1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Control and Management Interface (SCMI) Message Protocol driver 4 * 5 * SCMI Message Protocol is used between the System Control Processor(SCP) 6 * and the Application Processors(AP). The Message Handling Unit(MHU) 7 * provides a mechanism for inter-processor communication between SCP's 8 * Cortex M3 and AP. 9 * 10 * SCP offers control and management of the core/cluster power states, 11 * various power domain DVFS including the core/cluster, certain system 12 * clocks configuration, thermal sensors and many others. 13 * 14 * Copyright (C) 2018-2025 ARM Ltd. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/debugfs.h> 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/idr.h> 24 #include <linux/io.h> 25 #include <linux/io-64-nonatomic-hi-lo.h> 26 #include <linux/kernel.h> 27 #include <linux/kmod.h> 28 #include <linux/ktime.h> 29 #include <linux/hashtable.h> 30 #include <linux/list.h> 31 #include <linux/module.h> 32 #include <linux/of.h> 33 #include <linux/platform_device.h> 34 #include <linux/processor.h> 35 #include <linux/refcount.h> 36 #include <linux/slab.h> 37 #include <linux/xarray.h> 38 39 #include "common.h" 40 #include "notify.h" 41 #include "quirks.h" 42 43 #include "raw_mode.h" 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/scmi.h> 47 48 #define SCMI_VENDOR_MODULE_ALIAS_FMT "scmi-protocol-0x%02x-%s" 49 50 static DEFINE_IDA(scmi_id); 51 52 static DEFINE_XARRAY(scmi_protocols); 53 54 /* List of all SCMI devices active in system */ 55 static LIST_HEAD(scmi_list); 56 /* Protection for the entire list */ 57 static DEFINE_MUTEX(scmi_list_mutex); 58 /* Track the unique id for the transfers for debug & profiling purpose */ 59 static atomic_t transfer_last_id; 60 61 static struct dentry *scmi_top_dentry; 62 63 /** 64 * struct scmi_xfers_info - Structure to manage transfer information 65 * 66 * @xfer_alloc_table: Bitmap table for allocated messages. 67 * Index of this bitmap table is also used for message 68 * sequence identifier. 69 * @xfer_lock: Protection for message allocation 70 * @max_msg: Maximum number of messages that can be pending 71 * @free_xfers: A free list for available to use xfers. It is initialized with 72 * a number of xfers equal to the maximum allowed in-flight 73 * messages. 74 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the 75 * currently in-flight messages. 76 */ 77 struct scmi_xfers_info { 78 unsigned long *xfer_alloc_table; 79 spinlock_t xfer_lock; 80 int max_msg; 81 struct hlist_head free_xfers; 82 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ); 83 }; 84 85 /** 86 * struct scmi_protocol_instance - Describe an initialized protocol instance. 87 * @handle: Reference to the SCMI handle associated to this protocol instance. 88 * @proto: A reference to the protocol descriptor. 89 * @gid: A reference for per-protocol devres management. 90 * @users: A refcount to track effective users of this protocol. 91 * @priv: Reference for optional protocol private data. 92 * @version: Protocol version supported by the platform as detected at runtime. 93 * @negotiated_version: When the platform supports a newer protocol version, 94 * the agent will try to negotiate with the platform the 95 * usage of the newest version known to it, since 96 * backward compatibility is NOT automatically assured. 97 * This field is NON-zero when a successful negotiation 98 * has completed. 99 * @ph: An embedded protocol handle that will be passed down to protocol 100 * initialization code to identify this instance. 101 * 102 * Each protocol is initialized independently once for each SCMI platform in 103 * which is defined by DT and implemented by the SCMI server fw. 104 */ 105 struct scmi_protocol_instance { 106 const struct scmi_handle *handle; 107 const struct scmi_protocol *proto; 108 void *gid; 109 refcount_t users; 110 void *priv; 111 unsigned int version; 112 unsigned int negotiated_version; 113 struct scmi_protocol_handle ph; 114 }; 115 116 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph) 117 118 /** 119 * struct scmi_info - Structure representing a SCMI instance 120 * 121 * @id: A sequence number starting from zero identifying this instance 122 * @dev: Device pointer 123 * @desc: SoC description for this instance 124 * @version: SCMI revision information containing protocol version, 125 * implementation version and (sub-)vendor identification. 126 * @handle: Instance of SCMI handle to send to clients 127 * @tx_minfo: Universal Transmit Message management info 128 * @rx_minfo: Universal Receive Message management info 129 * @tx_idr: IDR object to map protocol id to Tx channel info pointer 130 * @rx_idr: IDR object to map protocol id to Rx channel info pointer 131 * @protocols: IDR for protocols' instance descriptors initialized for 132 * this SCMI instance: populated on protocol's first attempted 133 * usage. 134 * @protocols_mtx: A mutex to protect protocols instances initialization. 135 * @protocols_imp: List of protocols implemented, currently maximum of 136 * scmi_revision_info.num_protocols elements allocated by the 137 * base protocol 138 * @active_protocols: IDR storing device_nodes for protocols actually defined 139 * in the DT and confirmed as implemented by fw. 140 * @notify_priv: Pointer to private data structure specific to notifications. 141 * @node: List head 142 * @users: Number of users of this instance 143 * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus 144 * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi 145 * bus 146 * @devreq_mtx: A mutex to serialize device creation for this SCMI instance 147 * @dbg: A pointer to debugfs related data (if any) 148 * @raw: An opaque reference handle used by SCMI Raw mode. 149 */ 150 struct scmi_info { 151 int id; 152 struct device *dev; 153 const struct scmi_desc *desc; 154 struct scmi_revision_info version; 155 struct scmi_handle handle; 156 struct scmi_xfers_info tx_minfo; 157 struct scmi_xfers_info rx_minfo; 158 struct idr tx_idr; 159 struct idr rx_idr; 160 struct idr protocols; 161 /* Ensure mutual exclusive access to protocols instance array */ 162 struct mutex protocols_mtx; 163 u8 *protocols_imp; 164 struct idr active_protocols; 165 void *notify_priv; 166 struct list_head node; 167 int users; 168 struct notifier_block bus_nb; 169 struct notifier_block dev_req_nb; 170 /* Serialize device creation process for this instance */ 171 struct mutex devreq_mtx; 172 struct scmi_debug_info *dbg; 173 void *raw; 174 }; 175 176 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle) 177 #define tx_minfo_to_scmi_info(h) container_of(h, struct scmi_info, tx_minfo) 178 #define bus_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, bus_nb) 179 #define req_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, dev_req_nb) 180 181 static void scmi_rx_callback(struct scmi_chan_info *cinfo, 182 u32 msg_hdr, void *priv); 183 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo, 184 u32 msg_hdr, enum scmi_bad_msg err); 185 186 static struct scmi_transport_core_operations scmi_trans_core_ops = { 187 .bad_message_trace = scmi_bad_message_trace, 188 .rx_callback = scmi_rx_callback, 189 }; 190 191 static unsigned long 192 scmi_vendor_protocol_signature(unsigned int protocol_id, char *vendor_id, 193 char *sub_vendor_id, u32 impl_ver) 194 { 195 char *signature, *p; 196 unsigned long hash = 0; 197 198 /* vendor_id/sub_vendor_id guaranteed <= SCMI_SHORT_NAME_MAX_SIZE */ 199 signature = kasprintf(GFP_KERNEL, "%02X|%s|%s|0x%08X", protocol_id, 200 vendor_id ?: "", sub_vendor_id ?: "", impl_ver); 201 if (!signature) 202 return 0; 203 204 p = signature; 205 while (*p) 206 hash = partial_name_hash(tolower(*p++), hash); 207 hash = end_name_hash(hash); 208 209 kfree(signature); 210 211 return hash; 212 } 213 214 static unsigned long 215 scmi_protocol_key_calculate(int protocol_id, char *vendor_id, 216 char *sub_vendor_id, u32 impl_ver) 217 { 218 if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE) 219 return protocol_id; 220 else 221 return scmi_vendor_protocol_signature(protocol_id, vendor_id, 222 sub_vendor_id, impl_ver); 223 } 224 225 static const struct scmi_protocol * 226 __scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id, 227 char *sub_vendor_id, u32 impl_ver) 228 { 229 unsigned long key; 230 struct scmi_protocol *proto = NULL; 231 232 key = scmi_protocol_key_calculate(protocol_id, vendor_id, 233 sub_vendor_id, impl_ver); 234 if (key) 235 proto = xa_load(&scmi_protocols, key); 236 237 return proto; 238 } 239 240 static const struct scmi_protocol * 241 scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id, 242 char *sub_vendor_id, u32 impl_ver) 243 { 244 const struct scmi_protocol *proto = NULL; 245 246 /* Searching for closest match ...*/ 247 proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id, 248 sub_vendor_id, impl_ver); 249 if (proto) 250 return proto; 251 252 /* Any match just on vendor/sub_vendor ? */ 253 if (impl_ver) { 254 proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id, 255 sub_vendor_id, 0); 256 if (proto) 257 return proto; 258 } 259 260 /* Any match just on the vendor ? */ 261 if (sub_vendor_id) 262 proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id, 263 NULL, 0); 264 return proto; 265 } 266 267 static const struct scmi_protocol * 268 scmi_vendor_protocol_get(int protocol_id, struct scmi_revision_info *version) 269 { 270 const struct scmi_protocol *proto; 271 272 proto = scmi_vendor_protocol_lookup(protocol_id, version->vendor_id, 273 version->sub_vendor_id, 274 version->impl_ver); 275 if (!proto) { 276 int ret; 277 278 pr_debug("Looking for '" SCMI_VENDOR_MODULE_ALIAS_FMT "'\n", 279 protocol_id, version->vendor_id); 280 281 /* Note that vendor_id is mandatory for vendor protocols */ 282 ret = request_module(SCMI_VENDOR_MODULE_ALIAS_FMT, 283 protocol_id, version->vendor_id); 284 if (ret) { 285 pr_warn("Problem loading module for protocol 0x%x\n", 286 protocol_id); 287 return NULL; 288 } 289 290 /* Lookup again, once modules loaded */ 291 proto = scmi_vendor_protocol_lookup(protocol_id, 292 version->vendor_id, 293 version->sub_vendor_id, 294 version->impl_ver); 295 } 296 297 if (proto) 298 pr_info("Loaded SCMI Vendor Protocol 0x%x - %s %s %X\n", 299 protocol_id, proto->vendor_id ?: "", 300 proto->sub_vendor_id ?: "", proto->impl_ver); 301 302 return proto; 303 } 304 305 static const struct scmi_protocol * 306 scmi_protocol_get(int protocol_id, struct scmi_revision_info *version) 307 { 308 const struct scmi_protocol *proto = NULL; 309 310 if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE) 311 proto = xa_load(&scmi_protocols, protocol_id); 312 else 313 proto = scmi_vendor_protocol_get(protocol_id, version); 314 315 if (!proto || !try_module_get(proto->owner)) { 316 pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id); 317 return NULL; 318 } 319 320 pr_debug("Found SCMI Protocol 0x%x\n", protocol_id); 321 322 return proto; 323 } 324 325 static void scmi_protocol_put(const struct scmi_protocol *proto) 326 { 327 if (proto) 328 module_put(proto->owner); 329 } 330 331 static int scmi_vendor_protocol_check(const struct scmi_protocol *proto) 332 { 333 if (!proto->vendor_id) { 334 pr_err("missing vendor_id for protocol 0x%x\n", proto->id); 335 return -EINVAL; 336 } 337 338 if (strlen(proto->vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) { 339 pr_err("malformed vendor_id for protocol 0x%x\n", proto->id); 340 return -EINVAL; 341 } 342 343 if (proto->sub_vendor_id && 344 strlen(proto->sub_vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) { 345 pr_err("malformed sub_vendor_id for protocol 0x%x\n", 346 proto->id); 347 return -EINVAL; 348 } 349 350 return 0; 351 } 352 353 int scmi_protocol_register(const struct scmi_protocol *proto) 354 { 355 int ret; 356 unsigned long key; 357 358 if (!proto) { 359 pr_err("invalid protocol\n"); 360 return -EINVAL; 361 } 362 363 if (!proto->instance_init) { 364 pr_err("missing init for protocol 0x%x\n", proto->id); 365 return -EINVAL; 366 } 367 368 if (proto->id >= SCMI_PROTOCOL_VENDOR_BASE && 369 scmi_vendor_protocol_check(proto)) 370 return -EINVAL; 371 372 /* 373 * Calculate a protocol key to register this protocol with the core; 374 * key value 0 is considered invalid. 375 */ 376 key = scmi_protocol_key_calculate(proto->id, proto->vendor_id, 377 proto->sub_vendor_id, 378 proto->impl_ver); 379 if (!key) 380 return -EINVAL; 381 382 ret = xa_insert(&scmi_protocols, key, (void *)proto, GFP_KERNEL); 383 if (ret) { 384 pr_err("unable to allocate SCMI protocol slot for 0x%x - err %d\n", 385 proto->id, ret); 386 return ret; 387 } 388 389 pr_debug("Registered SCMI Protocol 0x%x - %s %s 0x%08X\n", 390 proto->id, proto->vendor_id, proto->sub_vendor_id, 391 proto->impl_ver); 392 393 return 0; 394 } 395 EXPORT_SYMBOL_GPL(scmi_protocol_register); 396 397 void scmi_protocol_unregister(const struct scmi_protocol *proto) 398 { 399 unsigned long key; 400 401 key = scmi_protocol_key_calculate(proto->id, proto->vendor_id, 402 proto->sub_vendor_id, 403 proto->impl_ver); 404 if (!key) 405 return; 406 407 xa_erase(&scmi_protocols, key); 408 409 pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id); 410 } 411 EXPORT_SYMBOL_GPL(scmi_protocol_unregister); 412 413 /** 414 * scmi_create_protocol_devices - Create devices for all pending requests for 415 * this SCMI instance. 416 * 417 * @np: The device node describing the protocol 418 * @info: The SCMI instance descriptor 419 * @prot_id: The protocol ID 420 * @name: The optional name of the device to be created: if not provided this 421 * call will lead to the creation of all the devices currently requested 422 * for the specified protocol. 423 */ 424 static void scmi_create_protocol_devices(struct device_node *np, 425 struct scmi_info *info, 426 int prot_id, const char *name) 427 { 428 mutex_lock(&info->devreq_mtx); 429 scmi_device_create(np, info->dev, prot_id, name); 430 mutex_unlock(&info->devreq_mtx); 431 } 432 433 static void scmi_destroy_protocol_devices(struct scmi_info *info, 434 int prot_id, const char *name) 435 { 436 mutex_lock(&info->devreq_mtx); 437 scmi_device_destroy(info->dev, prot_id, name); 438 mutex_unlock(&info->devreq_mtx); 439 } 440 441 void scmi_notification_instance_data_set(const struct scmi_handle *handle, 442 void *priv) 443 { 444 struct scmi_info *info = handle_to_scmi_info(handle); 445 446 info->notify_priv = priv; 447 /* Ensure updated protocol private date are visible */ 448 smp_wmb(); 449 } 450 451 void *scmi_notification_instance_data_get(const struct scmi_handle *handle) 452 { 453 struct scmi_info *info = handle_to_scmi_info(handle); 454 455 /* Ensure protocols_private_data has been updated */ 456 smp_rmb(); 457 return info->notify_priv; 458 } 459 460 /** 461 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand 462 * 463 * @minfo: Pointer to Tx/Rx Message management info based on channel type 464 * @xfer: The xfer to act upon 465 * 466 * Pick the next unused monotonically increasing token and set it into 467 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate 468 * reuse of freshly completed or timed-out xfers, thus mitigating the risk 469 * of incorrect association of a late and expired xfer with a live in-flight 470 * transaction, both happening to re-use the same token identifier. 471 * 472 * Since platform is NOT required to answer our request in-order we should 473 * account for a few rare but possible scenarios: 474 * 475 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token 476 * using find_next_zero_bit() starting from candidate next_token bit 477 * 478 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we 479 * are plenty of free tokens at start, so try a second pass using 480 * find_next_zero_bit() and starting from 0. 481 * 482 * X = used in-flight 483 * 484 * Normal 485 * ------ 486 * 487 * |- xfer_id picked 488 * -----------+---------------------------------------------------------- 489 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X| 490 * ---------------------------------------------------------------------- 491 * ^ 492 * |- next_token 493 * 494 * Out-of-order pending at start 495 * ----------------------------- 496 * 497 * |- xfer_id picked, last_token fixed 498 * -----+---------------------------------------------------------------- 499 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| | 500 * ---------------------------------------------------------------------- 501 * ^ 502 * |- next_token 503 * 504 * 505 * Out-of-order pending at end 506 * --------------------------- 507 * 508 * |- xfer_id picked, last_token fixed 509 * -----+---------------------------------------------------------------- 510 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X| 511 * ---------------------------------------------------------------------- 512 * ^ 513 * |- next_token 514 * 515 * Context: Assumes to be called with @xfer_lock already acquired. 516 * 517 * Return: 0 on Success or error 518 */ 519 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo, 520 struct scmi_xfer *xfer) 521 { 522 unsigned long xfer_id, next_token; 523 524 /* 525 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1] 526 * using the pre-allocated transfer_id as a base. 527 * Note that the global transfer_id is shared across all message types 528 * so there could be holes in the allocated set of monotonic sequence 529 * numbers, but that is going to limit the effectiveness of the 530 * mitigation only in very rare limit conditions. 531 */ 532 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1)); 533 534 /* Pick the next available xfer_id >= next_token */ 535 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 536 MSG_TOKEN_MAX, next_token); 537 if (xfer_id == MSG_TOKEN_MAX) { 538 /* 539 * After heavily out-of-order responses, there are no free 540 * tokens ahead, but only at start of xfer_alloc_table so 541 * try again from the beginning. 542 */ 543 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 544 MSG_TOKEN_MAX, 0); 545 /* 546 * Something is wrong if we got here since there can be a 547 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages 548 * but we have not found any free token [0, MSG_TOKEN_MAX - 1]. 549 */ 550 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX)) 551 return -ENOMEM; 552 } 553 554 /* Update +/- last_token accordingly if we skipped some hole */ 555 if (xfer_id != next_token) 556 atomic_add((int)(xfer_id - next_token), &transfer_last_id); 557 558 xfer->hdr.seq = (u16)xfer_id; 559 560 return 0; 561 } 562 563 /** 564 * scmi_xfer_token_clear - Release the token 565 * 566 * @minfo: Pointer to Tx/Rx Message management info based on channel type 567 * @xfer: The xfer to act upon 568 */ 569 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo, 570 struct scmi_xfer *xfer) 571 { 572 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 573 } 574 575 /** 576 * scmi_xfer_inflight_register_unlocked - Register the xfer as in-flight 577 * 578 * @xfer: The xfer to register 579 * @minfo: Pointer to Tx/Rx Message management info based on channel type 580 * 581 * Note that this helper assumes that the xfer to be registered as in-flight 582 * had been built using an xfer sequence number which still corresponds to a 583 * free slot in the xfer_alloc_table. 584 * 585 * Context: Assumes to be called with @xfer_lock already acquired. 586 */ 587 static inline void 588 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer, 589 struct scmi_xfers_info *minfo) 590 { 591 /* In this context minfo will be tx_minfo due to the xfer pending */ 592 struct scmi_info *info = tx_minfo_to_scmi_info(minfo); 593 594 /* Set in-flight */ 595 set_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 596 hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq); 597 scmi_inc_count(info->dbg, XFERS_INFLIGHT); 598 599 xfer->pending = true; 600 } 601 602 /** 603 * scmi_xfer_inflight_register - Try to register an xfer as in-flight 604 * 605 * @xfer: The xfer to register 606 * @minfo: Pointer to Tx/Rx Message management info based on channel type 607 * 608 * Note that this helper does NOT assume anything about the sequence number 609 * that was baked into the provided xfer, so it checks at first if it can 610 * be mapped to a free slot and fails with an error if another xfer with the 611 * same sequence number is currently still registered as in-flight. 612 * 613 * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer 614 * could not rbe mapped to a free slot in the xfer_alloc_table. 615 */ 616 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer, 617 struct scmi_xfers_info *minfo) 618 { 619 int ret = 0; 620 unsigned long flags; 621 622 spin_lock_irqsave(&minfo->xfer_lock, flags); 623 if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table)) 624 scmi_xfer_inflight_register_unlocked(xfer, minfo); 625 else 626 ret = -EBUSY; 627 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 628 629 return ret; 630 } 631 632 /** 633 * scmi_xfer_raw_inflight_register - An helper to register the given xfer as in 634 * flight on the TX channel, if possible. 635 * 636 * @handle: Pointer to SCMI entity handle 637 * @xfer: The xfer to register 638 * 639 * Return: 0 on Success, error otherwise 640 */ 641 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle, 642 struct scmi_xfer *xfer) 643 { 644 struct scmi_info *info = handle_to_scmi_info(handle); 645 646 return scmi_xfer_inflight_register(xfer, &info->tx_minfo); 647 } 648 649 /** 650 * scmi_xfer_pending_set - Pick a proper sequence number and mark the xfer 651 * as pending in-flight 652 * 653 * @xfer: The xfer to act upon 654 * @minfo: Pointer to Tx/Rx Message management info based on channel type 655 * 656 * Return: 0 on Success or error otherwise 657 */ 658 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer, 659 struct scmi_xfers_info *minfo) 660 { 661 int ret; 662 unsigned long flags; 663 664 spin_lock_irqsave(&minfo->xfer_lock, flags); 665 /* Set a new monotonic token as the xfer sequence number */ 666 ret = scmi_xfer_token_set(minfo, xfer); 667 if (!ret) 668 scmi_xfer_inflight_register_unlocked(xfer, minfo); 669 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 670 671 return ret; 672 } 673 674 /** 675 * scmi_xfer_get() - Allocate one message 676 * 677 * @handle: Pointer to SCMI entity handle 678 * @minfo: Pointer to Tx/Rx Message management info based on channel type 679 * 680 * Helper function which is used by various message functions that are 681 * exposed to clients of this driver for allocating a message traffic event. 682 * 683 * Picks an xfer from the free list @free_xfers (if any available) and perform 684 * a basic initialization. 685 * 686 * Note that, at this point, still no sequence number is assigned to the 687 * allocated xfer, nor it is registered as a pending transaction. 688 * 689 * The successfully initialized xfer is refcounted. 690 * 691 * Context: Holds @xfer_lock while manipulating @free_xfers. 692 * 693 * Return: An initialized xfer if all went fine, else pointer error. 694 */ 695 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle, 696 struct scmi_xfers_info *minfo) 697 { 698 unsigned long flags; 699 struct scmi_xfer *xfer; 700 701 spin_lock_irqsave(&minfo->xfer_lock, flags); 702 if (hlist_empty(&minfo->free_xfers)) { 703 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 704 return ERR_PTR(-ENOMEM); 705 } 706 707 /* grab an xfer from the free_list */ 708 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node); 709 hlist_del_init(&xfer->node); 710 711 /* 712 * Allocate transfer_id early so that can be used also as base for 713 * monotonic sequence number generation if needed. 714 */ 715 xfer->transfer_id = atomic_inc_return(&transfer_last_id); 716 717 refcount_set(&xfer->users, 1); 718 atomic_set(&xfer->busy, SCMI_XFER_FREE); 719 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 720 721 return xfer; 722 } 723 724 /** 725 * scmi_xfer_raw_get - Helper to get a bare free xfer from the TX channel 726 * 727 * @handle: Pointer to SCMI entity handle 728 * 729 * Note that xfer is taken from the TX channel structures. 730 * 731 * Return: A valid xfer on Success, or an error-pointer otherwise 732 */ 733 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle) 734 { 735 struct scmi_xfer *xfer; 736 struct scmi_info *info = handle_to_scmi_info(handle); 737 738 xfer = scmi_xfer_get(handle, &info->tx_minfo); 739 if (!IS_ERR(xfer)) 740 xfer->flags |= SCMI_XFER_FLAG_IS_RAW; 741 742 return xfer; 743 } 744 745 /** 746 * scmi_xfer_raw_channel_get - Helper to get a reference to the proper channel 747 * to use for a specific protocol_id Raw transaction. 748 * 749 * @handle: Pointer to SCMI entity handle 750 * @protocol_id: Identifier of the protocol 751 * 752 * Note that in a regular SCMI stack, usually, a protocol has to be defined in 753 * the DT to have an associated channel and be usable; but in Raw mode any 754 * protocol in range is allowed, re-using the Base channel, so as to enable 755 * fuzzing on any protocol without the need of a fully compiled DT. 756 * 757 * Return: A reference to the channel to use, or an ERR_PTR 758 */ 759 struct scmi_chan_info * 760 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id) 761 { 762 struct scmi_chan_info *cinfo; 763 struct scmi_info *info = handle_to_scmi_info(handle); 764 765 cinfo = idr_find(&info->tx_idr, protocol_id); 766 if (!cinfo) { 767 if (protocol_id == SCMI_PROTOCOL_BASE) 768 return ERR_PTR(-EINVAL); 769 /* Use Base channel for protocols not defined for DT */ 770 cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE); 771 if (!cinfo) 772 return ERR_PTR(-EINVAL); 773 dev_warn_once(handle->dev, 774 "Using Base channel for protocol 0x%X\n", 775 protocol_id); 776 } 777 778 return cinfo; 779 } 780 781 /** 782 * __scmi_xfer_put() - Release a message 783 * 784 * @minfo: Pointer to Tx/Rx Message management info based on channel type 785 * @xfer: message that was reserved by scmi_xfer_get 786 * 787 * After refcount check, possibly release an xfer, clearing the token slot, 788 * removing xfer from @pending_xfers and putting it back into free_xfers. 789 * 790 * This holds a spinlock to maintain integrity of internal data structures. 791 */ 792 static void 793 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer) 794 { 795 unsigned long flags; 796 797 spin_lock_irqsave(&minfo->xfer_lock, flags); 798 if (refcount_dec_and_test(&xfer->users)) { 799 if (xfer->pending) { 800 struct scmi_info *info = tx_minfo_to_scmi_info(minfo); 801 802 scmi_xfer_token_clear(minfo, xfer); 803 hash_del(&xfer->node); 804 xfer->pending = false; 805 806 scmi_dec_count(info->dbg, XFERS_INFLIGHT); 807 } 808 xfer->flags = 0; 809 hlist_add_head(&xfer->node, &minfo->free_xfers); 810 } 811 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 812 } 813 814 /** 815 * scmi_xfer_raw_put - Release an xfer that was taken by @scmi_xfer_raw_get 816 * 817 * @handle: Pointer to SCMI entity handle 818 * @xfer: A reference to the xfer to put 819 * 820 * Note that as with other xfer_put() handlers the xfer is really effectively 821 * released only if there are no more users on the system. 822 */ 823 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer) 824 { 825 struct scmi_info *info = handle_to_scmi_info(handle); 826 827 return __scmi_xfer_put(&info->tx_minfo, xfer); 828 } 829 830 /** 831 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id 832 * 833 * @minfo: Pointer to Tx/Rx Message management info based on channel type 834 * @xfer_id: Token ID to lookup in @pending_xfers 835 * 836 * Refcounting is untouched. 837 * 838 * Context: Assumes to be called with @xfer_lock already acquired. 839 * 840 * Return: A valid xfer on Success or error otherwise 841 */ 842 static struct scmi_xfer * 843 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id) 844 { 845 struct scmi_xfer *xfer = NULL; 846 847 if (test_bit(xfer_id, minfo->xfer_alloc_table)) 848 xfer = XFER_FIND(minfo->pending_xfers, xfer_id); 849 850 return xfer ?: ERR_PTR(-EINVAL); 851 } 852 853 /** 854 * scmi_bad_message_trace - A helper to trace weird messages 855 * 856 * @cinfo: A reference to the channel descriptor on which the message was 857 * received 858 * @msg_hdr: Message header to track 859 * @err: A specific error code used as a status value in traces. 860 * 861 * This helper can be used to trace any kind of weird, incomplete, unexpected, 862 * timed-out message that arrives and as such, can be traced only referring to 863 * the header content, since the payload is missing/unreliable. 864 */ 865 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo, u32 msg_hdr, 866 enum scmi_bad_msg err) 867 { 868 char *tag; 869 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 870 871 switch (MSG_XTRACT_TYPE(msg_hdr)) { 872 case MSG_TYPE_COMMAND: 873 tag = "!RESP"; 874 break; 875 case MSG_TYPE_DELAYED_RESP: 876 tag = "!DLYD"; 877 break; 878 case MSG_TYPE_NOTIFICATION: 879 tag = "!NOTI"; 880 break; 881 default: 882 tag = "!UNKN"; 883 break; 884 } 885 886 trace_scmi_msg_dump(info->id, cinfo->id, 887 MSG_XTRACT_PROT_ID(msg_hdr), 888 MSG_XTRACT_ID(msg_hdr), tag, 889 MSG_XTRACT_TOKEN(msg_hdr), err, NULL, 0); 890 } 891 892 /** 893 * scmi_msg_response_validate - Validate message type against state of related 894 * xfer 895 * 896 * @cinfo: A reference to the channel descriptor. 897 * @msg_type: Message type to check 898 * @xfer: A reference to the xfer to validate against @msg_type 899 * 900 * This function checks if @msg_type is congruent with the current state of 901 * a pending @xfer; if an asynchronous delayed response is received before the 902 * related synchronous response (Out-of-Order Delayed Response) the missing 903 * synchronous response is assumed to be OK and completed, carrying on with the 904 * Delayed Response: this is done to address the case in which the underlying 905 * SCMI transport can deliver such out-of-order responses. 906 * 907 * Context: Assumes to be called with xfer->lock already acquired. 908 * 909 * Return: 0 on Success, error otherwise 910 */ 911 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo, 912 u8 msg_type, 913 struct scmi_xfer *xfer) 914 { 915 /* 916 * Even if a response was indeed expected on this slot at this point, 917 * a buggy platform could wrongly reply feeding us an unexpected 918 * delayed response we're not prepared to handle: bail-out safely 919 * blaming firmware. 920 */ 921 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) { 922 dev_err(cinfo->dev, 923 "Delayed Response for %d not expected! Buggy F/W ?\n", 924 xfer->hdr.seq); 925 return -EINVAL; 926 } 927 928 switch (xfer->state) { 929 case SCMI_XFER_SENT_OK: 930 if (msg_type == MSG_TYPE_DELAYED_RESP) { 931 /* 932 * Delayed Response expected but delivered earlier. 933 * Assume message RESPONSE was OK and skip state. 934 */ 935 xfer->hdr.status = SCMI_SUCCESS; 936 xfer->state = SCMI_XFER_RESP_OK; 937 complete(&xfer->done); 938 dev_warn(cinfo->dev, 939 "Received valid OoO Delayed Response for %d\n", 940 xfer->hdr.seq); 941 } 942 break; 943 case SCMI_XFER_RESP_OK: 944 if (msg_type != MSG_TYPE_DELAYED_RESP) 945 return -EINVAL; 946 break; 947 case SCMI_XFER_DRESP_OK: 948 /* No further message expected once in SCMI_XFER_DRESP_OK */ 949 return -EINVAL; 950 } 951 952 return 0; 953 } 954 955 /** 956 * scmi_xfer_state_update - Update xfer state 957 * 958 * @xfer: A reference to the xfer to update 959 * @msg_type: Type of message being processed. 960 * 961 * Note that this message is assumed to have been already successfully validated 962 * by @scmi_msg_response_validate(), so here we just update the state. 963 * 964 * Context: Assumes to be called on an xfer exclusively acquired using the 965 * busy flag. 966 */ 967 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type) 968 { 969 xfer->hdr.type = msg_type; 970 971 /* Unknown command types were already discarded earlier */ 972 if (xfer->hdr.type == MSG_TYPE_COMMAND) 973 xfer->state = SCMI_XFER_RESP_OK; 974 else 975 xfer->state = SCMI_XFER_DRESP_OK; 976 } 977 978 static bool scmi_xfer_acquired(struct scmi_xfer *xfer) 979 { 980 int ret; 981 982 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY); 983 984 return ret == SCMI_XFER_FREE; 985 } 986 987 /** 988 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer 989 * 990 * @cinfo: A reference to the channel descriptor. 991 * @msg_hdr: A message header to use as lookup key 992 * 993 * When a valid xfer is found for the sequence number embedded in the provided 994 * msg_hdr, reference counting is properly updated and exclusive access to this 995 * xfer is granted till released with @scmi_xfer_command_release. 996 * 997 * Return: A valid @xfer on Success or error otherwise. 998 */ 999 static inline struct scmi_xfer * 1000 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr) 1001 { 1002 int ret; 1003 unsigned long flags; 1004 struct scmi_xfer *xfer; 1005 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1006 struct scmi_xfers_info *minfo = &info->tx_minfo; 1007 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 1008 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr); 1009 1010 /* Are we even expecting this? */ 1011 spin_lock_irqsave(&minfo->xfer_lock, flags); 1012 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id); 1013 if (IS_ERR(xfer)) { 1014 dev_err(cinfo->dev, 1015 "Message for %d type %d is not expected!\n", 1016 xfer_id, msg_type); 1017 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 1018 1019 scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNEXPECTED); 1020 scmi_inc_count(info->dbg, ERR_MSG_UNEXPECTED); 1021 1022 return xfer; 1023 } 1024 refcount_inc(&xfer->users); 1025 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 1026 1027 spin_lock_irqsave(&xfer->lock, flags); 1028 ret = scmi_msg_response_validate(cinfo, msg_type, xfer); 1029 /* 1030 * If a pending xfer was found which was also in a congruent state with 1031 * the received message, acquire exclusive access to it setting the busy 1032 * flag. 1033 * Spins only on the rare limit condition of concurrent reception of 1034 * RESP and DRESP for the same xfer. 1035 */ 1036 if (!ret) { 1037 spin_until_cond(scmi_xfer_acquired(xfer)); 1038 scmi_xfer_state_update(xfer, msg_type); 1039 } 1040 spin_unlock_irqrestore(&xfer->lock, flags); 1041 1042 if (ret) { 1043 dev_err(cinfo->dev, 1044 "Invalid message type:%d for %d - HDR:0x%X state:%d\n", 1045 msg_type, xfer_id, msg_hdr, xfer->state); 1046 1047 scmi_bad_message_trace(cinfo, msg_hdr, MSG_INVALID); 1048 scmi_inc_count(info->dbg, ERR_MSG_INVALID); 1049 1050 /* On error the refcount incremented above has to be dropped */ 1051 __scmi_xfer_put(minfo, xfer); 1052 xfer = ERR_PTR(-EINVAL); 1053 } 1054 1055 return xfer; 1056 } 1057 1058 static inline void scmi_xfer_command_release(struct scmi_info *info, 1059 struct scmi_xfer *xfer) 1060 { 1061 atomic_set(&xfer->busy, SCMI_XFER_FREE); 1062 __scmi_xfer_put(&info->tx_minfo, xfer); 1063 } 1064 1065 static inline void scmi_clear_channel(struct scmi_info *info, 1066 struct scmi_chan_info *cinfo) 1067 { 1068 if (!cinfo->is_p2a) { 1069 dev_warn(cinfo->dev, "Invalid clear on A2P channel !\n"); 1070 return; 1071 } 1072 1073 if (info->desc->ops->clear_channel) 1074 info->desc->ops->clear_channel(cinfo); 1075 } 1076 1077 static void scmi_handle_notification(struct scmi_chan_info *cinfo, 1078 u32 msg_hdr, void *priv) 1079 { 1080 struct scmi_xfer *xfer; 1081 struct device *dev = cinfo->dev; 1082 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1083 struct scmi_xfers_info *minfo = &info->rx_minfo; 1084 ktime_t ts; 1085 1086 ts = ktime_get_boottime(); 1087 xfer = scmi_xfer_get(cinfo->handle, minfo); 1088 if (IS_ERR(xfer)) { 1089 dev_err(dev, "failed to get free message slot (%ld)\n", 1090 PTR_ERR(xfer)); 1091 1092 scmi_bad_message_trace(cinfo, msg_hdr, MSG_NOMEM); 1093 scmi_inc_count(info->dbg, ERR_MSG_NOMEM); 1094 1095 scmi_clear_channel(info, cinfo); 1096 return; 1097 } 1098 1099 unpack_scmi_header(msg_hdr, &xfer->hdr); 1100 if (priv) 1101 /* Ensure order between xfer->priv store and following ops */ 1102 smp_store_mb(xfer->priv, priv); 1103 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size, 1104 xfer); 1105 1106 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 1107 xfer->hdr.id, "NOTI", xfer->hdr.seq, 1108 xfer->hdr.status, xfer->rx.buf, xfer->rx.len); 1109 scmi_inc_count(info->dbg, NOTIFICATION_OK); 1110 1111 scmi_notify(cinfo->handle, xfer->hdr.protocol_id, 1112 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts); 1113 1114 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 1115 xfer->hdr.protocol_id, xfer->hdr.seq, 1116 MSG_TYPE_NOTIFICATION); 1117 1118 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 1119 xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr); 1120 scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE, 1121 cinfo->id); 1122 } 1123 1124 __scmi_xfer_put(minfo, xfer); 1125 1126 scmi_clear_channel(info, cinfo); 1127 } 1128 1129 static void scmi_handle_response(struct scmi_chan_info *cinfo, 1130 u32 msg_hdr, void *priv) 1131 { 1132 struct scmi_xfer *xfer; 1133 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1134 1135 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr); 1136 if (IS_ERR(xfer)) { 1137 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 1138 scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv); 1139 1140 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP) 1141 scmi_clear_channel(info, cinfo); 1142 return; 1143 } 1144 1145 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */ 1146 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) 1147 xfer->rx.len = info->desc->max_msg_size; 1148 1149 if (priv) 1150 /* Ensure order between xfer->priv store and following ops */ 1151 smp_store_mb(xfer->priv, priv); 1152 info->desc->ops->fetch_response(cinfo, xfer); 1153 1154 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 1155 xfer->hdr.id, 1156 xfer->hdr.type == MSG_TYPE_DELAYED_RESP ? 1157 (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") : 1158 (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"), 1159 xfer->hdr.seq, xfer->hdr.status, 1160 xfer->rx.buf, xfer->rx.len); 1161 1162 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 1163 xfer->hdr.protocol_id, xfer->hdr.seq, 1164 xfer->hdr.type); 1165 1166 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) { 1167 scmi_clear_channel(info, cinfo); 1168 complete(xfer->async_done); 1169 scmi_inc_count(info->dbg, DELAYED_RESPONSE_OK); 1170 } else { 1171 complete(&xfer->done); 1172 scmi_inc_count(info->dbg, RESPONSE_OK); 1173 } 1174 1175 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 1176 /* 1177 * When in polling mode avoid to queue the Raw xfer on the IRQ 1178 * RX path since it will be already queued at the end of the TX 1179 * poll loop. 1180 */ 1181 if (!xfer->hdr.poll_completion || 1182 xfer->hdr.type == MSG_TYPE_DELAYED_RESP) 1183 scmi_raw_message_report(info->raw, xfer, 1184 SCMI_RAW_REPLY_QUEUE, 1185 cinfo->id); 1186 } 1187 1188 scmi_xfer_command_release(info, xfer); 1189 } 1190 1191 /** 1192 * scmi_rx_callback() - callback for receiving messages 1193 * 1194 * @cinfo: SCMI channel info 1195 * @msg_hdr: Message header 1196 * @priv: Transport specific private data. 1197 * 1198 * Processes one received message to appropriate transfer information and 1199 * signals completion of the transfer. 1200 * 1201 * NOTE: This function will be invoked in IRQ context, hence should be 1202 * as optimal as possible. 1203 */ 1204 static void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, 1205 void *priv) 1206 { 1207 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 1208 1209 switch (msg_type) { 1210 case MSG_TYPE_NOTIFICATION: 1211 scmi_handle_notification(cinfo, msg_hdr, priv); 1212 break; 1213 case MSG_TYPE_COMMAND: 1214 case MSG_TYPE_DELAYED_RESP: 1215 scmi_handle_response(cinfo, msg_hdr, priv); 1216 break; 1217 default: 1218 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type); 1219 scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNKNOWN); 1220 break; 1221 } 1222 } 1223 1224 /** 1225 * xfer_put() - Release a transmit message 1226 * 1227 * @ph: Pointer to SCMI protocol handle 1228 * @xfer: message that was reserved by xfer_get_init 1229 */ 1230 static void xfer_put(const struct scmi_protocol_handle *ph, 1231 struct scmi_xfer *xfer) 1232 { 1233 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1234 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1235 1236 __scmi_xfer_put(&info->tx_minfo, xfer); 1237 } 1238 1239 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo, 1240 struct scmi_xfer *xfer, ktime_t stop, 1241 bool *ooo) 1242 { 1243 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1244 1245 /* 1246 * Poll also on xfer->done so that polling can be forcibly terminated 1247 * in case of out-of-order receptions of delayed responses 1248 */ 1249 return info->desc->ops->poll_done(cinfo, xfer) || 1250 (*ooo = try_wait_for_completion(&xfer->done)) || 1251 ktime_after(ktime_get(), stop); 1252 } 1253 1254 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc, 1255 struct scmi_chan_info *cinfo, 1256 struct scmi_xfer *xfer, unsigned int timeout_ms) 1257 { 1258 int ret = 0; 1259 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1260 1261 if (xfer->hdr.poll_completion) { 1262 /* 1263 * Real polling is needed only if transport has NOT declared 1264 * itself to support synchronous commands replies. 1265 */ 1266 if (!desc->sync_cmds_completed_on_ret) { 1267 bool ooo = false; 1268 1269 /* 1270 * Poll on xfer using transport provided .poll_done(); 1271 * assumes no completion interrupt was available. 1272 */ 1273 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms); 1274 1275 spin_until_cond(scmi_xfer_done_no_timeout(cinfo, xfer, 1276 stop, &ooo)); 1277 if (!ooo && !info->desc->ops->poll_done(cinfo, xfer)) { 1278 dev_err(dev, 1279 "timed out in resp(caller: %pS) - polling\n", 1280 (void *)_RET_IP_); 1281 ret = -ETIMEDOUT; 1282 scmi_inc_count(info->dbg, XFERS_RESPONSE_POLLED_TIMEOUT); 1283 } 1284 } 1285 1286 if (!ret) { 1287 unsigned long flags; 1288 1289 /* 1290 * Do not fetch_response if an out-of-order delayed 1291 * response is being processed. 1292 */ 1293 spin_lock_irqsave(&xfer->lock, flags); 1294 if (xfer->state == SCMI_XFER_SENT_OK) { 1295 desc->ops->fetch_response(cinfo, xfer); 1296 xfer->state = SCMI_XFER_RESP_OK; 1297 } 1298 spin_unlock_irqrestore(&xfer->lock, flags); 1299 1300 /* Trace polled replies. */ 1301 trace_scmi_msg_dump(info->id, cinfo->id, 1302 xfer->hdr.protocol_id, xfer->hdr.id, 1303 !SCMI_XFER_IS_RAW(xfer) ? 1304 "RESP" : "resp", 1305 xfer->hdr.seq, xfer->hdr.status, 1306 xfer->rx.buf, xfer->rx.len); 1307 scmi_inc_count(info->dbg, RESPONSE_POLLED_OK); 1308 1309 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 1310 scmi_raw_message_report(info->raw, xfer, 1311 SCMI_RAW_REPLY_QUEUE, 1312 cinfo->id); 1313 } 1314 } 1315 } else { 1316 /* And we wait for the response. */ 1317 if (!wait_for_completion_timeout(&xfer->done, 1318 msecs_to_jiffies(timeout_ms))) { 1319 dev_err(dev, "timed out in resp(caller: %pS)\n", 1320 (void *)_RET_IP_); 1321 ret = -ETIMEDOUT; 1322 scmi_inc_count(info->dbg, XFERS_RESPONSE_TIMEOUT); 1323 } 1324 } 1325 1326 return ret; 1327 } 1328 1329 /** 1330 * scmi_wait_for_message_response - An helper to group all the possible ways of 1331 * waiting for a synchronous message response. 1332 * 1333 * @cinfo: SCMI channel info 1334 * @xfer: Reference to the transfer being waited for. 1335 * 1336 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on 1337 * configuration flags like xfer->hdr.poll_completion. 1338 * 1339 * Return: 0 on Success, error otherwise. 1340 */ 1341 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo, 1342 struct scmi_xfer *xfer) 1343 { 1344 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1345 struct device *dev = info->dev; 1346 1347 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id, 1348 xfer->hdr.protocol_id, xfer->hdr.seq, 1349 info->desc->max_rx_timeout_ms, 1350 xfer->hdr.poll_completion); 1351 1352 return scmi_wait_for_reply(dev, info->desc, cinfo, xfer, 1353 info->desc->max_rx_timeout_ms); 1354 } 1355 1356 /** 1357 * scmi_xfer_raw_wait_for_message_response - An helper to wait for a message 1358 * reply to an xfer raw request on a specific channel for the required timeout. 1359 * 1360 * @cinfo: SCMI channel info 1361 * @xfer: Reference to the transfer being waited for. 1362 * @timeout_ms: The maximum timeout in milliseconds 1363 * 1364 * Return: 0 on Success, error otherwise. 1365 */ 1366 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo, 1367 struct scmi_xfer *xfer, 1368 unsigned int timeout_ms) 1369 { 1370 int ret; 1371 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1372 struct device *dev = info->dev; 1373 1374 ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms); 1375 if (ret) 1376 dev_dbg(dev, "timed out in RAW response - HDR:%08X\n", 1377 pack_scmi_header(&xfer->hdr)); 1378 1379 return ret; 1380 } 1381 1382 /** 1383 * do_xfer() - Do one transfer 1384 * 1385 * @ph: Pointer to SCMI protocol handle 1386 * @xfer: Transfer to initiate and wait for response 1387 * 1388 * Return: -ETIMEDOUT in case of no response, if transmit error, 1389 * return corresponding error, else if all goes well, 1390 * return 0. 1391 */ 1392 static int do_xfer(const struct scmi_protocol_handle *ph, 1393 struct scmi_xfer *xfer) 1394 { 1395 int ret; 1396 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1397 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1398 struct device *dev = info->dev; 1399 struct scmi_chan_info *cinfo; 1400 1401 /* Check for polling request on custom command xfers at first */ 1402 if (xfer->hdr.poll_completion && 1403 !is_transport_polling_capable(info->desc)) { 1404 dev_warn_once(dev, 1405 "Polling mode is not supported by transport.\n"); 1406 scmi_inc_count(info->dbg, SENT_FAIL_POLLING_UNSUPPORTED); 1407 return -EINVAL; 1408 } 1409 1410 cinfo = idr_find(&info->tx_idr, pi->proto->id); 1411 if (unlikely(!cinfo)) { 1412 scmi_inc_count(info->dbg, SENT_FAIL_CHANNEL_NOT_FOUND); 1413 return -EINVAL; 1414 } 1415 /* True ONLY if also supported by transport. */ 1416 if (is_polling_enabled(cinfo, info->desc)) 1417 xfer->hdr.poll_completion = true; 1418 1419 /* 1420 * Initialise protocol id now from protocol handle to avoid it being 1421 * overridden by mistake (or malice) by the protocol code mangling with 1422 * the scmi_xfer structure prior to this. 1423 */ 1424 xfer->hdr.protocol_id = pi->proto->id; 1425 reinit_completion(&xfer->done); 1426 1427 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id, 1428 xfer->hdr.protocol_id, xfer->hdr.seq, 1429 xfer->hdr.poll_completion, 1430 scmi_inflight_count(&info->handle)); 1431 1432 /* Clear any stale status */ 1433 xfer->hdr.status = SCMI_SUCCESS; 1434 xfer->state = SCMI_XFER_SENT_OK; 1435 /* 1436 * Even though spinlocking is not needed here since no race is possible 1437 * on xfer->state due to the monotonically increasing tokens allocation, 1438 * we must anyway ensure xfer->state initialization is not re-ordered 1439 * after the .send_message() to be sure that on the RX path an early 1440 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state. 1441 */ 1442 smp_mb(); 1443 1444 ret = info->desc->ops->send_message(cinfo, xfer); 1445 if (ret < 0) { 1446 dev_dbg(dev, "Failed to send message %d\n", ret); 1447 scmi_inc_count(info->dbg, SENT_FAIL); 1448 return ret; 1449 } 1450 1451 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 1452 xfer->hdr.id, "CMND", xfer->hdr.seq, 1453 xfer->hdr.status, xfer->tx.buf, xfer->tx.len); 1454 scmi_inc_count(info->dbg, SENT_OK); 1455 1456 ret = scmi_wait_for_message_response(cinfo, xfer); 1457 if (!ret && xfer->hdr.status) { 1458 ret = scmi_to_linux_errno(xfer->hdr.status); 1459 scmi_inc_count(info->dbg, ERR_PROTOCOL); 1460 } 1461 1462 if (info->desc->ops->mark_txdone) 1463 info->desc->ops->mark_txdone(cinfo, ret, xfer); 1464 1465 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id, 1466 xfer->hdr.protocol_id, xfer->hdr.seq, ret, 1467 scmi_inflight_count(&info->handle)); 1468 1469 return ret; 1470 } 1471 1472 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph, 1473 struct scmi_xfer *xfer) 1474 { 1475 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1476 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1477 1478 xfer->rx.len = info->desc->max_msg_size; 1479 } 1480 1481 /** 1482 * do_xfer_with_response() - Do one transfer and wait until the delayed 1483 * response is received 1484 * 1485 * @ph: Pointer to SCMI protocol handle 1486 * @xfer: Transfer to initiate and wait for response 1487 * 1488 * Using asynchronous commands in atomic/polling mode should be avoided since 1489 * it could cause long busy-waiting here, so ignore polling for the delayed 1490 * response and WARN if it was requested for this command transaction since 1491 * upper layers should refrain from issuing such kind of requests. 1492 * 1493 * The only other option would have been to refrain from using any asynchronous 1494 * command even if made available, when an atomic transport is detected, and 1495 * instead forcibly use the synchronous version (thing that can be easily 1496 * attained at the protocol layer), but this would also have led to longer 1497 * stalls of the channel for synchronous commands and possibly timeouts. 1498 * (in other words there is usually a good reason if a platform provides an 1499 * asynchronous version of a command and we should prefer to use it...just not 1500 * when using atomic/polling mode) 1501 * 1502 * Return: -ETIMEDOUT in case of no delayed response, if transmit error, 1503 * return corresponding error, else if all goes well, return 0. 1504 */ 1505 static int do_xfer_with_response(const struct scmi_protocol_handle *ph, 1506 struct scmi_xfer *xfer) 1507 { 1508 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT); 1509 DECLARE_COMPLETION_ONSTACK(async_response); 1510 1511 xfer->async_done = &async_response; 1512 1513 /* 1514 * Delayed responses should not be polled, so an async command should 1515 * not have been used when requiring an atomic/poll context; WARN and 1516 * perform instead a sleeping wait. 1517 * (Note Async + IgnoreDelayedResponses are sent via do_xfer) 1518 */ 1519 WARN_ON_ONCE(xfer->hdr.poll_completion); 1520 1521 ret = do_xfer(ph, xfer); 1522 if (!ret) { 1523 if (!wait_for_completion_timeout(xfer->async_done, timeout)) { 1524 dev_err(ph->dev, 1525 "timed out in delayed resp(caller: %pS)\n", 1526 (void *)_RET_IP_); 1527 ret = -ETIMEDOUT; 1528 } else if (xfer->hdr.status) { 1529 ret = scmi_to_linux_errno(xfer->hdr.status); 1530 } 1531 } 1532 1533 xfer->async_done = NULL; 1534 return ret; 1535 } 1536 1537 /** 1538 * xfer_get_init() - Allocate and initialise one message for transmit 1539 * 1540 * @ph: Pointer to SCMI protocol handle 1541 * @msg_id: Message identifier 1542 * @tx_size: transmit message size 1543 * @rx_size: receive message size 1544 * @p: pointer to the allocated and initialised message 1545 * 1546 * This function allocates the message using @scmi_xfer_get and 1547 * initialise the header. 1548 * 1549 * Return: 0 if all went fine with @p pointing to message, else 1550 * corresponding error. 1551 */ 1552 static int xfer_get_init(const struct scmi_protocol_handle *ph, 1553 u8 msg_id, size_t tx_size, size_t rx_size, 1554 struct scmi_xfer **p) 1555 { 1556 int ret; 1557 struct scmi_xfer *xfer; 1558 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1559 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1560 struct scmi_xfers_info *minfo = &info->tx_minfo; 1561 struct device *dev = info->dev; 1562 1563 /* Ensure we have sane transfer sizes */ 1564 if (rx_size > info->desc->max_msg_size || 1565 tx_size > info->desc->max_msg_size) 1566 return -ERANGE; 1567 1568 xfer = scmi_xfer_get(pi->handle, minfo); 1569 if (IS_ERR(xfer)) { 1570 ret = PTR_ERR(xfer); 1571 dev_err(dev, "failed to get free message slot(%d)\n", ret); 1572 return ret; 1573 } 1574 1575 /* Pick a sequence number and register this xfer as in-flight */ 1576 ret = scmi_xfer_pending_set(xfer, minfo); 1577 if (ret) { 1578 dev_err(pi->handle->dev, 1579 "Failed to get monotonic token %d\n", ret); 1580 __scmi_xfer_put(minfo, xfer); 1581 return ret; 1582 } 1583 1584 xfer->tx.len = tx_size; 1585 xfer->rx.len = rx_size ? : info->desc->max_msg_size; 1586 xfer->hdr.type = MSG_TYPE_COMMAND; 1587 xfer->hdr.id = msg_id; 1588 xfer->hdr.poll_completion = false; 1589 1590 *p = xfer; 1591 1592 return 0; 1593 } 1594 1595 /** 1596 * version_get() - command to get the revision of the SCMI entity 1597 * 1598 * @ph: Pointer to SCMI protocol handle 1599 * @version: Holds returned version of protocol. 1600 * 1601 * Updates the SCMI information in the internal data structure. 1602 * 1603 * Return: 0 if all went fine, else return appropriate error. 1604 */ 1605 static int version_get(const struct scmi_protocol_handle *ph, u32 *version) 1606 { 1607 int ret; 1608 __le32 *rev_info; 1609 struct scmi_xfer *t; 1610 1611 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t); 1612 if (ret) 1613 return ret; 1614 1615 ret = do_xfer(ph, t); 1616 if (!ret) { 1617 rev_info = t->rx.buf; 1618 *version = le32_to_cpu(*rev_info); 1619 } 1620 1621 xfer_put(ph, t); 1622 return ret; 1623 } 1624 1625 /** 1626 * scmi_set_protocol_priv - Set protocol specific data at init time 1627 * 1628 * @ph: A reference to the protocol handle. 1629 * @priv: The private data to set. 1630 * @version: The detected protocol version for the core to register. 1631 * 1632 * Return: 0 on Success 1633 */ 1634 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph, 1635 void *priv, u32 version) 1636 { 1637 struct scmi_protocol_instance *pi = ph_to_pi(ph); 1638 1639 pi->priv = priv; 1640 pi->version = version; 1641 1642 return 0; 1643 } 1644 1645 /** 1646 * scmi_get_protocol_priv - Set protocol specific data at init time 1647 * 1648 * @ph: A reference to the protocol handle. 1649 * 1650 * Return: Protocol private data if any was set. 1651 */ 1652 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph) 1653 { 1654 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1655 1656 return pi->priv; 1657 } 1658 1659 static const struct scmi_xfer_ops xfer_ops = { 1660 .version_get = version_get, 1661 .xfer_get_init = xfer_get_init, 1662 .reset_rx_to_maxsz = reset_rx_to_maxsz, 1663 .do_xfer = do_xfer, 1664 .do_xfer_with_response = do_xfer_with_response, 1665 .xfer_put = xfer_put, 1666 }; 1667 1668 struct scmi_msg_resp_domain_name_get { 1669 __le32 flags; 1670 u8 name[SCMI_MAX_STR_SIZE]; 1671 }; 1672 1673 /** 1674 * scmi_common_extended_name_get - Common helper to get extended resources name 1675 * @ph: A protocol handle reference. 1676 * @cmd_id: The specific command ID to use. 1677 * @res_id: The specific resource ID to use. 1678 * @flags: A pointer to specific flags to use, if any. 1679 * @name: A pointer to the preallocated area where the retrieved name will be 1680 * stored as a NULL terminated string. 1681 * @len: The len in bytes of the @name char array. 1682 * 1683 * Return: 0 on Succcess 1684 */ 1685 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph, 1686 u8 cmd_id, u32 res_id, u32 *flags, 1687 char *name, size_t len) 1688 { 1689 int ret; 1690 size_t txlen; 1691 struct scmi_xfer *t; 1692 struct scmi_msg_resp_domain_name_get *resp; 1693 1694 txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags); 1695 ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t); 1696 if (ret) 1697 goto out; 1698 1699 put_unaligned_le32(res_id, t->tx.buf); 1700 if (flags) 1701 put_unaligned_le32(*flags, t->tx.buf + sizeof(res_id)); 1702 resp = t->rx.buf; 1703 1704 ret = ph->xops->do_xfer(ph, t); 1705 if (!ret) 1706 strscpy(name, resp->name, len); 1707 1708 ph->xops->xfer_put(ph, t); 1709 out: 1710 if (ret) 1711 dev_warn(ph->dev, 1712 "Failed to get extended name - id:%u (ret:%d). Using %s\n", 1713 res_id, ret, name); 1714 return ret; 1715 } 1716 1717 /** 1718 * scmi_common_get_max_msg_size - Get maximum message size 1719 * @ph: A protocol handle reference. 1720 * 1721 * Return: Maximum message size for the current protocol. 1722 */ 1723 static int scmi_common_get_max_msg_size(const struct scmi_protocol_handle *ph) 1724 { 1725 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1726 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1727 1728 return info->desc->max_msg_size; 1729 } 1730 1731 /** 1732 * scmi_protocol_msg_check - Check protocol message attributes 1733 * 1734 * @ph: A reference to the protocol handle. 1735 * @message_id: The ID of the message to check. 1736 * @attributes: A parameter to optionally return the retrieved message 1737 * attributes, in case of Success. 1738 * 1739 * An helper to check protocol message attributes for a specific protocol 1740 * and message pair. 1741 * 1742 * Return: 0 on SUCCESS 1743 */ 1744 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph, 1745 u32 message_id, u32 *attributes) 1746 { 1747 int ret; 1748 struct scmi_xfer *t; 1749 1750 ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES, 1751 sizeof(__le32), 0, &t); 1752 if (ret) 1753 return ret; 1754 1755 put_unaligned_le32(message_id, t->tx.buf); 1756 ret = do_xfer(ph, t); 1757 if (!ret && attributes) 1758 *attributes = get_unaligned_le32(t->rx.buf); 1759 xfer_put(ph, t); 1760 1761 return ret; 1762 } 1763 1764 /** 1765 * struct scmi_iterator - Iterator descriptor 1766 * @msg: A reference to the message TX buffer; filled by @prepare_message with 1767 * a proper custom command payload for each multi-part command request. 1768 * @resp: A reference to the response RX buffer; used by @update_state and 1769 * @process_response to parse the multi-part replies. 1770 * @t: A reference to the underlying xfer initialized and used transparently by 1771 * the iterator internal routines. 1772 * @ph: A reference to the associated protocol handle to be used. 1773 * @ops: A reference to the custom provided iterator operations. 1774 * @state: The current iterator state; used and updated in turn by the iterators 1775 * internal routines and by the caller-provided @scmi_iterator_ops. 1776 * @priv: A reference to optional private data as provided by the caller and 1777 * passed back to the @@scmi_iterator_ops. 1778 */ 1779 struct scmi_iterator { 1780 void *msg; 1781 void *resp; 1782 struct scmi_xfer *t; 1783 const struct scmi_protocol_handle *ph; 1784 struct scmi_iterator_ops *ops; 1785 struct scmi_iterator_state state; 1786 void *priv; 1787 }; 1788 1789 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph, 1790 struct scmi_iterator_ops *ops, 1791 unsigned int max_resources, u8 msg_id, 1792 size_t tx_size, void *priv) 1793 { 1794 int ret; 1795 struct scmi_iterator *i; 1796 1797 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL); 1798 if (!i) 1799 return ERR_PTR(-ENOMEM); 1800 1801 i->ph = ph; 1802 i->ops = ops; 1803 i->priv = priv; 1804 1805 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t); 1806 if (ret) { 1807 devm_kfree(ph->dev, i); 1808 return ERR_PTR(ret); 1809 } 1810 1811 i->state.max_resources = max_resources; 1812 i->msg = i->t->tx.buf; 1813 i->resp = i->t->rx.buf; 1814 1815 return i; 1816 } 1817 1818 static int scmi_iterator_run(void *iter) 1819 { 1820 int ret = -EINVAL; 1821 struct scmi_iterator_ops *iops; 1822 const struct scmi_protocol_handle *ph; 1823 struct scmi_iterator_state *st; 1824 struct scmi_iterator *i = iter; 1825 1826 if (!i || !i->ops || !i->ph) 1827 return ret; 1828 1829 iops = i->ops; 1830 ph = i->ph; 1831 st = &i->state; 1832 1833 do { 1834 iops->prepare_message(i->msg, st->desc_index, i->priv); 1835 ret = ph->xops->do_xfer(ph, i->t); 1836 if (ret) 1837 break; 1838 1839 st->rx_len = i->t->rx.len; 1840 ret = iops->update_state(st, i->resp, i->priv); 1841 if (ret) 1842 break; 1843 1844 if (st->num_returned > st->max_resources - st->desc_index) { 1845 dev_err(ph->dev, 1846 "No. of resources can't exceed %d\n", 1847 st->max_resources); 1848 ret = -EINVAL; 1849 break; 1850 } 1851 1852 for (st->loop_idx = 0; st->loop_idx < st->num_returned; 1853 st->loop_idx++) { 1854 ret = iops->process_response(ph, i->resp, st, i->priv); 1855 if (ret) 1856 goto out; 1857 } 1858 1859 st->desc_index += st->num_returned; 1860 ph->xops->reset_rx_to_maxsz(ph, i->t); 1861 /* 1862 * check for both returned and remaining to avoid infinite 1863 * loop due to buggy firmware 1864 */ 1865 } while (st->num_returned && st->num_remaining); 1866 1867 out: 1868 /* Finalize and destroy iterator */ 1869 ph->xops->xfer_put(ph, i->t); 1870 devm_kfree(ph->dev, i); 1871 1872 return ret; 1873 } 1874 1875 struct scmi_msg_get_fc_info { 1876 __le32 domain; 1877 __le32 message_id; 1878 }; 1879 1880 struct scmi_msg_resp_desc_fc { 1881 __le32 attr; 1882 #define SUPPORTS_DOORBELL(x) ((x) & BIT(0)) 1883 #define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x)) 1884 __le32 rate_limit; 1885 __le32 chan_addr_low; 1886 __le32 chan_addr_high; 1887 __le32 chan_size; 1888 __le32 db_addr_low; 1889 __le32 db_addr_high; 1890 __le32 db_set_lmask; 1891 __le32 db_set_hmask; 1892 __le32 db_preserve_lmask; 1893 __le32 db_preserve_hmask; 1894 }; 1895 1896 #define QUIRK_PERF_FC_FORCE \ 1897 ({ \ 1898 if (pi->proto->id == SCMI_PROTOCOL_PERF && \ 1899 message_id == 0x8 /* PERF_LEVEL_GET */) \ 1900 attributes |= BIT(0); \ 1901 }) 1902 1903 static void 1904 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph, 1905 u8 describe_id, u32 message_id, u32 valid_size, 1906 u32 domain, void __iomem **p_addr, 1907 struct scmi_fc_db_info **p_db, u32 *rate_limit) 1908 { 1909 int ret; 1910 u32 flags; 1911 u64 phys_addr; 1912 u32 attributes; 1913 u8 size; 1914 void __iomem *addr; 1915 struct scmi_xfer *t; 1916 struct scmi_fc_db_info *db = NULL; 1917 struct scmi_msg_get_fc_info *info; 1918 struct scmi_msg_resp_desc_fc *resp; 1919 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1920 1921 /* Check if the MSG_ID supports fastchannel */ 1922 ret = scmi_protocol_msg_check(ph, message_id, &attributes); 1923 SCMI_QUIRK(perf_level_get_fc_force, QUIRK_PERF_FC_FORCE); 1924 if (ret || !MSG_SUPPORTS_FASTCHANNEL(attributes)) { 1925 dev_dbg(ph->dev, 1926 "Skip FC init for 0x%02X/%d domain:%d - ret:%d\n", 1927 pi->proto->id, message_id, domain, ret); 1928 return; 1929 } 1930 1931 if (!p_addr) { 1932 ret = -EINVAL; 1933 goto err_out; 1934 } 1935 1936 ret = ph->xops->xfer_get_init(ph, describe_id, 1937 sizeof(*info), sizeof(*resp), &t); 1938 if (ret) 1939 goto err_out; 1940 1941 info = t->tx.buf; 1942 info->domain = cpu_to_le32(domain); 1943 info->message_id = cpu_to_le32(message_id); 1944 1945 /* 1946 * Bail out on error leaving fc_info addresses zeroed; this includes 1947 * the case in which the requested domain/message_id does NOT support 1948 * fastchannels at all. 1949 */ 1950 ret = ph->xops->do_xfer(ph, t); 1951 if (ret) 1952 goto err_xfer; 1953 1954 resp = t->rx.buf; 1955 flags = le32_to_cpu(resp->attr); 1956 size = le32_to_cpu(resp->chan_size); 1957 if (size != valid_size) { 1958 ret = -EINVAL; 1959 goto err_xfer; 1960 } 1961 1962 if (rate_limit) 1963 *rate_limit = le32_to_cpu(resp->rate_limit) & GENMASK(19, 0); 1964 1965 phys_addr = le32_to_cpu(resp->chan_addr_low); 1966 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32; 1967 addr = devm_ioremap(ph->dev, phys_addr, size); 1968 if (!addr) { 1969 ret = -EADDRNOTAVAIL; 1970 goto err_xfer; 1971 } 1972 1973 *p_addr = addr; 1974 1975 if (p_db && SUPPORTS_DOORBELL(flags)) { 1976 db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL); 1977 if (!db) { 1978 ret = -ENOMEM; 1979 goto err_db; 1980 } 1981 1982 size = 1 << DOORBELL_REG_WIDTH(flags); 1983 phys_addr = le32_to_cpu(resp->db_addr_low); 1984 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32; 1985 addr = devm_ioremap(ph->dev, phys_addr, size); 1986 if (!addr) { 1987 ret = -EADDRNOTAVAIL; 1988 goto err_db_mem; 1989 } 1990 1991 db->addr = addr; 1992 db->width = size; 1993 db->set = le32_to_cpu(resp->db_set_lmask); 1994 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32; 1995 db->mask = le32_to_cpu(resp->db_preserve_lmask); 1996 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32; 1997 1998 *p_db = db; 1999 } 2000 2001 ph->xops->xfer_put(ph, t); 2002 2003 dev_dbg(ph->dev, 2004 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n", 2005 pi->proto->id, message_id, domain); 2006 2007 return; 2008 2009 err_db_mem: 2010 devm_kfree(ph->dev, db); 2011 2012 err_db: 2013 *p_addr = NULL; 2014 2015 err_xfer: 2016 ph->xops->xfer_put(ph, t); 2017 2018 err_out: 2019 dev_warn(ph->dev, 2020 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n", 2021 pi->proto->id, message_id, domain, ret); 2022 } 2023 2024 #define SCMI_PROTO_FC_RING_DB(w) \ 2025 do { \ 2026 u##w val = 0; \ 2027 \ 2028 if (db->mask) \ 2029 val = ioread##w(db->addr) & db->mask; \ 2030 iowrite##w((u##w)db->set | val, db->addr); \ 2031 } while (0) 2032 2033 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db) 2034 { 2035 if (!db || !db->addr) 2036 return; 2037 2038 if (db->width == 1) 2039 SCMI_PROTO_FC_RING_DB(8); 2040 else if (db->width == 2) 2041 SCMI_PROTO_FC_RING_DB(16); 2042 else if (db->width == 4) 2043 SCMI_PROTO_FC_RING_DB(32); 2044 else /* db->width == 8 */ 2045 SCMI_PROTO_FC_RING_DB(64); 2046 } 2047 2048 static const struct scmi_proto_helpers_ops helpers_ops = { 2049 .extended_name_get = scmi_common_extended_name_get, 2050 .get_max_msg_size = scmi_common_get_max_msg_size, 2051 .iter_response_init = scmi_iterator_init, 2052 .iter_response_run = scmi_iterator_run, 2053 .protocol_msg_check = scmi_protocol_msg_check, 2054 .fastchannel_init = scmi_common_fastchannel_init, 2055 .fastchannel_db_ring = scmi_common_fastchannel_db_ring, 2056 }; 2057 2058 /** 2059 * scmi_revision_area_get - Retrieve version memory area. 2060 * 2061 * @ph: A reference to the protocol handle. 2062 * 2063 * A helper to grab the version memory area reference during SCMI Base protocol 2064 * initialization. 2065 * 2066 * Return: A reference to the version memory area associated to the SCMI 2067 * instance underlying this protocol handle. 2068 */ 2069 struct scmi_revision_info * 2070 scmi_revision_area_get(const struct scmi_protocol_handle *ph) 2071 { 2072 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 2073 2074 return pi->handle->version; 2075 } 2076 2077 /** 2078 * scmi_protocol_version_negotiate - Negotiate protocol version 2079 * 2080 * @ph: A reference to the protocol handle. 2081 * 2082 * An helper to negotiate a protocol version different from the latest 2083 * advertised as supported from the platform: on Success backward 2084 * compatibility is assured by the platform. 2085 * 2086 * Return: 0 on Success 2087 */ 2088 static int scmi_protocol_version_negotiate(struct scmi_protocol_handle *ph) 2089 { 2090 int ret; 2091 struct scmi_xfer *t; 2092 struct scmi_protocol_instance *pi = ph_to_pi(ph); 2093 2094 /* At first check if NEGOTIATE_PROTOCOL_VERSION is supported ... */ 2095 ret = scmi_protocol_msg_check(ph, NEGOTIATE_PROTOCOL_VERSION, NULL); 2096 if (ret) 2097 return ret; 2098 2099 /* ... then attempt protocol version negotiation */ 2100 ret = xfer_get_init(ph, NEGOTIATE_PROTOCOL_VERSION, 2101 sizeof(__le32), 0, &t); 2102 if (ret) 2103 return ret; 2104 2105 put_unaligned_le32(pi->proto->supported_version, t->tx.buf); 2106 ret = do_xfer(ph, t); 2107 if (!ret) 2108 pi->negotiated_version = pi->proto->supported_version; 2109 2110 xfer_put(ph, t); 2111 2112 return ret; 2113 } 2114 2115 /** 2116 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol 2117 * instance descriptor. 2118 * @info: The reference to the related SCMI instance. 2119 * @proto: The protocol descriptor. 2120 * 2121 * Allocate a new protocol instance descriptor, using the provided @proto 2122 * description, against the specified SCMI instance @info, and initialize it; 2123 * all resources management is handled via a dedicated per-protocol devres 2124 * group. 2125 * 2126 * Context: Assumes to be called with @protocols_mtx already acquired. 2127 * Return: A reference to a freshly allocated and initialized protocol instance 2128 * or ERR_PTR on failure. On failure the @proto reference is at first 2129 * put using @scmi_protocol_put() before releasing all the devres group. 2130 */ 2131 static struct scmi_protocol_instance * 2132 scmi_alloc_init_protocol_instance(struct scmi_info *info, 2133 const struct scmi_protocol *proto) 2134 { 2135 int ret = -ENOMEM; 2136 void *gid; 2137 struct scmi_protocol_instance *pi; 2138 const struct scmi_handle *handle = &info->handle; 2139 2140 /* Protocol specific devres group */ 2141 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL); 2142 if (!gid) { 2143 scmi_protocol_put(proto); 2144 goto out; 2145 } 2146 2147 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL); 2148 if (!pi) 2149 goto clean; 2150 2151 pi->gid = gid; 2152 pi->proto = proto; 2153 pi->handle = handle; 2154 pi->ph.dev = handle->dev; 2155 pi->ph.xops = &xfer_ops; 2156 pi->ph.hops = &helpers_ops; 2157 pi->ph.set_priv = scmi_set_protocol_priv; 2158 pi->ph.get_priv = scmi_get_protocol_priv; 2159 refcount_set(&pi->users, 1); 2160 /* proto->init is assured NON NULL by scmi_protocol_register */ 2161 ret = pi->proto->instance_init(&pi->ph); 2162 if (ret) 2163 goto clean; 2164 2165 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1, 2166 GFP_KERNEL); 2167 if (ret != proto->id) 2168 goto clean; 2169 2170 /* 2171 * Warn but ignore events registration errors since we do not want 2172 * to skip whole protocols if their notifications are messed up. 2173 */ 2174 if (pi->proto->events) { 2175 ret = scmi_register_protocol_events(handle, pi->proto->id, 2176 &pi->ph, 2177 pi->proto->events); 2178 if (ret) 2179 dev_warn(handle->dev, 2180 "Protocol:%X - Events Registration Failed - err:%d\n", 2181 pi->proto->id, ret); 2182 } 2183 2184 devres_close_group(handle->dev, pi->gid); 2185 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id); 2186 2187 if (pi->version > proto->supported_version) { 2188 ret = scmi_protocol_version_negotiate(&pi->ph); 2189 if (!ret) { 2190 dev_info(handle->dev, 2191 "Protocol 0x%X successfully negotiated version 0x%X\n", 2192 proto->id, pi->negotiated_version); 2193 } else { 2194 dev_warn(handle->dev, 2195 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X.\n", 2196 pi->version, pi->proto->id); 2197 dev_warn(handle->dev, 2198 "Trying version 0x%X. Backward compatibility is NOT assured.\n", 2199 pi->proto->supported_version); 2200 } 2201 } 2202 2203 return pi; 2204 2205 clean: 2206 /* Take care to put the protocol module's owner before releasing all */ 2207 scmi_protocol_put(proto); 2208 devres_release_group(handle->dev, gid); 2209 out: 2210 return ERR_PTR(ret); 2211 } 2212 2213 /** 2214 * scmi_get_protocol_instance - Protocol initialization helper. 2215 * @handle: A reference to the SCMI platform instance. 2216 * @protocol_id: The protocol being requested. 2217 * 2218 * In case the required protocol has never been requested before for this 2219 * instance, allocate and initialize all the needed structures while handling 2220 * resource allocation with a dedicated per-protocol devres subgroup. 2221 * 2222 * Return: A reference to an initialized protocol instance or error on failure: 2223 * in particular returns -EPROBE_DEFER when the desired protocol could 2224 * NOT be found. 2225 */ 2226 static struct scmi_protocol_instance * __must_check 2227 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id) 2228 { 2229 struct scmi_protocol_instance *pi; 2230 struct scmi_info *info = handle_to_scmi_info(handle); 2231 2232 mutex_lock(&info->protocols_mtx); 2233 pi = idr_find(&info->protocols, protocol_id); 2234 2235 if (pi) { 2236 refcount_inc(&pi->users); 2237 } else { 2238 const struct scmi_protocol *proto; 2239 2240 /* Fails if protocol not registered on bus */ 2241 proto = scmi_protocol_get(protocol_id, &info->version); 2242 if (proto) 2243 pi = scmi_alloc_init_protocol_instance(info, proto); 2244 else 2245 pi = ERR_PTR(-EPROBE_DEFER); 2246 } 2247 mutex_unlock(&info->protocols_mtx); 2248 2249 return pi; 2250 } 2251 2252 /** 2253 * scmi_protocol_acquire - Protocol acquire 2254 * @handle: A reference to the SCMI platform instance. 2255 * @protocol_id: The protocol being requested. 2256 * 2257 * Register a new user for the requested protocol on the specified SCMI 2258 * platform instance, possibly triggering its initialization on first user. 2259 * 2260 * Return: 0 if protocol was acquired successfully. 2261 */ 2262 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id) 2263 { 2264 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id)); 2265 } 2266 2267 /** 2268 * scmi_protocol_release - Protocol de-initialization helper. 2269 * @handle: A reference to the SCMI platform instance. 2270 * @protocol_id: The protocol being requested. 2271 * 2272 * Remove one user for the specified protocol and triggers de-initialization 2273 * and resources de-allocation once the last user has gone. 2274 */ 2275 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id) 2276 { 2277 struct scmi_info *info = handle_to_scmi_info(handle); 2278 struct scmi_protocol_instance *pi; 2279 2280 mutex_lock(&info->protocols_mtx); 2281 pi = idr_find(&info->protocols, protocol_id); 2282 if (WARN_ON(!pi)) 2283 goto out; 2284 2285 if (refcount_dec_and_test(&pi->users)) { 2286 void *gid = pi->gid; 2287 2288 if (pi->proto->events) 2289 scmi_deregister_protocol_events(handle, protocol_id); 2290 2291 if (pi->proto->instance_deinit) 2292 pi->proto->instance_deinit(&pi->ph); 2293 2294 idr_remove(&info->protocols, protocol_id); 2295 2296 scmi_protocol_put(pi->proto); 2297 2298 devres_release_group(handle->dev, gid); 2299 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n", 2300 protocol_id); 2301 } 2302 2303 out: 2304 mutex_unlock(&info->protocols_mtx); 2305 } 2306 2307 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph, 2308 u8 *prot_imp) 2309 { 2310 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 2311 struct scmi_info *info = handle_to_scmi_info(pi->handle); 2312 2313 info->protocols_imp = prot_imp; 2314 } 2315 2316 static bool 2317 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id) 2318 { 2319 int i; 2320 struct scmi_info *info = handle_to_scmi_info(handle); 2321 struct scmi_revision_info *rev = handle->version; 2322 2323 if (!info->protocols_imp) 2324 return false; 2325 2326 for (i = 0; i < rev->num_protocols; i++) 2327 if (info->protocols_imp[i] == prot_id) 2328 return true; 2329 return false; 2330 } 2331 2332 struct scmi_protocol_devres { 2333 const struct scmi_handle *handle; 2334 u8 protocol_id; 2335 }; 2336 2337 static void scmi_devm_release_protocol(struct device *dev, void *res) 2338 { 2339 struct scmi_protocol_devres *dres = res; 2340 2341 scmi_protocol_release(dres->handle, dres->protocol_id); 2342 } 2343 2344 static struct scmi_protocol_instance __must_check * 2345 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id) 2346 { 2347 struct scmi_protocol_instance *pi; 2348 struct scmi_protocol_devres *dres; 2349 2350 dres = devres_alloc(scmi_devm_release_protocol, 2351 sizeof(*dres), GFP_KERNEL); 2352 if (!dres) 2353 return ERR_PTR(-ENOMEM); 2354 2355 pi = scmi_get_protocol_instance(sdev->handle, protocol_id); 2356 if (IS_ERR(pi)) { 2357 devres_free(dres); 2358 return pi; 2359 } 2360 2361 dres->handle = sdev->handle; 2362 dres->protocol_id = protocol_id; 2363 devres_add(&sdev->dev, dres); 2364 2365 return pi; 2366 } 2367 2368 /** 2369 * scmi_devm_protocol_get - Devres managed get protocol operations and handle 2370 * @sdev: A reference to an scmi_device whose embedded struct device is to 2371 * be used for devres accounting. 2372 * @protocol_id: The protocol being requested. 2373 * @ph: A pointer reference used to pass back the associated protocol handle. 2374 * 2375 * Get hold of a protocol accounting for its usage, eventually triggering its 2376 * initialization, and returning the protocol specific operations and related 2377 * protocol handle which will be used as first argument in most of the 2378 * protocols operations methods. 2379 * Being a devres based managed method, protocol hold will be automatically 2380 * released, and possibly de-initialized on last user, once the SCMI driver 2381 * owning the scmi_device is unbound from it. 2382 * 2383 * Return: A reference to the requested protocol operations or error. 2384 * Must be checked for errors by caller. 2385 */ 2386 static const void __must_check * 2387 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id, 2388 struct scmi_protocol_handle **ph) 2389 { 2390 struct scmi_protocol_instance *pi; 2391 2392 if (!ph) 2393 return ERR_PTR(-EINVAL); 2394 2395 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 2396 if (IS_ERR(pi)) 2397 return pi; 2398 2399 *ph = &pi->ph; 2400 2401 return pi->proto->ops; 2402 } 2403 2404 /** 2405 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol 2406 * @sdev: A reference to an scmi_device whose embedded struct device is to 2407 * be used for devres accounting. 2408 * @protocol_id: The protocol being requested. 2409 * 2410 * Get hold of a protocol accounting for its usage, possibly triggering its 2411 * initialization but without getting access to its protocol specific operations 2412 * and handle. 2413 * 2414 * Being a devres based managed method, protocol hold will be automatically 2415 * released, and possibly de-initialized on last user, once the SCMI driver 2416 * owning the scmi_device is unbound from it. 2417 * 2418 * Return: 0 on SUCCESS 2419 */ 2420 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev, 2421 u8 protocol_id) 2422 { 2423 struct scmi_protocol_instance *pi; 2424 2425 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 2426 if (IS_ERR(pi)) 2427 return PTR_ERR(pi); 2428 2429 return 0; 2430 } 2431 2432 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data) 2433 { 2434 struct scmi_protocol_devres *dres = res; 2435 2436 if (WARN_ON(!dres || !data)) 2437 return 0; 2438 2439 return dres->protocol_id == *((u8 *)data); 2440 } 2441 2442 /** 2443 * scmi_devm_protocol_put - Devres managed put protocol operations and handle 2444 * @sdev: A reference to an scmi_device whose embedded struct device is to 2445 * be used for devres accounting. 2446 * @protocol_id: The protocol being requested. 2447 * 2448 * Explicitly release a protocol hold previously obtained calling the above 2449 * @scmi_devm_protocol_get. 2450 */ 2451 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id) 2452 { 2453 int ret; 2454 2455 ret = devres_release(&sdev->dev, scmi_devm_release_protocol, 2456 scmi_devm_protocol_match, &protocol_id); 2457 WARN_ON(ret); 2458 } 2459 2460 /** 2461 * scmi_is_transport_atomic - Method to check if underlying transport for an 2462 * SCMI instance is configured as atomic. 2463 * 2464 * @handle: A reference to the SCMI platform instance. 2465 * @atomic_threshold: An optional return value for the system wide currently 2466 * configured threshold for atomic operations. 2467 * 2468 * Return: True if transport is configured as atomic 2469 */ 2470 static bool scmi_is_transport_atomic(const struct scmi_handle *handle, 2471 unsigned int *atomic_threshold) 2472 { 2473 bool ret; 2474 struct scmi_info *info = handle_to_scmi_info(handle); 2475 2476 ret = info->desc->atomic_enabled && 2477 is_transport_polling_capable(info->desc); 2478 if (ret && atomic_threshold) 2479 *atomic_threshold = info->desc->atomic_threshold; 2480 2481 return ret; 2482 } 2483 2484 /** 2485 * scmi_handle_get() - Get the SCMI handle for a device 2486 * 2487 * @dev: pointer to device for which we want SCMI handle 2488 * 2489 * NOTE: The function does not track individual clients of the framework 2490 * and is expected to be maintained by caller of SCMI protocol library. 2491 * scmi_handle_put must be balanced with successful scmi_handle_get 2492 * 2493 * Return: pointer to handle if successful, NULL on error 2494 */ 2495 static struct scmi_handle *scmi_handle_get(struct device *dev) 2496 { 2497 struct list_head *p; 2498 struct scmi_info *info; 2499 struct scmi_handle *handle = NULL; 2500 2501 mutex_lock(&scmi_list_mutex); 2502 list_for_each(p, &scmi_list) { 2503 info = list_entry(p, struct scmi_info, node); 2504 if (dev->parent == info->dev) { 2505 info->users++; 2506 handle = &info->handle; 2507 break; 2508 } 2509 } 2510 mutex_unlock(&scmi_list_mutex); 2511 2512 return handle; 2513 } 2514 2515 /** 2516 * scmi_handle_put() - Release the handle acquired by scmi_handle_get 2517 * 2518 * @handle: handle acquired by scmi_handle_get 2519 * 2520 * NOTE: The function does not track individual clients of the framework 2521 * and is expected to be maintained by caller of SCMI protocol library. 2522 * scmi_handle_put must be balanced with successful scmi_handle_get 2523 * 2524 * Return: 0 is successfully released 2525 * if null was passed, it returns -EINVAL; 2526 */ 2527 static int scmi_handle_put(const struct scmi_handle *handle) 2528 { 2529 struct scmi_info *info; 2530 2531 if (!handle) 2532 return -EINVAL; 2533 2534 info = handle_to_scmi_info(handle); 2535 mutex_lock(&scmi_list_mutex); 2536 if (!WARN_ON(!info->users)) 2537 info->users--; 2538 mutex_unlock(&scmi_list_mutex); 2539 2540 return 0; 2541 } 2542 2543 static void scmi_device_link_add(struct device *consumer, 2544 struct device *supplier) 2545 { 2546 struct device_link *link; 2547 2548 link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER); 2549 2550 WARN_ON(!link); 2551 } 2552 2553 static void scmi_set_handle(struct scmi_device *scmi_dev) 2554 { 2555 scmi_dev->handle = scmi_handle_get(&scmi_dev->dev); 2556 if (scmi_dev->handle) 2557 scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev); 2558 } 2559 2560 static int __scmi_xfer_info_init(struct scmi_info *sinfo, 2561 struct scmi_xfers_info *info) 2562 { 2563 int i; 2564 struct scmi_xfer *xfer; 2565 struct device *dev = sinfo->dev; 2566 const struct scmi_desc *desc = sinfo->desc; 2567 2568 /* Pre-allocated messages, no more than what hdr.seq can support */ 2569 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) { 2570 dev_err(dev, 2571 "Invalid maximum messages %d, not in range [1 - %lu]\n", 2572 info->max_msg, MSG_TOKEN_MAX); 2573 return -EINVAL; 2574 } 2575 2576 hash_init(info->pending_xfers); 2577 2578 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */ 2579 info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX, 2580 GFP_KERNEL); 2581 if (!info->xfer_alloc_table) 2582 return -ENOMEM; 2583 2584 /* 2585 * Preallocate a number of xfers equal to max inflight messages, 2586 * pre-initialize the buffer pointer to pre-allocated buffers and 2587 * attach all of them to the free list 2588 */ 2589 INIT_HLIST_HEAD(&info->free_xfers); 2590 for (i = 0; i < info->max_msg; i++) { 2591 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL); 2592 if (!xfer) 2593 return -ENOMEM; 2594 2595 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size, 2596 GFP_KERNEL); 2597 if (!xfer->rx.buf) 2598 return -ENOMEM; 2599 2600 xfer->tx.buf = xfer->rx.buf; 2601 init_completion(&xfer->done); 2602 spin_lock_init(&xfer->lock); 2603 2604 /* Add initialized xfer to the free list */ 2605 hlist_add_head(&xfer->node, &info->free_xfers); 2606 } 2607 2608 spin_lock_init(&info->xfer_lock); 2609 2610 return 0; 2611 } 2612 2613 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo) 2614 { 2615 const struct scmi_desc *desc = sinfo->desc; 2616 2617 if (!desc->ops->get_max_msg) { 2618 sinfo->tx_minfo.max_msg = desc->max_msg; 2619 sinfo->rx_minfo.max_msg = desc->max_msg; 2620 } else { 2621 struct scmi_chan_info *base_cinfo; 2622 2623 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE); 2624 if (!base_cinfo) 2625 return -EINVAL; 2626 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo); 2627 2628 /* RX channel is optional so can be skipped */ 2629 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE); 2630 if (base_cinfo) 2631 sinfo->rx_minfo.max_msg = 2632 desc->ops->get_max_msg(base_cinfo); 2633 } 2634 2635 return 0; 2636 } 2637 2638 static int scmi_xfer_info_init(struct scmi_info *sinfo) 2639 { 2640 int ret; 2641 2642 ret = scmi_channels_max_msg_configure(sinfo); 2643 if (ret) 2644 return ret; 2645 2646 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo); 2647 if (!ret && !idr_is_empty(&sinfo->rx_idr)) 2648 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo); 2649 2650 return ret; 2651 } 2652 2653 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node, 2654 int prot_id, bool tx) 2655 { 2656 int ret, idx; 2657 char name[32]; 2658 struct scmi_chan_info *cinfo; 2659 struct idr *idr; 2660 struct scmi_device *tdev = NULL; 2661 2662 /* Transmit channel is first entry i.e. index 0 */ 2663 idx = tx ? 0 : 1; 2664 idr = tx ? &info->tx_idr : &info->rx_idr; 2665 2666 if (!info->desc->ops->chan_available(of_node, idx)) { 2667 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE); 2668 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */ 2669 return -EINVAL; 2670 goto idr_alloc; 2671 } 2672 2673 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL); 2674 if (!cinfo) 2675 return -ENOMEM; 2676 2677 cinfo->is_p2a = !tx; 2678 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms; 2679 cinfo->max_msg_size = info->desc->max_msg_size; 2680 2681 /* Create a unique name for this transport device */ 2682 snprintf(name, 32, "__scmi_transport_device_%s_%02X", 2683 idx ? "rx" : "tx", prot_id); 2684 /* Create a uniquely named, dedicated transport device for this chan */ 2685 tdev = scmi_device_create(of_node, info->dev, prot_id, name); 2686 if (!tdev) { 2687 dev_err(info->dev, 2688 "failed to create transport device (%s)\n", name); 2689 devm_kfree(info->dev, cinfo); 2690 return -EINVAL; 2691 } 2692 of_node_get(of_node); 2693 2694 cinfo->id = prot_id; 2695 cinfo->dev = &tdev->dev; 2696 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx); 2697 if (ret) { 2698 of_node_put(of_node); 2699 scmi_device_destroy(info->dev, prot_id, name); 2700 devm_kfree(info->dev, cinfo); 2701 return ret; 2702 } 2703 2704 if (tx && is_polling_required(cinfo, info->desc)) { 2705 if (is_transport_polling_capable(info->desc)) 2706 dev_info(&tdev->dev, 2707 "Enabled polling mode TX channel - prot_id:%d\n", 2708 prot_id); 2709 else 2710 dev_warn(&tdev->dev, 2711 "Polling mode NOT supported by transport.\n"); 2712 } 2713 2714 idr_alloc: 2715 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL); 2716 if (ret != prot_id) { 2717 dev_err(info->dev, 2718 "unable to allocate SCMI idr slot err %d\n", ret); 2719 /* Destroy channel and device only if created by this call. */ 2720 if (tdev) { 2721 of_node_put(of_node); 2722 scmi_device_destroy(info->dev, prot_id, name); 2723 devm_kfree(info->dev, cinfo); 2724 } 2725 return ret; 2726 } 2727 2728 cinfo->handle = &info->handle; 2729 return 0; 2730 } 2731 2732 static inline int 2733 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node, 2734 int prot_id) 2735 { 2736 int ret = scmi_chan_setup(info, of_node, prot_id, true); 2737 2738 if (!ret) { 2739 /* Rx is optional, report only memory errors */ 2740 ret = scmi_chan_setup(info, of_node, prot_id, false); 2741 if (ret && ret != -ENOMEM) 2742 ret = 0; 2743 } 2744 2745 if (ret) 2746 dev_err(info->dev, 2747 "failed to setup channel for protocol:0x%X\n", prot_id); 2748 2749 return ret; 2750 } 2751 2752 /** 2753 * scmi_channels_setup - Helper to initialize all required channels 2754 * 2755 * @info: The SCMI instance descriptor. 2756 * 2757 * Initialize all the channels found described in the DT against the underlying 2758 * configured transport using custom defined dedicated devices instead of 2759 * borrowing devices from the SCMI drivers; this way channels are initialized 2760 * upfront during core SCMI stack probing and are no more coupled with SCMI 2761 * devices used by SCMI drivers. 2762 * 2763 * Note that, even though a pair of TX/RX channels is associated to each 2764 * protocol defined in the DT, a distinct freshly initialized channel is 2765 * created only if the DT node for the protocol at hand describes a dedicated 2766 * channel: in all the other cases the common BASE protocol channel is reused. 2767 * 2768 * Return: 0 on Success 2769 */ 2770 static int scmi_channels_setup(struct scmi_info *info) 2771 { 2772 int ret; 2773 struct device_node *top_np = info->dev->of_node; 2774 2775 /* Initialize a common generic channel at first */ 2776 ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE); 2777 if (ret) 2778 return ret; 2779 2780 for_each_available_child_of_node_scoped(top_np, child) { 2781 u32 prot_id; 2782 2783 if (of_property_read_u32(child, "reg", &prot_id)) 2784 continue; 2785 2786 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 2787 dev_err(info->dev, 2788 "Out of range protocol %d\n", prot_id); 2789 2790 ret = scmi_txrx_setup(info, child, prot_id); 2791 if (ret) 2792 return ret; 2793 } 2794 2795 return 0; 2796 } 2797 2798 static int scmi_chan_destroy(int id, void *p, void *idr) 2799 { 2800 struct scmi_chan_info *cinfo = p; 2801 2802 if (cinfo->dev) { 2803 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 2804 struct scmi_device *sdev = to_scmi_dev(cinfo->dev); 2805 2806 of_node_put(cinfo->dev->of_node); 2807 scmi_device_destroy(info->dev, id, sdev->name); 2808 cinfo->dev = NULL; 2809 } 2810 2811 idr_remove(idr, id); 2812 2813 return 0; 2814 } 2815 2816 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr) 2817 { 2818 /* At first free all channels at the transport layer ... */ 2819 idr_for_each(idr, info->desc->ops->chan_free, idr); 2820 2821 /* ...then destroy all underlying devices */ 2822 idr_for_each(idr, scmi_chan_destroy, idr); 2823 2824 idr_destroy(idr); 2825 } 2826 2827 static void scmi_cleanup_txrx_channels(struct scmi_info *info) 2828 { 2829 scmi_cleanup_channels(info, &info->tx_idr); 2830 2831 scmi_cleanup_channels(info, &info->rx_idr); 2832 } 2833 2834 static int scmi_bus_notifier(struct notifier_block *nb, 2835 unsigned long action, void *data) 2836 { 2837 struct scmi_info *info = bus_nb_to_scmi_info(nb); 2838 struct scmi_device *sdev = to_scmi_dev(data); 2839 2840 /* Skip devices of different SCMI instances */ 2841 if (sdev->dev.parent != info->dev) 2842 return NOTIFY_DONE; 2843 2844 switch (action) { 2845 case BUS_NOTIFY_BIND_DRIVER: 2846 /* setup handle now as the transport is ready */ 2847 scmi_set_handle(sdev); 2848 break; 2849 case BUS_NOTIFY_UNBOUND_DRIVER: 2850 scmi_handle_put(sdev->handle); 2851 sdev->handle = NULL; 2852 break; 2853 default: 2854 return NOTIFY_DONE; 2855 } 2856 2857 dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev), 2858 sdev->name, action == BUS_NOTIFY_BIND_DRIVER ? 2859 "about to be BOUND." : "UNBOUND."); 2860 2861 return NOTIFY_OK; 2862 } 2863 2864 static int scmi_device_request_notifier(struct notifier_block *nb, 2865 unsigned long action, void *data) 2866 { 2867 struct device_node *np; 2868 struct scmi_device_id *id_table = data; 2869 struct scmi_info *info = req_nb_to_scmi_info(nb); 2870 2871 np = idr_find(&info->active_protocols, id_table->protocol_id); 2872 if (!np) 2873 return NOTIFY_DONE; 2874 2875 dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n", 2876 action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-", 2877 id_table->name, id_table->protocol_id); 2878 2879 switch (action) { 2880 case SCMI_BUS_NOTIFY_DEVICE_REQUEST: 2881 scmi_create_protocol_devices(np, info, id_table->protocol_id, 2882 id_table->name); 2883 break; 2884 case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST: 2885 scmi_destroy_protocol_devices(info, id_table->protocol_id, 2886 id_table->name); 2887 break; 2888 default: 2889 return NOTIFY_DONE; 2890 } 2891 2892 return NOTIFY_OK; 2893 } 2894 2895 static const char * const dbg_counter_strs[] = { 2896 "sent_ok", 2897 "sent_fail", 2898 "sent_fail_polling_unsupported", 2899 "sent_fail_channel_not_found", 2900 "response_ok", 2901 "notification_ok", 2902 "delayed_response_ok", 2903 "xfers_response_timeout", 2904 "xfers_response_polled_timeout", 2905 "response_polled_ok", 2906 "err_msg_unexpected", 2907 "err_msg_invalid", 2908 "err_msg_nomem", 2909 "err_protocol", 2910 "xfers_inflight", 2911 }; 2912 2913 static ssize_t reset_all_on_write(struct file *filp, const char __user *buf, 2914 size_t count, loff_t *ppos) 2915 { 2916 struct scmi_debug_info *dbg = filp->private_data; 2917 2918 for (int i = 0; i < SCMI_DEBUG_COUNTERS_LAST; i++) 2919 atomic_set(&dbg->counters[i], 0); 2920 2921 return count; 2922 } 2923 2924 static const struct file_operations fops_reset_counts = { 2925 .owner = THIS_MODULE, 2926 .open = simple_open, 2927 .write = reset_all_on_write, 2928 }; 2929 2930 static void scmi_debugfs_counters_setup(struct scmi_debug_info *dbg, 2931 struct dentry *trans) 2932 { 2933 struct dentry *counters; 2934 int idx; 2935 2936 counters = debugfs_create_dir("counters", trans); 2937 2938 for (idx = 0; idx < SCMI_DEBUG_COUNTERS_LAST; idx++) 2939 debugfs_create_atomic_t(dbg_counter_strs[idx], 0600, counters, 2940 &dbg->counters[idx]); 2941 2942 debugfs_create_file("reset", 0200, counters, dbg, &fops_reset_counts); 2943 } 2944 2945 static void scmi_debugfs_common_cleanup(void *d) 2946 { 2947 struct scmi_debug_info *dbg = d; 2948 2949 if (!dbg) 2950 return; 2951 2952 debugfs_remove_recursive(dbg->top_dentry); 2953 kfree(dbg->name); 2954 kfree(dbg->type); 2955 } 2956 2957 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info) 2958 { 2959 char top_dir[16]; 2960 struct dentry *trans, *top_dentry; 2961 struct scmi_debug_info *dbg; 2962 const char *c_ptr = NULL; 2963 2964 dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL); 2965 if (!dbg) 2966 return NULL; 2967 2968 dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL); 2969 if (!dbg->name) { 2970 devm_kfree(info->dev, dbg); 2971 return NULL; 2972 } 2973 2974 of_property_read_string(info->dev->of_node, "compatible", &c_ptr); 2975 dbg->type = kstrdup(c_ptr, GFP_KERNEL); 2976 if (!dbg->type) { 2977 kfree(dbg->name); 2978 devm_kfree(info->dev, dbg); 2979 return NULL; 2980 } 2981 2982 snprintf(top_dir, 16, "%d", info->id); 2983 top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry); 2984 trans = debugfs_create_dir("transport", top_dentry); 2985 2986 dbg->is_atomic = info->desc->atomic_enabled && 2987 is_transport_polling_capable(info->desc); 2988 2989 debugfs_create_str("instance_name", 0400, top_dentry, 2990 (char **)&dbg->name); 2991 2992 debugfs_create_u32("atomic_threshold_us", 0400, top_dentry, 2993 (u32 *)&info->desc->atomic_threshold); 2994 2995 debugfs_create_str("type", 0400, trans, (char **)&dbg->type); 2996 2997 debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic); 2998 2999 debugfs_create_u32("max_rx_timeout_ms", 0400, trans, 3000 (u32 *)&info->desc->max_rx_timeout_ms); 3001 3002 debugfs_create_u32("max_msg_size", 0400, trans, 3003 (u32 *)&info->desc->max_msg_size); 3004 3005 debugfs_create_u32("tx_max_msg", 0400, trans, 3006 (u32 *)&info->tx_minfo.max_msg); 3007 3008 debugfs_create_u32("rx_max_msg", 0400, trans, 3009 (u32 *)&info->rx_minfo.max_msg); 3010 3011 if (IS_ENABLED(CONFIG_ARM_SCMI_DEBUG_COUNTERS)) 3012 scmi_debugfs_counters_setup(dbg, trans); 3013 3014 dbg->top_dentry = top_dentry; 3015 3016 if (devm_add_action_or_reset(info->dev, 3017 scmi_debugfs_common_cleanup, dbg)) 3018 return NULL; 3019 3020 return dbg; 3021 } 3022 3023 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info) 3024 { 3025 int id, num_chans = 0, ret = 0; 3026 struct scmi_chan_info *cinfo; 3027 u8 channels[SCMI_MAX_CHANNELS] = {}; 3028 DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {}; 3029 3030 /* Enumerate all channels to collect their ids */ 3031 idr_for_each_entry(&info->tx_idr, cinfo, id) { 3032 /* 3033 * Cannot happen, but be defensive. 3034 * Zero as num_chans is ok, warn and carry on. 3035 */ 3036 if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) { 3037 dev_warn(info->dev, 3038 "SCMI RAW - Error enumerating channels\n"); 3039 break; 3040 } 3041 3042 if (!test_bit(cinfo->id, protos)) { 3043 channels[num_chans++] = cinfo->id; 3044 set_bit(cinfo->id, protos); 3045 } 3046 } 3047 3048 info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry, 3049 info->id, channels, num_chans, 3050 info->desc, info->tx_minfo.max_msg); 3051 if (IS_ERR(info->raw)) { 3052 dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n"); 3053 ret = PTR_ERR(info->raw); 3054 info->raw = NULL; 3055 } 3056 3057 return ret; 3058 } 3059 3060 static const struct scmi_desc *scmi_transport_setup(struct device *dev) 3061 { 3062 struct scmi_transport *trans; 3063 int ret; 3064 3065 trans = dev_get_platdata(dev); 3066 if (!trans || !trans->supplier || !trans->core_ops) 3067 return NULL; 3068 3069 if (!device_link_add(dev, trans->supplier, DL_FLAG_AUTOREMOVE_CONSUMER)) { 3070 dev_err(dev, 3071 "Adding link to supplier transport device failed\n"); 3072 return NULL; 3073 } 3074 3075 /* Provide core transport ops */ 3076 *trans->core_ops = &scmi_trans_core_ops; 3077 3078 dev_info(dev, "Using %s\n", dev_driver_string(trans->supplier)); 3079 3080 ret = of_property_read_u32(dev->of_node, "arm,max-rx-timeout-ms", 3081 &trans->desc.max_rx_timeout_ms); 3082 if (ret && ret != -EINVAL) 3083 dev_err(dev, "Malformed arm,max-rx-timeout-ms DT property.\n"); 3084 3085 ret = of_property_read_u32(dev->of_node, "arm,max-msg-size", 3086 &trans->desc.max_msg_size); 3087 if (ret && ret != -EINVAL) 3088 dev_err(dev, "Malformed arm,max-msg-size DT property.\n"); 3089 3090 ret = of_property_read_u32(dev->of_node, "arm,max-msg", 3091 &trans->desc.max_msg); 3092 if (ret && ret != -EINVAL) 3093 dev_err(dev, "Malformed arm,max-msg DT property.\n"); 3094 3095 dev_info(dev, 3096 "SCMI max-rx-timeout: %dms / max-msg-size: %dbytes / max-msg: %d\n", 3097 trans->desc.max_rx_timeout_ms, trans->desc.max_msg_size, 3098 trans->desc.max_msg); 3099 3100 /* System wide atomic threshold for atomic ops .. if any */ 3101 if (!of_property_read_u32(dev->of_node, "atomic-threshold-us", 3102 &trans->desc.atomic_threshold)) 3103 dev_info(dev, 3104 "SCMI System wide atomic threshold set to %u us\n", 3105 trans->desc.atomic_threshold); 3106 3107 return &trans->desc; 3108 } 3109 3110 static void scmi_enable_matching_quirks(struct scmi_info *info) 3111 { 3112 struct scmi_revision_info *rev = &info->version; 3113 3114 dev_dbg(info->dev, "Looking for quirks matching: %s/%s/0x%08X\n", 3115 rev->vendor_id, rev->sub_vendor_id, rev->impl_ver); 3116 3117 /* Enable applicable quirks */ 3118 scmi_quirks_enable(info->dev, rev->vendor_id, 3119 rev->sub_vendor_id, rev->impl_ver); 3120 } 3121 3122 static int scmi_probe(struct platform_device *pdev) 3123 { 3124 int ret; 3125 char *err_str = "probe failure\n"; 3126 struct scmi_handle *handle; 3127 const struct scmi_desc *desc; 3128 struct scmi_info *info; 3129 bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX); 3130 struct device *dev = &pdev->dev; 3131 struct device_node *child, *np = dev->of_node; 3132 3133 desc = scmi_transport_setup(dev); 3134 if (!desc) { 3135 err_str = "transport invalid\n"; 3136 ret = -EINVAL; 3137 goto out_err; 3138 } 3139 3140 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); 3141 if (!info) 3142 return -ENOMEM; 3143 3144 info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL); 3145 if (info->id < 0) 3146 return info->id; 3147 3148 info->dev = dev; 3149 info->desc = desc; 3150 info->bus_nb.notifier_call = scmi_bus_notifier; 3151 info->dev_req_nb.notifier_call = scmi_device_request_notifier; 3152 INIT_LIST_HEAD(&info->node); 3153 idr_init(&info->protocols); 3154 mutex_init(&info->protocols_mtx); 3155 idr_init(&info->active_protocols); 3156 mutex_init(&info->devreq_mtx); 3157 3158 platform_set_drvdata(pdev, info); 3159 idr_init(&info->tx_idr); 3160 idr_init(&info->rx_idr); 3161 3162 handle = &info->handle; 3163 handle->dev = info->dev; 3164 handle->version = &info->version; 3165 handle->devm_protocol_acquire = scmi_devm_protocol_acquire; 3166 handle->devm_protocol_get = scmi_devm_protocol_get; 3167 handle->devm_protocol_put = scmi_devm_protocol_put; 3168 handle->is_transport_atomic = scmi_is_transport_atomic; 3169 3170 /* Setup all channels described in the DT at first */ 3171 ret = scmi_channels_setup(info); 3172 if (ret) { 3173 err_str = "failed to setup channels\n"; 3174 goto clear_ida; 3175 } 3176 3177 ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb); 3178 if (ret) { 3179 err_str = "failed to register bus notifier\n"; 3180 goto clear_txrx_setup; 3181 } 3182 3183 ret = blocking_notifier_chain_register(&scmi_requested_devices_nh, 3184 &info->dev_req_nb); 3185 if (ret) { 3186 err_str = "failed to register device notifier\n"; 3187 goto clear_bus_notifier; 3188 } 3189 3190 ret = scmi_xfer_info_init(info); 3191 if (ret) { 3192 err_str = "failed to init xfers pool\n"; 3193 goto clear_dev_req_notifier; 3194 } 3195 3196 if (scmi_top_dentry) { 3197 info->dbg = scmi_debugfs_common_setup(info); 3198 if (!info->dbg) 3199 dev_warn(dev, "Failed to setup SCMI debugfs.\n"); 3200 3201 if (info->dbg && IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 3202 ret = scmi_debugfs_raw_mode_setup(info); 3203 if (!coex) { 3204 if (ret) 3205 goto clear_dev_req_notifier; 3206 3207 /* Bail out anyway when coex disabled. */ 3208 return 0; 3209 } 3210 3211 /* Coex enabled, carry on in any case. */ 3212 dev_info(dev, "SCMI RAW Mode COEX enabled !\n"); 3213 } 3214 } 3215 3216 if (scmi_notification_init(handle)) 3217 dev_err(dev, "SCMI Notifications NOT available.\n"); 3218 3219 if (info->desc->atomic_enabled && 3220 !is_transport_polling_capable(info->desc)) 3221 dev_err(dev, 3222 "Transport is not polling capable. Atomic mode not supported.\n"); 3223 3224 /* 3225 * Trigger SCMI Base protocol initialization. 3226 * It's mandatory and won't be ever released/deinit until the 3227 * SCMI stack is shutdown/unloaded as a whole. 3228 */ 3229 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE); 3230 if (ret) { 3231 err_str = "unable to communicate with SCMI\n"; 3232 if (coex) { 3233 dev_err(dev, "%s", err_str); 3234 return 0; 3235 } 3236 goto notification_exit; 3237 } 3238 3239 mutex_lock(&scmi_list_mutex); 3240 list_add_tail(&info->node, &scmi_list); 3241 mutex_unlock(&scmi_list_mutex); 3242 3243 scmi_enable_matching_quirks(info); 3244 3245 for_each_available_child_of_node(np, child) { 3246 u32 prot_id; 3247 3248 if (of_property_read_u32(child, "reg", &prot_id)) 3249 continue; 3250 3251 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 3252 dev_err(dev, "Out of range protocol %d\n", prot_id); 3253 3254 if (!scmi_is_protocol_implemented(handle, prot_id)) { 3255 dev_err(dev, "SCMI protocol %d not implemented\n", 3256 prot_id); 3257 continue; 3258 } 3259 3260 /* 3261 * Save this valid DT protocol descriptor amongst 3262 * @active_protocols for this SCMI instance/ 3263 */ 3264 ret = idr_alloc(&info->active_protocols, child, 3265 prot_id, prot_id + 1, GFP_KERNEL); 3266 if (ret != prot_id) { 3267 dev_err(dev, "SCMI protocol %d already activated. Skip\n", 3268 prot_id); 3269 continue; 3270 } 3271 3272 of_node_get(child); 3273 scmi_create_protocol_devices(child, info, prot_id, NULL); 3274 } 3275 3276 return 0; 3277 3278 notification_exit: 3279 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 3280 scmi_raw_mode_cleanup(info->raw); 3281 scmi_notification_exit(&info->handle); 3282 clear_dev_req_notifier: 3283 blocking_notifier_chain_unregister(&scmi_requested_devices_nh, 3284 &info->dev_req_nb); 3285 clear_bus_notifier: 3286 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb); 3287 clear_txrx_setup: 3288 scmi_cleanup_txrx_channels(info); 3289 clear_ida: 3290 ida_free(&scmi_id, info->id); 3291 3292 out_err: 3293 return dev_err_probe(dev, ret, "%s", err_str); 3294 } 3295 3296 static void scmi_remove(struct platform_device *pdev) 3297 { 3298 int id; 3299 struct scmi_info *info = platform_get_drvdata(pdev); 3300 struct device_node *child; 3301 3302 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 3303 scmi_raw_mode_cleanup(info->raw); 3304 3305 mutex_lock(&scmi_list_mutex); 3306 if (info->users) 3307 dev_warn(&pdev->dev, 3308 "Still active SCMI users will be forcibly unbound.\n"); 3309 list_del(&info->node); 3310 mutex_unlock(&scmi_list_mutex); 3311 3312 scmi_notification_exit(&info->handle); 3313 3314 mutex_lock(&info->protocols_mtx); 3315 idr_destroy(&info->protocols); 3316 mutex_unlock(&info->protocols_mtx); 3317 3318 idr_for_each_entry(&info->active_protocols, child, id) 3319 of_node_put(child); 3320 idr_destroy(&info->active_protocols); 3321 3322 blocking_notifier_chain_unregister(&scmi_requested_devices_nh, 3323 &info->dev_req_nb); 3324 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb); 3325 3326 /* Safe to free channels since no more users */ 3327 scmi_cleanup_txrx_channels(info); 3328 3329 ida_free(&scmi_id, info->id); 3330 } 3331 3332 static ssize_t protocol_version_show(struct device *dev, 3333 struct device_attribute *attr, char *buf) 3334 { 3335 struct scmi_info *info = dev_get_drvdata(dev); 3336 3337 return sprintf(buf, "%u.%u\n", info->version.major_ver, 3338 info->version.minor_ver); 3339 } 3340 static DEVICE_ATTR_RO(protocol_version); 3341 3342 static ssize_t firmware_version_show(struct device *dev, 3343 struct device_attribute *attr, char *buf) 3344 { 3345 struct scmi_info *info = dev_get_drvdata(dev); 3346 3347 return sprintf(buf, "0x%x\n", info->version.impl_ver); 3348 } 3349 static DEVICE_ATTR_RO(firmware_version); 3350 3351 static ssize_t vendor_id_show(struct device *dev, 3352 struct device_attribute *attr, char *buf) 3353 { 3354 struct scmi_info *info = dev_get_drvdata(dev); 3355 3356 return sprintf(buf, "%s\n", info->version.vendor_id); 3357 } 3358 static DEVICE_ATTR_RO(vendor_id); 3359 3360 static ssize_t sub_vendor_id_show(struct device *dev, 3361 struct device_attribute *attr, char *buf) 3362 { 3363 struct scmi_info *info = dev_get_drvdata(dev); 3364 3365 return sprintf(buf, "%s\n", info->version.sub_vendor_id); 3366 } 3367 static DEVICE_ATTR_RO(sub_vendor_id); 3368 3369 static struct attribute *versions_attrs[] = { 3370 &dev_attr_firmware_version.attr, 3371 &dev_attr_protocol_version.attr, 3372 &dev_attr_vendor_id.attr, 3373 &dev_attr_sub_vendor_id.attr, 3374 NULL, 3375 }; 3376 ATTRIBUTE_GROUPS(versions); 3377 3378 static struct platform_driver scmi_driver = { 3379 .driver = { 3380 .name = "arm-scmi", 3381 .suppress_bind_attrs = true, 3382 .dev_groups = versions_groups, 3383 }, 3384 .probe = scmi_probe, 3385 .remove = scmi_remove, 3386 }; 3387 3388 static struct dentry *scmi_debugfs_init(void) 3389 { 3390 struct dentry *d; 3391 3392 d = debugfs_create_dir("scmi", NULL); 3393 if (IS_ERR(d)) { 3394 pr_err("Could NOT create SCMI top dentry.\n"); 3395 return NULL; 3396 } 3397 3398 return d; 3399 } 3400 3401 int scmi_inflight_count(const struct scmi_handle *handle) 3402 { 3403 if (IS_ENABLED(CONFIG_ARM_SCMI_DEBUG_COUNTERS)) { 3404 struct scmi_info *info = handle_to_scmi_info(handle); 3405 3406 if (!info->dbg) 3407 return 0; 3408 3409 return atomic_read(&info->dbg->counters[XFERS_INFLIGHT]); 3410 } else { 3411 return 0; 3412 } 3413 } 3414 3415 static int __init scmi_driver_init(void) 3416 { 3417 scmi_quirks_initialize(); 3418 3419 /* Bail out if no SCMI transport was configured */ 3420 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT))) 3421 return -EINVAL; 3422 3423 if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_SHMEM)) 3424 scmi_trans_core_ops.shmem = scmi_shared_mem_operations_get(); 3425 3426 if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_MSG)) 3427 scmi_trans_core_ops.msg = scmi_message_operations_get(); 3428 3429 if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS)) 3430 scmi_top_dentry = scmi_debugfs_init(); 3431 3432 scmi_base_register(); 3433 3434 scmi_clock_register(); 3435 scmi_perf_register(); 3436 scmi_power_register(); 3437 scmi_reset_register(); 3438 scmi_sensors_register(); 3439 scmi_voltage_register(); 3440 scmi_system_register(); 3441 scmi_powercap_register(); 3442 scmi_pinctrl_register(); 3443 3444 return platform_driver_register(&scmi_driver); 3445 } 3446 module_init(scmi_driver_init); 3447 3448 static void __exit scmi_driver_exit(void) 3449 { 3450 scmi_base_unregister(); 3451 3452 scmi_clock_unregister(); 3453 scmi_perf_unregister(); 3454 scmi_power_unregister(); 3455 scmi_reset_unregister(); 3456 scmi_sensors_unregister(); 3457 scmi_voltage_unregister(); 3458 scmi_system_unregister(); 3459 scmi_powercap_unregister(); 3460 scmi_pinctrl_unregister(); 3461 3462 platform_driver_unregister(&scmi_driver); 3463 3464 debugfs_remove_recursive(scmi_top_dentry); 3465 } 3466 module_exit(scmi_driver_exit); 3467 3468 MODULE_ALIAS("platform:arm-scmi"); 3469 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 3470 MODULE_DESCRIPTION("ARM SCMI protocol driver"); 3471 MODULE_LICENSE("GPL v2"); 3472