1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Arm Firmware Framework for ARMv8-A(FFA) interface driver 4 * 5 * The Arm FFA specification[1] describes a software architecture to 6 * leverages the virtualization extension to isolate software images 7 * provided by an ecosystem of vendors from each other and describes 8 * interfaces that standardize communication between the various software 9 * images including communication between images in the Secure world and 10 * Normal world. Any Hypervisor could use the FFA interfaces to enable 11 * communication between VMs it manages. 12 * 13 * The Hypervisor a.k.a Partition managers in FFA terminology can assign 14 * system resources(Memory regions, Devices, CPU cycles) to the partitions 15 * and manage isolation amongst them. 16 * 17 * [1] https://developer.arm.com/docs/den0077/latest 18 * 19 * Copyright (C) 2021 ARM Ltd. 20 */ 21 22 #define DRIVER_NAME "ARM FF-A" 23 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 24 25 #include <linux/arm_ffa.h> 26 #include <linux/bitfield.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 #include <linux/mm.h> 32 #include <linux/scatterlist.h> 33 #include <linux/slab.h> 34 #include <linux/uuid.h> 35 36 #include "common.h" 37 38 #define FFA_DRIVER_VERSION FFA_VERSION_1_0 39 #define FFA_MIN_VERSION FFA_VERSION_1_0 40 41 #define SENDER_ID_MASK GENMASK(31, 16) 42 #define RECEIVER_ID_MASK GENMASK(15, 0) 43 #define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x)))) 44 #define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x)))) 45 #define PACK_TARGET_INFO(s, r) \ 46 (FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r))) 47 48 /* 49 * Keeping RX TX buffer size as 4K for now 50 * 64K may be preferred to keep it min a page in 64K PAGE_SIZE config 51 */ 52 #define RXTX_BUFFER_SIZE SZ_4K 53 54 static ffa_fn *invoke_ffa_fn; 55 56 static const int ffa_linux_errmap[] = { 57 /* better than switch case as long as return value is continuous */ 58 0, /* FFA_RET_SUCCESS */ 59 -EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */ 60 -EINVAL, /* FFA_RET_INVALID_PARAMETERS */ 61 -ENOMEM, /* FFA_RET_NO_MEMORY */ 62 -EBUSY, /* FFA_RET_BUSY */ 63 -EINTR, /* FFA_RET_INTERRUPTED */ 64 -EACCES, /* FFA_RET_DENIED */ 65 -EAGAIN, /* FFA_RET_RETRY */ 66 -ECANCELED, /* FFA_RET_ABORTED */ 67 }; 68 69 static inline int ffa_to_linux_errno(int errno) 70 { 71 int err_idx = -errno; 72 73 if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap)) 74 return ffa_linux_errmap[err_idx]; 75 return -EINVAL; 76 } 77 78 struct ffa_drv_info { 79 u32 version; 80 u16 vm_id; 81 struct mutex rx_lock; /* lock to protect Rx buffer */ 82 struct mutex tx_lock; /* lock to protect Tx buffer */ 83 void *rx_buffer; 84 void *tx_buffer; 85 bool mem_ops_native; 86 }; 87 88 static struct ffa_drv_info *drv_info; 89 90 /* 91 * The driver must be able to support all the versions from the earliest 92 * supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION. 93 * The specification states that if firmware supports a FFA implementation 94 * that is incompatible with and at a greater version number than specified 95 * by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION), 96 * it must return the NOT_SUPPORTED error code. 97 */ 98 static u32 ffa_compatible_version_find(u32 version) 99 { 100 u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version); 101 u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION); 102 u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION); 103 104 if ((major < drv_major) || (major == drv_major && minor <= drv_minor)) 105 return version; 106 107 pr_info("Firmware version higher than driver version, downgrading\n"); 108 return FFA_DRIVER_VERSION; 109 } 110 111 static int ffa_version_check(u32 *version) 112 { 113 ffa_value_t ver; 114 115 invoke_ffa_fn((ffa_value_t){ 116 .a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION, 117 }, &ver); 118 119 if (ver.a0 == FFA_RET_NOT_SUPPORTED) { 120 pr_info("FFA_VERSION returned not supported\n"); 121 return -EOPNOTSUPP; 122 } 123 124 if (ver.a0 < FFA_MIN_VERSION) { 125 pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n", 126 FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0), 127 FFA_MAJOR_VERSION(FFA_MIN_VERSION), 128 FFA_MINOR_VERSION(FFA_MIN_VERSION)); 129 return -EINVAL; 130 } 131 132 pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION), 133 FFA_MINOR_VERSION(FFA_DRIVER_VERSION)); 134 pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0), 135 FFA_MINOR_VERSION(ver.a0)); 136 *version = ffa_compatible_version_find(ver.a0); 137 138 return 0; 139 } 140 141 static int ffa_rx_release(void) 142 { 143 ffa_value_t ret; 144 145 invoke_ffa_fn((ffa_value_t){ 146 .a0 = FFA_RX_RELEASE, 147 }, &ret); 148 149 if (ret.a0 == FFA_ERROR) 150 return ffa_to_linux_errno((int)ret.a2); 151 152 /* check for ret.a0 == FFA_RX_RELEASE ? */ 153 154 return 0; 155 } 156 157 static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt) 158 { 159 ffa_value_t ret; 160 161 invoke_ffa_fn((ffa_value_t){ 162 .a0 = FFA_FN_NATIVE(RXTX_MAP), 163 .a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt, 164 }, &ret); 165 166 if (ret.a0 == FFA_ERROR) 167 return ffa_to_linux_errno((int)ret.a2); 168 169 return 0; 170 } 171 172 static int ffa_rxtx_unmap(u16 vm_id) 173 { 174 ffa_value_t ret; 175 176 invoke_ffa_fn((ffa_value_t){ 177 .a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0), 178 }, &ret); 179 180 if (ret.a0 == FFA_ERROR) 181 return ffa_to_linux_errno((int)ret.a2); 182 183 return 0; 184 } 185 186 #define PARTITION_INFO_GET_RETURN_COUNT_ONLY BIT(0) 187 188 /* buffer must be sizeof(struct ffa_partition_info) * num_partitions */ 189 static int 190 __ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3, 191 struct ffa_partition_info *buffer, int num_partitions) 192 { 193 int idx, count, flags = 0, sz, buf_sz; 194 ffa_value_t partition_info; 195 196 if (!buffer || !num_partitions) /* Just get the count for now */ 197 flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY; 198 199 mutex_lock(&drv_info->rx_lock); 200 invoke_ffa_fn((ffa_value_t){ 201 .a0 = FFA_PARTITION_INFO_GET, 202 .a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3, 203 .a5 = flags, 204 }, &partition_info); 205 206 if (partition_info.a0 == FFA_ERROR) { 207 mutex_unlock(&drv_info->rx_lock); 208 return ffa_to_linux_errno((int)partition_info.a2); 209 } 210 211 count = partition_info.a2; 212 213 if (drv_info->version > FFA_VERSION_1_0) { 214 buf_sz = sz = partition_info.a3; 215 if (sz > sizeof(*buffer)) 216 buf_sz = sizeof(*buffer); 217 } else { 218 /* FFA_VERSION_1_0 lacks size in the response */ 219 buf_sz = sz = 8; 220 } 221 222 if (buffer && count <= num_partitions) 223 for (idx = 0; idx < count; idx++) 224 memcpy(buffer + idx, drv_info->rx_buffer + idx * sz, 225 buf_sz); 226 227 ffa_rx_release(); 228 229 mutex_unlock(&drv_info->rx_lock); 230 231 return count; 232 } 233 234 /* buffer is allocated and caller must free the same if returned count > 0 */ 235 static int 236 ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer) 237 { 238 int count; 239 u32 uuid0_4[4]; 240 struct ffa_partition_info *pbuf; 241 242 export_uuid((u8 *)uuid0_4, uuid); 243 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2], 244 uuid0_4[3], NULL, 0); 245 if (count <= 0) 246 return count; 247 248 pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL); 249 if (!pbuf) 250 return -ENOMEM; 251 252 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2], 253 uuid0_4[3], pbuf, count); 254 if (count <= 0) 255 kfree(pbuf); 256 else 257 *buffer = pbuf; 258 259 return count; 260 } 261 262 #define VM_ID_MASK GENMASK(15, 0) 263 static int ffa_id_get(u16 *vm_id) 264 { 265 ffa_value_t id; 266 267 invoke_ffa_fn((ffa_value_t){ 268 .a0 = FFA_ID_GET, 269 }, &id); 270 271 if (id.a0 == FFA_ERROR) 272 return ffa_to_linux_errno((int)id.a2); 273 274 *vm_id = FIELD_GET(VM_ID_MASK, (id.a2)); 275 276 return 0; 277 } 278 279 static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit, 280 struct ffa_send_direct_data *data) 281 { 282 u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id); 283 ffa_value_t ret; 284 285 if (mode_32bit) { 286 req_id = FFA_MSG_SEND_DIRECT_REQ; 287 resp_id = FFA_MSG_SEND_DIRECT_RESP; 288 } else { 289 req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ); 290 resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP); 291 } 292 293 invoke_ffa_fn((ffa_value_t){ 294 .a0 = req_id, .a1 = src_dst_ids, .a2 = 0, 295 .a3 = data->data0, .a4 = data->data1, .a5 = data->data2, 296 .a6 = data->data3, .a7 = data->data4, 297 }, &ret); 298 299 while (ret.a0 == FFA_INTERRUPT) 300 invoke_ffa_fn((ffa_value_t){ 301 .a0 = FFA_RUN, .a1 = ret.a1, 302 }, &ret); 303 304 if (ret.a0 == FFA_ERROR) 305 return ffa_to_linux_errno((int)ret.a2); 306 307 if (ret.a0 == resp_id) { 308 data->data0 = ret.a3; 309 data->data1 = ret.a4; 310 data->data2 = ret.a5; 311 data->data3 = ret.a6; 312 data->data4 = ret.a7; 313 return 0; 314 } 315 316 return -EINVAL; 317 } 318 319 static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz, 320 u32 frag_len, u32 len, u64 *handle) 321 { 322 ffa_value_t ret; 323 324 invoke_ffa_fn((ffa_value_t){ 325 .a0 = func_id, .a1 = len, .a2 = frag_len, 326 .a3 = buf, .a4 = buf_sz, 327 }, &ret); 328 329 while (ret.a0 == FFA_MEM_OP_PAUSE) 330 invoke_ffa_fn((ffa_value_t){ 331 .a0 = FFA_MEM_OP_RESUME, 332 .a1 = ret.a1, .a2 = ret.a2, 333 }, &ret); 334 335 if (ret.a0 == FFA_ERROR) 336 return ffa_to_linux_errno((int)ret.a2); 337 338 if (ret.a0 == FFA_SUCCESS) { 339 if (handle) 340 *handle = PACK_HANDLE(ret.a2, ret.a3); 341 } else if (ret.a0 == FFA_MEM_FRAG_RX) { 342 if (handle) 343 *handle = PACK_HANDLE(ret.a1, ret.a2); 344 } else { 345 return -EOPNOTSUPP; 346 } 347 348 return frag_len; 349 } 350 351 static int ffa_mem_next_frag(u64 handle, u32 frag_len) 352 { 353 ffa_value_t ret; 354 355 invoke_ffa_fn((ffa_value_t){ 356 .a0 = FFA_MEM_FRAG_TX, 357 .a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle), 358 .a3 = frag_len, 359 }, &ret); 360 361 while (ret.a0 == FFA_MEM_OP_PAUSE) 362 invoke_ffa_fn((ffa_value_t){ 363 .a0 = FFA_MEM_OP_RESUME, 364 .a1 = ret.a1, .a2 = ret.a2, 365 }, &ret); 366 367 if (ret.a0 == FFA_ERROR) 368 return ffa_to_linux_errno((int)ret.a2); 369 370 if (ret.a0 == FFA_MEM_FRAG_RX) 371 return ret.a3; 372 else if (ret.a0 == FFA_SUCCESS) 373 return 0; 374 375 return -EOPNOTSUPP; 376 } 377 378 static int 379 ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len, 380 u32 len, u64 *handle, bool first) 381 { 382 if (!first) 383 return ffa_mem_next_frag(*handle, frag_len); 384 385 return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle); 386 } 387 388 static u32 ffa_get_num_pages_sg(struct scatterlist *sg) 389 { 390 u32 num_pages = 0; 391 392 do { 393 num_pages += sg->length / FFA_PAGE_SIZE; 394 } while ((sg = sg_next(sg))); 395 396 return num_pages; 397 } 398 399 static int 400 ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize, 401 struct ffa_mem_ops_args *args) 402 { 403 int rc = 0; 404 bool first = true; 405 phys_addr_t addr = 0; 406 struct ffa_composite_mem_region *composite; 407 struct ffa_mem_region_addr_range *constituents; 408 struct ffa_mem_region_attributes *ep_mem_access; 409 struct ffa_mem_region *mem_region = buffer; 410 u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg); 411 412 mem_region->tag = args->tag; 413 mem_region->flags = args->flags; 414 mem_region->sender_id = drv_info->vm_id; 415 mem_region->attributes = FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | 416 FFA_MEM_INNER_SHAREABLE; 417 ep_mem_access = &mem_region->ep_mem_access[0]; 418 419 for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) { 420 ep_mem_access->receiver = args->attrs[idx].receiver; 421 ep_mem_access->attrs = args->attrs[idx].attrs; 422 ep_mem_access->composite_off = COMPOSITE_OFFSET(args->nattrs); 423 } 424 mem_region->ep_count = args->nattrs; 425 426 composite = buffer + COMPOSITE_OFFSET(args->nattrs); 427 composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg); 428 composite->addr_range_cnt = num_entries; 429 430 length = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, num_entries); 431 frag_len = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, 0); 432 if (frag_len > max_fragsize) 433 return -ENXIO; 434 435 if (!args->use_txbuf) { 436 addr = virt_to_phys(buffer); 437 buf_sz = max_fragsize / FFA_PAGE_SIZE; 438 } 439 440 constituents = buffer + frag_len; 441 idx = 0; 442 do { 443 if (frag_len == max_fragsize) { 444 rc = ffa_transmit_fragment(func_id, addr, buf_sz, 445 frag_len, length, 446 &args->g_handle, first); 447 if (rc < 0) 448 return -ENXIO; 449 450 first = false; 451 idx = 0; 452 frag_len = 0; 453 constituents = buffer; 454 } 455 456 if ((void *)constituents - buffer > max_fragsize) { 457 pr_err("Memory Region Fragment > Tx Buffer size\n"); 458 return -EFAULT; 459 } 460 461 constituents->address = sg_phys(args->sg); 462 constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE; 463 constituents++; 464 frag_len += sizeof(struct ffa_mem_region_addr_range); 465 } while ((args->sg = sg_next(args->sg))); 466 467 return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len, 468 length, &args->g_handle, first); 469 } 470 471 static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args) 472 { 473 int ret; 474 void *buffer; 475 476 if (!args->use_txbuf) { 477 buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); 478 if (!buffer) 479 return -ENOMEM; 480 } else { 481 buffer = drv_info->tx_buffer; 482 mutex_lock(&drv_info->tx_lock); 483 } 484 485 ret = ffa_setup_and_transmit(func_id, buffer, RXTX_BUFFER_SIZE, args); 486 487 if (args->use_txbuf) 488 mutex_unlock(&drv_info->tx_lock); 489 else 490 free_pages_exact(buffer, RXTX_BUFFER_SIZE); 491 492 return ret < 0 ? ret : 0; 493 } 494 495 static int ffa_memory_reclaim(u64 g_handle, u32 flags) 496 { 497 ffa_value_t ret; 498 499 invoke_ffa_fn((ffa_value_t){ 500 .a0 = FFA_MEM_RECLAIM, 501 .a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle), 502 .a3 = flags, 503 }, &ret); 504 505 if (ret.a0 == FFA_ERROR) 506 return ffa_to_linux_errno((int)ret.a2); 507 508 return 0; 509 } 510 511 static int ffa_features(u32 func_feat_id, u32 input_props, 512 u32 *if_props_1, u32 *if_props_2) 513 { 514 ffa_value_t id; 515 516 if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) { 517 pr_err("%s: Invalid Parameters: %x, %x", __func__, 518 func_feat_id, input_props); 519 return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS); 520 } 521 522 invoke_ffa_fn((ffa_value_t){ 523 .a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props, 524 }, &id); 525 526 if (id.a0 == FFA_ERROR) 527 return ffa_to_linux_errno((int)id.a2); 528 529 if (if_props_1) 530 *if_props_1 = id.a2; 531 if (if_props_2) 532 *if_props_2 = id.a3; 533 534 return 0; 535 } 536 537 static void ffa_set_up_mem_ops_native_flag(void) 538 { 539 if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) || 540 !ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL)) 541 drv_info->mem_ops_native = true; 542 } 543 544 static u32 ffa_api_version_get(void) 545 { 546 return drv_info->version; 547 } 548 549 static int ffa_partition_info_get(const char *uuid_str, 550 struct ffa_partition_info *buffer) 551 { 552 int count; 553 uuid_t uuid; 554 struct ffa_partition_info *pbuf; 555 556 if (uuid_parse(uuid_str, &uuid)) { 557 pr_err("invalid uuid (%s)\n", uuid_str); 558 return -ENODEV; 559 } 560 561 count = ffa_partition_probe(&uuid, &pbuf); 562 if (count <= 0) 563 return -ENOENT; 564 565 memcpy(buffer, pbuf, sizeof(*pbuf) * count); 566 kfree(pbuf); 567 return 0; 568 } 569 570 static void _ffa_mode_32bit_set(struct ffa_device *dev) 571 { 572 dev->mode_32bit = true; 573 } 574 575 static void ffa_mode_32bit_set(struct ffa_device *dev) 576 { 577 if (drv_info->version > FFA_VERSION_1_0) 578 return; 579 580 _ffa_mode_32bit_set(dev); 581 } 582 583 static int ffa_sync_send_receive(struct ffa_device *dev, 584 struct ffa_send_direct_data *data) 585 { 586 return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id, 587 dev->mode_32bit, data); 588 } 589 590 static int ffa_memory_share(struct ffa_mem_ops_args *args) 591 { 592 if (drv_info->mem_ops_native) 593 return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args); 594 595 return ffa_memory_ops(FFA_MEM_SHARE, args); 596 } 597 598 static int ffa_memory_lend(struct ffa_mem_ops_args *args) 599 { 600 /* Note that upon a successful MEM_LEND request the caller 601 * must ensure that the memory region specified is not accessed 602 * until a successful MEM_RECALIM call has been made. 603 * On systems with a hypervisor present this will been enforced, 604 * however on systems without a hypervisor the responsibility 605 * falls to the calling kernel driver to prevent access. 606 */ 607 if (drv_info->mem_ops_native) 608 return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args); 609 610 return ffa_memory_ops(FFA_MEM_LEND, args); 611 } 612 613 static const struct ffa_info_ops ffa_drv_info_ops = { 614 .api_version_get = ffa_api_version_get, 615 .partition_info_get = ffa_partition_info_get, 616 }; 617 618 static const struct ffa_msg_ops ffa_drv_msg_ops = { 619 .mode_32bit_set = ffa_mode_32bit_set, 620 .sync_send_receive = ffa_sync_send_receive, 621 }; 622 623 static const struct ffa_mem_ops ffa_drv_mem_ops = { 624 .memory_reclaim = ffa_memory_reclaim, 625 .memory_share = ffa_memory_share, 626 .memory_lend = ffa_memory_lend, 627 }; 628 629 static const struct ffa_ops ffa_drv_ops = { 630 .info_ops = &ffa_drv_info_ops, 631 .msg_ops = &ffa_drv_msg_ops, 632 .mem_ops = &ffa_drv_mem_ops, 633 }; 634 635 void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid) 636 { 637 int count, idx; 638 struct ffa_partition_info *pbuf, *tpbuf; 639 640 /* 641 * FF-A v1.1 provides UUID for each partition as part of the discovery 642 * API, the discovered UUID must be populated in the device's UUID and 643 * there is no need to copy the same from the driver table. 644 */ 645 if (drv_info->version > FFA_VERSION_1_0) 646 return; 647 648 count = ffa_partition_probe(uuid, &pbuf); 649 if (count <= 0) 650 return; 651 652 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) 653 if (tpbuf->id == ffa_dev->vm_id) 654 uuid_copy(&ffa_dev->uuid, uuid); 655 kfree(pbuf); 656 } 657 658 static void ffa_setup_partitions(void) 659 { 660 int count, idx; 661 uuid_t uuid; 662 struct ffa_device *ffa_dev; 663 struct ffa_partition_info *pbuf, *tpbuf; 664 665 count = ffa_partition_probe(&uuid_null, &pbuf); 666 if (count <= 0) { 667 pr_info("%s: No partitions found, error %d\n", __func__, count); 668 return; 669 } 670 671 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) { 672 import_uuid(&uuid, (u8 *)tpbuf->uuid); 673 674 /* Note that if the UUID will be uuid_null, that will require 675 * ffa_device_match() to find the UUID of this partition id 676 * with help of ffa_device_match_uuid(). FF-A v1.1 and above 677 * provides UUID here for each partition as part of the 678 * discovery API and the same is passed. 679 */ 680 ffa_dev = ffa_device_register(&uuid, tpbuf->id, &ffa_drv_ops); 681 if (!ffa_dev) { 682 pr_err("%s: failed to register partition ID 0x%x\n", 683 __func__, tpbuf->id); 684 continue; 685 } 686 687 if (drv_info->version > FFA_VERSION_1_0 && 688 !(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC)) 689 _ffa_mode_32bit_set(ffa_dev); 690 } 691 kfree(pbuf); 692 } 693 694 static int __init ffa_init(void) 695 { 696 int ret; 697 698 ret = ffa_transport_init(&invoke_ffa_fn); 699 if (ret) 700 return ret; 701 702 ret = arm_ffa_bus_init(); 703 if (ret) 704 return ret; 705 706 drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL); 707 if (!drv_info) { 708 ret = -ENOMEM; 709 goto ffa_bus_exit; 710 } 711 712 ret = ffa_version_check(&drv_info->version); 713 if (ret) 714 goto free_drv_info; 715 716 if (ffa_id_get(&drv_info->vm_id)) { 717 pr_err("failed to obtain VM id for self\n"); 718 ret = -ENODEV; 719 goto free_drv_info; 720 } 721 722 drv_info->rx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); 723 if (!drv_info->rx_buffer) { 724 ret = -ENOMEM; 725 goto free_pages; 726 } 727 728 drv_info->tx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); 729 if (!drv_info->tx_buffer) { 730 ret = -ENOMEM; 731 goto free_pages; 732 } 733 734 ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer), 735 virt_to_phys(drv_info->rx_buffer), 736 RXTX_BUFFER_SIZE / FFA_PAGE_SIZE); 737 if (ret) { 738 pr_err("failed to register FFA RxTx buffers\n"); 739 goto free_pages; 740 } 741 742 mutex_init(&drv_info->rx_lock); 743 mutex_init(&drv_info->tx_lock); 744 745 ffa_setup_partitions(); 746 747 ffa_set_up_mem_ops_native_flag(); 748 749 return 0; 750 free_pages: 751 if (drv_info->tx_buffer) 752 free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE); 753 free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE); 754 free_drv_info: 755 kfree(drv_info); 756 ffa_bus_exit: 757 arm_ffa_bus_exit(); 758 return ret; 759 } 760 subsys_initcall(ffa_init); 761 762 static void __exit ffa_exit(void) 763 { 764 ffa_rxtx_unmap(drv_info->vm_id); 765 free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE); 766 free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE); 767 kfree(drv_info); 768 arm_ffa_bus_exit(); 769 } 770 module_exit(ffa_exit); 771 772 MODULE_ALIAS("arm-ffa"); 773 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 774 MODULE_DESCRIPTION("Arm FF-A interface driver"); 775 MODULE_LICENSE("GPL v2"); 776