struct scmi_xfer *xfer;
866 	struct device *dev = cinfo->dev;
867 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
868 	struct scmi_xfers_info *minfo = &info->rx_minfo;
869 	ktime_t ts;
870 
871 	ts = ktime_get_boottime();
872 	xfer = scmi_xfer_get(cinfo->handle, minfo);
873 	if (IS_ERR(xfer)) {
874 		dev_err(dev, "failed to get free message slot (%ld)\n",
875 			PTR_ERR(xfer));
876 		scmi_clear_channel(info, cinfo);
877 		return;
878 	}
879 
880 	unpack_scmi_header(msg_hdr, &xfer->hdr);
881 	if (priv)
882 		/* Ensure order between xfer->priv store and following ops */
883 		smp_store_mb(xfer->priv, priv);
884 	info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
885 					    xfer);
886 
887 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
888 			    xfer->hdr.id, "NOTI", xfer->hdr.seq,
889 			    xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
890 
891 	scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
892 		    xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
893 
894 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
895 			   xfer->hdr.protocol_id, xfer->hdr.seq,
896 			   MSG_TYPE_NOTIFICATION);
897 
898 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
899 		xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
900 		scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
901 					cinfo->id);
902 	}
903 
904 	__scmi_xfer_put(minfo, xfer);
905 
906 	scmi_clear_channel(info, cinfo);
907 }
908 
909 static void scmi_handle_response(struct scmi_chan_info *cinfo,
910 				 u32 msg_hdr, void *priv)
911 {
912 	struct scmi_xfer *xfer;
913 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
914 
915 	xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
916 	if (IS_ERR(xfer)) {
917 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
918 			scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
919 
920 		if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
921 			scmi_clear_channel(info, cinfo);
922 		return;
923 	}
924 
925 	/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
926 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
927 		xfer->rx.len = info->desc->max_msg_size;
928 
929 	if (priv)
930 		/* Ensure order between xfer->priv store and following ops */
931 		smp_store_mb(xfer->priv, priv);
932 	info->desc->ops->fetch_response(cinfo, xfer);
933 
934 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
935 			    xfer->hdr.id,
936 			    xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
937 			    (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
938 			    (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
939 			    xfer->hdr.seq, xfer->hdr.status,
940 			    xfer->rx.buf, xfer->rx.len);
941 
942 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
943 			   xfer->hdr.protocol_id, xfer->hdr.seq,
944 			   xfer->hdr.type);
945 
946 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
947 		scmi_clear_channel(info, cinfo);
948 		complete(xfer->async_done);
949 	} else {
950 		complete(&xfer->done);
951 	}
952 
953 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
954 		/*
955 		 * When in polling mode avoid to queue the Raw xfer on the IRQ
956 		 * RX path since it will be already queued at the end of the TX
957 		 * poll loop.
958 		 */
959 		if (!xfer->hdr.poll_completion)
960 			scmi_raw_message_report(info->raw, xfer,
961 						SCMI_RAW_REPLY_QUEUE,
962 						cinfo->id);
963 	}
964 
965 	scmi_xfer_command_release(info, xfer);
966 }
967 
968 /**
969  * scmi_rx_callback() - callback for receiving messages
970  *
971  * @cinfo: SCMI channel info
972  * @msg_hdr: Message header
973  * @priv: Transport specific private data.
974  *
975  * Processes one received message to appropriate transfer information and
976  * signals completion of the transfer.
977  *
978  * NOTE: This function will be invoked in IRQ context, hence should be
979  * as optimal as possible.
980  */
981 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
982 {
983 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
984 
985 	switch (msg_type) {
986 	case MSG_TYPE_NOTIFICATION:
987 		scmi_handle_notification(cinfo, msg_hdr, priv);
988 		break;
989 	case MSG_TYPE_COMMAND:
990 	case MSG_TYPE_DELAYED_RESP:
991 		scmi_handle_response(cinfo, msg_hdr, priv);
992 		break;
993 	default:
994 		WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
995 		break;
996 	}
997 }
998 
999 /**
1000  * xfer_put() - Release a transmit message
1001  *
1002  * @ph: Pointer to SCMI protocol handle
1003  * @xfer: message that was reserved by xfer_get_init
1004  */
1005 static void xfer_put(const struct scmi_protocol_handle *ph,
1006 		     struct scmi_xfer *xfer)
1007 {
1008 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1009 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1010 
1011 	__scmi_xfer_put(&info->tx_minfo, xfer);
1012 }
1013 
1014 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1015 				      struct scmi_xfer *xfer, ktime_t stop)
1016 {
1017 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1018 
1019 	/*
1020 	 * Poll also on xfer->done so that polling can be forcibly terminated
1021 	 * in case of out-of-order receptions of delayed responses
1022 	 */
1023 	return info->desc->ops->poll_done(cinfo, xfer) ||
1024 	       try_wait_for_completion(&xfer->done) ||
1025 	       ktime_after(ktime_get(), stop);
1026 }
1027 
1028 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1029 			       struct scmi_chan_info *cinfo,
1030 			       struct scmi_xfer *xfer, unsigned int timeout_ms)
1031 {
1032 	int ret = 0;
1033 
1034 	if (xfer->hdr.poll_completion) {
1035 		/*
1036 		 * Real polling is needed only if transport has NOT declared
1037 		 * itself to support synchronous commands replies.
1038 		 */
1039 		if (!desc->sync_cmds_completed_on_ret) {
1040 			/*
1041 			 * Poll on xfer using transport provided .poll_done();
1042 			 * assumes no completion interrupt was available.
1043 			 */
1044 			ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1045 
1046 			spin_until_cond(scmi_xfer_done_no_timeout(cinfo,
1047 								  xfer, stop));
1048 			if (ktime_after(ktime_get(), stop)) {
1049 				dev_err(dev,
1050 					"timed out in resp(caller: %pS) - polling\n",
1051 					(void *)_RET_IP_);
1052 				ret = -ETIMEDOUT;
1053 			}
1054 		}
1055 
1056 		if (!ret) {
1057 			unsigned long flags;
1058 			struct scmi_info *info =
1059 				handle_to_scmi_info(cinfo->handle);
1060 
1061 			/*
1062 			 * Do not fetch_response if an out-of-order delayed
1063 			 * response is being processed.
1064 			 */
1065 			spin_lock_irqsave(&xfer->lock, flags);
1066 			if (xfer->state == SCMI_XFER_SENT_OK) {
1067 				desc->ops->fetch_response(cinfo, xfer);
1068 				xfer->state = SCMI_XFER_RESP_OK;
1069 			}
1070 			spin_unlock_irqrestore(&xfer->lock, flags);
1071 
1072 			/* Trace polled replies. */
1073 			trace_scmi_msg_dump(info->id, cinfo->id,
1074 					    xfer->hdr.protocol_id, xfer->hdr.id,
1075 					    !SCMI_XFER_IS_RAW(xfer) ?
1076 					    "RESP" : "resp",
1077 					    xfer->hdr.seq, xfer->hdr.status,
1078 					    xfer->rx.buf, xfer->rx.len);
1079 
1080 			if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1081 				struct scmi_info *info =
1082 					handle_to_scmi_info(cinfo->handle);
1083 
1084 				scmi_raw_message_report(info->raw, xfer,
1085 							SCMI_RAW_REPLY_QUEUE,
1086 							cinfo->id);
1087 			}
1088 		}
1089 	} else {
1090 		/* And we wait for the response. */
1091 		if (!wait_for_completion_timeout(&xfer->done,
1092 						 msecs_to_jiffies(timeout_ms))) {
1093 			dev_err(dev, "timed out in resp(caller: %pS)\n",
1094 				(void *)_RET_IP_);
1095 			ret = -ETIMEDOUT;
1096 		}
1097 	}
1098 
1099 	return ret;
1100 }
1101 
1102 /**
1103  * scmi_wait_for_message_response  - An helper to group all the possible ways of
1104  * waiting for a synchronous message response.
1105  *
1106  * @cinfo: SCMI channel info
1107  * @xfer: Reference to the transfer being waited for.
1108  *
1109  * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1110  * configuration flags like xfer->hdr.poll_completion.
1111  *
1112  * Return: 0 on Success, error otherwise.
1113  */
1114 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1115 					  struct scmi_xfer *xfer)
1116 {
1117 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1118 	struct device *dev = info->dev;
1119 
1120 	trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1121 				      xfer->hdr.protocol_id, xfer->hdr.seq,
1122 				      info->desc->max_rx_timeout_ms,
1123 				      xfer->hdr.poll_completion);
1124 
1125 	return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1126 				   info->desc->max_rx_timeout_ms);
1127 }
1128 
1129 /**
1130  * scmi_xfer_raw_wait_for_message_response  - An helper to wait for a message
1131  * reply to an xfer raw request on a specific channel for the required timeout.
1132  *
1133  * @cinfo: SCMI channel info
1134  * @xfer: Reference to the transfer being waited for.
1135  * @timeout_ms: The maximum timeout in milliseconds
1136  *
1137  * Return: 0 on Success, error otherwise.
1138  */
1139 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1140 					    struct scmi_xfer *xfer,
1141 					    unsigned int timeout_ms)
1142 {
1143 	int ret;
1144 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1145 	struct device *dev = info->dev;
1146 
1147 	ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1148 	if (ret)
1149 		dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1150 			pack_scmi_header(&xfer->hdr));
1151 
1152 	return ret;
1153 }
1154 
1155 /**
1156  * do_xfer() - Do one transfer
1157  *
1158  * @ph: Pointer to SCMI protocol handle
1159  * @xfer: Transfer to initiate and wait for response
1160  *
1161  * Return: -ETIMEDOUT in case of no response, if transmit error,
1162  *	return corresponding error, else if all goes well,
1163  *	return 0.
1164  */
1165 static int do_xfer(const struct scmi_protocol_handle *ph,
1166 		   struct scmi_xfer *xfer)
1167 {
1168 	int ret;
1169 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1170 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1171 	struct device *dev = info->dev;
1172 	struct scmi_chan_info *cinfo;
1173 
1174 	/* Check for polling request on custom command xfers at first */
1175 	if (xfer->hdr.poll_completion &&
1176 	    !is_transport_polling_capable(info->desc)) {
1177 		dev_warn_once(dev,
1178 			      "Polling mode is not supported by transport.\n");
1179 		return -EINVAL;
1180 	}
1181 
1182 	cinfo = idr_find(&info->tx_idr, pi->proto->id);
1183 	if (unlikely(!cinfo))
1184 		return -EINVAL;
1185 
1186 	/* True ONLY if also supported by transport. */
1187 	if (is_polling_enabled(cinfo, info->desc))
1188 		xfer->hdr.poll_completion = true;
1189 
1190 	/*
1191 	 * Initialise protocol id now from protocol handle to avoid it being
1192 	 * overridden by mistake (or malice) by the protocol code mangling with
1193 	 * the scmi_xfer structure prior to this.
1194 	 */
1195 	xfer->hdr.protocol_id = pi->proto->id;
1196 	reinit_completion(&xfer->done);
1197 
1198 	trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1199 			      xfer->hdr.protocol_id, xfer->hdr.seq,
1200 			      xfer->hdr.poll_completion);
1201 
1202 	/* Clear any stale status */
1203 	xfer->hdr.status = SCMI_SUCCESS;
1204 	xfer->state = SCMI_XFER_SENT_OK;
1205 	/*
1206 	 * Even though spinlocking is not needed here since no race is possible
1207 	 * on xfer->state due to the monotonically increasing tokens allocation,
1208 	 * we must anyway ensure xfer->state initialization is not re-ordered
1209 	 * after the .send_message() to be sure that on the RX path an early
1210 	 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1211 	 */
1212 	smp_mb();
1213 
1214 	ret = info->desc->ops->send_message(cinfo, xfer);
1215 	if (ret < 0) {
1216 		dev_dbg(dev, "Failed to send message %d\n", ret);
1217 		return ret;
1218 	}
1219 
1220 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1221 			    xfer->hdr.id, "CMND", xfer->hdr.seq,
1222 			    xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1223 
1224 	ret = scmi_wait_for_message_response(cinfo, xfer);
1225 	if (!ret && xfer->hdr.status)
1226 		ret = scmi_to_linux_errno(xfer->hdr.status);
1227 
1228 	if (info->desc->ops->mark_txdone)
1229 		info->desc->ops->mark_txdone(cinfo, ret, xfer);
1230 
1231 	trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1232 			    xfer->hdr.protocol_id, xfer->hdr.seq, ret);
1233 
1234 	return ret;
1235 }
1236 
1237 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1238 			      struct scmi_xfer *xfer)
1239 {
1240 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1241 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1242 
1243 	xfer->rx.len = info->desc->max_msg_size;
1244 }
1245 
1246 /**
1247  * do_xfer_with_response() - Do one transfer and wait until the delayed
1248  *	response is received
1249  *
1250  * @ph: Pointer to SCMI protocol handle
1251  * @xfer: Transfer to initiate and wait for response
1252  *
1253  * Using asynchronous commands in atomic/polling mode should be avoided since
1254  * it could cause long busy-waiting here, so ignore polling for the delayed
1255  * response and WARN if it was requested for this command transaction since
1256  * upper layers should refrain from issuing such kind of requests.
1257  *
1258  * The only other option would have been to refrain from using any asynchronous
1259  * command even if made available, when an atomic transport is detected, and
1260  * instead forcibly use the synchronous version (thing that can be easily
1261  * attained at the protocol layer), but this would also have led to longer
1262  * stalls of the channel for synchronous commands and possibly timeouts.
1263  * (in other words there is usually a good reason if a platform provides an
1264  *  asynchronous version of a command and we should prefer to use it...just not
1265  *  when using atomic/polling mode)
1266  *
1267  * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1268  *	return corresponding error, else if all goes well, return 0.
1269  */
1270 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1271 				 struct scmi_xfer *xfer)
1272 {
1273 	int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1274 	DECLARE_COMPLETION_ONSTACK(async_response);
1275 
1276 	xfer->async_done = &async_response;
1277 
1278 	/*
1279 	 * Delayed responses should not be polled, so an async command should
1280 	 * not have been used when requiring an atomic/poll context; WARN and
1281 	 * perform instead a sleeping wait.
1282 	 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1283 	 */
1284 	WARN_ON_ONCE(xfer->hdr.poll_completion);
1285 
1286 	ret = do_xfer(ph, xfer);
1287 	if (!ret) {
1288 		if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1289 			dev_err(ph->dev,
1290 				"timed out in delayed resp(caller: %pS)\n",
1291 				(void *)_RET_IP_);
1292 			ret = -ETIMEDOUT;
1293 		} else if (xfer->hdr.status) {
1294 			ret = scmi_to_linux_errno(xfer->hdr.status);
1295 		}
1296 	}
1297 
1298 	xfer->async_done = NULL;
1299 	return ret;
1300 }
1301 
1302 /**
1303  * xfer_get_init() - Allocate and initialise one message for transmit
1304  *
1305  * @ph: Pointer to SCMI protocol handle
1306  * @msg_id: Message identifier
1307  * @tx_size: transmit message size
1308  * @rx_size: receive message size
1309  * @p: pointer to the allocated and initialised message
1310  *
1311  * This function allocates the message using @scmi_xfer_get and
1312  * initialise the header.
1313  *
1314  * Return: 0 if all went fine with @p pointing to message, else
1315  *	corresponding error.
1316  */
1317 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1318 			 u8 msg_id, size_t tx_size, size_t rx_size,
1319 			 struct scmi_xfer **p)
1320 {
1321 	int ret;
1322 	struct scmi_xfer *xfer;
1323 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1324 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1325 	struct scmi_xfers_info *minfo = &info->tx_minfo;
1326 	struct device *dev = info->dev;
1327 
1328 	/* Ensure we have sane transfer sizes */
1329 	if (rx_size > info->desc->max_msg_size ||
1330 	    tx_size > info->desc->max_msg_size)
1331 		return -ERANGE;
1332 
1333 	xfer = scmi_xfer_get(pi->handle, minfo);
1334 	if (IS_ERR(xfer)) {
1335 		ret = PTR_ERR(xfer);
1336 		dev_err(dev, "failed to get free message slot(%d)\n", ret);
1337 		return ret;
1338 	}
1339 
1340 	/* Pick a sequence number and register this xfer as in-flight */
1341 	ret = scmi_xfer_pending_set(xfer, minfo);
1342 	if (ret) {
1343 		dev_err(pi->handle->dev,
1344 			"Failed to get monotonic token %d\n", ret);
1345 		__scmi_xfer_put(minfo, xfer);
1346 		return ret;
1347 	}
1348 
1349 	xfer->tx.len = tx_size;
1350 	xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1351 	xfer->hdr.type = MSG_TYPE_COMMAND;
1352 	xfer->hdr.id = msg_id;
1353 	xfer->hdr.poll_completion = false;
1354 
1355 	*p = xfer;
1356 
1357 	return 0;
1358 }
1359 
1360 /**
1361  * version_get() - command to get the revision of the SCMI entity
1362  *
1363  * @ph: Pointer to SCMI protocol handle
1364  * @version: Holds returned version of protocol.
1365  *
1366  * Updates the SCMI information in the internal data structure.
1367  *
1368  * Return: 0 if all went fine, else return appropriate error.
1369  */
1370 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1371 {
1372 	int ret;
1373 	__le32 *rev_info;
1374 	struct scmi_xfer *t;
1375 
1376 	ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1377 	if (ret)
1378 		return ret;
1379 
1380 	ret = do_xfer(ph, t);
1381 	if (!ret) {
1382 		rev_info = t->rx.buf;
1383 		*version = le32_to_cpu(*rev_info);
1384 	}
1385 
1386 	xfer_put(ph, t);
1387 	return ret;
1388 }
1389 
1390 /**
1391  * scmi_set_protocol_priv  - Set protocol specific data at init time
1392  *
1393  * @ph: A reference to the protocol handle.
1394  * @priv: The private data to set.
1395  *
1396  * Return: 0 on Success
1397  */
1398 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1399 				  void *priv)
1400 {
1401 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
1402 
1403 	pi->priv = priv;
1404 
1405 	return 0;
1406 }
1407 
1408 /**
1409  * scmi_get_protocol_priv  - Set protocol specific data at init time
1410  *
1411  * @ph: A reference to the protocol handle.
1412  *
1413  * Return: Protocol private data if any was set.
1414  */
1415 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1416 {
1417 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1418 
1419 	return pi->priv;
1420 }
1421 
1422 static const struct scmi_xfer_ops xfer_ops = {
1423 	.version_get = version_get,
1424 	.xfer_get_init = xfer_get_init,
1425 	.reset_rx_to_maxsz = reset_rx_to_maxsz,
1426 	.do_xfer = do_xfer,
1427 	.do_xfer_with_response = do_xfer_with_response,
1428 	.xfer_put = xfer_put,
1429 };
1430 
1431 struct scmi_msg_resp_domain_name_get {
1432 	__le32 flags;
1433 	u8 name[SCMI_MAX_STR_SIZE];
1434 };
1435 
1436 /**
1437  * scmi_common_extended_name_get  - Common helper to get extended resources name
1438  * @ph: A protocol handle reference.
1439  * @cmd_id: The specific command ID to use.
1440  * @res_id: The specific resource ID to use.
1441  * @name: A pointer to the preallocated area where the retrieved name will be
1442  *	  stored as a NULL terminated string.
1443  * @len: The len in bytes of the @name char array.
1444  *
1445  * Return: 0 on Succcess
1446  */
1447 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1448 					 u8 cmd_id, u32 res_id, char *name,
1449 					 size_t len)
1450 {
1451 	int ret;
1452 	struct scmi_xfer *t;
1453 	struct scmi_msg_resp_domain_name_get *resp;
1454 
1455 	ret = ph->xops->xfer_get_init(ph, cmd_id, sizeof(res_id),
1456 				      sizeof(*resp), &t);
1457 	if (ret)
1458 		goto out;
1459 
1460 	put_unaligned_le32(res_id, t->tx.buf);
1461 	resp = t->rx.buf;
1462 
1463 	ret = ph->xops->do_xfer(ph, t);
1464 	if (!ret)
1465 		strscpy(name, resp->name, len);
1466 
1467 	ph->xops->xfer_put(ph, t);
1468 out:
1469 	if (ret)
1470 		dev_warn(ph->dev,
1471 			 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1472 			 res_id, ret, name);
1473 	return ret;
1474 }
1475 
1476 /**
1477  * struct scmi_iterator  - Iterator descriptor
1478  * @msg: A reference to the message TX buffer; filled by @prepare_message with
1479  *	 a proper custom command payload for each multi-part command request.
1480  * @resp: A reference to the response RX buffer; used by @update_state and
1481  *	  @process_response to parse the multi-part replies.
1482  * @t: A reference to the underlying xfer initialized and used transparently by
1483  *     the iterator internal routines.
1484  * @ph: A reference to the associated protocol handle to be used.
1485  * @ops: A reference to the custom provided iterator operations.
1486  * @state: The current iterator state; used and updated in turn by the iterators
1487  *	   internal routines and by the caller-provided @scmi_iterator_ops.
1488  * @priv: A reference to optional private data as provided by the caller and
1489  *	  passed back to the @@scmi_iterator_ops.
1490  */
1491 struct scmi_iterator {
1492 	void *msg;
1493 	void *resp;
1494 	struct scmi_xfer *t;
1495 	const struct scmi_protocol_handle *ph;
1496 	struct scmi_iterator_ops *ops;
1497 	struct scmi_iterator_state state;
1498 	void *priv;
1499 };
1500 
1501 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1502 				struct scmi_iterator_ops *ops,
1503 				unsigned int max_resources, u8 msg_id,
1504 				size_t tx_size, void *priv)
1505 {
1506 	int ret;
1507 	struct scmi_iterator *i;
1508 
1509 	i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1510 	if (!i)
1511 		return ERR_PTR(-ENOMEM);
1512 
1513 	i->ph = ph;
1514 	i->ops = ops;
1515 	i->priv = priv;
1516 
1517 	ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1518 	if (ret) {
1519 		devm_kfree(ph->dev, i);
1520 		return ERR_PTR(ret);
1521 	}
1522 
1523 	i->state.max_resources = max_resources;
1524 	i->msg = i->t->tx.buf;
1525 	i->resp = i->t->rx.buf;
1526 
1527 	return i;
1528 }
1529 
1530 static int scmi_iterator_run(void *iter)
1531 {
1532 	int ret = -EINVAL;
1533 	struct scmi_iterator_ops *iops;
1534 	const struct scmi_protocol_handle *ph;
1535 	struct scmi_iterator_state *st;
1536 	struct scmi_iterator *i = iter;
1537 
1538 	if (!i || !i->ops || !i->ph)
1539 		return ret;
1540 
1541 	iops = i->ops;
1542 	ph = i->ph;
1543 	st = &i->state;
1544 
1545 	do {
1546 		iops->prepare_message(i->msg, st->desc_index, i->priv);
1547 		ret = ph->xops->do_xfer(ph, i->t);
1548 		if (ret)
1549 			break;
1550 
1551 		st->rx_len = i->t->rx.len;
1552 		ret = iops->update_state(st, i->resp, i->priv);
1553 		if (ret)
1554 			break;
1555 
1556 		if (st->num_returned > st->max_resources - st->desc_index) {
1557 			dev_err(ph->dev,
1558 				"No. of resources can't exceed %d\n",
1559 				st->max_resources);
1560 			ret = -EINVAL;
1561 			break;
1562 		}
1563 
1564 		for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1565 		     st->loop_idx++) {
1566 			ret = iops->process_response(ph, i->resp, st, i->priv);
1567 			if (ret)
1568 				goto out;
1569 		}
1570 
1571 		st->desc_index += st->num_returned;
1572 		ph->xops->reset_rx_to_maxsz(ph, i->t);
1573 		/*
1574 		 * check for both returned and remaining to avoid infinite
1575 		 * loop due to buggy firmware
1576 		 */
1577 	} while (st->num_returned && st->num_remaining);
1578 
1579 out:
1580 	/* Finalize and destroy iterator */
1581 	ph->xops->xfer_put(ph, i->t);
1582 	devm_kfree(ph->dev, i);
1583 
1584 	return ret;
1585 }
1586 
1587 struct scmi_msg_get_fc_info {
1588 	__le32 domain;
1589 	__le32 message_id;
1590 };
1591 
1592 struct scmi_msg_resp_desc_fc {
1593 	__le32 attr;
1594 #define SUPPORTS_DOORBELL(x)		((x) & BIT(0))
1595 #define DOORBELL_REG_WIDTH(x)		FIELD_GET(GENMASK(2, 1), (x))
1596 	__le32 rate_limit;
1597 	__le32 chan_addr_low;
1598 	__le32 chan_addr_high;
1599 	__le32 chan_size;
1600 	__le32 db_addr_low;
1601 	__le32 db_addr_high;
1602 	__le32 db_set_lmask;
1603 	__le32 db_set_hmask;
1604 	__le32 db_preserve_lmask;
1605 	__le32 db_preserve_hmask;
1606 };
1607 
1608 static void
1609 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1610 			     u8 describe_id, u32 message_id, u32 valid_size,
1611 			     u32 domain, void __iomem **p_addr,
1612 			     struct scmi_fc_db_info **p_db)
1613 {
1614 	int ret;
1615 	u32 flags;
1616 	u64 phys_addr;
1617 	u8 size;
1618 	void __iomem *addr;
1619 	struct scmi_xfer *t;
1620 	struct scmi_fc_db_info *db = NULL;
1621 	struct scmi_msg_get_fc_info *info;
1622 	struct scmi_msg_resp_desc_fc *resp;
1623 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1624 
1625 	if (!p_addr) {
1626 		ret = -EINVAL;
1627 		goto err_out;
1628 	}
1629 
1630 	ret = ph->xops->xfer_get_init(ph, describe_id,
1631 				      sizeof(*info), sizeof(*resp), &t);
1632 	if (ret)
1633 		goto err_out;
1634 
1635 	info = t->tx.buf;
1636 	info->domain = cpu_to_le32(domain);
1637 	info->message_id = cpu_to_le32(message_id);
1638 
1639 	/*
1640 	 * Bail out on error leaving fc_info addresses zeroed; this includes
1641 	 * the case in which the requested domain/message_id does NOT support
1642 	 * fastchannels at all.
1643 	 */
1644 	ret = ph->xops->do_xfer(ph, t);
1645 	if (ret)
1646 		goto err_xfer;
1647 
1648 	resp = t->rx.buf;
1649 	flags = le32_to_cpu(resp->attr);
1650 	size = le32_to_cpu(resp->chan_size);
1651 	if (size != valid_size) {
1652 		ret = -EINVAL;
1653 		goto err_xfer;
1654 	}
1655 
1656 	phys_addr = le32_to_cpu(resp->chan_addr_low);
1657 	phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1658 	addr = devm_ioremap(ph->dev, phys_addr, size);
1659 	if (!addr) {
1660 		ret = -EADDRNOTAVAIL;
1661 		goto err_xfer;
1662 	}
1663 
1664 	*p_addr = addr;
1665 
1666 	if (p_db && SUPPORTS_DOORBELL(flags)) {
1667 		db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1668 		if (!db) {
1669 			ret = -ENOMEM;
1670 			goto err_db;
1671 		}
1672 
1673 		size = 1 << DOORBELL_REG_WIDTH(flags);
1674 		phys_addr = le32_to_cpu(resp->db_addr_low);
1675 		phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1676 		addr = devm_ioremap(ph->dev, phys_addr, size);
1677 		if (!addr) {
1678 			ret = -EADDRNOTAVAIL;
1679 			goto err_db_mem;
1680 		}
1681 
1682 		db->addr = addr;
1683 		db->width = size;
1684 		db->set = le32_to_cpu(resp->db_set_lmask);
1685 		db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1686 		db->mask = le32_to_cpu(resp->db_preserve_lmask);
1687 		db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1688 
1689 		*p_db = db;
1690 	}
1691 
1692 	ph->xops->xfer_put(ph, t);
1693 
1694 	dev_dbg(ph->dev,
1695 		"Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
1696 		pi->proto->id, message_id, domain);
1697 
1698 	return;
1699 
1700 err_db_mem:
1701 	devm_kfree(ph->dev, db);
1702 
1703 err_db:
1704 	*p_addr = NULL;
1705 
1706 err_xfer:
1707 	ph->xops->xfer_put(ph, t);
1708 
1709 err_out:
1710 	dev_warn(ph->dev,
1711 		 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
1712 		 pi->proto->id, message_id, domain, ret);
1713 }
1714 
1715 #define SCMI_PROTO_FC_RING_DB(w)			\
1716 do {							\
1717 	u##w val = 0;					\
1718 							\
1719 	if (db->mask)					\
1720 		val = ioread##w(db->addr) & db->mask;	\
1721 	iowrite##w((u##w)db->set | val, db->addr);	\
1722 } while (0)
1723 
1724 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
1725 {
1726 	if (!db || !db->addr)
1727 		return;
1728 
1729 	if (db->width == 1)
1730 		SCMI_PROTO_FC_RING_DB(8);
1731 	else if (db->width == 2)
1732 		SCMI_PROTO_FC_RING_DB(16);
1733 	else if (db->width == 4)
1734 		SCMI_PROTO_FC_RING_DB(32);
1735 	else /* db->width == 8 */
1736 #ifdef CONFIG_64BIT
1737 		SCMI_PROTO_FC_RING_DB(64);
1738 #else
1739 	{
1740 		u64 val = 0;
1741 
1742 		if (db->mask)
1743 			val = ioread64_hi_lo(db->addr) & db->mask;
1744 		iowrite64_hi_lo(db->set | val, db->addr);
1745 	}
1746 #endif
1747 }
1748 
1749 static const struct scmi_proto_helpers_ops helpers_ops = {
1750 	.extended_name_get = scmi_common_extended_name_get,
1751 	.iter_response_init = scmi_iterator_init,
1752 	.iter_response_run = scmi_iterator_run,
1753 	.fastchannel_init = scmi_common_fastchannel_init,
1754 	.fastchannel_db_ring = scmi_common_fastchannel_db_ring,
1755 };
1756 
1757 /**
1758  * scmi_revision_area_get  - Retrieve version memory area.
1759  *
1760  * @ph: A reference to the protocol handle.
1761  *
1762  * A helper to grab the version memory area reference during SCMI Base protocol
1763  * initialization.
1764  *
1765  * Return: A reference to the version memory area associated to the SCMI
1766  *	   instance underlying this protocol handle.
1767  */
1768 struct scmi_revision_info *
1769 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1770 {
1771 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1772 
1773 	return pi->handle->version;
1774 }
1775 
1776 /**
1777  * scmi_alloc_init_protocol_instance  - Allocate and initialize a protocol
1778  * instance descriptor.
1779  * @info: The reference to the related SCMI instance.
1780  * @proto: The protocol descriptor.
1781  *
1782  * Allocate a new protocol instance descriptor, using the provided @proto
1783  * description, against the specified SCMI instance @info, and initialize it;
1784  * all resources management is handled via a dedicated per-protocol devres
1785  * group.
1786  *
1787  * Context: Assumes to be called with @protocols_mtx already acquired.
1788  * Return: A reference to a freshly allocated and initialized protocol instance
1789  *	   or ERR_PTR on failure. On failure the @proto reference is at first
1790  *	   put using @scmi_protocol_put() before releasing all the devres group.
1791  */
1792 static struct scmi_protocol_instance *
1793 scmi_alloc_init_protocol_instance(struct scmi_info *info,
1794 				  const struct scmi_protocol *proto)
1795 {
1796 	int ret = -ENOMEM;
1797 	void *gid;
1798 	struct scmi_protocol_instance *pi;
1799 	const struct scmi_handle *handle = &info->handle;
1800 
1801 	/* Protocol specific devres group */
1802 	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1803 	if (!gid) {
1804 		scmi_protocol_put(proto->id);
1805 		goto out;
1806 	}
1807 
1808 	pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
1809 	if (!pi)
1810 		goto clean;
1811 
1812 	pi->gid = gid;
1813 	pi->proto = proto;
1814 	pi->handle = handle;
1815 	pi->ph.dev = handle->dev;
1816 	pi->ph.xops = &xfer_ops;
1817 	pi->ph.hops = &helpers_ops;
1818 	pi->ph.set_priv = scmi_set_protocol_priv;
1819 	pi->ph.get_priv = scmi_get_protocol_priv;
1820 	refcount_set(&pi->users, 1);
1821 	/* proto->init is assured NON NULL by scmi_protocol_register */
1822 	ret = pi->proto->instance_init(&pi->ph);
1823 	if (ret)
1824 		goto clean;
1825 
1826 	ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
1827 			GFP_KERNEL);
1828 	if (ret != proto->id)
1829 		goto clean;
1830 
1831 	/*
1832 	 * Warn but ignore events registration errors since we do not want
1833 	 * to skip whole protocols if their notifications are messed up.
1834 	 */
1835 	if (pi->proto->events) {
1836 		ret = scmi_register_protocol_events(handle, pi->proto->id,
1837 						    &pi->ph,
1838 						    pi->proto->events);
1839 		if (ret)
1840 			dev_warn(handle->dev,
1841 				 "Protocol:%X - Events Registration Failed - err:%d\n",
1842 				 pi->proto->id, ret);
1843 	}
1844 
1845 	devres_close_group(handle->dev, pi->gid);
1846 	dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1847 
1848 	return pi;
1849 
1850 clean:
1851 	/* Take care to put the protocol module's owner before releasing all */
1852 	scmi_protocol_put(proto->id);
1853 	devres_release_group(handle->dev, gid);
1854 out:
1855 	return ERR_PTR(ret);
1856 }
1857 
1858 /**
1859  * scmi_get_protocol_instance  - Protocol initialization helper.
1860  * @handle: A reference to the SCMI platform instance.
1861  * @protocol_id: The protocol being requested.
1862  *
1863  * In case the required protocol has never been requested before for this
1864  * instance, allocate and initialize all the needed structures while handling
1865  * resource allocation with a dedicated per-protocol devres subgroup.
1866  *
1867  * Return: A reference to an initialized protocol instance or error on failure:
1868  *	   in particular returns -EPROBE_DEFER when the desired protocol could
1869  *	   NOT be found.
1870  */
1871 static struct scmi_protocol_instance * __must_check
1872 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1873 {
1874 	struct scmi_protocol_instance *pi;
1875 	struct scmi_info *info = handle_to_scmi_info(handle);
1876 
1877 	mutex_lock(&info->protocols_mtx);
1878 	pi = idr_find(&info->protocols, protocol_id);
1879 
1880 	if (pi) {
1881 		refcount_inc(&pi->users);
1882 	} else {
1883 		const struct scmi_protocol *proto;
1884 
1885 		/* Fails if protocol not registered on bus */
1886 		proto = scmi_protocol_get(protocol_id);
1887 		if (proto)
1888 			pi = scmi_alloc_init_protocol_instance(info, proto);
1889 		else
1890 			pi = ERR_PTR(-EPROBE_DEFER);
1891 	}
1892 	mutex_unlock(&info->protocols_mtx);
1893 
1894 	return pi;
1895 }
1896 
1897 /**
1898  * scmi_protocol_acquire  - Protocol acquire
1899  * @handle: A reference to the SCMI platform instance.
1900  * @protocol_id: The protocol being requested.
1901  *
1902  * Register a new user for the requested protocol on the specified SCMI
1903  * platform instance, possibly triggering its initialization on first user.
1904  *
1905  * Return: 0 if protocol was acquired successfully.
1906  */
1907 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
1908 {
1909 	return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
1910 }
1911 
1912 /**
1913  * scmi_protocol_release  - Protocol de-initialization helper.
1914  * @handle: A reference to the SCMI platform instance.
1915  * @protocol_id: The protocol being requested.
1916  *
1917  * Remove one user for the specified protocol and triggers de-initialization
1918  * and resources de-allocation once the last user has gone.
1919  */
1920 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
1921 {
1922 	struct scmi_info *info = handle_to_scmi_info(handle);
1923 	struct scmi_protocol_instance *pi;
1924 
1925 	mutex_lock(&info->protocols_mtx);
1926 	pi = idr_find(&info->protocols, protocol_id);
1927 	if (WARN_ON(!pi))
1928 		goto out;
1929 
1930 	if (refcount_dec_and_test(&pi->users)) {
1931 		void *gid = pi->gid;
1932 
1933 		if (pi->proto->events)
1934 			scmi_deregister_protocol_events(handle, protocol_id);
1935 
1936 		if (pi->proto->instance_deinit)
1937 			pi->proto->instance_deinit(&pi->ph);
1938 
1939 		idr_remove(&info->protocols, protocol_id);
1940 
1941 		scmi_protocol_put(protocol_id);
1942 
1943 		devres_release_group(handle->dev, gid);
1944 		dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
1945 			protocol_id);
1946 	}
1947 
1948 out:
1949 	mutex_unlock(&info->protocols_mtx);
1950 }
1951 
1952 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
1953 				     u8 *prot_imp)
1954 {
1955 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1956 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1957 
1958 	info->protocols_imp = prot_imp;
1959 }
1960 
1961 static bool
1962 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
1963 {
1964 	int i;
1965 	struct scmi_info *info = handle_to_scmi_info(handle);
1966 	struct scmi_revision_info *rev = handle->version;
1967 
1968 	if (!info->protocols_imp)
1969 		return false;
1970 
1971 	for (i = 0; i < rev->num_protocols; i++)
1972 		if (info->protocols_imp[i] == prot_id)
1973 			return true;
1974 	return false;
1975 }
1976 
1977 struct scmi_protocol_devres {
1978 	const struct scmi_handle *handle;
1979 	u8 protocol_id;
1980 };
1981 
1982 static void scmi_devm_release_protocol(struct device *dev, void *res)
1983 {
1984 	struct scmi_protocol_devres *dres = res;
1985 
1986 	scmi_protocol_release(dres->handle, dres->protocol_id);
1987 }
1988 
1989 static struct scmi_protocol_instance __must_check *
1990 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
1991 {
1992 	struct scmi_protocol_instance *pi;
1993 	struct scmi_protocol_devres *dres;
1994 
1995 	dres = devres_alloc(scmi_devm_release_protocol,
1996 			    sizeof(*dres), GFP_KERNEL);
1997 	if (!dres)
1998 		return ERR_PTR(-ENOMEM);
1999 
2000 	pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2001 	if (IS_ERR(pi)) {
2002 		devres_free(dres);
2003 		return pi;
2004 	}
2005 
2006 	dres->handle = sdev->handle;
2007 	dres->protocol_id = protocol_id;
2008 	devres_add(&sdev->dev, dres);
2009 
2010 	return pi;
2011 }
2012 
2013 /**
2014  * scmi_devm_protocol_get  - Devres managed get protocol operations and handle
2015  * @sdev: A reference to an scmi_device whose embedded struct device is to
2016  *	  be used for devres accounting.
2017  * @protocol_id: The protocol being requested.
2018  * @ph: A pointer reference used to pass back the associated protocol handle.
2019  *
2020  * Get hold of a protocol accounting for its usage, eventually triggering its
2021  * initialization, and returning the protocol specific operations and related
2022  * protocol handle which will be used as first argument in most of the
2023  * protocols operations methods.
2024  * Being a devres based managed method, protocol hold will be automatically
2025  * released, and possibly de-initialized on last user, once the SCMI driver
2026  * owning the scmi_device is unbound from it.
2027  *
2028  * Return: A reference to the requested protocol operations or error.
2029  *	   Must be checked for errors by caller.
2030  */
2031 static const void __must_check *
2032 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2033 		       struct scmi_protocol_handle **ph)
2034 {
2035 	struct scmi_protocol_instance *pi;
2036 
2037 	if (!ph)
2038 		return ERR_PTR(-EINVAL);
2039 
2040 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2041 	if (IS_ERR(pi))
2042 		return pi;
2043 
2044 	*ph = &pi->ph;
2045 
2046 	return pi->proto->ops;
2047 }
2048 
2049 /**
2050  * scmi_devm_protocol_acquire  - Devres managed helper to get hold of a protocol
2051  * @sdev: A reference to an scmi_device whose embedded struct device is to
2052  *	  be used for devres accounting.
2053  * @protocol_id: The protocol being requested.
2054  *
2055  * Get hold of a protocol accounting for its usage, possibly triggering its
2056  * initialization but without getting access to its protocol specific operations
2057  * and handle.
2058  *
2059  * Being a devres based managed method, protocol hold will be automatically
2060  * released, and possibly de-initialized on last user, once the SCMI driver
2061  * owning the scmi_device is unbound from it.
2062  *
2063  * Return: 0 on SUCCESS
2064  */
2065 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2066 						   u8 protocol_id)
2067 {
2068 	struct scmi_protocol_instance *pi;
2069 
2070 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2071 	if (IS_ERR(pi))
2072 		return PTR_ERR(pi);
2073 
2074 	return 0;
2075 }
2076 
2077 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2078 {
2079 	struct scmi_protocol_devres *dres = res;
2080 
2081 	if (WARN_ON(!dres || !data))
2082 		return 0;
2083 
2084 	return dres->protocol_id == *((u8 *)data);
2085 }
2086 
2087 /**
2088  * scmi_devm_protocol_put  - Devres managed put protocol operations and handle
2089  * @sdev: A reference to an scmi_device whose embedded struct device is to
2090  *	  be used for devres accounting.
2091  * @protocol_id: The protocol being requested.
2092  *
2093  * Explicitly release a protocol hold previously obtained calling the above
2094  * @scmi_devm_protocol_get.
2095  */
2096 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2097 {
2098 	int ret;
2099 
2100 	ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2101 			     scmi_devm_protocol_match, &protocol_id);
2102 	WARN_ON(ret);
2103 }
2104 
2105 /**
2106  * scmi_is_transport_atomic  - Method to check if underlying transport for an
2107  * SCMI instance is configured as atomic.
2108  *
2109  * @handle: A reference to the SCMI platform instance.
2110  * @atomic_threshold: An optional return value for the system wide currently
2111  *		      configured threshold for atomic operations.
2112  *
2113  * Return: True if transport is configured as atomic
2114  */
2115 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2116 				     unsigned int *atomic_threshold)
2117 {
2118 	bool ret;
2119 	struct scmi_info *info = handle_to_scmi_info(handle);
2120 
2121 	ret = info->desc->atomic_enabled &&
2122 		is_transport_polling_capable(info->desc);
2123 	if (ret && atomic_threshold)
2124 		*atomic_threshold = info->atomic_threshold;
2125 
2126 	return ret;
2127 }
2128 
2129 /**
2130  * scmi_handle_get() - Get the SCMI handle for a device
2131  *
2132  * @dev: pointer to device for which we want SCMI handle
2133  *
2134  * NOTE: The function does not track individual clients of the framework
2135  * and is expected to be maintained by caller of SCMI protocol library.
2136  * scmi_handle_put must be balanced with successful scmi_handle_get
2137  *
2138  * Return: pointer to handle if successful, NULL on error
2139  */
2140 static struct scmi_handle *scmi_handle_get(struct device *dev)
2141 {
2142 	struct list_head *p;
2143 	struct scmi_info *info;
2144 	struct scmi_handle *handle = NULL;
2145 
2146 	mutex_lock(&scmi_list_mutex);
2147 	list_for_each(p, &scmi_list) {
2148 		info = list_entry(p, struct scmi_info, node);
2149 		if (dev->parent == info->dev) {
2150 			info->users++;
2151 			handle = &info->handle;
2152 			break;
2153 		}
2154 	}
2155 	mutex_unlock(&scmi_list_mutex);
2156 
2157 	return handle;
2158 }
2159 
2160 /**
2161  * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2162  *
2163  * @handle: handle acquired by scmi_handle_get
2164  *
2165  * NOTE: The function does not track individual clients of the framework
2166  * and is expected to be maintained by caller of SCMI protocol library.
2167  * scmi_handle_put must be balanced with successful scmi_handle_get
2168  *
2169  * Return: 0 is successfully released
2170  *	if null was passed, it returns -EINVAL;
2171  */
2172 static int scmi_handle_put(const struct scmi_handle *handle)
2173 {
2174 	struct scmi_info *info;
2175 
2176 	if (!handle)
2177 		return -EINVAL;
2178 
2179 	info = handle_to_scmi_info(handle);
2180 	mutex_lock(&scmi_list_mutex);
2181 	if (!WARN_ON(!info->users))
2182 		info->users--;
2183 	mutex_unlock(&scmi_list_mutex);
2184 
2185 	return 0;
2186 }
2187 
2188 static void scmi_device_link_add(struct device *consumer,
2189 				 struct device *supplier)
2190 {
2191 	struct device_link *link;
2192 
2193 	link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2194 
2195 	WARN_ON(!link);
2196 }
2197 
2198 static void scmi_set_handle(struct scmi_device *scmi_dev)
2199 {
2200 	scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2201 	if (scmi_dev->handle)
2202 		scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2203 }
2204 
2205 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2206 				 struct scmi_xfers_info *info)
2207 {
2208 	int i;
2209 	struct scmi_xfer *xfer;
2210 	struct device *dev = sinfo->dev;
2211 	const struct scmi_desc *desc = sinfo->desc;
2212 
2213 	/* Pre-allocated messages, no more than what hdr.seq can support */
2214 	if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2215 		dev_err(dev,
2216 			"Invalid maximum messages %d, not in range [1 - %lu]\n",
2217 			info->max_msg, MSG_TOKEN_MAX);
2218 		return -EINVAL;
2219 	}
2220 
2221 	hash_init(info->pending_xfers);
2222 
2223 	/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2224 	info->xfer_alloc_table = devm_kcalloc(dev, BITS_TO_LONGS(MSG_TOKEN_MAX),
2225 					      sizeof(long), GFP_KERNEL);
2226 	if (!info->xfer_alloc_table)
2227 		return -ENOMEM;
2228 
2229 	/*
2230 	 * Preallocate a number of xfers equal to max inflight messages,
2231 	 * pre-initialize the buffer pointer to pre-allocated buffers and
2232 	 * attach all of them to the free list
2233 	 */
2234 	INIT_HLIST_HEAD(&info->free_xfers);
2235 	for (i = 0; i < info->max_msg; i++) {
2236 		xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2237 		if (!xfer)
2238 			return -ENOMEM;
2239 
2240 		xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2241 					    GFP_KERNEL);
2242 		if (!xfer->rx.buf)
2243 			return -ENOMEM;
2244 
2245 		xfer->tx.buf = xfer->rx.buf;
2246 		init_completion(&xfer->done);
2247 		spin_lock_init(&xfer->lock);
2248 
2249 		/* Add initialized xfer to the free list */
2250 		hlist_add_head(&xfer->node, &info->free_xfers);
2251 	}
2252 
2253 	spin_lock_init(&info->xfer_lock);
2254 
2255 	return 0;
2256 }
2257 
2258 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2259 {
2260 	const struct scmi_desc *desc = sinfo->desc;
2261 
2262 	if (!desc->ops->get_max_msg) {
2263 		sinfo->tx_minfo.max_msg = desc->max_msg;
2264 		sinfo->rx_minfo.max_msg = desc->max_msg;
2265 	} else {
2266 		struct scmi_chan_info *base_cinfo;
2267 
2268 		base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2269 		if (!base_cinfo)
2270 			return -EINVAL;
2271 		sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2272 
2273 		/* RX channel is optional so can be skipped */
2274 		base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2275 		if (base_cinfo)
2276 			sinfo->rx_minfo.max_msg =
2277 				desc->ops->get_max_msg(base_cinfo);
2278 	}
2279 
2280 	return 0;
2281 }
2282 
2283 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2284 {
2285 	int ret;
2286 
2287 	ret = scmi_channels_max_msg_configure(sinfo);
2288 	if (ret)
2289 		return ret;
2290 
2291 	ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2292 	if (!ret && idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE))
2293 		ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2294 
2295 	return ret;
2296 }
2297 
2298 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2299 			   int prot_id, bool tx)
2300 {
2301 	int ret, idx;
2302 	char name[32];
2303 	struct scmi_chan_info *cinfo;
2304 	struct idr *idr;
2305 	struct scmi_device *tdev = NULL;
2306 
2307 	/* Transmit channel is first entry i.e. index 0 */
2308 	idx = tx ? 0 : 1;
2309 	idr = tx ? &info->tx_idr : &info->rx_idr;
2310 
2311 	if (!info->desc->ops->chan_available(of_node, idx)) {
2312 		cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2313 		if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2314 			return -EINVAL;
2315 		goto idr_alloc;
2316 	}
2317 
2318 	cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2319 	if (!cinfo)
2320 		return -ENOMEM;
2321 
2322 	cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2323 
2324 	/* Create a unique name for this transport device */
2325 	snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2326 		 idx ? "rx" : "tx", prot_id);
2327 	/* Create a uniquely named, dedicated transport device for this chan */
2328 	tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2329 	if (!tdev) {
2330 		dev_err(info->dev,
2331 			"failed to create transport device (%s)\n", name);
2332 		devm_kfree(info->dev, cinfo);
2333 		return -EINVAL;
2334 	}
2335 	of_node_get(of_node);
2336 
2337 	cinfo->id = prot_id;
2338 	cinfo->dev = &tdev->dev;
2339 	ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2340 	if (ret) {
2341 		of_node_put(of_node);
2342 		scmi_device_destroy(info->dev, prot_id, name);
2343 		devm_kfree(info->dev, cinfo);
2344 		return ret;
2345 	}
2346 
2347 	if (tx && is_polling_required(cinfo, info->desc)) {
2348 		if (is_transport_polling_capable(info->desc))
2349 			dev_info(&tdev->dev,
2350 				 "Enabled polling mode TX channel - prot_id:%d\n",
2351 				 prot_id);
2352 		else
2353 			dev_warn(&tdev->dev,
2354 				 "Polling mode NOT supported by transport.\n");
2355 	}
2356 
2357 idr_alloc:
2358 	ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2359 	if (ret != prot_id) {
2360 		dev_err(info->dev,
2361 			"unable to allocate SCMI idr slot err %d\n", ret);
2362 		/* Destroy channel and device only if created by this call. */
2363 		if (tdev) {
2364 			of_node_put(of_node);
2365 			scmi_device_destroy(info->dev, prot_id, name);
2366 			devm_kfree(info->dev, cinfo);
2367 		}
2368 		return ret;
2369 	}
2370 
2371 	cinfo->handle = &info->handle;
2372 	return 0;
2373 }
2374 
2375 static inline int
2376 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2377 		int prot_id)
2378 {
2379 	int ret = scmi_chan_setup(info, of_node, prot_id, true);
2380 
2381 	if (!ret) {
2382 		/* Rx is optional, report only memory errors */
2383 		ret = scmi_chan_setup(info, of_node, prot_id, false);
2384 		if (ret && ret != -ENOMEM)
2385 			ret = 0;
2386 	}
2387 
2388 	return ret;
2389 }
2390 
2391 /**
2392  * scmi_channels_setup  - Helper to initialize all required channels
2393  *
2394  * @info: The SCMI instance descriptor.
2395  *
2396  * Initialize all the channels found described in the DT against the underlying
2397  * configured transport using custom defined dedicated devices instead of
2398  * borrowing devices from the SCMI drivers; this way channels are initialized
2399  * upfront during core SCMI stack probing and are no more coupled with SCMI
2400  * devices used by SCMI drivers.
2401  *
2402  * Note that, even though a pair of TX/RX channels is associated to each
2403  * protocol defined in the DT, a distinct freshly initialized channel is
2404  * created only if the DT node for the protocol at hand describes a dedicated
2405  * channel: in all the other cases the common BASE protocol channel is reused.
2406  *
2407  * Return: 0 on Success
2408  */
2409 static int scmi_channels_setup(struct scmi_info *info)
2410 {
2411 	int ret;
2412 	struct device_node *child, *top_np = info->dev->of_node;
2413 
2414 	/* Initialize a common generic channel at first */
2415 	ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2416 	if (ret)
2417 		return ret;
2418 
2419 	for_each_available_child_of_node(top_np, child) {
2420 		u32 prot_id;
2421 
2422 		if (of_property_read_u32(child, "reg", &prot_id))
2423 			continue;
2424 
2425 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2426 			dev_err(info->dev,
2427 				"Out of range protocol %d\n", prot_id);
2428 
2429 		ret = scmi_txrx_setup(info, child, prot_id);
2430 		if (ret) {
2431 			of_node_put(child);
2432 			return ret;
2433 		}
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 static int scmi_chan_destroy(int id, void *p, void *idr)
2440 {
2441 	struct scmi_chan_info *cinfo = p;
2442 
2443 	if (cinfo->dev) {
2444 		struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2445 		struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2446 
2447 		of_node_put(cinfo->dev->of_node);
2448 		scmi_device_destroy(info->dev, id, sdev->name);
2449 		cinfo->dev = NULL;
2450 	}
2451 
2452 	idr_remove(idr, id);
2453 
2454 	return 0;
2455 }
2456 
2457 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2458 {
2459 	/* At first free all channels at the transport layer ... */
2460 	idr_for_each(idr, info->desc->ops->chan_free, idr);
2461 
2462 	/* ...then destroy all underlying devices */
2463 	idr_for_each(idr, scmi_chan_destroy, idr);
2464 
2465 	idr_destroy(idr);
2466 }
2467 
2468 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2469 {
2470 	scmi_cleanup_channels(info, &info->tx_idr);
2471 
2472 	scmi_cleanup_channels(info, &info->rx_idr);
2473 }
2474 
2475 static int scmi_bus_notifier(struct notifier_block *nb,
2476 			     unsigned long action, void *data)
2477 {
2478 	struct scmi_info *info = bus_nb_to_scmi_info(nb);
2479 	struct scmi_device *sdev = to_scmi_dev(data);
2480 
2481 	/* Skip transport devices and devices of different SCMI instances */
2482 	if (!strncmp(sdev->name, "__scmi_transport_device", 23) ||
2483 	    sdev->dev.parent != info->dev)
2484 		return NOTIFY_DONE;
2485 
2486 	switch (action) {
2487 	case BUS_NOTIFY_BIND_DRIVER:
2488 		/* setup handle now as the transport is ready */
2489 		scmi_set_handle(sdev);
2490 		break;
2491 	case BUS_NOTIFY_UNBOUND_DRIVER:
2492 		scmi_handle_put(sdev->handle);
2493 		sdev->handle = NULL;
2494 		break;
2495 	default:
2496 		return NOTIFY_DONE;
2497 	}
2498 
2499 	dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2500 		sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2501 		"about to be BOUND." : "UNBOUND.");
2502 
2503 	return NOTIFY_OK;
2504 }
2505 
2506 static int scmi_device_request_notifier(struct notifier_block *nb,
2507 					unsigned long action, void *data)
2508 {
2509 	struct device_node *np;
2510 	struct scmi_device_id *id_table = data;
2511 	struct scmi_info *info = req_nb_to_scmi_info(nb);
2512 
2513 	np = idr_find(&info->active_protocols, id_table->protocol_id);
2514 	if (!np)
2515 		return NOTIFY_DONE;
2516 
2517 	dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2518 		action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2519 		id_table->name, id_table->protocol_id);
2520 
2521 	switch (action) {
2522 	case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2523 		scmi_create_protocol_devices(np, info, id_table->protocol_id,
2524 					     id_table->name);
2525 		break;
2526 	case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2527 		scmi_destroy_protocol_devices(info, id_table->protocol_id,
2528 					      id_table->name);
2529 		break;
2530 	default:
2531 		return NOTIFY_DONE;
2532 	}
2533 
2534 	return NOTIFY_OK;
2535 }
2536 
2537 static void scmi_debugfs_common_cleanup(void *d)
2538 {
2539 	struct scmi_debug_info *dbg = d;
2540 
2541 	if (!dbg)
2542 		return;
2543 
2544 	debugfs_remove_recursive(dbg->top_dentry);
2545 	kfree(dbg->name);
2546 	kfree(dbg->type);
2547 }
2548 
2549 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2550 {
2551 	char top_dir[16];
2552 	struct dentry *trans, *top_dentry;
2553 	struct scmi_debug_info *dbg;
2554 	const char *c_ptr = NULL;
2555 
2556 	dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2557 	if (!dbg)
2558 		return NULL;
2559 
2560 	dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2561 	if (!dbg->name) {
2562 		devm_kfree(info->dev, dbg);
2563 		return NULL;
2564 	}
2565 
2566 	of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2567 	dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2568 	if (!dbg->type) {
2569 		kfree(dbg->name);
2570 		devm_kfree(info->dev, dbg);
2571 		return NULL;
2572 	}
2573 
2574 	snprintf(top_dir, 16, "%d", info->id);
2575 	top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2576 	trans = debugfs_create_dir("transport", top_dentry);
2577 
2578 	dbg->is_atomic = info->desc->atomic_enabled &&
2579 				is_transport_polling_capable(info->desc);
2580 
2581 	debugfs_create_str("instance_name", 0400, top_dentry,
2582 			   (char **)&dbg->name);
2583 
2584 	debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2585 			   &info->atomic_threshold);
2586 
2587 	debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
2588 
2589 	debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
2590 
2591 	debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
2592 			   (u32 *)&info->desc->max_rx_timeout_ms);
2593 
2594 	debugfs_create_u32("max_msg_size", 0400, trans,
2595 			   (u32 *)&info->desc->max_msg_size);
2596 
2597 	debugfs_create_u32("tx_max_msg", 0400, trans,
2598 			   (u32 *)&info->tx_minfo.max_msg);
2599 
2600 	debugfs_create_u32("rx_max_msg", 0400, trans,
2601 			   (u32 *)&info->rx_minfo.max_msg);
2602 
2603 	dbg->top_dentry = top_dentry;
2604 
2605 	if (devm_add_action_or_reset(info->dev,
2606 				     scmi_debugfs_common_cleanup, dbg)) {
2607 		scmi_debugfs_common_cleanup(dbg);
2608 		return NULL;
2609 	}
2610 
2611 	return dbg;
2612 }
2613 
2614 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
2615 {
2616 	int id, num_chans = 0, ret = 0;
2617 	struct scmi_chan_info *cinfo;
2618 	u8 channels[SCMI_MAX_CHANNELS] = {};
2619 	DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
2620 
2621 	if (!info->dbg)
2622 		return -EINVAL;
2623 
2624 	/* Enumerate all channels to collect their ids */
2625 	idr_for_each_entry(&info->tx_idr, cinfo, id) {
2626 		/*
2627 		 * Cannot happen, but be defensive.
2628 		 * Zero as num_chans is ok, warn and carry on.
2629 		 */
2630 		if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
2631 			dev_warn(info->dev,
2632 				 "SCMI RAW - Error enumerating channels\n");
2633 			break;
2634 		}
2635 
2636 		if (!test_bit(cinfo->id, protos)) {
2637 			channels[num_chans++] = cinfo->id;
2638 			set_bit(cinfo->id, protos);
2639 		}
2640 	}
2641 
2642 	info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
2643 				       info->id, channels, num_chans,
2644 				       info->desc, info->tx_minfo.max_msg);
2645 	if (IS_ERR(info->raw)) {
2646 		dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
2647 		ret = PTR_ERR(info->raw);
2648 		info->raw = NULL;
2649 	}
2650 
2651 	return ret;
2652 }
2653 
2654 static int scmi_probe(struct platform_device *pdev)
2655 {
2656 	int ret;
2657 	struct scmi_handle *handle;
2658 	const struct scmi_desc *desc;
2659 	struct scmi_info *info;
2660 	struct device *dev = &pdev->dev;
2661 	struct device_node *child, *np = dev->of_node;
2662 
2663 	desc = of_device_get_match_data(dev);
2664 	if (!desc)
2665 		return -EINVAL;
2666 
2667 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2668 	if (!info)
2669 		return -ENOMEM;
2670 
2671 	info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
2672 	if (info->id < 0)
2673 		return info->id;
2674 
2675 	info->dev = dev;
2676 	info->desc = desc;
2677 	info->bus_nb.notifier_call = scmi_bus_notifier;
2678 	info->dev_req_nb.notifier_call = scmi_device_request_notifier;
2679 	INIT_LIST_HEAD(&info->node);
2680 	idr_init(&info->protocols);
2681 	mutex_init(&info->protocols_mtx);
2682 	idr_init(&info->active_protocols);
2683 	mutex_init(&info->devreq_mtx);
2684 
2685 	platform_set_drvdata(pdev, info);
2686 	idr_init(&info->tx_idr);
2687 	idr_init(&info->rx_idr);
2688 
2689 	handle = &info->handle;
2690 	handle->dev = info->dev;
2691 	handle->version = &info->version;
2692 	handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
2693 	handle->devm_protocol_get = scmi_devm_protocol_get;
2694 	handle->devm_protocol_put = scmi_devm_protocol_put;
2695 
2696 	/* System wide atomic threshold for atomic ops .. if any */
2697 	if (!of_property_read_u32(np, "atomic-threshold-us",
2698 				  &info->atomic_threshold))
2699 		dev_info(dev,
2700 			 "SCMI System wide atomic threshold set to %d us\n",
2701 			 info->atomic_threshold);
2702 	handle->is_transport_atomic = scmi_is_transport_atomic;
2703 
2704 	if (desc->ops->link_supplier) {
2705 		ret = desc->ops->link_supplier(dev);
2706 		if (ret)
2707 			goto clear_ida;
2708 	}
2709 
2710 	/* Setup all channels described in the DT at first */
2711 	ret = scmi_channels_setup(info);
2712 	if (ret)
2713 		goto clear_ida;
2714 
2715 	ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
2716 	if (ret)
2717 		goto clear_txrx_setup;
2718 
2719 	ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
2720 					       &info->dev_req_nb);
2721 	if (ret)
2722 		goto clear_bus_notifier;
2723 
2724 	ret = scmi_xfer_info_init(info);
2725 	if (ret)
2726 		goto clear_dev_req_notifier;
2727 
2728 	if (scmi_top_dentry) {
2729 		info->dbg = scmi_debugfs_common_setup(info);
2730 		if (!info->dbg)
2731 			dev_warn(dev, "Failed to setup SCMI debugfs.\n");
2732 
2733 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
2734 			bool coex =
2735 			      IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
2736 
2737 			ret = scmi_debugfs_raw_mode_setup(info);
2738 			if (!coex) {
2739 				if (ret)
2740 					goto clear_dev_req_notifier;
2741 
2742 				/* Bail out anyway when coex enabled */
2743 				return ret;
2744 			}
2745 
2746 			/* Coex enabled, carry on in any case. */
2747 			dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
2748 		}
2749 	}
2750 
2751 	if (scmi_notification_init(handle))
2752 		dev_err(dev, "SCMI Notifications NOT available.\n");
2753 
2754 	if (info->desc->atomic_enabled &&
2755 	    !is_transport_polling_capable(info->desc))
2756 		dev_err(dev,
2757 			"Transport is not polling capable. Atomic mode not supported.\n");
2758 
2759 	/*
2760 	 * Trigger SCMI Base protocol initialization.
2761 	 * It's mandatory and won't be ever released/deinit until the
2762 	 * SCMI stack is shutdown/unloaded as a whole.
2763 	 */
2764 	ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
2765 	if (ret) {
2766 		dev_err(dev, "unable to communicate with SCMI\n");
2767 		goto notification_exit;
2768 	}
2769 
2770 	mutex_lock(&scmi_list_mutex);
2771 	list_add_tail(&info->node, &scmi_list);
2772 	mutex_unlock(&scmi_list_mutex);
2773 
2774 	for_each_available_child_of_node(np, child) {
2775 		u32 prot_id;
2776 
2777 		if (of_property_read_u32(child, "reg", &prot_id))
2778 			continue;
2779 
2780 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2781 			dev_err(dev, "Out of range protocol %d\n", prot_id);
2782 
2783 		if (!scmi_is_protocol_implemented(handle, prot_id)) {
2784 			dev_err(dev, "SCMI protocol %d not implemented\n",
2785 				prot_id);
2786 			continue;
2787 		}
2788 
2789 		/*
2790 		 * Save this valid DT protocol descriptor amongst
2791 		 * @active_protocols for this SCMI instance/
2792 		 */
2793 		ret = idr_alloc(&info->active_protocols, child,
2794 				prot_id, prot_id + 1, GFP_KERNEL);
2795 		if (ret != prot_id) {
2796 			dev_err(dev, "SCMI protocol %d already activated. Skip\n",
2797 				prot_id);
2798 			continue;
2799 		}
2800 
2801 		of_node_get(child);
2802 		scmi_create_protocol_devices(child, info, prot_id, NULL);
2803 	}
2804 
2805 	return 0;
2806 
2807 notification_exit:
2808 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2809 		scmi_raw_mode_cleanup(info->raw);
2810 	scmi_notification_exit(&info->handle);
2811 clear_dev_req_notifier:
2812 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2813 					   &info->dev_req_nb);
2814 clear_bus_notifier:
2815 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2816 clear_txrx_setup:
2817 	scmi_cleanup_txrx_channels(info);
2818 clear_ida:
2819 	ida_free(&scmi_id, info->id);
2820 	return ret;
2821 }
2822 
2823 static int scmi_remove(struct platform_device *pdev)
2824 {
2825 	int id;
2826 	struct scmi_info *info = platform_get_drvdata(pdev);
2827 	struct device_node *child;
2828 
2829 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2830 		scmi_raw_mode_cleanup(info->raw);
2831 
2832 	mutex_lock(&scmi_list_mutex);
2833 	if (info->users)
2834 		dev_warn(&pdev->dev,
2835 			 "Still active SCMI users will be forcibly unbound.\n");
2836 	list_del(&info->node);
2837 	mutex_unlock(&scmi_list_mutex);
2838 
2839 	scmi_notification_exit(&info->handle);
2840 
2841 	mutex_lock(&info->protocols_mtx);
2842 	idr_destroy(&info->protocols);
2843 	mutex_unlock(&info->protocols_mtx);
2844 
2845 	idr_for_each_entry(&info->active_protocols, child, id)
2846 		of_node_put(child);
2847 	idr_destroy(&info->active_protocols);
2848 
2849 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2850 					   &info->dev_req_nb);
2851 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2852 
2853 	/* Safe to free channels since no more users */
2854 	scmi_cleanup_txrx_channels(info);
2855 
2856 	ida_free(&scmi_id, info->id);
2857 
2858 	return 0;
2859 }
2860 
2861 static ssize_t protocol_version_show(struct device *dev,
2862 				     struct device_attribute *attr, char *buf)
2863 {
2864 	struct scmi_info *info = dev_get_drvdata(dev);
2865 
2866 	return sprintf(buf, "%u.%u\n", info->version.major_ver,
2867 		       info->version.minor_ver);
2868 }
2869 static DEVICE_ATTR_RO(protocol_version);
2870 
2871 static ssize_t firmware_version_show(struct device *dev,
2872 				     struct device_attribute *attr, char *buf)
2873 {
2874 	struct scmi_info *info = dev_get_drvdata(dev);
2875 
2876 	return sprintf(buf, "0x%x\n", info->version.impl_ver);
2877 }
2878 static DEVICE_ATTR_RO(firmware_version);
2879 
2880 static ssize_t vendor_id_show(struct device *dev,
2881 			      struct device_attribute *attr, char *buf)
2882 {
2883 	struct scmi_info *info = dev_get_drvdata(dev);
2884 
2885 	return sprintf(buf, "%s\n", info->version.vendor_id);
2886 }
2887 static DEVICE_ATTR_RO(vendor_id);
2888 
2889 static ssize_t sub_vendor_id_show(struct device *dev,
2890 				  struct device_attribute *attr, char *buf)
2891 {
2892 	struct scmi_info *info = dev_get_drvdata(dev);
2893 
2894 	return sprintf(buf, "%s\n", info->version.sub_vendor_id);
2895 }
2896 static DEVICE_ATTR_RO(sub_vendor_id);
2897 
2898 static struct attribute *versions_attrs[] = {
2899 	&dev_attr_firmware_version.attr,
2900 	&dev_attr_protocol_version.attr,
2901 	&dev_attr_vendor_id.attr,
2902 	&dev_attr_sub_vendor_id.attr,
2903 	NULL,
2904 };
2905 ATTRIBUTE_GROUPS(versions);
2906 
2907 /* Each compatible listed below must have descriptor associated with it */
2908 static const struct of_device_id scmi_of_match[] = {
2909 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
2910 	{ .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
2911 #endif
2912 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE
2913 	{ .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc },
2914 #endif
2915 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
2916 	{ .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
2917 #endif
2918 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
2919 	{ .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
2920 #endif
2921 	{ /* Sentinel */ },
2922 };
2923 
2924 MODULE_DEVICE_TABLE(of, scmi_of_match);
2925 
2926 static struct platform_driver scmi_driver = {
2927 	.driver = {
2928 		   .name = "arm-scmi",
2929 		   .suppress_bind_attrs = true,
2930 		   .of_match_table = scmi_of_match,
2931 		   .dev_groups = versions_groups,
2932 		   },
2933 	.probe = scmi_probe,
2934 	.remove = scmi_remove,
2935 };
2936 
2937 /**
2938  * __scmi_transports_setup  - Common helper to call transport-specific
2939  * .init/.exit code if provided.
2940  *
2941  * @init: A flag to distinguish between init and exit.
2942  *
2943  * Note that, if provided, we invoke .init/.exit functions for all the
2944  * transports currently compiled in.
2945  *
2946  * Return: 0 on Success.
2947  */
2948 static inline int __scmi_transports_setup(bool init)
2949 {
2950 	int ret = 0;
2951 	const struct of_device_id *trans;
2952 
2953 	for (trans = scmi_of_match; trans->data; trans++) {
2954 		const struct scmi_desc *tdesc = trans->data;
2955 
2956 		if ((init && !tdesc->transport_init) ||
2957 		    (!init && !tdesc->transport_exit))
2958 			continue;
2959 
2960 		if (init)
2961 			ret = tdesc->transport_init();
2962 		else
2963 			tdesc->transport_exit();
2964 
2965 		if (ret) {
2966 			pr_err("SCMI transport %s FAILED initialization!\n",
2967 			       trans->compatible);
2968 			break;
2969 		}
2970 	}
2971 
2972 	return ret;
2973 }
2974 
2975 static int __init scmi_transports_init(void)
2976 {
2977 	return __scmi_transports_setup(true);
2978 }
2979 
2980 static void __exit scmi_transports_exit(void)
2981 {
2982 	__scmi_transports_setup(false);
2983 }
2984 
2985 static struct dentry *scmi_debugfs_init(void)
2986 {
2987 	struct dentry *d;
2988 
2989 	d = debugfs_create_dir("scmi", NULL);
2990 	if (IS_ERR(d)) {
2991 		pr_err("Could NOT create SCMI top dentry.\n");
2992 		return NULL;
2993 	}
2994 
2995 	return d;
2996 }
2997 
2998 static int __init scmi_driver_init(void)
2999 {
3000 	int ret;
3001 
3002 	/* Bail out if no SCMI transport was configured */
3003 	if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3004 		return -EINVAL;
3005 
3006 	/* Initialize any compiled-in transport which provided an init/exit */
3007 	ret = scmi_transports_init();
3008 	if (ret)
3009 		return ret;
3010 
3011 	if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3012 		scmi_top_dentry = scmi_debugfs_init();
3013 
3014 	scmi_base_register();
3015 
3016 	scmi_clock_register();
3017 	scmi_perf_register();
3018 	scmi_power_register();
3019 	scmi_reset_register();
3020 	scmi_sensors_register();
3021 	scmi_voltage_register();
3022 	scmi_system_register();
3023 	scmi_powercap_register();
3024 
3025 	return platform_driver_register(&scmi_driver);
3026 }
3027 module_init(scmi_driver_init);
3028 
3029 static void __exit scmi_driver_exit(void)
3030 {
3031 	scmi_base_unregister();
3032 
3033 	scmi_clock_unregister();
3034 	scmi_perf_unregister();
3035 	scmi_power_unregister();
3036 	scmi_reset_unregister();
3037 	scmi_sensors_unregister();
3038 	scmi_voltage_unregister();
3039 	scmi_system_unregister();
3040 	scmi_powercap_unregister();
3041 
3042 	scmi_transports_exit();
3043 
3044 	platform_driver_unregister(&scmi_driver);
3045 
3046 	debugfs_remove_recursive(scmi_top_dentry);
3047 }
3048 module_exit(scmi_driver_exit);
3049 
3050 MODULE_ALIAS("platform:arm-scmi");
3051 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3052 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3053 MODULE_LICENSE("GPL v2");
3054