xref: /linux/drivers/firmware/arm_ffa/driver.c (revision 0e2b2a76278153d1ac312b0691cb65dabb9aef3e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Arm Firmware Framework for ARMv8-A(FFA) interface driver
4  *
5  * The Arm FFA specification[1] describes a software architecture to
6  * leverages the virtualization extension to isolate software images
7  * provided by an ecosystem of vendors from each other and describes
8  * interfaces that standardize communication between the various software
9  * images including communication between images in the Secure world and
10  * Normal world. Any Hypervisor could use the FFA interfaces to enable
11  * communication between VMs it manages.
12  *
13  * The Hypervisor a.k.a Partition managers in FFA terminology can assign
14  * system resources(Memory regions, Devices, CPU cycles) to the partitions
15  * and manage isolation amongst them.
16  *
17  * [1] https://developer.arm.com/docs/den0077/latest
18  *
19  * Copyright (C) 2021 ARM Ltd.
20  */
21 
22 #define DRIVER_NAME "ARM FF-A"
23 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
24 
25 #include <linux/arm_ffa.h>
26 #include <linux/bitfield.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/mm.h>
32 #include <linux/scatterlist.h>
33 #include <linux/slab.h>
34 #include <linux/uuid.h>
35 
36 #include "common.h"
37 
38 #define FFA_DRIVER_VERSION	FFA_VERSION_1_0
39 #define FFA_MIN_VERSION		FFA_VERSION_1_0
40 
41 #define SENDER_ID_MASK		GENMASK(31, 16)
42 #define RECEIVER_ID_MASK	GENMASK(15, 0)
43 #define SENDER_ID(x)		((u16)(FIELD_GET(SENDER_ID_MASK, (x))))
44 #define RECEIVER_ID(x)		((u16)(FIELD_GET(RECEIVER_ID_MASK, (x))))
45 #define PACK_TARGET_INFO(s, r)		\
46 	(FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r)))
47 
48 /*
49  * Keeping RX TX buffer size as 4K for now
50  * 64K may be preferred to keep it min a page in 64K PAGE_SIZE config
51  */
52 #define RXTX_BUFFER_SIZE	SZ_4K
53 
54 static ffa_fn *invoke_ffa_fn;
55 
56 static const int ffa_linux_errmap[] = {
57 	/* better than switch case as long as return value is continuous */
58 	0,		/* FFA_RET_SUCCESS */
59 	-EOPNOTSUPP,	/* FFA_RET_NOT_SUPPORTED */
60 	-EINVAL,	/* FFA_RET_INVALID_PARAMETERS */
61 	-ENOMEM,	/* FFA_RET_NO_MEMORY */
62 	-EBUSY,		/* FFA_RET_BUSY */
63 	-EINTR,		/* FFA_RET_INTERRUPTED */
64 	-EACCES,	/* FFA_RET_DENIED */
65 	-EAGAIN,	/* FFA_RET_RETRY */
66 	-ECANCELED,	/* FFA_RET_ABORTED */
67 };
68 
69 static inline int ffa_to_linux_errno(int errno)
70 {
71 	int err_idx = -errno;
72 
73 	if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap))
74 		return ffa_linux_errmap[err_idx];
75 	return -EINVAL;
76 }
77 
78 struct ffa_drv_info {
79 	u32 version;
80 	u16 vm_id;
81 	struct mutex rx_lock; /* lock to protect Rx buffer */
82 	struct mutex tx_lock; /* lock to protect Tx buffer */
83 	void *rx_buffer;
84 	void *tx_buffer;
85 	bool mem_ops_native;
86 };
87 
88 static struct ffa_drv_info *drv_info;
89 
90 /*
91  * The driver must be able to support all the versions from the earliest
92  * supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION.
93  * The specification states that if firmware supports a FFA implementation
94  * that is incompatible with and at a greater version number than specified
95  * by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION),
96  * it must return the NOT_SUPPORTED error code.
97  */
98 static u32 ffa_compatible_version_find(u32 version)
99 {
100 	u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version);
101 	u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION);
102 	u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION);
103 
104 	if ((major < drv_major) || (major == drv_major && minor <= drv_minor))
105 		return version;
106 
107 	pr_info("Firmware version higher than driver version, downgrading\n");
108 	return FFA_DRIVER_VERSION;
109 }
110 
111 static int ffa_version_check(u32 *version)
112 {
113 	ffa_value_t ver;
114 
115 	invoke_ffa_fn((ffa_value_t){
116 		      .a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION,
117 		      }, &ver);
118 
119 	if (ver.a0 == FFA_RET_NOT_SUPPORTED) {
120 		pr_info("FFA_VERSION returned not supported\n");
121 		return -EOPNOTSUPP;
122 	}
123 
124 	if (ver.a0 < FFA_MIN_VERSION) {
125 		pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n",
126 		       FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
127 		       FFA_MAJOR_VERSION(FFA_MIN_VERSION),
128 		       FFA_MINOR_VERSION(FFA_MIN_VERSION));
129 		return -EINVAL;
130 	}
131 
132 	pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
133 		FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
134 	pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0),
135 		FFA_MINOR_VERSION(ver.a0));
136 	*version = ffa_compatible_version_find(ver.a0);
137 
138 	return 0;
139 }
140 
141 static int ffa_rx_release(void)
142 {
143 	ffa_value_t ret;
144 
145 	invoke_ffa_fn((ffa_value_t){
146 		      .a0 = FFA_RX_RELEASE,
147 		      }, &ret);
148 
149 	if (ret.a0 == FFA_ERROR)
150 		return ffa_to_linux_errno((int)ret.a2);
151 
152 	/* check for ret.a0 == FFA_RX_RELEASE ? */
153 
154 	return 0;
155 }
156 
157 static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt)
158 {
159 	ffa_value_t ret;
160 
161 	invoke_ffa_fn((ffa_value_t){
162 		      .a0 = FFA_FN_NATIVE(RXTX_MAP),
163 		      .a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt,
164 		      }, &ret);
165 
166 	if (ret.a0 == FFA_ERROR)
167 		return ffa_to_linux_errno((int)ret.a2);
168 
169 	return 0;
170 }
171 
172 static int ffa_rxtx_unmap(u16 vm_id)
173 {
174 	ffa_value_t ret;
175 
176 	invoke_ffa_fn((ffa_value_t){
177 		      .a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0),
178 		      }, &ret);
179 
180 	if (ret.a0 == FFA_ERROR)
181 		return ffa_to_linux_errno((int)ret.a2);
182 
183 	return 0;
184 }
185 
186 #define PARTITION_INFO_GET_RETURN_COUNT_ONLY	BIT(0)
187 
188 /* buffer must be sizeof(struct ffa_partition_info) * num_partitions */
189 static int
190 __ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
191 			 struct ffa_partition_info *buffer, int num_partitions)
192 {
193 	int idx, count, flags = 0, sz, buf_sz;
194 	ffa_value_t partition_info;
195 
196 	if (drv_info->version > FFA_VERSION_1_0 &&
197 	    (!buffer || !num_partitions)) /* Just get the count for now */
198 		flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY;
199 
200 	mutex_lock(&drv_info->rx_lock);
201 	invoke_ffa_fn((ffa_value_t){
202 		      .a0 = FFA_PARTITION_INFO_GET,
203 		      .a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3,
204 		      .a5 = flags,
205 		      }, &partition_info);
206 
207 	if (partition_info.a0 == FFA_ERROR) {
208 		mutex_unlock(&drv_info->rx_lock);
209 		return ffa_to_linux_errno((int)partition_info.a2);
210 	}
211 
212 	count = partition_info.a2;
213 
214 	if (drv_info->version > FFA_VERSION_1_0) {
215 		buf_sz = sz = partition_info.a3;
216 		if (sz > sizeof(*buffer))
217 			buf_sz = sizeof(*buffer);
218 	} else {
219 		/* FFA_VERSION_1_0 lacks size in the response */
220 		buf_sz = sz = 8;
221 	}
222 
223 	if (buffer && count <= num_partitions)
224 		for (idx = 0; idx < count; idx++)
225 			memcpy(buffer + idx, drv_info->rx_buffer + idx * sz,
226 			       buf_sz);
227 
228 	ffa_rx_release();
229 
230 	mutex_unlock(&drv_info->rx_lock);
231 
232 	return count;
233 }
234 
235 /* buffer is allocated and caller must free the same if returned count > 0 */
236 static int
237 ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer)
238 {
239 	int count;
240 	u32 uuid0_4[4];
241 	struct ffa_partition_info *pbuf;
242 
243 	export_uuid((u8 *)uuid0_4, uuid);
244 	count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
245 					 uuid0_4[3], NULL, 0);
246 	if (count <= 0)
247 		return count;
248 
249 	pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL);
250 	if (!pbuf)
251 		return -ENOMEM;
252 
253 	count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
254 					 uuid0_4[3], pbuf, count);
255 	if (count <= 0)
256 		kfree(pbuf);
257 	else
258 		*buffer = pbuf;
259 
260 	return count;
261 }
262 
263 #define VM_ID_MASK	GENMASK(15, 0)
264 static int ffa_id_get(u16 *vm_id)
265 {
266 	ffa_value_t id;
267 
268 	invoke_ffa_fn((ffa_value_t){
269 		      .a0 = FFA_ID_GET,
270 		      }, &id);
271 
272 	if (id.a0 == FFA_ERROR)
273 		return ffa_to_linux_errno((int)id.a2);
274 
275 	*vm_id = FIELD_GET(VM_ID_MASK, (id.a2));
276 
277 	return 0;
278 }
279 
280 static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit,
281 				   struct ffa_send_direct_data *data)
282 {
283 	u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
284 	ffa_value_t ret;
285 
286 	if (mode_32bit) {
287 		req_id = FFA_MSG_SEND_DIRECT_REQ;
288 		resp_id = FFA_MSG_SEND_DIRECT_RESP;
289 	} else {
290 		req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ);
291 		resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP);
292 	}
293 
294 	invoke_ffa_fn((ffa_value_t){
295 		      .a0 = req_id, .a1 = src_dst_ids, .a2 = 0,
296 		      .a3 = data->data0, .a4 = data->data1, .a5 = data->data2,
297 		      .a6 = data->data3, .a7 = data->data4,
298 		      }, &ret);
299 
300 	while (ret.a0 == FFA_INTERRUPT)
301 		invoke_ffa_fn((ffa_value_t){
302 			      .a0 = FFA_RUN, .a1 = ret.a1,
303 			      }, &ret);
304 
305 	if (ret.a0 == FFA_ERROR)
306 		return ffa_to_linux_errno((int)ret.a2);
307 
308 	if (ret.a0 == resp_id) {
309 		data->data0 = ret.a3;
310 		data->data1 = ret.a4;
311 		data->data2 = ret.a5;
312 		data->data3 = ret.a6;
313 		data->data4 = ret.a7;
314 		return 0;
315 	}
316 
317 	return -EINVAL;
318 }
319 
320 static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz,
321 			      u32 frag_len, u32 len, u64 *handle)
322 {
323 	ffa_value_t ret;
324 
325 	invoke_ffa_fn((ffa_value_t){
326 		      .a0 = func_id, .a1 = len, .a2 = frag_len,
327 		      .a3 = buf, .a4 = buf_sz,
328 		      }, &ret);
329 
330 	while (ret.a0 == FFA_MEM_OP_PAUSE)
331 		invoke_ffa_fn((ffa_value_t){
332 			      .a0 = FFA_MEM_OP_RESUME,
333 			      .a1 = ret.a1, .a2 = ret.a2,
334 			      }, &ret);
335 
336 	if (ret.a0 == FFA_ERROR)
337 		return ffa_to_linux_errno((int)ret.a2);
338 
339 	if (ret.a0 == FFA_SUCCESS) {
340 		if (handle)
341 			*handle = PACK_HANDLE(ret.a2, ret.a3);
342 	} else if (ret.a0 == FFA_MEM_FRAG_RX) {
343 		if (handle)
344 			*handle = PACK_HANDLE(ret.a1, ret.a2);
345 	} else {
346 		return -EOPNOTSUPP;
347 	}
348 
349 	return frag_len;
350 }
351 
352 static int ffa_mem_next_frag(u64 handle, u32 frag_len)
353 {
354 	ffa_value_t ret;
355 
356 	invoke_ffa_fn((ffa_value_t){
357 		      .a0 = FFA_MEM_FRAG_TX,
358 		      .a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle),
359 		      .a3 = frag_len,
360 		      }, &ret);
361 
362 	while (ret.a0 == FFA_MEM_OP_PAUSE)
363 		invoke_ffa_fn((ffa_value_t){
364 			      .a0 = FFA_MEM_OP_RESUME,
365 			      .a1 = ret.a1, .a2 = ret.a2,
366 			      }, &ret);
367 
368 	if (ret.a0 == FFA_ERROR)
369 		return ffa_to_linux_errno((int)ret.a2);
370 
371 	if (ret.a0 == FFA_MEM_FRAG_RX)
372 		return ret.a3;
373 	else if (ret.a0 == FFA_SUCCESS)
374 		return 0;
375 
376 	return -EOPNOTSUPP;
377 }
378 
379 static int
380 ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len,
381 		      u32 len, u64 *handle, bool first)
382 {
383 	if (!first)
384 		return ffa_mem_next_frag(*handle, frag_len);
385 
386 	return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle);
387 }
388 
389 static u32 ffa_get_num_pages_sg(struct scatterlist *sg)
390 {
391 	u32 num_pages = 0;
392 
393 	do {
394 		num_pages += sg->length / FFA_PAGE_SIZE;
395 	} while ((sg = sg_next(sg)));
396 
397 	return num_pages;
398 }
399 
400 static int
401 ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize,
402 		       struct ffa_mem_ops_args *args)
403 {
404 	int rc = 0;
405 	bool first = true;
406 	phys_addr_t addr = 0;
407 	struct ffa_composite_mem_region *composite;
408 	struct ffa_mem_region_addr_range *constituents;
409 	struct ffa_mem_region_attributes *ep_mem_access;
410 	struct ffa_mem_region *mem_region = buffer;
411 	u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg);
412 
413 	mem_region->tag = args->tag;
414 	mem_region->flags = args->flags;
415 	mem_region->sender_id = drv_info->vm_id;
416 	mem_region->attributes = FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK |
417 				 FFA_MEM_INNER_SHAREABLE;
418 	ep_mem_access = &mem_region->ep_mem_access[0];
419 
420 	for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) {
421 		ep_mem_access->receiver = args->attrs[idx].receiver;
422 		ep_mem_access->attrs = args->attrs[idx].attrs;
423 		ep_mem_access->composite_off = COMPOSITE_OFFSET(args->nattrs);
424 		ep_mem_access->flag = 0;
425 		ep_mem_access->reserved = 0;
426 	}
427 	mem_region->handle = 0;
428 	mem_region->reserved_0 = 0;
429 	mem_region->reserved_1 = 0;
430 	mem_region->ep_count = args->nattrs;
431 
432 	composite = buffer + COMPOSITE_OFFSET(args->nattrs);
433 	composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg);
434 	composite->addr_range_cnt = num_entries;
435 	composite->reserved = 0;
436 
437 	length = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, num_entries);
438 	frag_len = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, 0);
439 	if (frag_len > max_fragsize)
440 		return -ENXIO;
441 
442 	if (!args->use_txbuf) {
443 		addr = virt_to_phys(buffer);
444 		buf_sz = max_fragsize / FFA_PAGE_SIZE;
445 	}
446 
447 	constituents = buffer + frag_len;
448 	idx = 0;
449 	do {
450 		if (frag_len == max_fragsize) {
451 			rc = ffa_transmit_fragment(func_id, addr, buf_sz,
452 						   frag_len, length,
453 						   &args->g_handle, first);
454 			if (rc < 0)
455 				return -ENXIO;
456 
457 			first = false;
458 			idx = 0;
459 			frag_len = 0;
460 			constituents = buffer;
461 		}
462 
463 		if ((void *)constituents - buffer > max_fragsize) {
464 			pr_err("Memory Region Fragment > Tx Buffer size\n");
465 			return -EFAULT;
466 		}
467 
468 		constituents->address = sg_phys(args->sg);
469 		constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE;
470 		constituents->reserved = 0;
471 		constituents++;
472 		frag_len += sizeof(struct ffa_mem_region_addr_range);
473 	} while ((args->sg = sg_next(args->sg)));
474 
475 	return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len,
476 				     length, &args->g_handle, first);
477 }
478 
479 static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args)
480 {
481 	int ret;
482 	void *buffer;
483 
484 	if (!args->use_txbuf) {
485 		buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
486 		if (!buffer)
487 			return -ENOMEM;
488 	} else {
489 		buffer = drv_info->tx_buffer;
490 		mutex_lock(&drv_info->tx_lock);
491 	}
492 
493 	ret = ffa_setup_and_transmit(func_id, buffer, RXTX_BUFFER_SIZE, args);
494 
495 	if (args->use_txbuf)
496 		mutex_unlock(&drv_info->tx_lock);
497 	else
498 		free_pages_exact(buffer, RXTX_BUFFER_SIZE);
499 
500 	return ret < 0 ? ret : 0;
501 }
502 
503 static int ffa_memory_reclaim(u64 g_handle, u32 flags)
504 {
505 	ffa_value_t ret;
506 
507 	invoke_ffa_fn((ffa_value_t){
508 		      .a0 = FFA_MEM_RECLAIM,
509 		      .a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle),
510 		      .a3 = flags,
511 		      }, &ret);
512 
513 	if (ret.a0 == FFA_ERROR)
514 		return ffa_to_linux_errno((int)ret.a2);
515 
516 	return 0;
517 }
518 
519 static int ffa_features(u32 func_feat_id, u32 input_props,
520 			u32 *if_props_1, u32 *if_props_2)
521 {
522 	ffa_value_t id;
523 
524 	if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) {
525 		pr_err("%s: Invalid Parameters: %x, %x", __func__,
526 		       func_feat_id, input_props);
527 		return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS);
528 	}
529 
530 	invoke_ffa_fn((ffa_value_t){
531 		.a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props,
532 		}, &id);
533 
534 	if (id.a0 == FFA_ERROR)
535 		return ffa_to_linux_errno((int)id.a2);
536 
537 	if (if_props_1)
538 		*if_props_1 = id.a2;
539 	if (if_props_2)
540 		*if_props_2 = id.a3;
541 
542 	return 0;
543 }
544 
545 static void ffa_set_up_mem_ops_native_flag(void)
546 {
547 	if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) ||
548 	    !ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL))
549 		drv_info->mem_ops_native = true;
550 }
551 
552 static u32 ffa_api_version_get(void)
553 {
554 	return drv_info->version;
555 }
556 
557 static int ffa_partition_info_get(const char *uuid_str,
558 				  struct ffa_partition_info *buffer)
559 {
560 	int count;
561 	uuid_t uuid;
562 	struct ffa_partition_info *pbuf;
563 
564 	if (uuid_parse(uuid_str, &uuid)) {
565 		pr_err("invalid uuid (%s)\n", uuid_str);
566 		return -ENODEV;
567 	}
568 
569 	count = ffa_partition_probe(&uuid, &pbuf);
570 	if (count <= 0)
571 		return -ENOENT;
572 
573 	memcpy(buffer, pbuf, sizeof(*pbuf) * count);
574 	kfree(pbuf);
575 	return 0;
576 }
577 
578 static void _ffa_mode_32bit_set(struct ffa_device *dev)
579 {
580 	dev->mode_32bit = true;
581 }
582 
583 static void ffa_mode_32bit_set(struct ffa_device *dev)
584 {
585 	if (drv_info->version > FFA_VERSION_1_0)
586 		return;
587 
588 	_ffa_mode_32bit_set(dev);
589 }
590 
591 static int ffa_sync_send_receive(struct ffa_device *dev,
592 				 struct ffa_send_direct_data *data)
593 {
594 	return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id,
595 				       dev->mode_32bit, data);
596 }
597 
598 static int ffa_memory_share(struct ffa_mem_ops_args *args)
599 {
600 	if (drv_info->mem_ops_native)
601 		return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args);
602 
603 	return ffa_memory_ops(FFA_MEM_SHARE, args);
604 }
605 
606 static int ffa_memory_lend(struct ffa_mem_ops_args *args)
607 {
608 	/* Note that upon a successful MEM_LEND request the caller
609 	 * must ensure that the memory region specified is not accessed
610 	 * until a successful MEM_RECALIM call has been made.
611 	 * On systems with a hypervisor present this will been enforced,
612 	 * however on systems without a hypervisor the responsibility
613 	 * falls to the calling kernel driver to prevent access.
614 	 */
615 	if (drv_info->mem_ops_native)
616 		return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args);
617 
618 	return ffa_memory_ops(FFA_MEM_LEND, args);
619 }
620 
621 static const struct ffa_info_ops ffa_drv_info_ops = {
622 	.api_version_get = ffa_api_version_get,
623 	.partition_info_get = ffa_partition_info_get,
624 };
625 
626 static const struct ffa_msg_ops ffa_drv_msg_ops = {
627 	.mode_32bit_set = ffa_mode_32bit_set,
628 	.sync_send_receive = ffa_sync_send_receive,
629 };
630 
631 static const struct ffa_mem_ops ffa_drv_mem_ops = {
632 	.memory_reclaim = ffa_memory_reclaim,
633 	.memory_share = ffa_memory_share,
634 	.memory_lend = ffa_memory_lend,
635 };
636 
637 static const struct ffa_ops ffa_drv_ops = {
638 	.info_ops = &ffa_drv_info_ops,
639 	.msg_ops = &ffa_drv_msg_ops,
640 	.mem_ops = &ffa_drv_mem_ops,
641 };
642 
643 void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid)
644 {
645 	int count, idx;
646 	struct ffa_partition_info *pbuf, *tpbuf;
647 
648 	/*
649 	 * FF-A v1.1 provides UUID for each partition as part of the discovery
650 	 * API, the discovered UUID must be populated in the device's UUID and
651 	 * there is no need to copy the same from the driver table.
652 	 */
653 	if (drv_info->version > FFA_VERSION_1_0)
654 		return;
655 
656 	count = ffa_partition_probe(uuid, &pbuf);
657 	if (count <= 0)
658 		return;
659 
660 	for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++)
661 		if (tpbuf->id == ffa_dev->vm_id)
662 			uuid_copy(&ffa_dev->uuid, uuid);
663 	kfree(pbuf);
664 }
665 
666 static void ffa_setup_partitions(void)
667 {
668 	int count, idx;
669 	uuid_t uuid;
670 	struct ffa_device *ffa_dev;
671 	struct ffa_partition_info *pbuf, *tpbuf;
672 
673 	count = ffa_partition_probe(&uuid_null, &pbuf);
674 	if (count <= 0) {
675 		pr_info("%s: No partitions found, error %d\n", __func__, count);
676 		return;
677 	}
678 
679 	for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) {
680 		import_uuid(&uuid, (u8 *)tpbuf->uuid);
681 
682 		/* Note that if the UUID will be uuid_null, that will require
683 		 * ffa_device_match() to find the UUID of this partition id
684 		 * with help of ffa_device_match_uuid(). FF-A v1.1 and above
685 		 * provides UUID here for each partition as part of the
686 		 * discovery API and the same is passed.
687 		 */
688 		ffa_dev = ffa_device_register(&uuid, tpbuf->id, &ffa_drv_ops);
689 		if (!ffa_dev) {
690 			pr_err("%s: failed to register partition ID 0x%x\n",
691 			       __func__, tpbuf->id);
692 			continue;
693 		}
694 
695 		if (drv_info->version > FFA_VERSION_1_0 &&
696 		    !(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC))
697 			_ffa_mode_32bit_set(ffa_dev);
698 	}
699 	kfree(pbuf);
700 }
701 
702 static int __init ffa_init(void)
703 {
704 	int ret;
705 
706 	ret = ffa_transport_init(&invoke_ffa_fn);
707 	if (ret)
708 		return ret;
709 
710 	ret = arm_ffa_bus_init();
711 	if (ret)
712 		return ret;
713 
714 	drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL);
715 	if (!drv_info) {
716 		ret = -ENOMEM;
717 		goto ffa_bus_exit;
718 	}
719 
720 	ret = ffa_version_check(&drv_info->version);
721 	if (ret)
722 		goto free_drv_info;
723 
724 	if (ffa_id_get(&drv_info->vm_id)) {
725 		pr_err("failed to obtain VM id for self\n");
726 		ret = -ENODEV;
727 		goto free_drv_info;
728 	}
729 
730 	drv_info->rx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
731 	if (!drv_info->rx_buffer) {
732 		ret = -ENOMEM;
733 		goto free_pages;
734 	}
735 
736 	drv_info->tx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
737 	if (!drv_info->tx_buffer) {
738 		ret = -ENOMEM;
739 		goto free_pages;
740 	}
741 
742 	ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer),
743 			   virt_to_phys(drv_info->rx_buffer),
744 			   RXTX_BUFFER_SIZE / FFA_PAGE_SIZE);
745 	if (ret) {
746 		pr_err("failed to register FFA RxTx buffers\n");
747 		goto free_pages;
748 	}
749 
750 	mutex_init(&drv_info->rx_lock);
751 	mutex_init(&drv_info->tx_lock);
752 
753 	ffa_setup_partitions();
754 
755 	ffa_set_up_mem_ops_native_flag();
756 
757 	return 0;
758 free_pages:
759 	if (drv_info->tx_buffer)
760 		free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
761 	free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
762 free_drv_info:
763 	kfree(drv_info);
764 ffa_bus_exit:
765 	arm_ffa_bus_exit();
766 	return ret;
767 }
768 subsys_initcall(ffa_init);
769 
770 static void __exit ffa_exit(void)
771 {
772 	ffa_rxtx_unmap(drv_info->vm_id);
773 	free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
774 	free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
775 	kfree(drv_info);
776 	arm_ffa_bus_exit();
777 }
778 module_exit(ffa_exit);
779 
780 MODULE_ALIAS("arm-ffa");
781 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
782 MODULE_DESCRIPTION("Arm FF-A interface driver");
783 MODULE_LICENSE("GPL v2");
784