1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Arm Firmware Framework for ARMv8-A(FFA) interface driver 4 * 5 * The Arm FFA specification[1] describes a software architecture to 6 * leverages the virtualization extension to isolate software images 7 * provided by an ecosystem of vendors from each other and describes 8 * interfaces that standardize communication between the various software 9 * images including communication between images in the Secure world and 10 * Normal world. Any Hypervisor could use the FFA interfaces to enable 11 * communication between VMs it manages. 12 * 13 * The Hypervisor a.k.a Partition managers in FFA terminology can assign 14 * system resources(Memory regions, Devices, CPU cycles) to the partitions 15 * and manage isolation amongst them. 16 * 17 * [1] https://developer.arm.com/docs/den0077/latest 18 * 19 * Copyright (C) 2021 ARM Ltd. 20 */ 21 22 #define DRIVER_NAME "ARM FF-A" 23 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 24 25 #include <linux/arm_ffa.h> 26 #include <linux/bitfield.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 #include <linux/mm.h> 32 #include <linux/scatterlist.h> 33 #include <linux/slab.h> 34 #include <linux/uuid.h> 35 36 #include "common.h" 37 38 #define FFA_DRIVER_VERSION FFA_VERSION_1_0 39 40 #define FFA_SMC(calling_convention, func_num) \ 41 ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, (calling_convention), \ 42 ARM_SMCCC_OWNER_STANDARD, (func_num)) 43 44 #define FFA_SMC_32(func_num) FFA_SMC(ARM_SMCCC_SMC_32, (func_num)) 45 #define FFA_SMC_64(func_num) FFA_SMC(ARM_SMCCC_SMC_64, (func_num)) 46 47 #define FFA_ERROR FFA_SMC_32(0x60) 48 #define FFA_SUCCESS FFA_SMC_32(0x61) 49 #define FFA_INTERRUPT FFA_SMC_32(0x62) 50 #define FFA_VERSION FFA_SMC_32(0x63) 51 #define FFA_FEATURES FFA_SMC_32(0x64) 52 #define FFA_RX_RELEASE FFA_SMC_32(0x65) 53 #define FFA_RXTX_MAP FFA_SMC_32(0x66) 54 #define FFA_FN64_RXTX_MAP FFA_SMC_64(0x66) 55 #define FFA_RXTX_UNMAP FFA_SMC_32(0x67) 56 #define FFA_PARTITION_INFO_GET FFA_SMC_32(0x68) 57 #define FFA_ID_GET FFA_SMC_32(0x69) 58 #define FFA_MSG_POLL FFA_SMC_32(0x6A) 59 #define FFA_MSG_WAIT FFA_SMC_32(0x6B) 60 #define FFA_YIELD FFA_SMC_32(0x6C) 61 #define FFA_RUN FFA_SMC_32(0x6D) 62 #define FFA_MSG_SEND FFA_SMC_32(0x6E) 63 #define FFA_MSG_SEND_DIRECT_REQ FFA_SMC_32(0x6F) 64 #define FFA_FN64_MSG_SEND_DIRECT_REQ FFA_SMC_64(0x6F) 65 #define FFA_MSG_SEND_DIRECT_RESP FFA_SMC_32(0x70) 66 #define FFA_FN64_MSG_SEND_DIRECT_RESP FFA_SMC_64(0x70) 67 #define FFA_MEM_DONATE FFA_SMC_32(0x71) 68 #define FFA_FN64_MEM_DONATE FFA_SMC_64(0x71) 69 #define FFA_MEM_LEND FFA_SMC_32(0x72) 70 #define FFA_FN64_MEM_LEND FFA_SMC_64(0x72) 71 #define FFA_MEM_SHARE FFA_SMC_32(0x73) 72 #define FFA_FN64_MEM_SHARE FFA_SMC_64(0x73) 73 #define FFA_MEM_RETRIEVE_REQ FFA_SMC_32(0x74) 74 #define FFA_FN64_MEM_RETRIEVE_REQ FFA_SMC_64(0x74) 75 #define FFA_MEM_RETRIEVE_RESP FFA_SMC_32(0x75) 76 #define FFA_MEM_RELINQUISH FFA_SMC_32(0x76) 77 #define FFA_MEM_RECLAIM FFA_SMC_32(0x77) 78 #define FFA_MEM_OP_PAUSE FFA_SMC_32(0x78) 79 #define FFA_MEM_OP_RESUME FFA_SMC_32(0x79) 80 #define FFA_MEM_FRAG_RX FFA_SMC_32(0x7A) 81 #define FFA_MEM_FRAG_TX FFA_SMC_32(0x7B) 82 #define FFA_NORMAL_WORLD_RESUME FFA_SMC_32(0x7C) 83 84 /* 85 * For some calls it is necessary to use SMC64 to pass or return 64-bit values. 86 * For such calls FFA_FN_NATIVE(name) will choose the appropriate 87 * (native-width) function ID. 88 */ 89 #ifdef CONFIG_64BIT 90 #define FFA_FN_NATIVE(name) FFA_FN64_##name 91 #else 92 #define FFA_FN_NATIVE(name) FFA_##name 93 #endif 94 95 /* FFA error codes. */ 96 #define FFA_RET_SUCCESS (0) 97 #define FFA_RET_NOT_SUPPORTED (-1) 98 #define FFA_RET_INVALID_PARAMETERS (-2) 99 #define FFA_RET_NO_MEMORY (-3) 100 #define FFA_RET_BUSY (-4) 101 #define FFA_RET_INTERRUPTED (-5) 102 #define FFA_RET_DENIED (-6) 103 #define FFA_RET_RETRY (-7) 104 #define FFA_RET_ABORTED (-8) 105 106 #define MAJOR_VERSION_MASK GENMASK(30, 16) 107 #define MINOR_VERSION_MASK GENMASK(15, 0) 108 #define MAJOR_VERSION(x) ((u16)(FIELD_GET(MAJOR_VERSION_MASK, (x)))) 109 #define MINOR_VERSION(x) ((u16)(FIELD_GET(MINOR_VERSION_MASK, (x)))) 110 #define PACK_VERSION_INFO(major, minor) \ 111 (FIELD_PREP(MAJOR_VERSION_MASK, (major)) | \ 112 FIELD_PREP(MINOR_VERSION_MASK, (minor))) 113 #define FFA_VERSION_1_0 PACK_VERSION_INFO(1, 0) 114 #define FFA_MIN_VERSION FFA_VERSION_1_0 115 116 #define SENDER_ID_MASK GENMASK(31, 16) 117 #define RECEIVER_ID_MASK GENMASK(15, 0) 118 #define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x)))) 119 #define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x)))) 120 #define PACK_TARGET_INFO(s, r) \ 121 (FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r))) 122 123 /* 124 * FF-A specification mentions explicitly about '4K pages'. This should 125 * not be confused with the kernel PAGE_SIZE, which is the translation 126 * granule kernel is configured and may be one among 4K, 16K and 64K. 127 */ 128 #define FFA_PAGE_SIZE SZ_4K 129 /* 130 * Keeping RX TX buffer size as 4K for now 131 * 64K may be preferred to keep it min a page in 64K PAGE_SIZE config 132 */ 133 #define RXTX_BUFFER_SIZE SZ_4K 134 135 static ffa_fn *invoke_ffa_fn; 136 137 static const int ffa_linux_errmap[] = { 138 /* better than switch case as long as return value is continuous */ 139 0, /* FFA_RET_SUCCESS */ 140 -EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */ 141 -EINVAL, /* FFA_RET_INVALID_PARAMETERS */ 142 -ENOMEM, /* FFA_RET_NO_MEMORY */ 143 -EBUSY, /* FFA_RET_BUSY */ 144 -EINTR, /* FFA_RET_INTERRUPTED */ 145 -EACCES, /* FFA_RET_DENIED */ 146 -EAGAIN, /* FFA_RET_RETRY */ 147 -ECANCELED, /* FFA_RET_ABORTED */ 148 }; 149 150 static inline int ffa_to_linux_errno(int errno) 151 { 152 int err_idx = -errno; 153 154 if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap)) 155 return ffa_linux_errmap[err_idx]; 156 return -EINVAL; 157 } 158 159 struct ffa_drv_info { 160 u32 version; 161 u16 vm_id; 162 struct mutex rx_lock; /* lock to protect Rx buffer */ 163 struct mutex tx_lock; /* lock to protect Tx buffer */ 164 void *rx_buffer; 165 void *tx_buffer; 166 }; 167 168 static struct ffa_drv_info *drv_info; 169 170 /* 171 * The driver must be able to support all the versions from the earliest 172 * supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION. 173 * The specification states that if firmware supports a FFA implementation 174 * that is incompatible with and at a greater version number than specified 175 * by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION), 176 * it must return the NOT_SUPPORTED error code. 177 */ 178 static u32 ffa_compatible_version_find(u32 version) 179 { 180 u16 major = MAJOR_VERSION(version), minor = MINOR_VERSION(version); 181 u16 drv_major = MAJOR_VERSION(FFA_DRIVER_VERSION); 182 u16 drv_minor = MINOR_VERSION(FFA_DRIVER_VERSION); 183 184 if ((major < drv_major) || (major == drv_major && minor <= drv_minor)) 185 return version; 186 187 pr_info("Firmware version higher than driver version, downgrading\n"); 188 return FFA_DRIVER_VERSION; 189 } 190 191 static int ffa_version_check(u32 *version) 192 { 193 ffa_value_t ver; 194 195 invoke_ffa_fn((ffa_value_t){ 196 .a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION, 197 }, &ver); 198 199 if (ver.a0 == FFA_RET_NOT_SUPPORTED) { 200 pr_info("FFA_VERSION returned not supported\n"); 201 return -EOPNOTSUPP; 202 } 203 204 if (ver.a0 < FFA_MIN_VERSION) { 205 pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n", 206 MAJOR_VERSION(ver.a0), MINOR_VERSION(ver.a0), 207 MAJOR_VERSION(FFA_MIN_VERSION), 208 MINOR_VERSION(FFA_MIN_VERSION)); 209 return -EINVAL; 210 } 211 212 pr_info("Driver version %d.%d\n", MAJOR_VERSION(FFA_DRIVER_VERSION), 213 MINOR_VERSION(FFA_DRIVER_VERSION)); 214 pr_info("Firmware version %d.%d found\n", MAJOR_VERSION(ver.a0), 215 MINOR_VERSION(ver.a0)); 216 *version = ffa_compatible_version_find(ver.a0); 217 218 return 0; 219 } 220 221 static int ffa_rx_release(void) 222 { 223 ffa_value_t ret; 224 225 invoke_ffa_fn((ffa_value_t){ 226 .a0 = FFA_RX_RELEASE, 227 }, &ret); 228 229 if (ret.a0 == FFA_ERROR) 230 return ffa_to_linux_errno((int)ret.a2); 231 232 /* check for ret.a0 == FFA_RX_RELEASE ? */ 233 234 return 0; 235 } 236 237 static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt) 238 { 239 ffa_value_t ret; 240 241 invoke_ffa_fn((ffa_value_t){ 242 .a0 = FFA_FN_NATIVE(RXTX_MAP), 243 .a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt, 244 }, &ret); 245 246 if (ret.a0 == FFA_ERROR) 247 return ffa_to_linux_errno((int)ret.a2); 248 249 return 0; 250 } 251 252 static int ffa_rxtx_unmap(u16 vm_id) 253 { 254 ffa_value_t ret; 255 256 invoke_ffa_fn((ffa_value_t){ 257 .a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0), 258 }, &ret); 259 260 if (ret.a0 == FFA_ERROR) 261 return ffa_to_linux_errno((int)ret.a2); 262 263 return 0; 264 } 265 266 /* buffer must be sizeof(struct ffa_partition_info) * num_partitions */ 267 static int 268 __ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3, 269 struct ffa_partition_info *buffer, int num_partitions) 270 { 271 int count; 272 ffa_value_t partition_info; 273 274 mutex_lock(&drv_info->rx_lock); 275 invoke_ffa_fn((ffa_value_t){ 276 .a0 = FFA_PARTITION_INFO_GET, 277 .a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3, 278 }, &partition_info); 279 280 if (partition_info.a0 == FFA_ERROR) { 281 mutex_unlock(&drv_info->rx_lock); 282 return ffa_to_linux_errno((int)partition_info.a2); 283 } 284 285 count = partition_info.a2; 286 287 if (buffer && count <= num_partitions) 288 memcpy(buffer, drv_info->rx_buffer, sizeof(*buffer) * count); 289 290 ffa_rx_release(); 291 292 mutex_unlock(&drv_info->rx_lock); 293 294 return count; 295 } 296 297 /* buffer is allocated and caller must free the same if returned count > 0 */ 298 static int 299 ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer) 300 { 301 int count; 302 u32 uuid0_4[4]; 303 struct ffa_partition_info *pbuf; 304 305 export_uuid((u8 *)uuid0_4, uuid); 306 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2], 307 uuid0_4[3], NULL, 0); 308 if (count <= 0) 309 return count; 310 311 pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL); 312 if (!pbuf) 313 return -ENOMEM; 314 315 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2], 316 uuid0_4[3], pbuf, count); 317 if (count <= 0) 318 kfree(pbuf); 319 else 320 *buffer = pbuf; 321 322 return count; 323 } 324 325 #define VM_ID_MASK GENMASK(15, 0) 326 static int ffa_id_get(u16 *vm_id) 327 { 328 ffa_value_t id; 329 330 invoke_ffa_fn((ffa_value_t){ 331 .a0 = FFA_ID_GET, 332 }, &id); 333 334 if (id.a0 == FFA_ERROR) 335 return ffa_to_linux_errno((int)id.a2); 336 337 *vm_id = FIELD_GET(VM_ID_MASK, (id.a2)); 338 339 return 0; 340 } 341 342 static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit, 343 struct ffa_send_direct_data *data) 344 { 345 u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id); 346 ffa_value_t ret; 347 348 if (mode_32bit) { 349 req_id = FFA_MSG_SEND_DIRECT_REQ; 350 resp_id = FFA_MSG_SEND_DIRECT_RESP; 351 } else { 352 req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ); 353 resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP); 354 } 355 356 invoke_ffa_fn((ffa_value_t){ 357 .a0 = req_id, .a1 = src_dst_ids, .a2 = 0, 358 .a3 = data->data0, .a4 = data->data1, .a5 = data->data2, 359 .a6 = data->data3, .a7 = data->data4, 360 }, &ret); 361 362 while (ret.a0 == FFA_INTERRUPT) 363 invoke_ffa_fn((ffa_value_t){ 364 .a0 = FFA_RUN, .a1 = ret.a1, 365 }, &ret); 366 367 if (ret.a0 == FFA_ERROR) 368 return ffa_to_linux_errno((int)ret.a2); 369 370 if (ret.a0 == resp_id) { 371 data->data0 = ret.a3; 372 data->data1 = ret.a4; 373 data->data2 = ret.a5; 374 data->data3 = ret.a6; 375 data->data4 = ret.a7; 376 return 0; 377 } 378 379 return -EINVAL; 380 } 381 382 static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz, 383 u32 frag_len, u32 len, u64 *handle) 384 { 385 ffa_value_t ret; 386 387 invoke_ffa_fn((ffa_value_t){ 388 .a0 = func_id, .a1 = len, .a2 = frag_len, 389 .a3 = buf, .a4 = buf_sz, 390 }, &ret); 391 392 while (ret.a0 == FFA_MEM_OP_PAUSE) 393 invoke_ffa_fn((ffa_value_t){ 394 .a0 = FFA_MEM_OP_RESUME, 395 .a1 = ret.a1, .a2 = ret.a2, 396 }, &ret); 397 398 if (ret.a0 == FFA_ERROR) 399 return ffa_to_linux_errno((int)ret.a2); 400 401 if (ret.a0 != FFA_SUCCESS) 402 return -EOPNOTSUPP; 403 404 if (handle) 405 *handle = PACK_HANDLE(ret.a2, ret.a3); 406 407 return frag_len; 408 } 409 410 static int ffa_mem_next_frag(u64 handle, u32 frag_len) 411 { 412 ffa_value_t ret; 413 414 invoke_ffa_fn((ffa_value_t){ 415 .a0 = FFA_MEM_FRAG_TX, 416 .a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle), 417 .a3 = frag_len, 418 }, &ret); 419 420 while (ret.a0 == FFA_MEM_OP_PAUSE) 421 invoke_ffa_fn((ffa_value_t){ 422 .a0 = FFA_MEM_OP_RESUME, 423 .a1 = ret.a1, .a2 = ret.a2, 424 }, &ret); 425 426 if (ret.a0 == FFA_ERROR) 427 return ffa_to_linux_errno((int)ret.a2); 428 429 if (ret.a0 != FFA_MEM_FRAG_RX) 430 return -EOPNOTSUPP; 431 432 return ret.a3; 433 } 434 435 static int 436 ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len, 437 u32 len, u64 *handle, bool first) 438 { 439 if (!first) 440 return ffa_mem_next_frag(*handle, frag_len); 441 442 return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle); 443 } 444 445 static u32 ffa_get_num_pages_sg(struct scatterlist *sg) 446 { 447 u32 num_pages = 0; 448 449 do { 450 num_pages += sg->length / FFA_PAGE_SIZE; 451 } while ((sg = sg_next(sg))); 452 453 return num_pages; 454 } 455 456 static int 457 ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize, 458 struct ffa_mem_ops_args *args) 459 { 460 int rc = 0; 461 bool first = true; 462 phys_addr_t addr = 0; 463 struct ffa_composite_mem_region *composite; 464 struct ffa_mem_region_addr_range *constituents; 465 struct ffa_mem_region_attributes *ep_mem_access; 466 struct ffa_mem_region *mem_region = buffer; 467 u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg); 468 469 mem_region->tag = args->tag; 470 mem_region->flags = args->flags; 471 mem_region->sender_id = drv_info->vm_id; 472 mem_region->attributes = FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | 473 FFA_MEM_INNER_SHAREABLE; 474 ep_mem_access = &mem_region->ep_mem_access[0]; 475 476 for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) { 477 ep_mem_access->receiver = args->attrs[idx].receiver; 478 ep_mem_access->attrs = args->attrs[idx].attrs; 479 ep_mem_access->composite_off = COMPOSITE_OFFSET(args->nattrs); 480 } 481 mem_region->ep_count = args->nattrs; 482 483 composite = buffer + COMPOSITE_OFFSET(args->nattrs); 484 composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg); 485 composite->addr_range_cnt = num_entries; 486 487 length = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, num_entries); 488 frag_len = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, 0); 489 if (frag_len > max_fragsize) 490 return -ENXIO; 491 492 if (!args->use_txbuf) { 493 addr = virt_to_phys(buffer); 494 buf_sz = max_fragsize / FFA_PAGE_SIZE; 495 } 496 497 constituents = buffer + frag_len; 498 idx = 0; 499 do { 500 if (frag_len == max_fragsize) { 501 rc = ffa_transmit_fragment(func_id, addr, buf_sz, 502 frag_len, length, 503 &args->g_handle, first); 504 if (rc < 0) 505 return -ENXIO; 506 507 first = false; 508 idx = 0; 509 frag_len = 0; 510 constituents = buffer; 511 } 512 513 if ((void *)constituents - buffer > max_fragsize) { 514 pr_err("Memory Region Fragment > Tx Buffer size\n"); 515 return -EFAULT; 516 } 517 518 constituents->address = sg_phys(args->sg); 519 constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE; 520 constituents++; 521 frag_len += sizeof(struct ffa_mem_region_addr_range); 522 } while ((args->sg = sg_next(args->sg))); 523 524 return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len, 525 length, &args->g_handle, first); 526 } 527 528 static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args) 529 { 530 int ret; 531 void *buffer; 532 533 if (!args->use_txbuf) { 534 buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); 535 if (!buffer) 536 return -ENOMEM; 537 } else { 538 buffer = drv_info->tx_buffer; 539 mutex_lock(&drv_info->tx_lock); 540 } 541 542 ret = ffa_setup_and_transmit(func_id, buffer, RXTX_BUFFER_SIZE, args); 543 544 if (args->use_txbuf) 545 mutex_unlock(&drv_info->tx_lock); 546 else 547 free_pages_exact(buffer, RXTX_BUFFER_SIZE); 548 549 return ret < 0 ? ret : 0; 550 } 551 552 static int ffa_memory_reclaim(u64 g_handle, u32 flags) 553 { 554 ffa_value_t ret; 555 556 invoke_ffa_fn((ffa_value_t){ 557 .a0 = FFA_MEM_RECLAIM, 558 .a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle), 559 .a3 = flags, 560 }, &ret); 561 562 if (ret.a0 == FFA_ERROR) 563 return ffa_to_linux_errno((int)ret.a2); 564 565 return 0; 566 } 567 568 static u32 ffa_api_version_get(void) 569 { 570 return drv_info->version; 571 } 572 573 static int ffa_partition_info_get(const char *uuid_str, 574 struct ffa_partition_info *buffer) 575 { 576 int count; 577 uuid_t uuid; 578 struct ffa_partition_info *pbuf; 579 580 if (uuid_parse(uuid_str, &uuid)) { 581 pr_err("invalid uuid (%s)\n", uuid_str); 582 return -ENODEV; 583 } 584 585 count = ffa_partition_probe(&uuid_null, &pbuf); 586 if (count <= 0) 587 return -ENOENT; 588 589 memcpy(buffer, pbuf, sizeof(*pbuf) * count); 590 kfree(pbuf); 591 return 0; 592 } 593 594 static void ffa_mode_32bit_set(struct ffa_device *dev) 595 { 596 dev->mode_32bit = true; 597 } 598 599 static int ffa_sync_send_receive(struct ffa_device *dev, 600 struct ffa_send_direct_data *data) 601 { 602 return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id, 603 dev->mode_32bit, data); 604 } 605 606 static int 607 ffa_memory_share(struct ffa_device *dev, struct ffa_mem_ops_args *args) 608 { 609 if (dev->mode_32bit) 610 return ffa_memory_ops(FFA_MEM_SHARE, args); 611 612 return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args); 613 } 614 615 static int 616 ffa_memory_lend(struct ffa_device *dev, struct ffa_mem_ops_args *args) 617 { 618 /* Note that upon a successful MEM_LEND request the caller 619 * must ensure that the memory region specified is not accessed 620 * until a successful MEM_RECALIM call has been made. 621 * On systems with a hypervisor present this will been enforced, 622 * however on systems without a hypervisor the responsibility 623 * falls to the calling kernel driver to prevent access. 624 */ 625 if (dev->mode_32bit) 626 return ffa_memory_ops(FFA_MEM_LEND, args); 627 628 return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args); 629 } 630 631 static const struct ffa_dev_ops ffa_ops = { 632 .api_version_get = ffa_api_version_get, 633 .partition_info_get = ffa_partition_info_get, 634 .mode_32bit_set = ffa_mode_32bit_set, 635 .sync_send_receive = ffa_sync_send_receive, 636 .memory_reclaim = ffa_memory_reclaim, 637 .memory_share = ffa_memory_share, 638 .memory_lend = ffa_memory_lend, 639 }; 640 641 const struct ffa_dev_ops *ffa_dev_ops_get(struct ffa_device *dev) 642 { 643 if (ffa_device_is_valid(dev)) 644 return &ffa_ops; 645 646 return NULL; 647 } 648 EXPORT_SYMBOL_GPL(ffa_dev_ops_get); 649 650 void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid) 651 { 652 int count, idx; 653 struct ffa_partition_info *pbuf, *tpbuf; 654 655 count = ffa_partition_probe(uuid, &pbuf); 656 if (count <= 0) 657 return; 658 659 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) 660 if (tpbuf->id == ffa_dev->vm_id) 661 uuid_copy(&ffa_dev->uuid, uuid); 662 kfree(pbuf); 663 } 664 665 static void ffa_setup_partitions(void) 666 { 667 int count, idx; 668 struct ffa_device *ffa_dev; 669 struct ffa_partition_info *pbuf, *tpbuf; 670 671 count = ffa_partition_probe(&uuid_null, &pbuf); 672 if (count <= 0) { 673 pr_info("%s: No partitions found, error %d\n", __func__, count); 674 return; 675 } 676 677 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) { 678 /* Note that the &uuid_null parameter will require 679 * ffa_device_match() to find the UUID of this partition id 680 * with help of ffa_device_match_uuid(). Once the FF-A spec 681 * is updated to provide correct UUID here for each partition 682 * as part of the discovery API, we need to pass the 683 * discovered UUID here instead. 684 */ 685 ffa_dev = ffa_device_register(&uuid_null, tpbuf->id); 686 if (!ffa_dev) { 687 pr_err("%s: failed to register partition ID 0x%x\n", 688 __func__, tpbuf->id); 689 continue; 690 } 691 692 ffa_dev_set_drvdata(ffa_dev, drv_info); 693 } 694 kfree(pbuf); 695 } 696 697 static int __init ffa_init(void) 698 { 699 int ret; 700 701 ret = ffa_transport_init(&invoke_ffa_fn); 702 if (ret) 703 return ret; 704 705 ret = arm_ffa_bus_init(); 706 if (ret) 707 return ret; 708 709 drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL); 710 if (!drv_info) { 711 ret = -ENOMEM; 712 goto ffa_bus_exit; 713 } 714 715 ret = ffa_version_check(&drv_info->version); 716 if (ret) 717 goto free_drv_info; 718 719 if (ffa_id_get(&drv_info->vm_id)) { 720 pr_err("failed to obtain VM id for self\n"); 721 ret = -ENODEV; 722 goto free_drv_info; 723 } 724 725 drv_info->rx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); 726 if (!drv_info->rx_buffer) { 727 ret = -ENOMEM; 728 goto free_pages; 729 } 730 731 drv_info->tx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); 732 if (!drv_info->tx_buffer) { 733 ret = -ENOMEM; 734 goto free_pages; 735 } 736 737 ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer), 738 virt_to_phys(drv_info->rx_buffer), 739 RXTX_BUFFER_SIZE / FFA_PAGE_SIZE); 740 if (ret) { 741 pr_err("failed to register FFA RxTx buffers\n"); 742 goto free_pages; 743 } 744 745 mutex_init(&drv_info->rx_lock); 746 mutex_init(&drv_info->tx_lock); 747 748 ffa_setup_partitions(); 749 750 return 0; 751 free_pages: 752 if (drv_info->tx_buffer) 753 free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE); 754 free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE); 755 free_drv_info: 756 kfree(drv_info); 757 ffa_bus_exit: 758 arm_ffa_bus_exit(); 759 return ret; 760 } 761 subsys_initcall(ffa_init); 762 763 static void __exit ffa_exit(void) 764 { 765 ffa_rxtx_unmap(drv_info->vm_id); 766 free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE); 767 free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE); 768 kfree(drv_info); 769 arm_ffa_bus_exit(); 770 } 771 module_exit(ffa_exit); 772 773 MODULE_ALIAS("arm-ffa"); 774 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 775 MODULE_DESCRIPTION("Arm FF-A interface driver"); 776 MODULE_LICENSE("GPL v2"); 777