xref: /linux/drivers/firmware/arm_scmi/clock.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Clock Protocol
4  *
5  * Copyright (C) 2018-2021 ARM Ltd.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/sort.h>
10 
11 #include "common.h"
12 
13 enum scmi_clock_protocol_cmd {
14 	CLOCK_ATTRIBUTES = 0x3,
15 	CLOCK_DESCRIBE_RATES = 0x4,
16 	CLOCK_RATE_SET = 0x5,
17 	CLOCK_RATE_GET = 0x6,
18 	CLOCK_CONFIG_SET = 0x7,
19 };
20 
21 struct scmi_msg_resp_clock_protocol_attributes {
22 	__le16 num_clocks;
23 	u8 max_async_req;
24 	u8 reserved;
25 };
26 
27 struct scmi_msg_resp_clock_attributes {
28 	__le32 attributes;
29 #define	CLOCK_ENABLE	BIT(0)
30 	    u8 name[SCMI_MAX_STR_SIZE];
31 };
32 
33 struct scmi_clock_set_config {
34 	__le32 id;
35 	__le32 attributes;
36 };
37 
38 struct scmi_msg_clock_describe_rates {
39 	__le32 id;
40 	__le32 rate_index;
41 };
42 
43 struct scmi_msg_resp_clock_describe_rates {
44 	__le32 num_rates_flags;
45 #define NUM_RETURNED(x)		((x) & 0xfff)
46 #define RATE_DISCRETE(x)	!((x) & BIT(12))
47 #define NUM_REMAINING(x)	((x) >> 16)
48 	struct {
49 		__le32 value_low;
50 		__le32 value_high;
51 	} rate[0];
52 #define RATE_TO_U64(X)		\
53 ({				\
54 	typeof(X) x = (X);	\
55 	le32_to_cpu((x).value_low) | (u64)le32_to_cpu((x).value_high) << 32; \
56 })
57 };
58 
59 struct scmi_clock_set_rate {
60 	__le32 flags;
61 #define CLOCK_SET_ASYNC		BIT(0)
62 #define CLOCK_SET_IGNORE_RESP	BIT(1)
63 #define CLOCK_SET_ROUND_UP	BIT(2)
64 #define CLOCK_SET_ROUND_AUTO	BIT(3)
65 	__le32 id;
66 	__le32 value_low;
67 	__le32 value_high;
68 };
69 
70 struct clock_info {
71 	u32 version;
72 	int num_clocks;
73 	int max_async_req;
74 	atomic_t cur_async_req;
75 	struct scmi_clock_info *clk;
76 };
77 
78 static int
79 scmi_clock_protocol_attributes_get(const struct scmi_protocol_handle *ph,
80 				   struct clock_info *ci)
81 {
82 	int ret;
83 	struct scmi_xfer *t;
84 	struct scmi_msg_resp_clock_protocol_attributes *attr;
85 
86 	ret = ph->xops->xfer_get_init(ph, PROTOCOL_ATTRIBUTES,
87 				      0, sizeof(*attr), &t);
88 	if (ret)
89 		return ret;
90 
91 	attr = t->rx.buf;
92 
93 	ret = ph->xops->do_xfer(ph, t);
94 	if (!ret) {
95 		ci->num_clocks = le16_to_cpu(attr->num_clocks);
96 		ci->max_async_req = attr->max_async_req;
97 	}
98 
99 	ph->xops->xfer_put(ph, t);
100 	return ret;
101 }
102 
103 static int scmi_clock_attributes_get(const struct scmi_protocol_handle *ph,
104 				     u32 clk_id, struct scmi_clock_info *clk)
105 {
106 	int ret;
107 	struct scmi_xfer *t;
108 	struct scmi_msg_resp_clock_attributes *attr;
109 
110 	ret = ph->xops->xfer_get_init(ph, CLOCK_ATTRIBUTES,
111 				      sizeof(clk_id), sizeof(*attr), &t);
112 	if (ret)
113 		return ret;
114 
115 	put_unaligned_le32(clk_id, t->tx.buf);
116 	attr = t->rx.buf;
117 
118 	ret = ph->xops->do_xfer(ph, t);
119 	if (!ret)
120 		strlcpy(clk->name, attr->name, SCMI_MAX_STR_SIZE);
121 	else
122 		clk->name[0] = '\0';
123 
124 	ph->xops->xfer_put(ph, t);
125 	return ret;
126 }
127 
128 static int rate_cmp_func(const void *_r1, const void *_r2)
129 {
130 	const u64 *r1 = _r1, *r2 = _r2;
131 
132 	if (*r1 < *r2)
133 		return -1;
134 	else if (*r1 == *r2)
135 		return 0;
136 	else
137 		return 1;
138 }
139 
140 static int
141 scmi_clock_describe_rates_get(const struct scmi_protocol_handle *ph, u32 clk_id,
142 			      struct scmi_clock_info *clk)
143 {
144 	u64 *rate = NULL;
145 	int ret, cnt;
146 	bool rate_discrete = false;
147 	u32 tot_rate_cnt = 0, rates_flag;
148 	u16 num_returned, num_remaining;
149 	struct scmi_xfer *t;
150 	struct scmi_msg_clock_describe_rates *clk_desc;
151 	struct scmi_msg_resp_clock_describe_rates *rlist;
152 
153 	ret = ph->xops->xfer_get_init(ph, CLOCK_DESCRIBE_RATES,
154 				      sizeof(*clk_desc), 0, &t);
155 	if (ret)
156 		return ret;
157 
158 	clk_desc = t->tx.buf;
159 	rlist = t->rx.buf;
160 
161 	do {
162 		clk_desc->id = cpu_to_le32(clk_id);
163 		/* Set the number of rates to be skipped/already read */
164 		clk_desc->rate_index = cpu_to_le32(tot_rate_cnt);
165 
166 		ret = ph->xops->do_xfer(ph, t);
167 		if (ret)
168 			goto err;
169 
170 		rates_flag = le32_to_cpu(rlist->num_rates_flags);
171 		num_remaining = NUM_REMAINING(rates_flag);
172 		rate_discrete = RATE_DISCRETE(rates_flag);
173 		num_returned = NUM_RETURNED(rates_flag);
174 
175 		if (tot_rate_cnt + num_returned > SCMI_MAX_NUM_RATES) {
176 			dev_err(ph->dev, "No. of rates > MAX_NUM_RATES");
177 			break;
178 		}
179 
180 		if (!rate_discrete) {
181 			clk->range.min_rate = RATE_TO_U64(rlist->rate[0]);
182 			clk->range.max_rate = RATE_TO_U64(rlist->rate[1]);
183 			clk->range.step_size = RATE_TO_U64(rlist->rate[2]);
184 			dev_dbg(ph->dev, "Min %llu Max %llu Step %llu Hz\n",
185 				clk->range.min_rate, clk->range.max_rate,
186 				clk->range.step_size);
187 			break;
188 		}
189 
190 		rate = &clk->list.rates[tot_rate_cnt];
191 		for (cnt = 0; cnt < num_returned; cnt++, rate++) {
192 			*rate = RATE_TO_U64(rlist->rate[cnt]);
193 			dev_dbg(ph->dev, "Rate %llu Hz\n", *rate);
194 		}
195 
196 		tot_rate_cnt += num_returned;
197 
198 		ph->xops->reset_rx_to_maxsz(ph, t);
199 		/*
200 		 * check for both returned and remaining to avoid infinite
201 		 * loop due to buggy firmware
202 		 */
203 	} while (num_returned && num_remaining);
204 
205 	if (rate_discrete && rate) {
206 		clk->list.num_rates = tot_rate_cnt;
207 		sort(rate, tot_rate_cnt, sizeof(*rate), rate_cmp_func, NULL);
208 	}
209 
210 	clk->rate_discrete = rate_discrete;
211 
212 err:
213 	ph->xops->xfer_put(ph, t);
214 	return ret;
215 }
216 
217 static int
218 scmi_clock_rate_get(const struct scmi_protocol_handle *ph,
219 		    u32 clk_id, u64 *value)
220 {
221 	int ret;
222 	struct scmi_xfer *t;
223 
224 	ret = ph->xops->xfer_get_init(ph, CLOCK_RATE_GET,
225 				      sizeof(__le32), sizeof(u64), &t);
226 	if (ret)
227 		return ret;
228 
229 	put_unaligned_le32(clk_id, t->tx.buf);
230 
231 	ret = ph->xops->do_xfer(ph, t);
232 	if (!ret)
233 		*value = get_unaligned_le64(t->rx.buf);
234 
235 	ph->xops->xfer_put(ph, t);
236 	return ret;
237 }
238 
239 static int scmi_clock_rate_set(const struct scmi_protocol_handle *ph,
240 			       u32 clk_id, u64 rate)
241 {
242 	int ret;
243 	u32 flags = 0;
244 	struct scmi_xfer *t;
245 	struct scmi_clock_set_rate *cfg;
246 	struct clock_info *ci = ph->get_priv(ph);
247 
248 	ret = ph->xops->xfer_get_init(ph, CLOCK_RATE_SET, sizeof(*cfg), 0, &t);
249 	if (ret)
250 		return ret;
251 
252 	if (ci->max_async_req &&
253 	    atomic_inc_return(&ci->cur_async_req) < ci->max_async_req)
254 		flags |= CLOCK_SET_ASYNC;
255 
256 	cfg = t->tx.buf;
257 	cfg->flags = cpu_to_le32(flags);
258 	cfg->id = cpu_to_le32(clk_id);
259 	cfg->value_low = cpu_to_le32(rate & 0xffffffff);
260 	cfg->value_high = cpu_to_le32(rate >> 32);
261 
262 	if (flags & CLOCK_SET_ASYNC)
263 		ret = ph->xops->do_xfer_with_response(ph, t);
264 	else
265 		ret = ph->xops->do_xfer(ph, t);
266 
267 	if (ci->max_async_req)
268 		atomic_dec(&ci->cur_async_req);
269 
270 	ph->xops->xfer_put(ph, t);
271 	return ret;
272 }
273 
274 static int
275 scmi_clock_config_set(const struct scmi_protocol_handle *ph, u32 clk_id,
276 		      u32 config)
277 {
278 	int ret;
279 	struct scmi_xfer *t;
280 	struct scmi_clock_set_config *cfg;
281 
282 	ret = ph->xops->xfer_get_init(ph, CLOCK_CONFIG_SET,
283 				      sizeof(*cfg), 0, &t);
284 	if (ret)
285 		return ret;
286 
287 	cfg = t->tx.buf;
288 	cfg->id = cpu_to_le32(clk_id);
289 	cfg->attributes = cpu_to_le32(config);
290 
291 	ret = ph->xops->do_xfer(ph, t);
292 
293 	ph->xops->xfer_put(ph, t);
294 	return ret;
295 }
296 
297 static int scmi_clock_enable(const struct scmi_protocol_handle *ph, u32 clk_id)
298 {
299 	return scmi_clock_config_set(ph, clk_id, CLOCK_ENABLE);
300 }
301 
302 static int scmi_clock_disable(const struct scmi_protocol_handle *ph, u32 clk_id)
303 {
304 	return scmi_clock_config_set(ph, clk_id, 0);
305 }
306 
307 static int scmi_clock_count_get(const struct scmi_protocol_handle *ph)
308 {
309 	struct clock_info *ci = ph->get_priv(ph);
310 
311 	return ci->num_clocks;
312 }
313 
314 static const struct scmi_clock_info *
315 scmi_clock_info_get(const struct scmi_protocol_handle *ph, u32 clk_id)
316 {
317 	struct clock_info *ci = ph->get_priv(ph);
318 	struct scmi_clock_info *clk = ci->clk + clk_id;
319 
320 	if (!clk->name[0])
321 		return NULL;
322 
323 	return clk;
324 }
325 
326 static const struct scmi_clk_proto_ops clk_proto_ops = {
327 	.count_get = scmi_clock_count_get,
328 	.info_get = scmi_clock_info_get,
329 	.rate_get = scmi_clock_rate_get,
330 	.rate_set = scmi_clock_rate_set,
331 	.enable = scmi_clock_enable,
332 	.disable = scmi_clock_disable,
333 };
334 
335 static int scmi_clock_protocol_init(const struct scmi_protocol_handle *ph)
336 {
337 	u32 version;
338 	int clkid, ret;
339 	struct clock_info *cinfo;
340 
341 	ph->xops->version_get(ph, &version);
342 
343 	dev_dbg(ph->dev, "Clock Version %d.%d\n",
344 		PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
345 
346 	cinfo = devm_kzalloc(ph->dev, sizeof(*cinfo), GFP_KERNEL);
347 	if (!cinfo)
348 		return -ENOMEM;
349 
350 	scmi_clock_protocol_attributes_get(ph, cinfo);
351 
352 	cinfo->clk = devm_kcalloc(ph->dev, cinfo->num_clocks,
353 				  sizeof(*cinfo->clk), GFP_KERNEL);
354 	if (!cinfo->clk)
355 		return -ENOMEM;
356 
357 	for (clkid = 0; clkid < cinfo->num_clocks; clkid++) {
358 		struct scmi_clock_info *clk = cinfo->clk + clkid;
359 
360 		ret = scmi_clock_attributes_get(ph, clkid, clk);
361 		if (!ret)
362 			scmi_clock_describe_rates_get(ph, clkid, clk);
363 	}
364 
365 	cinfo->version = version;
366 	return ph->set_priv(ph, cinfo);
367 }
368 
369 static const struct scmi_protocol scmi_clock = {
370 	.id = SCMI_PROTOCOL_CLOCK,
371 	.owner = THIS_MODULE,
372 	.instance_init = &scmi_clock_protocol_init,
373 	.ops = &clk_proto_ops,
374 };
375 
376 DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(clock, scmi_clock)
377