1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Arm Firmware Framework for ARMv8-A(FFA) interface driver 4 * 5 * The Arm FFA specification[1] describes a software architecture to 6 * leverages the virtualization extension to isolate software images 7 * provided by an ecosystem of vendors from each other and describes 8 * interfaces that standardize communication between the various software 9 * images including communication between images in the Secure world and 10 * Normal world. Any Hypervisor could use the FFA interfaces to enable 11 * communication between VMs it manages. 12 * 13 * The Hypervisor a.k.a Partition managers in FFA terminology can assign 14 * system resources(Memory regions, Devices, CPU cycles) to the partitions 15 * and manage isolation amongst them. 16 * 17 * [1] https://developer.arm.com/docs/den0077/latest 18 * 19 * Copyright (C) 2021 ARM Ltd. 20 */ 21 22 #define DRIVER_NAME "ARM FF-A" 23 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 24 25 #include <linux/arm_ffa.h> 26 #include <linux/bitfield.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 #include <linux/mm.h> 32 #include <linux/scatterlist.h> 33 #include <linux/slab.h> 34 #include <linux/uuid.h> 35 36 #include "common.h" 37 38 #define FFA_DRIVER_VERSION FFA_VERSION_1_0 39 #define FFA_MIN_VERSION FFA_VERSION_1_0 40 41 #define SENDER_ID_MASK GENMASK(31, 16) 42 #define RECEIVER_ID_MASK GENMASK(15, 0) 43 #define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x)))) 44 #define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x)))) 45 #define PACK_TARGET_INFO(s, r) \ 46 (FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r))) 47 48 /* 49 * Keeping RX TX buffer size as 4K for now 50 * 64K may be preferred to keep it min a page in 64K PAGE_SIZE config 51 */ 52 #define RXTX_BUFFER_SIZE SZ_4K 53 54 static ffa_fn *invoke_ffa_fn; 55 56 static const int ffa_linux_errmap[] = { 57 /* better than switch case as long as return value is continuous */ 58 0, /* FFA_RET_SUCCESS */ 59 -EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */ 60 -EINVAL, /* FFA_RET_INVALID_PARAMETERS */ 61 -ENOMEM, /* FFA_RET_NO_MEMORY */ 62 -EBUSY, /* FFA_RET_BUSY */ 63 -EINTR, /* FFA_RET_INTERRUPTED */ 64 -EACCES, /* FFA_RET_DENIED */ 65 -EAGAIN, /* FFA_RET_RETRY */ 66 -ECANCELED, /* FFA_RET_ABORTED */ 67 }; 68 69 static inline int ffa_to_linux_errno(int errno) 70 { 71 int err_idx = -errno; 72 73 if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap)) 74 return ffa_linux_errmap[err_idx]; 75 return -EINVAL; 76 } 77 78 struct ffa_drv_info { 79 u32 version; 80 u16 vm_id; 81 struct mutex rx_lock; /* lock to protect Rx buffer */ 82 struct mutex tx_lock; /* lock to protect Tx buffer */ 83 void *rx_buffer; 84 void *tx_buffer; 85 bool mem_ops_native; 86 }; 87 88 static struct ffa_drv_info *drv_info; 89 90 /* 91 * The driver must be able to support all the versions from the earliest 92 * supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION. 93 * The specification states that if firmware supports a FFA implementation 94 * that is incompatible with and at a greater version number than specified 95 * by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION), 96 * it must return the NOT_SUPPORTED error code. 97 */ 98 static u32 ffa_compatible_version_find(u32 version) 99 { 100 u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version); 101 u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION); 102 u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION); 103 104 if ((major < drv_major) || (major == drv_major && minor <= drv_minor)) 105 return version; 106 107 pr_info("Firmware version higher than driver version, downgrading\n"); 108 return FFA_DRIVER_VERSION; 109 } 110 111 static int ffa_version_check(u32 *version) 112 { 113 ffa_value_t ver; 114 115 invoke_ffa_fn((ffa_value_t){ 116 .a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION, 117 }, &ver); 118 119 if (ver.a0 == FFA_RET_NOT_SUPPORTED) { 120 pr_info("FFA_VERSION returned not supported\n"); 121 return -EOPNOTSUPP; 122 } 123 124 if (ver.a0 < FFA_MIN_VERSION) { 125 pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n", 126 FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0), 127 FFA_MAJOR_VERSION(FFA_MIN_VERSION), 128 FFA_MINOR_VERSION(FFA_MIN_VERSION)); 129 return -EINVAL; 130 } 131 132 pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION), 133 FFA_MINOR_VERSION(FFA_DRIVER_VERSION)); 134 pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0), 135 FFA_MINOR_VERSION(ver.a0)); 136 *version = ffa_compatible_version_find(ver.a0); 137 138 return 0; 139 } 140 141 static int ffa_rx_release(void) 142 { 143 ffa_value_t ret; 144 145 invoke_ffa_fn((ffa_value_t){ 146 .a0 = FFA_RX_RELEASE, 147 }, &ret); 148 149 if (ret.a0 == FFA_ERROR) 150 return ffa_to_linux_errno((int)ret.a2); 151 152 /* check for ret.a0 == FFA_RX_RELEASE ? */ 153 154 return 0; 155 } 156 157 static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt) 158 { 159 ffa_value_t ret; 160 161 invoke_ffa_fn((ffa_value_t){ 162 .a0 = FFA_FN_NATIVE(RXTX_MAP), 163 .a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt, 164 }, &ret); 165 166 if (ret.a0 == FFA_ERROR) 167 return ffa_to_linux_errno((int)ret.a2); 168 169 return 0; 170 } 171 172 static int ffa_rxtx_unmap(u16 vm_id) 173 { 174 ffa_value_t ret; 175 176 invoke_ffa_fn((ffa_value_t){ 177 .a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0), 178 }, &ret); 179 180 if (ret.a0 == FFA_ERROR) 181 return ffa_to_linux_errno((int)ret.a2); 182 183 return 0; 184 } 185 186 #define PARTITION_INFO_GET_RETURN_COUNT_ONLY BIT(0) 187 188 /* buffer must be sizeof(struct ffa_partition_info) * num_partitions */ 189 static int 190 __ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3, 191 struct ffa_partition_info *buffer, int num_partitions) 192 { 193 int idx, count, flags = 0, sz, buf_sz; 194 ffa_value_t partition_info; 195 196 if (drv_info->version > FFA_VERSION_1_0 && 197 (!buffer || !num_partitions)) /* Just get the count for now */ 198 flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY; 199 200 mutex_lock(&drv_info->rx_lock); 201 invoke_ffa_fn((ffa_value_t){ 202 .a0 = FFA_PARTITION_INFO_GET, 203 .a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3, 204 .a5 = flags, 205 }, &partition_info); 206 207 if (partition_info.a0 == FFA_ERROR) { 208 mutex_unlock(&drv_info->rx_lock); 209 return ffa_to_linux_errno((int)partition_info.a2); 210 } 211 212 count = partition_info.a2; 213 214 if (drv_info->version > FFA_VERSION_1_0) { 215 buf_sz = sz = partition_info.a3; 216 if (sz > sizeof(*buffer)) 217 buf_sz = sizeof(*buffer); 218 } else { 219 /* FFA_VERSION_1_0 lacks size in the response */ 220 buf_sz = sz = 8; 221 } 222 223 if (buffer && count <= num_partitions) 224 for (idx = 0; idx < count; idx++) 225 memcpy(buffer + idx, drv_info->rx_buffer + idx * sz, 226 buf_sz); 227 228 ffa_rx_release(); 229 230 mutex_unlock(&drv_info->rx_lock); 231 232 return count; 233 } 234 235 /* buffer is allocated and caller must free the same if returned count > 0 */ 236 static int 237 ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer) 238 { 239 int count; 240 u32 uuid0_4[4]; 241 struct ffa_partition_info *pbuf; 242 243 export_uuid((u8 *)uuid0_4, uuid); 244 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2], 245 uuid0_4[3], NULL, 0); 246 if (count <= 0) 247 return count; 248 249 pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL); 250 if (!pbuf) 251 return -ENOMEM; 252 253 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2], 254 uuid0_4[3], pbuf, count); 255 if (count <= 0) 256 kfree(pbuf); 257 else 258 *buffer = pbuf; 259 260 return count; 261 } 262 263 #define VM_ID_MASK GENMASK(15, 0) 264 static int ffa_id_get(u16 *vm_id) 265 { 266 ffa_value_t id; 267 268 invoke_ffa_fn((ffa_value_t){ 269 .a0 = FFA_ID_GET, 270 }, &id); 271 272 if (id.a0 == FFA_ERROR) 273 return ffa_to_linux_errno((int)id.a2); 274 275 *vm_id = FIELD_GET(VM_ID_MASK, (id.a2)); 276 277 return 0; 278 } 279 280 static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit, 281 struct ffa_send_direct_data *data) 282 { 283 u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id); 284 ffa_value_t ret; 285 286 if (mode_32bit) { 287 req_id = FFA_MSG_SEND_DIRECT_REQ; 288 resp_id = FFA_MSG_SEND_DIRECT_RESP; 289 } else { 290 req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ); 291 resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP); 292 } 293 294 invoke_ffa_fn((ffa_value_t){ 295 .a0 = req_id, .a1 = src_dst_ids, .a2 = 0, 296 .a3 = data->data0, .a4 = data->data1, .a5 = data->data2, 297 .a6 = data->data3, .a7 = data->data4, 298 }, &ret); 299 300 while (ret.a0 == FFA_INTERRUPT) 301 invoke_ffa_fn((ffa_value_t){ 302 .a0 = FFA_RUN, .a1 = ret.a1, 303 }, &ret); 304 305 if (ret.a0 == FFA_ERROR) 306 return ffa_to_linux_errno((int)ret.a2); 307 308 if (ret.a0 == resp_id) { 309 data->data0 = ret.a3; 310 data->data1 = ret.a4; 311 data->data2 = ret.a5; 312 data->data3 = ret.a6; 313 data->data4 = ret.a7; 314 return 0; 315 } 316 317 return -EINVAL; 318 } 319 320 static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz, 321 u32 frag_len, u32 len, u64 *handle) 322 { 323 ffa_value_t ret; 324 325 invoke_ffa_fn((ffa_value_t){ 326 .a0 = func_id, .a1 = len, .a2 = frag_len, 327 .a3 = buf, .a4 = buf_sz, 328 }, &ret); 329 330 while (ret.a0 == FFA_MEM_OP_PAUSE) 331 invoke_ffa_fn((ffa_value_t){ 332 .a0 = FFA_MEM_OP_RESUME, 333 .a1 = ret.a1, .a2 = ret.a2, 334 }, &ret); 335 336 if (ret.a0 == FFA_ERROR) 337 return ffa_to_linux_errno((int)ret.a2); 338 339 if (ret.a0 == FFA_SUCCESS) { 340 if (handle) 341 *handle = PACK_HANDLE(ret.a2, ret.a3); 342 } else if (ret.a0 == FFA_MEM_FRAG_RX) { 343 if (handle) 344 *handle = PACK_HANDLE(ret.a1, ret.a2); 345 } else { 346 return -EOPNOTSUPP; 347 } 348 349 return frag_len; 350 } 351 352 static int ffa_mem_next_frag(u64 handle, u32 frag_len) 353 { 354 ffa_value_t ret; 355 356 invoke_ffa_fn((ffa_value_t){ 357 .a0 = FFA_MEM_FRAG_TX, 358 .a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle), 359 .a3 = frag_len, 360 }, &ret); 361 362 while (ret.a0 == FFA_MEM_OP_PAUSE) 363 invoke_ffa_fn((ffa_value_t){ 364 .a0 = FFA_MEM_OP_RESUME, 365 .a1 = ret.a1, .a2 = ret.a2, 366 }, &ret); 367 368 if (ret.a0 == FFA_ERROR) 369 return ffa_to_linux_errno((int)ret.a2); 370 371 if (ret.a0 == FFA_MEM_FRAG_RX) 372 return ret.a3; 373 else if (ret.a0 == FFA_SUCCESS) 374 return 0; 375 376 return -EOPNOTSUPP; 377 } 378 379 static int 380 ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len, 381 u32 len, u64 *handle, bool first) 382 { 383 if (!first) 384 return ffa_mem_next_frag(*handle, frag_len); 385 386 return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle); 387 } 388 389 static u32 ffa_get_num_pages_sg(struct scatterlist *sg) 390 { 391 u32 num_pages = 0; 392 393 do { 394 num_pages += sg->length / FFA_PAGE_SIZE; 395 } while ((sg = sg_next(sg))); 396 397 return num_pages; 398 } 399 400 static int 401 ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize, 402 struct ffa_mem_ops_args *args) 403 { 404 int rc = 0; 405 bool first = true; 406 phys_addr_t addr = 0; 407 struct ffa_composite_mem_region *composite; 408 struct ffa_mem_region_addr_range *constituents; 409 struct ffa_mem_region_attributes *ep_mem_access; 410 struct ffa_mem_region *mem_region = buffer; 411 u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg); 412 413 mem_region->tag = args->tag; 414 mem_region->flags = args->flags; 415 mem_region->sender_id = drv_info->vm_id; 416 mem_region->attributes = FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | 417 FFA_MEM_INNER_SHAREABLE; 418 ep_mem_access = &mem_region->ep_mem_access[0]; 419 420 for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) { 421 ep_mem_access->receiver = args->attrs[idx].receiver; 422 ep_mem_access->attrs = args->attrs[idx].attrs; 423 ep_mem_access->composite_off = COMPOSITE_OFFSET(args->nattrs); 424 ep_mem_access->flag = 0; 425 ep_mem_access->reserved = 0; 426 } 427 mem_region->reserved_0 = 0; 428 mem_region->reserved_1 = 0; 429 mem_region->ep_count = args->nattrs; 430 431 composite = buffer + COMPOSITE_OFFSET(args->nattrs); 432 composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg); 433 composite->addr_range_cnt = num_entries; 434 composite->reserved = 0; 435 436 length = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, num_entries); 437 frag_len = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, 0); 438 if (frag_len > max_fragsize) 439 return -ENXIO; 440 441 if (!args->use_txbuf) { 442 addr = virt_to_phys(buffer); 443 buf_sz = max_fragsize / FFA_PAGE_SIZE; 444 } 445 446 constituents = buffer + frag_len; 447 idx = 0; 448 do { 449 if (frag_len == max_fragsize) { 450 rc = ffa_transmit_fragment(func_id, addr, buf_sz, 451 frag_len, length, 452 &args->g_handle, first); 453 if (rc < 0) 454 return -ENXIO; 455 456 first = false; 457 idx = 0; 458 frag_len = 0; 459 constituents = buffer; 460 } 461 462 if ((void *)constituents - buffer > max_fragsize) { 463 pr_err("Memory Region Fragment > Tx Buffer size\n"); 464 return -EFAULT; 465 } 466 467 constituents->address = sg_phys(args->sg); 468 constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE; 469 constituents->reserved = 0; 470 constituents++; 471 frag_len += sizeof(struct ffa_mem_region_addr_range); 472 } while ((args->sg = sg_next(args->sg))); 473 474 return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len, 475 length, &args->g_handle, first); 476 } 477 478 static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args) 479 { 480 int ret; 481 void *buffer; 482 483 if (!args->use_txbuf) { 484 buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); 485 if (!buffer) 486 return -ENOMEM; 487 } else { 488 buffer = drv_info->tx_buffer; 489 mutex_lock(&drv_info->tx_lock); 490 } 491 492 ret = ffa_setup_and_transmit(func_id, buffer, RXTX_BUFFER_SIZE, args); 493 494 if (args->use_txbuf) 495 mutex_unlock(&drv_info->tx_lock); 496 else 497 free_pages_exact(buffer, RXTX_BUFFER_SIZE); 498 499 return ret < 0 ? ret : 0; 500 } 501 502 static int ffa_memory_reclaim(u64 g_handle, u32 flags) 503 { 504 ffa_value_t ret; 505 506 invoke_ffa_fn((ffa_value_t){ 507 .a0 = FFA_MEM_RECLAIM, 508 .a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle), 509 .a3 = flags, 510 }, &ret); 511 512 if (ret.a0 == FFA_ERROR) 513 return ffa_to_linux_errno((int)ret.a2); 514 515 return 0; 516 } 517 518 static int ffa_features(u32 func_feat_id, u32 input_props, 519 u32 *if_props_1, u32 *if_props_2) 520 { 521 ffa_value_t id; 522 523 if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) { 524 pr_err("%s: Invalid Parameters: %x, %x", __func__, 525 func_feat_id, input_props); 526 return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS); 527 } 528 529 invoke_ffa_fn((ffa_value_t){ 530 .a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props, 531 }, &id); 532 533 if (id.a0 == FFA_ERROR) 534 return ffa_to_linux_errno((int)id.a2); 535 536 if (if_props_1) 537 *if_props_1 = id.a2; 538 if (if_props_2) 539 *if_props_2 = id.a3; 540 541 return 0; 542 } 543 544 static void ffa_set_up_mem_ops_native_flag(void) 545 { 546 if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) || 547 !ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL)) 548 drv_info->mem_ops_native = true; 549 } 550 551 static u32 ffa_api_version_get(void) 552 { 553 return drv_info->version; 554 } 555 556 static int ffa_partition_info_get(const char *uuid_str, 557 struct ffa_partition_info *buffer) 558 { 559 int count; 560 uuid_t uuid; 561 struct ffa_partition_info *pbuf; 562 563 if (uuid_parse(uuid_str, &uuid)) { 564 pr_err("invalid uuid (%s)\n", uuid_str); 565 return -ENODEV; 566 } 567 568 count = ffa_partition_probe(&uuid, &pbuf); 569 if (count <= 0) 570 return -ENOENT; 571 572 memcpy(buffer, pbuf, sizeof(*pbuf) * count); 573 kfree(pbuf); 574 return 0; 575 } 576 577 static void _ffa_mode_32bit_set(struct ffa_device *dev) 578 { 579 dev->mode_32bit = true; 580 } 581 582 static void ffa_mode_32bit_set(struct ffa_device *dev) 583 { 584 if (drv_info->version > FFA_VERSION_1_0) 585 return; 586 587 _ffa_mode_32bit_set(dev); 588 } 589 590 static int ffa_sync_send_receive(struct ffa_device *dev, 591 struct ffa_send_direct_data *data) 592 { 593 return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id, 594 dev->mode_32bit, data); 595 } 596 597 static int ffa_memory_share(struct ffa_mem_ops_args *args) 598 { 599 if (drv_info->mem_ops_native) 600 return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args); 601 602 return ffa_memory_ops(FFA_MEM_SHARE, args); 603 } 604 605 static int ffa_memory_lend(struct ffa_mem_ops_args *args) 606 { 607 /* Note that upon a successful MEM_LEND request the caller 608 * must ensure that the memory region specified is not accessed 609 * until a successful MEM_RECALIM call has been made. 610 * On systems with a hypervisor present this will been enforced, 611 * however on systems without a hypervisor the responsibility 612 * falls to the calling kernel driver to prevent access. 613 */ 614 if (drv_info->mem_ops_native) 615 return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args); 616 617 return ffa_memory_ops(FFA_MEM_LEND, args); 618 } 619 620 static const struct ffa_info_ops ffa_drv_info_ops = { 621 .api_version_get = ffa_api_version_get, 622 .partition_info_get = ffa_partition_info_get, 623 }; 624 625 static const struct ffa_msg_ops ffa_drv_msg_ops = { 626 .mode_32bit_set = ffa_mode_32bit_set, 627 .sync_send_receive = ffa_sync_send_receive, 628 }; 629 630 static const struct ffa_mem_ops ffa_drv_mem_ops = { 631 .memory_reclaim = ffa_memory_reclaim, 632 .memory_share = ffa_memory_share, 633 .memory_lend = ffa_memory_lend, 634 }; 635 636 static const struct ffa_ops ffa_drv_ops = { 637 .info_ops = &ffa_drv_info_ops, 638 .msg_ops = &ffa_drv_msg_ops, 639 .mem_ops = &ffa_drv_mem_ops, 640 }; 641 642 void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid) 643 { 644 int count, idx; 645 struct ffa_partition_info *pbuf, *tpbuf; 646 647 /* 648 * FF-A v1.1 provides UUID for each partition as part of the discovery 649 * API, the discovered UUID must be populated in the device's UUID and 650 * there is no need to copy the same from the driver table. 651 */ 652 if (drv_info->version > FFA_VERSION_1_0) 653 return; 654 655 count = ffa_partition_probe(uuid, &pbuf); 656 if (count <= 0) 657 return; 658 659 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) 660 if (tpbuf->id == ffa_dev->vm_id) 661 uuid_copy(&ffa_dev->uuid, uuid); 662 kfree(pbuf); 663 } 664 665 static void ffa_setup_partitions(void) 666 { 667 int count, idx; 668 uuid_t uuid; 669 struct ffa_device *ffa_dev; 670 struct ffa_partition_info *pbuf, *tpbuf; 671 672 count = ffa_partition_probe(&uuid_null, &pbuf); 673 if (count <= 0) { 674 pr_info("%s: No partitions found, error %d\n", __func__, count); 675 return; 676 } 677 678 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) { 679 import_uuid(&uuid, (u8 *)tpbuf->uuid); 680 681 /* Note that if the UUID will be uuid_null, that will require 682 * ffa_device_match() to find the UUID of this partition id 683 * with help of ffa_device_match_uuid(). FF-A v1.1 and above 684 * provides UUID here for each partition as part of the 685 * discovery API and the same is passed. 686 */ 687 ffa_dev = ffa_device_register(&uuid, tpbuf->id, &ffa_drv_ops); 688 if (!ffa_dev) { 689 pr_err("%s: failed to register partition ID 0x%x\n", 690 __func__, tpbuf->id); 691 continue; 692 } 693 694 if (drv_info->version > FFA_VERSION_1_0 && 695 !(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC)) 696 _ffa_mode_32bit_set(ffa_dev); 697 } 698 kfree(pbuf); 699 } 700 701 static int __init ffa_init(void) 702 { 703 int ret; 704 705 ret = ffa_transport_init(&invoke_ffa_fn); 706 if (ret) 707 return ret; 708 709 ret = arm_ffa_bus_init(); 710 if (ret) 711 return ret; 712 713 drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL); 714 if (!drv_info) { 715 ret = -ENOMEM; 716 goto ffa_bus_exit; 717 } 718 719 ret = ffa_version_check(&drv_info->version); 720 if (ret) 721 goto free_drv_info; 722 723 if (ffa_id_get(&drv_info->vm_id)) { 724 pr_err("failed to obtain VM id for self\n"); 725 ret = -ENODEV; 726 goto free_drv_info; 727 } 728 729 drv_info->rx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); 730 if (!drv_info->rx_buffer) { 731 ret = -ENOMEM; 732 goto free_pages; 733 } 734 735 drv_info->tx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); 736 if (!drv_info->tx_buffer) { 737 ret = -ENOMEM; 738 goto free_pages; 739 } 740 741 ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer), 742 virt_to_phys(drv_info->rx_buffer), 743 RXTX_BUFFER_SIZE / FFA_PAGE_SIZE); 744 if (ret) { 745 pr_err("failed to register FFA RxTx buffers\n"); 746 goto free_pages; 747 } 748 749 mutex_init(&drv_info->rx_lock); 750 mutex_init(&drv_info->tx_lock); 751 752 ffa_setup_partitions(); 753 754 ffa_set_up_mem_ops_native_flag(); 755 756 return 0; 757 free_pages: 758 if (drv_info->tx_buffer) 759 free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE); 760 free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE); 761 free_drv_info: 762 kfree(drv_info); 763 ffa_bus_exit: 764 arm_ffa_bus_exit(); 765 return ret; 766 } 767 subsys_initcall(ffa_init); 768 769 static void __exit ffa_exit(void) 770 { 771 ffa_rxtx_unmap(drv_info->vm_id); 772 free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE); 773 free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE); 774 kfree(drv_info); 775 arm_ffa_bus_exit(); 776 } 777 module_exit(ffa_exit); 778 779 MODULE_ALIAS("arm-ffa"); 780 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 781 MODULE_DESCRIPTION("Arm FF-A interface driver"); 782 MODULE_LICENSE("GPL v2"); 783