xref: /linux/drivers/firmware/arm_ffa/driver.c (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Arm Firmware Framework for ARMv8-A(FFA) interface driver
4  *
5  * The Arm FFA specification[1] describes a software architecture to
6  * leverages the virtualization extension to isolate software images
7  * provided by an ecosystem of vendors from each other and describes
8  * interfaces that standardize communication between the various software
9  * images including communication between images in the Secure world and
10  * Normal world. Any Hypervisor could use the FFA interfaces to enable
11  * communication between VMs it manages.
12  *
13  * The Hypervisor a.k.a Partition managers in FFA terminology can assign
14  * system resources(Memory regions, Devices, CPU cycles) to the partitions
15  * and manage isolation amongst them.
16  *
17  * [1] https://developer.arm.com/docs/den0077/latest
18  *
19  * Copyright (C) 2021 ARM Ltd.
20  */
21 
22 #define DRIVER_NAME "ARM FF-A"
23 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
24 
25 #include <linux/acpi.h>
26 #include <linux/arm_ffa.h>
27 #include <linux/bitfield.h>
28 #include <linux/cpuhotplug.h>
29 #include <linux/device.h>
30 #include <linux/hashtable.h>
31 #include <linux/interrupt.h>
32 #include <linux/io.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/of_irq.h>
38 #include <linux/scatterlist.h>
39 #include <linux/slab.h>
40 #include <linux/smp.h>
41 #include <linux/uuid.h>
42 #include <linux/xarray.h>
43 
44 #include "common.h"
45 
46 #define FFA_DRIVER_VERSION	FFA_VERSION_1_1
47 #define FFA_MIN_VERSION		FFA_VERSION_1_0
48 
49 #define SENDER_ID_MASK		GENMASK(31, 16)
50 #define RECEIVER_ID_MASK	GENMASK(15, 0)
51 #define SENDER_ID(x)		((u16)(FIELD_GET(SENDER_ID_MASK, (x))))
52 #define RECEIVER_ID(x)		((u16)(FIELD_GET(RECEIVER_ID_MASK, (x))))
53 #define PACK_TARGET_INFO(s, r)		\
54 	(FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r)))
55 
56 /*
57  * Keeping RX TX buffer size as 4K for now
58  * 64K may be preferred to keep it min a page in 64K PAGE_SIZE config
59  */
60 #define RXTX_BUFFER_SIZE	SZ_4K
61 
62 #define FFA_MAX_NOTIFICATIONS		64
63 
64 static ffa_fn *invoke_ffa_fn;
65 
66 static const int ffa_linux_errmap[] = {
67 	/* better than switch case as long as return value is continuous */
68 	0,		/* FFA_RET_SUCCESS */
69 	-EOPNOTSUPP,	/* FFA_RET_NOT_SUPPORTED */
70 	-EINVAL,	/* FFA_RET_INVALID_PARAMETERS */
71 	-ENOMEM,	/* FFA_RET_NO_MEMORY */
72 	-EBUSY,		/* FFA_RET_BUSY */
73 	-EINTR,		/* FFA_RET_INTERRUPTED */
74 	-EACCES,	/* FFA_RET_DENIED */
75 	-EAGAIN,	/* FFA_RET_RETRY */
76 	-ECANCELED,	/* FFA_RET_ABORTED */
77 	-ENODATA,	/* FFA_RET_NO_DATA */
78 };
79 
80 static inline int ffa_to_linux_errno(int errno)
81 {
82 	int err_idx = -errno;
83 
84 	if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap))
85 		return ffa_linux_errmap[err_idx];
86 	return -EINVAL;
87 }
88 
89 struct ffa_pcpu_irq {
90 	struct ffa_drv_info *info;
91 };
92 
93 struct ffa_drv_info {
94 	u32 version;
95 	u16 vm_id;
96 	struct mutex rx_lock; /* lock to protect Rx buffer */
97 	struct mutex tx_lock; /* lock to protect Tx buffer */
98 	void *rx_buffer;
99 	void *tx_buffer;
100 	bool mem_ops_native;
101 	bool bitmap_created;
102 	unsigned int sched_recv_irq;
103 	unsigned int cpuhp_state;
104 	struct ffa_pcpu_irq __percpu *irq_pcpu;
105 	struct workqueue_struct *notif_pcpu_wq;
106 	struct work_struct notif_pcpu_work;
107 	struct work_struct irq_work;
108 	struct xarray partition_info;
109 	unsigned int partition_count;
110 	DECLARE_HASHTABLE(notifier_hash, ilog2(FFA_MAX_NOTIFICATIONS));
111 	struct mutex notify_lock; /* lock to protect notifier hashtable  */
112 };
113 
114 static struct ffa_drv_info *drv_info;
115 
116 /*
117  * The driver must be able to support all the versions from the earliest
118  * supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION.
119  * The specification states that if firmware supports a FFA implementation
120  * that is incompatible with and at a greater version number than specified
121  * by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION),
122  * it must return the NOT_SUPPORTED error code.
123  */
124 static u32 ffa_compatible_version_find(u32 version)
125 {
126 	u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version);
127 	u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION);
128 	u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION);
129 
130 	if ((major < drv_major) || (major == drv_major && minor <= drv_minor))
131 		return version;
132 
133 	pr_info("Firmware version higher than driver version, downgrading\n");
134 	return FFA_DRIVER_VERSION;
135 }
136 
137 static int ffa_version_check(u32 *version)
138 {
139 	ffa_value_t ver;
140 
141 	invoke_ffa_fn((ffa_value_t){
142 		      .a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION,
143 		      }, &ver);
144 
145 	if (ver.a0 == FFA_RET_NOT_SUPPORTED) {
146 		pr_info("FFA_VERSION returned not supported\n");
147 		return -EOPNOTSUPP;
148 	}
149 
150 	if (ver.a0 < FFA_MIN_VERSION) {
151 		pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n",
152 		       FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
153 		       FFA_MAJOR_VERSION(FFA_MIN_VERSION),
154 		       FFA_MINOR_VERSION(FFA_MIN_VERSION));
155 		return -EINVAL;
156 	}
157 
158 	pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
159 		FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
160 	pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0),
161 		FFA_MINOR_VERSION(ver.a0));
162 	*version = ffa_compatible_version_find(ver.a0);
163 
164 	return 0;
165 }
166 
167 static int ffa_rx_release(void)
168 {
169 	ffa_value_t ret;
170 
171 	invoke_ffa_fn((ffa_value_t){
172 		      .a0 = FFA_RX_RELEASE,
173 		      }, &ret);
174 
175 	if (ret.a0 == FFA_ERROR)
176 		return ffa_to_linux_errno((int)ret.a2);
177 
178 	/* check for ret.a0 == FFA_RX_RELEASE ? */
179 
180 	return 0;
181 }
182 
183 static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt)
184 {
185 	ffa_value_t ret;
186 
187 	invoke_ffa_fn((ffa_value_t){
188 		      .a0 = FFA_FN_NATIVE(RXTX_MAP),
189 		      .a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt,
190 		      }, &ret);
191 
192 	if (ret.a0 == FFA_ERROR)
193 		return ffa_to_linux_errno((int)ret.a2);
194 
195 	return 0;
196 }
197 
198 static int ffa_rxtx_unmap(u16 vm_id)
199 {
200 	ffa_value_t ret;
201 
202 	invoke_ffa_fn((ffa_value_t){
203 		      .a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0),
204 		      }, &ret);
205 
206 	if (ret.a0 == FFA_ERROR)
207 		return ffa_to_linux_errno((int)ret.a2);
208 
209 	return 0;
210 }
211 
212 #define PARTITION_INFO_GET_RETURN_COUNT_ONLY	BIT(0)
213 
214 /* buffer must be sizeof(struct ffa_partition_info) * num_partitions */
215 static int
216 __ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
217 			 struct ffa_partition_info *buffer, int num_partitions)
218 {
219 	int idx, count, flags = 0, sz, buf_sz;
220 	ffa_value_t partition_info;
221 
222 	if (drv_info->version > FFA_VERSION_1_0 &&
223 	    (!buffer || !num_partitions)) /* Just get the count for now */
224 		flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY;
225 
226 	mutex_lock(&drv_info->rx_lock);
227 	invoke_ffa_fn((ffa_value_t){
228 		      .a0 = FFA_PARTITION_INFO_GET,
229 		      .a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3,
230 		      .a5 = flags,
231 		      }, &partition_info);
232 
233 	if (partition_info.a0 == FFA_ERROR) {
234 		mutex_unlock(&drv_info->rx_lock);
235 		return ffa_to_linux_errno((int)partition_info.a2);
236 	}
237 
238 	count = partition_info.a2;
239 
240 	if (drv_info->version > FFA_VERSION_1_0) {
241 		buf_sz = sz = partition_info.a3;
242 		if (sz > sizeof(*buffer))
243 			buf_sz = sizeof(*buffer);
244 	} else {
245 		/* FFA_VERSION_1_0 lacks size in the response */
246 		buf_sz = sz = 8;
247 	}
248 
249 	if (buffer && count <= num_partitions)
250 		for (idx = 0; idx < count; idx++)
251 			memcpy(buffer + idx, drv_info->rx_buffer + idx * sz,
252 			       buf_sz);
253 
254 	ffa_rx_release();
255 
256 	mutex_unlock(&drv_info->rx_lock);
257 
258 	return count;
259 }
260 
261 /* buffer is allocated and caller must free the same if returned count > 0 */
262 static int
263 ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer)
264 {
265 	int count;
266 	u32 uuid0_4[4];
267 	struct ffa_partition_info *pbuf;
268 
269 	export_uuid((u8 *)uuid0_4, uuid);
270 	count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
271 					 uuid0_4[3], NULL, 0);
272 	if (count <= 0)
273 		return count;
274 
275 	pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL);
276 	if (!pbuf)
277 		return -ENOMEM;
278 
279 	count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
280 					 uuid0_4[3], pbuf, count);
281 	if (count <= 0)
282 		kfree(pbuf);
283 	else
284 		*buffer = pbuf;
285 
286 	return count;
287 }
288 
289 #define VM_ID_MASK	GENMASK(15, 0)
290 static int ffa_id_get(u16 *vm_id)
291 {
292 	ffa_value_t id;
293 
294 	invoke_ffa_fn((ffa_value_t){
295 		      .a0 = FFA_ID_GET,
296 		      }, &id);
297 
298 	if (id.a0 == FFA_ERROR)
299 		return ffa_to_linux_errno((int)id.a2);
300 
301 	*vm_id = FIELD_GET(VM_ID_MASK, (id.a2));
302 
303 	return 0;
304 }
305 
306 static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit,
307 				   struct ffa_send_direct_data *data)
308 {
309 	u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
310 	ffa_value_t ret;
311 
312 	if (mode_32bit) {
313 		req_id = FFA_MSG_SEND_DIRECT_REQ;
314 		resp_id = FFA_MSG_SEND_DIRECT_RESP;
315 	} else {
316 		req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ);
317 		resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP);
318 	}
319 
320 	invoke_ffa_fn((ffa_value_t){
321 		      .a0 = req_id, .a1 = src_dst_ids, .a2 = 0,
322 		      .a3 = data->data0, .a4 = data->data1, .a5 = data->data2,
323 		      .a6 = data->data3, .a7 = data->data4,
324 		      }, &ret);
325 
326 	while (ret.a0 == FFA_INTERRUPT)
327 		invoke_ffa_fn((ffa_value_t){
328 			      .a0 = FFA_RUN, .a1 = ret.a1,
329 			      }, &ret);
330 
331 	if (ret.a0 == FFA_ERROR)
332 		return ffa_to_linux_errno((int)ret.a2);
333 
334 	if (ret.a0 == resp_id) {
335 		data->data0 = ret.a3;
336 		data->data1 = ret.a4;
337 		data->data2 = ret.a5;
338 		data->data3 = ret.a6;
339 		data->data4 = ret.a7;
340 		return 0;
341 	}
342 
343 	return -EINVAL;
344 }
345 
346 static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz,
347 			      u32 frag_len, u32 len, u64 *handle)
348 {
349 	ffa_value_t ret;
350 
351 	invoke_ffa_fn((ffa_value_t){
352 		      .a0 = func_id, .a1 = len, .a2 = frag_len,
353 		      .a3 = buf, .a4 = buf_sz,
354 		      }, &ret);
355 
356 	while (ret.a0 == FFA_MEM_OP_PAUSE)
357 		invoke_ffa_fn((ffa_value_t){
358 			      .a0 = FFA_MEM_OP_RESUME,
359 			      .a1 = ret.a1, .a2 = ret.a2,
360 			      }, &ret);
361 
362 	if (ret.a0 == FFA_ERROR)
363 		return ffa_to_linux_errno((int)ret.a2);
364 
365 	if (ret.a0 == FFA_SUCCESS) {
366 		if (handle)
367 			*handle = PACK_HANDLE(ret.a2, ret.a3);
368 	} else if (ret.a0 == FFA_MEM_FRAG_RX) {
369 		if (handle)
370 			*handle = PACK_HANDLE(ret.a1, ret.a2);
371 	} else {
372 		return -EOPNOTSUPP;
373 	}
374 
375 	return frag_len;
376 }
377 
378 static int ffa_mem_next_frag(u64 handle, u32 frag_len)
379 {
380 	ffa_value_t ret;
381 
382 	invoke_ffa_fn((ffa_value_t){
383 		      .a0 = FFA_MEM_FRAG_TX,
384 		      .a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle),
385 		      .a3 = frag_len,
386 		      }, &ret);
387 
388 	while (ret.a0 == FFA_MEM_OP_PAUSE)
389 		invoke_ffa_fn((ffa_value_t){
390 			      .a0 = FFA_MEM_OP_RESUME,
391 			      .a1 = ret.a1, .a2 = ret.a2,
392 			      }, &ret);
393 
394 	if (ret.a0 == FFA_ERROR)
395 		return ffa_to_linux_errno((int)ret.a2);
396 
397 	if (ret.a0 == FFA_MEM_FRAG_RX)
398 		return ret.a3;
399 	else if (ret.a0 == FFA_SUCCESS)
400 		return 0;
401 
402 	return -EOPNOTSUPP;
403 }
404 
405 static int
406 ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len,
407 		      u32 len, u64 *handle, bool first)
408 {
409 	if (!first)
410 		return ffa_mem_next_frag(*handle, frag_len);
411 
412 	return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle);
413 }
414 
415 static u32 ffa_get_num_pages_sg(struct scatterlist *sg)
416 {
417 	u32 num_pages = 0;
418 
419 	do {
420 		num_pages += sg->length / FFA_PAGE_SIZE;
421 	} while ((sg = sg_next(sg)));
422 
423 	return num_pages;
424 }
425 
426 static u16 ffa_memory_attributes_get(u32 func_id)
427 {
428 	/*
429 	 * For the memory lend or donate operation, if the receiver is a PE or
430 	 * a proxy endpoint, the owner/sender must not specify the attributes
431 	 */
432 	if (func_id == FFA_FN_NATIVE(MEM_LEND) ||
433 	    func_id == FFA_MEM_LEND)
434 		return 0;
435 
436 	return FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | FFA_MEM_INNER_SHAREABLE;
437 }
438 
439 static int
440 ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize,
441 		       struct ffa_mem_ops_args *args)
442 {
443 	int rc = 0;
444 	bool first = true;
445 	u32 composite_offset;
446 	phys_addr_t addr = 0;
447 	struct ffa_mem_region *mem_region = buffer;
448 	struct ffa_composite_mem_region *composite;
449 	struct ffa_mem_region_addr_range *constituents;
450 	struct ffa_mem_region_attributes *ep_mem_access;
451 	u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg);
452 
453 	mem_region->tag = args->tag;
454 	mem_region->flags = args->flags;
455 	mem_region->sender_id = drv_info->vm_id;
456 	mem_region->attributes = ffa_memory_attributes_get(func_id);
457 	ep_mem_access = buffer +
458 			ffa_mem_desc_offset(buffer, 0, drv_info->version);
459 	composite_offset = ffa_mem_desc_offset(buffer, args->nattrs,
460 					       drv_info->version);
461 
462 	for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) {
463 		ep_mem_access->receiver = args->attrs[idx].receiver;
464 		ep_mem_access->attrs = args->attrs[idx].attrs;
465 		ep_mem_access->composite_off = composite_offset;
466 		ep_mem_access->flag = 0;
467 		ep_mem_access->reserved = 0;
468 	}
469 	mem_region->handle = 0;
470 	mem_region->ep_count = args->nattrs;
471 	if (drv_info->version <= FFA_VERSION_1_0) {
472 		mem_region->ep_mem_size = 0;
473 	} else {
474 		mem_region->ep_mem_size = sizeof(*ep_mem_access);
475 		mem_region->ep_mem_offset = sizeof(*mem_region);
476 		memset(mem_region->reserved, 0, 12);
477 	}
478 
479 	composite = buffer + composite_offset;
480 	composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg);
481 	composite->addr_range_cnt = num_entries;
482 	composite->reserved = 0;
483 
484 	length = composite_offset + CONSTITUENTS_OFFSET(num_entries);
485 	frag_len = composite_offset + CONSTITUENTS_OFFSET(0);
486 	if (frag_len > max_fragsize)
487 		return -ENXIO;
488 
489 	if (!args->use_txbuf) {
490 		addr = virt_to_phys(buffer);
491 		buf_sz = max_fragsize / FFA_PAGE_SIZE;
492 	}
493 
494 	constituents = buffer + frag_len;
495 	idx = 0;
496 	do {
497 		if (frag_len == max_fragsize) {
498 			rc = ffa_transmit_fragment(func_id, addr, buf_sz,
499 						   frag_len, length,
500 						   &args->g_handle, first);
501 			if (rc < 0)
502 				return -ENXIO;
503 
504 			first = false;
505 			idx = 0;
506 			frag_len = 0;
507 			constituents = buffer;
508 		}
509 
510 		if ((void *)constituents - buffer > max_fragsize) {
511 			pr_err("Memory Region Fragment > Tx Buffer size\n");
512 			return -EFAULT;
513 		}
514 
515 		constituents->address = sg_phys(args->sg);
516 		constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE;
517 		constituents->reserved = 0;
518 		constituents++;
519 		frag_len += sizeof(struct ffa_mem_region_addr_range);
520 	} while ((args->sg = sg_next(args->sg)));
521 
522 	return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len,
523 				     length, &args->g_handle, first);
524 }
525 
526 static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args)
527 {
528 	int ret;
529 	void *buffer;
530 
531 	if (!args->use_txbuf) {
532 		buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
533 		if (!buffer)
534 			return -ENOMEM;
535 	} else {
536 		buffer = drv_info->tx_buffer;
537 		mutex_lock(&drv_info->tx_lock);
538 	}
539 
540 	ret = ffa_setup_and_transmit(func_id, buffer, RXTX_BUFFER_SIZE, args);
541 
542 	if (args->use_txbuf)
543 		mutex_unlock(&drv_info->tx_lock);
544 	else
545 		free_pages_exact(buffer, RXTX_BUFFER_SIZE);
546 
547 	return ret < 0 ? ret : 0;
548 }
549 
550 static int ffa_memory_reclaim(u64 g_handle, u32 flags)
551 {
552 	ffa_value_t ret;
553 
554 	invoke_ffa_fn((ffa_value_t){
555 		      .a0 = FFA_MEM_RECLAIM,
556 		      .a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle),
557 		      .a3 = flags,
558 		      }, &ret);
559 
560 	if (ret.a0 == FFA_ERROR)
561 		return ffa_to_linux_errno((int)ret.a2);
562 
563 	return 0;
564 }
565 
566 static int ffa_features(u32 func_feat_id, u32 input_props,
567 			u32 *if_props_1, u32 *if_props_2)
568 {
569 	ffa_value_t id;
570 
571 	if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) {
572 		pr_err("%s: Invalid Parameters: %x, %x", __func__,
573 		       func_feat_id, input_props);
574 		return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS);
575 	}
576 
577 	invoke_ffa_fn((ffa_value_t){
578 		.a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props,
579 		}, &id);
580 
581 	if (id.a0 == FFA_ERROR)
582 		return ffa_to_linux_errno((int)id.a2);
583 
584 	if (if_props_1)
585 		*if_props_1 = id.a2;
586 	if (if_props_2)
587 		*if_props_2 = id.a3;
588 
589 	return 0;
590 }
591 
592 static int ffa_notification_bitmap_create(void)
593 {
594 	ffa_value_t ret;
595 	u16 vcpu_count = nr_cpu_ids;
596 
597 	invoke_ffa_fn((ffa_value_t){
598 		      .a0 = FFA_NOTIFICATION_BITMAP_CREATE,
599 		      .a1 = drv_info->vm_id, .a2 = vcpu_count,
600 		      }, &ret);
601 
602 	if (ret.a0 == FFA_ERROR)
603 		return ffa_to_linux_errno((int)ret.a2);
604 
605 	return 0;
606 }
607 
608 static int ffa_notification_bitmap_destroy(void)
609 {
610 	ffa_value_t ret;
611 
612 	invoke_ffa_fn((ffa_value_t){
613 		      .a0 = FFA_NOTIFICATION_BITMAP_DESTROY,
614 		      .a1 = drv_info->vm_id,
615 		      }, &ret);
616 
617 	if (ret.a0 == FFA_ERROR)
618 		return ffa_to_linux_errno((int)ret.a2);
619 
620 	return 0;
621 }
622 
623 #define NOTIFICATION_LOW_MASK		GENMASK(31, 0)
624 #define NOTIFICATION_HIGH_MASK		GENMASK(63, 32)
625 #define NOTIFICATION_BITMAP_HIGH(x)	\
626 		((u32)(FIELD_GET(NOTIFICATION_HIGH_MASK, (x))))
627 #define NOTIFICATION_BITMAP_LOW(x)	\
628 		((u32)(FIELD_GET(NOTIFICATION_LOW_MASK, (x))))
629 #define PACK_NOTIFICATION_BITMAP(low, high)	\
630 	(FIELD_PREP(NOTIFICATION_LOW_MASK, (low)) | \
631 	 FIELD_PREP(NOTIFICATION_HIGH_MASK, (high)))
632 
633 #define RECEIVER_VCPU_MASK		GENMASK(31, 16)
634 #define PACK_NOTIFICATION_GET_RECEIVER_INFO(vcpu_r, r) \
635 	(FIELD_PREP(RECEIVER_VCPU_MASK, (vcpu_r)) | \
636 	 FIELD_PREP(RECEIVER_ID_MASK, (r)))
637 
638 #define NOTIFICATION_INFO_GET_MORE_PEND_MASK	BIT(0)
639 #define NOTIFICATION_INFO_GET_ID_COUNT		GENMASK(11, 7)
640 #define ID_LIST_MASK_64				GENMASK(51, 12)
641 #define ID_LIST_MASK_32				GENMASK(31, 12)
642 #define MAX_IDS_64				20
643 #define MAX_IDS_32				10
644 
645 #define PER_VCPU_NOTIFICATION_FLAG		BIT(0)
646 #define SECURE_PARTITION_BITMAP			BIT(0)
647 #define NON_SECURE_VM_BITMAP			BIT(1)
648 #define SPM_FRAMEWORK_BITMAP			BIT(2)
649 #define NS_HYP_FRAMEWORK_BITMAP			BIT(3)
650 
651 static int ffa_notification_bind_common(u16 dst_id, u64 bitmap,
652 					u32 flags, bool is_bind)
653 {
654 	ffa_value_t ret;
655 	u32 func, src_dst_ids = PACK_TARGET_INFO(dst_id, drv_info->vm_id);
656 
657 	func = is_bind ? FFA_NOTIFICATION_BIND : FFA_NOTIFICATION_UNBIND;
658 
659 	invoke_ffa_fn((ffa_value_t){
660 		  .a0 = func, .a1 = src_dst_ids, .a2 = flags,
661 		  .a3 = NOTIFICATION_BITMAP_LOW(bitmap),
662 		  .a4 = NOTIFICATION_BITMAP_HIGH(bitmap),
663 		  }, &ret);
664 
665 	if (ret.a0 == FFA_ERROR)
666 		return ffa_to_linux_errno((int)ret.a2);
667 	else if (ret.a0 != FFA_SUCCESS)
668 		return -EINVAL;
669 
670 	return 0;
671 }
672 
673 static
674 int ffa_notification_set(u16 src_id, u16 dst_id, u32 flags, u64 bitmap)
675 {
676 	ffa_value_t ret;
677 	u32 src_dst_ids = PACK_TARGET_INFO(dst_id, src_id);
678 
679 	invoke_ffa_fn((ffa_value_t) {
680 		  .a0 = FFA_NOTIFICATION_SET, .a1 = src_dst_ids, .a2 = flags,
681 		  .a3 = NOTIFICATION_BITMAP_LOW(bitmap),
682 		  .a4 = NOTIFICATION_BITMAP_HIGH(bitmap),
683 		  }, &ret);
684 
685 	if (ret.a0 == FFA_ERROR)
686 		return ffa_to_linux_errno((int)ret.a2);
687 	else if (ret.a0 != FFA_SUCCESS)
688 		return -EINVAL;
689 
690 	return 0;
691 }
692 
693 struct ffa_notify_bitmaps {
694 	u64 sp_map;
695 	u64 vm_map;
696 	u64 arch_map;
697 };
698 
699 static int ffa_notification_get(u32 flags, struct ffa_notify_bitmaps *notify)
700 {
701 	ffa_value_t ret;
702 	u16 src_id = drv_info->vm_id;
703 	u16 cpu_id = smp_processor_id();
704 	u32 rec_vcpu_ids = PACK_NOTIFICATION_GET_RECEIVER_INFO(cpu_id, src_id);
705 
706 	invoke_ffa_fn((ffa_value_t){
707 		  .a0 = FFA_NOTIFICATION_GET, .a1 = rec_vcpu_ids, .a2 = flags,
708 		  }, &ret);
709 
710 	if (ret.a0 == FFA_ERROR)
711 		return ffa_to_linux_errno((int)ret.a2);
712 	else if (ret.a0 != FFA_SUCCESS)
713 		return -EINVAL; /* Something else went wrong. */
714 
715 	notify->sp_map = PACK_NOTIFICATION_BITMAP(ret.a2, ret.a3);
716 	notify->vm_map = PACK_NOTIFICATION_BITMAP(ret.a4, ret.a5);
717 	notify->arch_map = PACK_NOTIFICATION_BITMAP(ret.a6, ret.a7);
718 
719 	return 0;
720 }
721 
722 struct ffa_dev_part_info {
723 	ffa_sched_recv_cb callback;
724 	void *cb_data;
725 	rwlock_t rw_lock;
726 };
727 
728 static void __do_sched_recv_cb(u16 part_id, u16 vcpu, bool is_per_vcpu)
729 {
730 	struct ffa_dev_part_info *partition;
731 	ffa_sched_recv_cb callback;
732 	void *cb_data;
733 
734 	partition = xa_load(&drv_info->partition_info, part_id);
735 	read_lock(&partition->rw_lock);
736 	callback = partition->callback;
737 	cb_data = partition->cb_data;
738 	read_unlock(&partition->rw_lock);
739 
740 	if (callback)
741 		callback(vcpu, is_per_vcpu, cb_data);
742 }
743 
744 static void ffa_notification_info_get(void)
745 {
746 	int idx, list, max_ids, lists_cnt, ids_processed, ids_count[MAX_IDS_64];
747 	bool is_64b_resp;
748 	ffa_value_t ret;
749 	u64 id_list;
750 
751 	do {
752 		invoke_ffa_fn((ffa_value_t){
753 			  .a0 = FFA_FN_NATIVE(NOTIFICATION_INFO_GET),
754 			  }, &ret);
755 
756 		if (ret.a0 != FFA_FN_NATIVE(SUCCESS) && ret.a0 != FFA_SUCCESS) {
757 			if (ret.a2 != FFA_RET_NO_DATA)
758 				pr_err("Notification Info fetch failed: 0x%lx (0x%lx)",
759 				       ret.a0, ret.a2);
760 			return;
761 		}
762 
763 		is_64b_resp = (ret.a0 == FFA_FN64_SUCCESS);
764 
765 		ids_processed = 0;
766 		lists_cnt = FIELD_GET(NOTIFICATION_INFO_GET_ID_COUNT, ret.a2);
767 		if (is_64b_resp) {
768 			max_ids = MAX_IDS_64;
769 			id_list = FIELD_GET(ID_LIST_MASK_64, ret.a2);
770 		} else {
771 			max_ids = MAX_IDS_32;
772 			id_list = FIELD_GET(ID_LIST_MASK_32, ret.a2);
773 		}
774 
775 		for (idx = 0; idx < lists_cnt; idx++, id_list >>= 2)
776 			ids_count[idx] = (id_list & 0x3) + 1;
777 
778 		/* Process IDs */
779 		for (list = 0; list < lists_cnt; list++) {
780 			u16 vcpu_id, part_id, *packed_id_list = (u16 *)&ret.a3;
781 
782 			if (ids_processed >= max_ids - 1)
783 				break;
784 
785 			part_id = packed_id_list[++ids_processed];
786 
787 			if (!ids_count[list]) { /* Global Notification */
788 				__do_sched_recv_cb(part_id, 0, false);
789 				continue;
790 			}
791 
792 			/* Per vCPU Notification */
793 			for (idx = 0; idx < ids_count[list]; idx++) {
794 				if (ids_processed >= max_ids - 1)
795 					break;
796 
797 				vcpu_id = packed_id_list[++ids_processed];
798 
799 				__do_sched_recv_cb(part_id, vcpu_id, true);
800 			}
801 		}
802 	} while (ret.a2 & NOTIFICATION_INFO_GET_MORE_PEND_MASK);
803 }
804 
805 static int ffa_run(struct ffa_device *dev, u16 vcpu)
806 {
807 	ffa_value_t ret;
808 	u32 target = dev->vm_id << 16 | vcpu;
809 
810 	invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = target, }, &ret);
811 
812 	while (ret.a0 == FFA_INTERRUPT)
813 		invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = ret.a1, },
814 			      &ret);
815 
816 	if (ret.a0 == FFA_ERROR)
817 		return ffa_to_linux_errno((int)ret.a2);
818 
819 	return 0;
820 }
821 
822 static void ffa_set_up_mem_ops_native_flag(void)
823 {
824 	if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) ||
825 	    !ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL))
826 		drv_info->mem_ops_native = true;
827 }
828 
829 static u32 ffa_api_version_get(void)
830 {
831 	return drv_info->version;
832 }
833 
834 static int ffa_partition_info_get(const char *uuid_str,
835 				  struct ffa_partition_info *buffer)
836 {
837 	int count;
838 	uuid_t uuid;
839 	struct ffa_partition_info *pbuf;
840 
841 	if (uuid_parse(uuid_str, &uuid)) {
842 		pr_err("invalid uuid (%s)\n", uuid_str);
843 		return -ENODEV;
844 	}
845 
846 	count = ffa_partition_probe(&uuid, &pbuf);
847 	if (count <= 0)
848 		return -ENOENT;
849 
850 	memcpy(buffer, pbuf, sizeof(*pbuf) * count);
851 	kfree(pbuf);
852 	return 0;
853 }
854 
855 static void ffa_mode_32bit_set(struct ffa_device *dev)
856 {
857 	dev->mode_32bit = true;
858 }
859 
860 static int ffa_sync_send_receive(struct ffa_device *dev,
861 				 struct ffa_send_direct_data *data)
862 {
863 	return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id,
864 				       dev->mode_32bit, data);
865 }
866 
867 static int ffa_memory_share(struct ffa_mem_ops_args *args)
868 {
869 	if (drv_info->mem_ops_native)
870 		return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args);
871 
872 	return ffa_memory_ops(FFA_MEM_SHARE, args);
873 }
874 
875 static int ffa_memory_lend(struct ffa_mem_ops_args *args)
876 {
877 	/* Note that upon a successful MEM_LEND request the caller
878 	 * must ensure that the memory region specified is not accessed
879 	 * until a successful MEM_RECALIM call has been made.
880 	 * On systems with a hypervisor present this will been enforced,
881 	 * however on systems without a hypervisor the responsibility
882 	 * falls to the calling kernel driver to prevent access.
883 	 */
884 	if (drv_info->mem_ops_native)
885 		return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args);
886 
887 	return ffa_memory_ops(FFA_MEM_LEND, args);
888 }
889 
890 #define FFA_SECURE_PARTITION_ID_FLAG	BIT(15)
891 
892 enum notify_type {
893 	NON_SECURE_VM,
894 	SECURE_PARTITION,
895 	FRAMEWORK,
896 };
897 
898 struct notifier_cb_info {
899 	struct hlist_node hnode;
900 	ffa_notifier_cb cb;
901 	void *cb_data;
902 	enum notify_type type;
903 };
904 
905 static int ffa_sched_recv_cb_update(u16 part_id, ffa_sched_recv_cb callback,
906 				    void *cb_data, bool is_registration)
907 {
908 	struct ffa_dev_part_info *partition;
909 	bool cb_valid;
910 
911 	partition = xa_load(&drv_info->partition_info, part_id);
912 	write_lock(&partition->rw_lock);
913 
914 	cb_valid = !!partition->callback;
915 	if (!(is_registration ^ cb_valid)) {
916 		write_unlock(&partition->rw_lock);
917 		return -EINVAL;
918 	}
919 
920 	partition->callback = callback;
921 	partition->cb_data = cb_data;
922 
923 	write_unlock(&partition->rw_lock);
924 	return 0;
925 }
926 
927 static int ffa_sched_recv_cb_register(struct ffa_device *dev,
928 				      ffa_sched_recv_cb cb, void *cb_data)
929 {
930 	return ffa_sched_recv_cb_update(dev->vm_id, cb, cb_data, true);
931 }
932 
933 static int ffa_sched_recv_cb_unregister(struct ffa_device *dev)
934 {
935 	return ffa_sched_recv_cb_update(dev->vm_id, NULL, NULL, false);
936 }
937 
938 static int ffa_notification_bind(u16 dst_id, u64 bitmap, u32 flags)
939 {
940 	return ffa_notification_bind_common(dst_id, bitmap, flags, true);
941 }
942 
943 static int ffa_notification_unbind(u16 dst_id, u64 bitmap)
944 {
945 	return ffa_notification_bind_common(dst_id, bitmap, 0, false);
946 }
947 
948 /* Should be called while the notify_lock is taken */
949 static struct notifier_cb_info *
950 notifier_hash_node_get(u16 notify_id, enum notify_type type)
951 {
952 	struct notifier_cb_info *node;
953 
954 	hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id)
955 		if (type == node->type)
956 			return node;
957 
958 	return NULL;
959 }
960 
961 static int
962 update_notifier_cb(int notify_id, enum notify_type type, ffa_notifier_cb cb,
963 		   void *cb_data, bool is_registration)
964 {
965 	struct notifier_cb_info *cb_info = NULL;
966 	bool cb_found;
967 
968 	cb_info = notifier_hash_node_get(notify_id, type);
969 	cb_found = !!cb_info;
970 
971 	if (!(is_registration ^ cb_found))
972 		return -EINVAL;
973 
974 	if (is_registration) {
975 		cb_info = kzalloc(sizeof(*cb_info), GFP_KERNEL);
976 		if (!cb_info)
977 			return -ENOMEM;
978 
979 		cb_info->type = type;
980 		cb_info->cb = cb;
981 		cb_info->cb_data = cb_data;
982 
983 		hash_add(drv_info->notifier_hash, &cb_info->hnode, notify_id);
984 	} else {
985 		hash_del(&cb_info->hnode);
986 	}
987 
988 	return 0;
989 }
990 
991 static enum notify_type ffa_notify_type_get(u16 vm_id)
992 {
993 	if (vm_id & FFA_SECURE_PARTITION_ID_FLAG)
994 		return SECURE_PARTITION;
995 	else
996 		return NON_SECURE_VM;
997 }
998 
999 static int ffa_notify_relinquish(struct ffa_device *dev, int notify_id)
1000 {
1001 	int rc;
1002 	enum notify_type type = ffa_notify_type_get(dev->vm_id);
1003 
1004 	if (notify_id >= FFA_MAX_NOTIFICATIONS)
1005 		return -EINVAL;
1006 
1007 	mutex_lock(&drv_info->notify_lock);
1008 
1009 	rc = update_notifier_cb(notify_id, type, NULL, NULL, false);
1010 	if (rc) {
1011 		pr_err("Could not unregister notification callback\n");
1012 		mutex_unlock(&drv_info->notify_lock);
1013 		return rc;
1014 	}
1015 
1016 	rc = ffa_notification_unbind(dev->vm_id, BIT(notify_id));
1017 
1018 	mutex_unlock(&drv_info->notify_lock);
1019 
1020 	return rc;
1021 }
1022 
1023 static int ffa_notify_request(struct ffa_device *dev, bool is_per_vcpu,
1024 			      ffa_notifier_cb cb, void *cb_data, int notify_id)
1025 {
1026 	int rc;
1027 	u32 flags = 0;
1028 	enum notify_type type = ffa_notify_type_get(dev->vm_id);
1029 
1030 	if (notify_id >= FFA_MAX_NOTIFICATIONS)
1031 		return -EINVAL;
1032 
1033 	mutex_lock(&drv_info->notify_lock);
1034 
1035 	if (is_per_vcpu)
1036 		flags = PER_VCPU_NOTIFICATION_FLAG;
1037 
1038 	rc = ffa_notification_bind(dev->vm_id, BIT(notify_id), flags);
1039 	if (rc) {
1040 		mutex_unlock(&drv_info->notify_lock);
1041 		return rc;
1042 	}
1043 
1044 	rc = update_notifier_cb(notify_id, type, cb, cb_data, true);
1045 	if (rc) {
1046 		pr_err("Failed to register callback for %d - %d\n",
1047 		       notify_id, rc);
1048 		ffa_notification_unbind(dev->vm_id, BIT(notify_id));
1049 	}
1050 	mutex_unlock(&drv_info->notify_lock);
1051 
1052 	return rc;
1053 }
1054 
1055 static int ffa_notify_send(struct ffa_device *dev, int notify_id,
1056 			   bool is_per_vcpu, u16 vcpu)
1057 {
1058 	u32 flags = 0;
1059 
1060 	if (is_per_vcpu)
1061 		flags |= (PER_VCPU_NOTIFICATION_FLAG | vcpu << 16);
1062 
1063 	return ffa_notification_set(dev->vm_id, drv_info->vm_id, flags,
1064 				    BIT(notify_id));
1065 }
1066 
1067 static void handle_notif_callbacks(u64 bitmap, enum notify_type type)
1068 {
1069 	int notify_id;
1070 	struct notifier_cb_info *cb_info = NULL;
1071 
1072 	for (notify_id = 0; notify_id <= FFA_MAX_NOTIFICATIONS && bitmap;
1073 	     notify_id++, bitmap >>= 1) {
1074 		if (!(bitmap & 1))
1075 			continue;
1076 
1077 		mutex_lock(&drv_info->notify_lock);
1078 		cb_info = notifier_hash_node_get(notify_id, type);
1079 		mutex_unlock(&drv_info->notify_lock);
1080 
1081 		if (cb_info && cb_info->cb)
1082 			cb_info->cb(notify_id, cb_info->cb_data);
1083 	}
1084 }
1085 
1086 static void notif_pcpu_irq_work_fn(struct work_struct *work)
1087 {
1088 	int rc;
1089 	struct ffa_notify_bitmaps bitmaps;
1090 
1091 	rc = ffa_notification_get(SECURE_PARTITION_BITMAP |
1092 				  SPM_FRAMEWORK_BITMAP, &bitmaps);
1093 	if (rc) {
1094 		pr_err("Failed to retrieve notifications with %d!\n", rc);
1095 		return;
1096 	}
1097 
1098 	handle_notif_callbacks(bitmaps.vm_map, NON_SECURE_VM);
1099 	handle_notif_callbacks(bitmaps.sp_map, SECURE_PARTITION);
1100 	handle_notif_callbacks(bitmaps.arch_map, FRAMEWORK);
1101 }
1102 
1103 static void
1104 ffa_self_notif_handle(u16 vcpu, bool is_per_vcpu, void *cb_data)
1105 {
1106 	struct ffa_drv_info *info = cb_data;
1107 
1108 	if (!is_per_vcpu)
1109 		notif_pcpu_irq_work_fn(&info->notif_pcpu_work);
1110 	else
1111 		queue_work_on(vcpu, info->notif_pcpu_wq,
1112 			      &info->notif_pcpu_work);
1113 }
1114 
1115 static const struct ffa_info_ops ffa_drv_info_ops = {
1116 	.api_version_get = ffa_api_version_get,
1117 	.partition_info_get = ffa_partition_info_get,
1118 };
1119 
1120 static const struct ffa_msg_ops ffa_drv_msg_ops = {
1121 	.mode_32bit_set = ffa_mode_32bit_set,
1122 	.sync_send_receive = ffa_sync_send_receive,
1123 };
1124 
1125 static const struct ffa_mem_ops ffa_drv_mem_ops = {
1126 	.memory_reclaim = ffa_memory_reclaim,
1127 	.memory_share = ffa_memory_share,
1128 	.memory_lend = ffa_memory_lend,
1129 };
1130 
1131 static const struct ffa_cpu_ops ffa_drv_cpu_ops = {
1132 	.run = ffa_run,
1133 };
1134 
1135 static const struct ffa_notifier_ops ffa_drv_notifier_ops = {
1136 	.sched_recv_cb_register = ffa_sched_recv_cb_register,
1137 	.sched_recv_cb_unregister = ffa_sched_recv_cb_unregister,
1138 	.notify_request = ffa_notify_request,
1139 	.notify_relinquish = ffa_notify_relinquish,
1140 	.notify_send = ffa_notify_send,
1141 };
1142 
1143 static const struct ffa_ops ffa_drv_ops = {
1144 	.info_ops = &ffa_drv_info_ops,
1145 	.msg_ops = &ffa_drv_msg_ops,
1146 	.mem_ops = &ffa_drv_mem_ops,
1147 	.cpu_ops = &ffa_drv_cpu_ops,
1148 	.notifier_ops = &ffa_drv_notifier_ops,
1149 };
1150 
1151 void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid)
1152 {
1153 	int count, idx;
1154 	struct ffa_partition_info *pbuf, *tpbuf;
1155 
1156 	/*
1157 	 * FF-A v1.1 provides UUID for each partition as part of the discovery
1158 	 * API, the discovered UUID must be populated in the device's UUID and
1159 	 * there is no need to copy the same from the driver table.
1160 	 */
1161 	if (drv_info->version > FFA_VERSION_1_0)
1162 		return;
1163 
1164 	count = ffa_partition_probe(uuid, &pbuf);
1165 	if (count <= 0)
1166 		return;
1167 
1168 	for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++)
1169 		if (tpbuf->id == ffa_dev->vm_id)
1170 			uuid_copy(&ffa_dev->uuid, uuid);
1171 	kfree(pbuf);
1172 }
1173 
1174 static void ffa_setup_partitions(void)
1175 {
1176 	int count, idx;
1177 	uuid_t uuid;
1178 	struct ffa_device *ffa_dev;
1179 	struct ffa_dev_part_info *info;
1180 	struct ffa_partition_info *pbuf, *tpbuf;
1181 
1182 	count = ffa_partition_probe(&uuid_null, &pbuf);
1183 	if (count <= 0) {
1184 		pr_info("%s: No partitions found, error %d\n", __func__, count);
1185 		return;
1186 	}
1187 
1188 	xa_init(&drv_info->partition_info);
1189 	for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) {
1190 		import_uuid(&uuid, (u8 *)tpbuf->uuid);
1191 
1192 		/* Note that if the UUID will be uuid_null, that will require
1193 		 * ffa_device_match() to find the UUID of this partition id
1194 		 * with help of ffa_device_match_uuid(). FF-A v1.1 and above
1195 		 * provides UUID here for each partition as part of the
1196 		 * discovery API and the same is passed.
1197 		 */
1198 		ffa_dev = ffa_device_register(&uuid, tpbuf->id, &ffa_drv_ops);
1199 		if (!ffa_dev) {
1200 			pr_err("%s: failed to register partition ID 0x%x\n",
1201 			       __func__, tpbuf->id);
1202 			continue;
1203 		}
1204 
1205 		if (drv_info->version > FFA_VERSION_1_0 &&
1206 		    !(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC))
1207 			ffa_mode_32bit_set(ffa_dev);
1208 
1209 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1210 		if (!info) {
1211 			ffa_device_unregister(ffa_dev);
1212 			continue;
1213 		}
1214 		xa_store(&drv_info->partition_info, tpbuf->id, info, GFP_KERNEL);
1215 	}
1216 	drv_info->partition_count = count;
1217 
1218 	kfree(pbuf);
1219 
1220 	/* Allocate for the host */
1221 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1222 	if (!info)
1223 		return;
1224 	xa_store(&drv_info->partition_info, drv_info->vm_id, info, GFP_KERNEL);
1225 	drv_info->partition_count++;
1226 }
1227 
1228 static void ffa_partitions_cleanup(void)
1229 {
1230 	struct ffa_dev_part_info **info;
1231 	int idx, count = drv_info->partition_count;
1232 
1233 	if (!count)
1234 		return;
1235 
1236 	info = kcalloc(count, sizeof(**info), GFP_KERNEL);
1237 	if (!info)
1238 		return;
1239 
1240 	xa_extract(&drv_info->partition_info, (void **)info, 0, VM_ID_MASK,
1241 		   count, XA_PRESENT);
1242 
1243 	for (idx = 0; idx < count; idx++)
1244 		kfree(info[idx]);
1245 	kfree(info);
1246 
1247 	drv_info->partition_count = 0;
1248 	xa_destroy(&drv_info->partition_info);
1249 }
1250 
1251 /* FFA FEATURE IDs */
1252 #define FFA_FEAT_NOTIFICATION_PENDING_INT	(1)
1253 #define FFA_FEAT_SCHEDULE_RECEIVER_INT		(2)
1254 #define FFA_FEAT_MANAGED_EXIT_INT		(3)
1255 
1256 static irqreturn_t irq_handler(int irq, void *irq_data)
1257 {
1258 	struct ffa_pcpu_irq *pcpu = irq_data;
1259 	struct ffa_drv_info *info = pcpu->info;
1260 
1261 	queue_work(info->notif_pcpu_wq, &info->irq_work);
1262 
1263 	return IRQ_HANDLED;
1264 }
1265 
1266 static void ffa_sched_recv_irq_work_fn(struct work_struct *work)
1267 {
1268 	ffa_notification_info_get();
1269 }
1270 
1271 static int ffa_sched_recv_irq_map(void)
1272 {
1273 	int ret, irq, sr_intid;
1274 
1275 	/* The returned sr_intid is assumed to be SGI donated to NS world */
1276 	ret = ffa_features(FFA_FEAT_SCHEDULE_RECEIVER_INT, 0, &sr_intid, NULL);
1277 	if (ret < 0) {
1278 		if (ret != -EOPNOTSUPP)
1279 			pr_err("Failed to retrieve scheduler Rx interrupt\n");
1280 		return ret;
1281 	}
1282 
1283 	if (acpi_disabled) {
1284 		struct of_phandle_args oirq = {};
1285 		struct device_node *gic;
1286 
1287 		/* Only GICv3 supported currently with the device tree */
1288 		gic = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1289 		if (!gic)
1290 			return -ENXIO;
1291 
1292 		oirq.np = gic;
1293 		oirq.args_count = 1;
1294 		oirq.args[0] = sr_intid;
1295 		irq = irq_create_of_mapping(&oirq);
1296 		of_node_put(gic);
1297 #ifdef CONFIG_ACPI
1298 	} else {
1299 		irq = acpi_register_gsi(NULL, sr_intid, ACPI_EDGE_SENSITIVE,
1300 					ACPI_ACTIVE_HIGH);
1301 #endif
1302 	}
1303 
1304 	if (irq <= 0) {
1305 		pr_err("Failed to create IRQ mapping!\n");
1306 		return -ENODATA;
1307 	}
1308 
1309 	return irq;
1310 }
1311 
1312 static void ffa_sched_recv_irq_unmap(void)
1313 {
1314 	if (drv_info->sched_recv_irq)
1315 		irq_dispose_mapping(drv_info->sched_recv_irq);
1316 }
1317 
1318 static int ffa_cpuhp_pcpu_irq_enable(unsigned int cpu)
1319 {
1320 	enable_percpu_irq(drv_info->sched_recv_irq, IRQ_TYPE_NONE);
1321 	return 0;
1322 }
1323 
1324 static int ffa_cpuhp_pcpu_irq_disable(unsigned int cpu)
1325 {
1326 	disable_percpu_irq(drv_info->sched_recv_irq);
1327 	return 0;
1328 }
1329 
1330 static void ffa_uninit_pcpu_irq(void)
1331 {
1332 	if (drv_info->cpuhp_state)
1333 		cpuhp_remove_state(drv_info->cpuhp_state);
1334 
1335 	if (drv_info->notif_pcpu_wq)
1336 		destroy_workqueue(drv_info->notif_pcpu_wq);
1337 
1338 	if (drv_info->sched_recv_irq)
1339 		free_percpu_irq(drv_info->sched_recv_irq, drv_info->irq_pcpu);
1340 
1341 	if (drv_info->irq_pcpu)
1342 		free_percpu(drv_info->irq_pcpu);
1343 }
1344 
1345 static int ffa_init_pcpu_irq(unsigned int irq)
1346 {
1347 	struct ffa_pcpu_irq __percpu *irq_pcpu;
1348 	int ret, cpu;
1349 
1350 	irq_pcpu = alloc_percpu(struct ffa_pcpu_irq);
1351 	if (!irq_pcpu)
1352 		return -ENOMEM;
1353 
1354 	for_each_present_cpu(cpu)
1355 		per_cpu_ptr(irq_pcpu, cpu)->info = drv_info;
1356 
1357 	drv_info->irq_pcpu = irq_pcpu;
1358 
1359 	ret = request_percpu_irq(irq, irq_handler, "ARM-FFA", irq_pcpu);
1360 	if (ret) {
1361 		pr_err("Error registering notification IRQ %d: %d\n", irq, ret);
1362 		return ret;
1363 	}
1364 
1365 	INIT_WORK(&drv_info->irq_work, ffa_sched_recv_irq_work_fn);
1366 	INIT_WORK(&drv_info->notif_pcpu_work, notif_pcpu_irq_work_fn);
1367 	drv_info->notif_pcpu_wq = create_workqueue("ffa_pcpu_irq_notification");
1368 	if (!drv_info->notif_pcpu_wq)
1369 		return -EINVAL;
1370 
1371 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ffa/pcpu-irq:starting",
1372 				ffa_cpuhp_pcpu_irq_enable,
1373 				ffa_cpuhp_pcpu_irq_disable);
1374 
1375 	if (ret < 0)
1376 		return ret;
1377 
1378 	drv_info->cpuhp_state = ret;
1379 	return 0;
1380 }
1381 
1382 static void ffa_notifications_cleanup(void)
1383 {
1384 	ffa_uninit_pcpu_irq();
1385 	ffa_sched_recv_irq_unmap();
1386 
1387 	if (drv_info->bitmap_created) {
1388 		ffa_notification_bitmap_destroy();
1389 		drv_info->bitmap_created = false;
1390 	}
1391 }
1392 
1393 static int ffa_notifications_setup(void)
1394 {
1395 	int ret, irq;
1396 
1397 	ret = ffa_features(FFA_NOTIFICATION_BITMAP_CREATE, 0, NULL, NULL);
1398 	if (ret) {
1399 		pr_err("Notifications not supported, continuing with it ..\n");
1400 		return 0;
1401 	}
1402 
1403 	ret = ffa_notification_bitmap_create();
1404 	if (ret) {
1405 		pr_err("notification_bitmap_create error %d\n", ret);
1406 		return ret;
1407 	}
1408 	drv_info->bitmap_created = true;
1409 
1410 	irq = ffa_sched_recv_irq_map();
1411 	if (irq <= 0) {
1412 		ret = irq;
1413 		goto cleanup;
1414 	}
1415 
1416 	drv_info->sched_recv_irq = irq;
1417 
1418 	ret = ffa_init_pcpu_irq(irq);
1419 	if (ret)
1420 		goto cleanup;
1421 
1422 	hash_init(drv_info->notifier_hash);
1423 	mutex_init(&drv_info->notify_lock);
1424 
1425 	/* Register internal scheduling callback */
1426 	ret = ffa_sched_recv_cb_update(drv_info->vm_id, ffa_self_notif_handle,
1427 				       drv_info, true);
1428 	if (!ret)
1429 		return ret;
1430 cleanup:
1431 	ffa_notifications_cleanup();
1432 	return ret;
1433 }
1434 
1435 static int __init ffa_init(void)
1436 {
1437 	int ret;
1438 
1439 	ret = ffa_transport_init(&invoke_ffa_fn);
1440 	if (ret)
1441 		return ret;
1442 
1443 	ret = arm_ffa_bus_init();
1444 	if (ret)
1445 		return ret;
1446 
1447 	drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL);
1448 	if (!drv_info) {
1449 		ret = -ENOMEM;
1450 		goto ffa_bus_exit;
1451 	}
1452 
1453 	ret = ffa_version_check(&drv_info->version);
1454 	if (ret)
1455 		goto free_drv_info;
1456 
1457 	if (ffa_id_get(&drv_info->vm_id)) {
1458 		pr_err("failed to obtain VM id for self\n");
1459 		ret = -ENODEV;
1460 		goto free_drv_info;
1461 	}
1462 
1463 	drv_info->rx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
1464 	if (!drv_info->rx_buffer) {
1465 		ret = -ENOMEM;
1466 		goto free_pages;
1467 	}
1468 
1469 	drv_info->tx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
1470 	if (!drv_info->tx_buffer) {
1471 		ret = -ENOMEM;
1472 		goto free_pages;
1473 	}
1474 
1475 	ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer),
1476 			   virt_to_phys(drv_info->rx_buffer),
1477 			   RXTX_BUFFER_SIZE / FFA_PAGE_SIZE);
1478 	if (ret) {
1479 		pr_err("failed to register FFA RxTx buffers\n");
1480 		goto free_pages;
1481 	}
1482 
1483 	mutex_init(&drv_info->rx_lock);
1484 	mutex_init(&drv_info->tx_lock);
1485 
1486 	ffa_setup_partitions();
1487 
1488 	ffa_set_up_mem_ops_native_flag();
1489 
1490 	ret = ffa_notifications_setup();
1491 	if (ret)
1492 		goto partitions_cleanup;
1493 
1494 	return 0;
1495 partitions_cleanup:
1496 	ffa_partitions_cleanup();
1497 free_pages:
1498 	if (drv_info->tx_buffer)
1499 		free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
1500 	free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
1501 free_drv_info:
1502 	kfree(drv_info);
1503 ffa_bus_exit:
1504 	arm_ffa_bus_exit();
1505 	return ret;
1506 }
1507 subsys_initcall(ffa_init);
1508 
1509 static void __exit ffa_exit(void)
1510 {
1511 	ffa_notifications_cleanup();
1512 	ffa_partitions_cleanup();
1513 	ffa_rxtx_unmap(drv_info->vm_id);
1514 	free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
1515 	free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
1516 	xa_destroy(&drv_info->partition_info);
1517 	kfree(drv_info);
1518 	arm_ffa_bus_exit();
1519 }
1520 module_exit(ffa_exit);
1521 
1522 MODULE_ALIAS("arm-ffa");
1523 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
1524 MODULE_DESCRIPTION("Arm FF-A interface driver");
1525 MODULE_LICENSE("GPL v2");
1526