1 /* 2 * SBP2 driver (SCSI over IEEE1394) 3 * 4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 /* 22 * The basic structure of this driver is based on the old storage driver, 23 * drivers/ieee1394/sbp2.c, originally written by 24 * James Goodwin <jamesg@filanet.com> 25 * with later contributions and ongoing maintenance from 26 * Ben Collins <bcollins@debian.org>, 27 * Stefan Richter <stefanr@s5r6.in-berlin.de> 28 * and many others. 29 */ 30 31 #include <linux/blkdev.h> 32 #include <linux/bug.h> 33 #include <linux/completion.h> 34 #include <linux/delay.h> 35 #include <linux/device.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/firewire.h> 38 #include <linux/firewire-constants.h> 39 #include <linux/init.h> 40 #include <linux/jiffies.h> 41 #include <linux/kernel.h> 42 #include <linux/kref.h> 43 #include <linux/list.h> 44 #include <linux/mod_devicetable.h> 45 #include <linux/module.h> 46 #include <linux/moduleparam.h> 47 #include <linux/scatterlist.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/string.h> 51 #include <linux/stringify.h> 52 #include <linux/workqueue.h> 53 54 #include <asm/byteorder.h> 55 #include <asm/system.h> 56 57 #include <scsi/scsi.h> 58 #include <scsi/scsi_cmnd.h> 59 #include <scsi/scsi_device.h> 60 #include <scsi/scsi_host.h> 61 62 /* 63 * So far only bridges from Oxford Semiconductor are known to support 64 * concurrent logins. Depending on firmware, four or two concurrent logins 65 * are possible on OXFW911 and newer Oxsemi bridges. 66 * 67 * Concurrent logins are useful together with cluster filesystems. 68 */ 69 static bool sbp2_param_exclusive_login = 1; 70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 72 "(default = Y, use N for concurrent initiators)"); 73 74 /* 75 * Flags for firmware oddities 76 * 77 * - 128kB max transfer 78 * Limit transfer size. Necessary for some old bridges. 79 * 80 * - 36 byte inquiry 81 * When scsi_mod probes the device, let the inquiry command look like that 82 * from MS Windows. 83 * 84 * - skip mode page 8 85 * Suppress sending of mode_sense for mode page 8 if the device pretends to 86 * support the SCSI Primary Block commands instead of Reduced Block Commands. 87 * 88 * - fix capacity 89 * Tell sd_mod to correct the last sector number reported by read_capacity. 90 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 91 * Don't use this with devices which don't have this bug. 92 * 93 * - delay inquiry 94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 95 * 96 * - power condition 97 * Set the power condition field in the START STOP UNIT commands sent by 98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). 99 * Some disks need this to spin down or to resume properly. 100 * 101 * - override internal blacklist 102 * Instead of adding to the built-in blacklist, use only the workarounds 103 * specified in the module load parameter. 104 * Useful if a blacklist entry interfered with a non-broken device. 105 */ 106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 107 #define SBP2_WORKAROUND_INQUIRY_36 0x2 108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 111 #define SBP2_INQUIRY_DELAY 12 112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 113 #define SBP2_WORKAROUND_OVERRIDE 0x100 114 115 static int sbp2_param_workarounds; 116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 123 ", set power condition in start stop unit = " 124 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 126 ", or a combination)"); 127 128 /* 129 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 130 * and one struct scsi_device per sbp2_logical_unit. 131 */ 132 struct sbp2_logical_unit { 133 struct sbp2_target *tgt; 134 struct list_head link; 135 struct fw_address_handler address_handler; 136 struct list_head orb_list; 137 138 u64 command_block_agent_address; 139 u16 lun; 140 int login_id; 141 142 /* 143 * The generation is updated once we've logged in or reconnected 144 * to the logical unit. Thus, I/O to the device will automatically 145 * fail and get retried if it happens in a window where the device 146 * is not ready, e.g. after a bus reset but before we reconnect. 147 */ 148 int generation; 149 int retries; 150 struct delayed_work work; 151 bool has_sdev; 152 bool blocked; 153 }; 154 155 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 156 { 157 queue_delayed_work(fw_workqueue, &lu->work, delay); 158 } 159 160 /* 161 * We create one struct sbp2_target per IEEE 1212 Unit Directory 162 * and one struct Scsi_Host per sbp2_target. 163 */ 164 struct sbp2_target { 165 struct fw_unit *unit; 166 struct list_head lu_list; 167 168 u64 management_agent_address; 169 u64 guid; 170 int directory_id; 171 int node_id; 172 int address_high; 173 unsigned int workarounds; 174 unsigned int mgt_orb_timeout; 175 unsigned int max_payload; 176 177 int dont_block; /* counter for each logical unit */ 178 int blocked; /* ditto */ 179 }; 180 181 static struct fw_device *target_parent_device(struct sbp2_target *tgt) 182 { 183 return fw_parent_device(tgt->unit); 184 } 185 186 static const struct device *tgt_dev(const struct sbp2_target *tgt) 187 { 188 return &tgt->unit->device; 189 } 190 191 static const struct device *lu_dev(const struct sbp2_logical_unit *lu) 192 { 193 return &lu->tgt->unit->device; 194 } 195 196 /* Impossible login_id, to detect logout attempt before successful login */ 197 #define INVALID_LOGIN_ID 0x10000 198 199 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 200 #define SBP2_ORB_NULL 0x80000000 201 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 202 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 203 204 /* 205 * There is no transport protocol limit to the CDB length, but we implement 206 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 207 */ 208 #define SBP2_MAX_CDB_SIZE 16 209 210 /* 211 * The default maximum s/g segment size of a FireWire controller is 212 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to 213 * be quadlet-aligned, we set the length limit to 0xffff & ~3. 214 */ 215 #define SBP2_MAX_SEG_SIZE 0xfffc 216 217 /* Unit directory keys */ 218 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 219 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 220 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 221 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d 222 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 223 224 /* Management orb opcodes */ 225 #define SBP2_LOGIN_REQUEST 0x0 226 #define SBP2_QUERY_LOGINS_REQUEST 0x1 227 #define SBP2_RECONNECT_REQUEST 0x3 228 #define SBP2_SET_PASSWORD_REQUEST 0x4 229 #define SBP2_LOGOUT_REQUEST 0x7 230 #define SBP2_ABORT_TASK_REQUEST 0xb 231 #define SBP2_ABORT_TASK_SET 0xc 232 #define SBP2_LOGICAL_UNIT_RESET 0xe 233 #define SBP2_TARGET_RESET_REQUEST 0xf 234 235 /* Offsets for command block agent registers */ 236 #define SBP2_AGENT_STATE 0x00 237 #define SBP2_AGENT_RESET 0x04 238 #define SBP2_ORB_POINTER 0x08 239 #define SBP2_DOORBELL 0x10 240 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 241 242 /* Status write response codes */ 243 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 244 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 245 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 246 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 247 248 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 249 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 250 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 251 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 252 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 253 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 254 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 255 #define STATUS_GET_DATA(v) ((v).data) 256 257 struct sbp2_status { 258 u32 status; 259 u32 orb_low; 260 u8 data[24]; 261 }; 262 263 struct sbp2_pointer { 264 __be32 high; 265 __be32 low; 266 }; 267 268 struct sbp2_orb { 269 struct fw_transaction t; 270 struct kref kref; 271 dma_addr_t request_bus; 272 int rcode; 273 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 274 struct list_head link; 275 }; 276 277 #define MANAGEMENT_ORB_LUN(v) ((v)) 278 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 279 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 280 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 281 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 282 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 283 284 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 285 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 286 287 struct sbp2_management_orb { 288 struct sbp2_orb base; 289 struct { 290 struct sbp2_pointer password; 291 struct sbp2_pointer response; 292 __be32 misc; 293 __be32 length; 294 struct sbp2_pointer status_fifo; 295 } request; 296 __be32 response[4]; 297 dma_addr_t response_bus; 298 struct completion done; 299 struct sbp2_status status; 300 }; 301 302 struct sbp2_login_response { 303 __be32 misc; 304 struct sbp2_pointer command_block_agent; 305 __be32 reconnect_hold; 306 }; 307 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 308 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 309 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 310 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 311 #define COMMAND_ORB_SPEED(v) ((v) << 24) 312 #define COMMAND_ORB_DIRECTION ((1) << 27) 313 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 314 #define COMMAND_ORB_NOTIFY ((1) << 31) 315 316 struct sbp2_command_orb { 317 struct sbp2_orb base; 318 struct { 319 struct sbp2_pointer next; 320 struct sbp2_pointer data_descriptor; 321 __be32 misc; 322 u8 command_block[SBP2_MAX_CDB_SIZE]; 323 } request; 324 struct scsi_cmnd *cmd; 325 struct sbp2_logical_unit *lu; 326 327 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 328 dma_addr_t page_table_bus; 329 }; 330 331 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 332 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 333 334 /* 335 * List of devices with known bugs. 336 * 337 * The firmware_revision field, masked with 0xffff00, is the best 338 * indicator for the type of bridge chip of a device. It yields a few 339 * false positives but this did not break correctly behaving devices 340 * so far. 341 */ 342 static const struct { 343 u32 firmware_revision; 344 u32 model; 345 unsigned int workarounds; 346 } sbp2_workarounds_table[] = { 347 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 348 .firmware_revision = 0x002800, 349 .model = 0x001010, 350 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 351 SBP2_WORKAROUND_MODE_SENSE_8 | 352 SBP2_WORKAROUND_POWER_CONDITION, 353 }, 354 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 355 .firmware_revision = 0x002800, 356 .model = 0x000000, 357 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 358 }, 359 /* Initio bridges, actually only needed for some older ones */ { 360 .firmware_revision = 0x000200, 361 .model = SBP2_ROM_VALUE_WILDCARD, 362 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 363 }, 364 /* PL-3507 bridge with Prolific firmware */ { 365 .firmware_revision = 0x012800, 366 .model = SBP2_ROM_VALUE_WILDCARD, 367 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 368 }, 369 /* Symbios bridge */ { 370 .firmware_revision = 0xa0b800, 371 .model = SBP2_ROM_VALUE_WILDCARD, 372 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 373 }, 374 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 375 .firmware_revision = 0x002600, 376 .model = SBP2_ROM_VALUE_WILDCARD, 377 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 378 }, 379 /* 380 * iPod 2nd generation: needs 128k max transfer size workaround 381 * iPod 3rd generation: needs fix capacity workaround 382 */ 383 { 384 .firmware_revision = 0x0a2700, 385 .model = 0x000000, 386 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 387 SBP2_WORKAROUND_FIX_CAPACITY, 388 }, 389 /* iPod 4th generation */ { 390 .firmware_revision = 0x0a2700, 391 .model = 0x000021, 392 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 393 }, 394 /* iPod mini */ { 395 .firmware_revision = 0x0a2700, 396 .model = 0x000022, 397 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 398 }, 399 /* iPod mini */ { 400 .firmware_revision = 0x0a2700, 401 .model = 0x000023, 402 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 403 }, 404 /* iPod Photo */ { 405 .firmware_revision = 0x0a2700, 406 .model = 0x00007e, 407 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 408 } 409 }; 410 411 static void free_orb(struct kref *kref) 412 { 413 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 414 415 kfree(orb); 416 } 417 418 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 419 int tcode, int destination, int source, 420 int generation, unsigned long long offset, 421 void *payload, size_t length, void *callback_data) 422 { 423 struct sbp2_logical_unit *lu = callback_data; 424 struct sbp2_orb *orb; 425 struct sbp2_status status; 426 unsigned long flags; 427 428 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 429 length < 8 || length > sizeof(status)) { 430 fw_send_response(card, request, RCODE_TYPE_ERROR); 431 return; 432 } 433 434 status.status = be32_to_cpup(payload); 435 status.orb_low = be32_to_cpup(payload + 4); 436 memset(status.data, 0, sizeof(status.data)); 437 if (length > 8) 438 memcpy(status.data, payload + 8, length - 8); 439 440 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 441 dev_notice(lu_dev(lu), 442 "non-ORB related status write, not handled\n"); 443 fw_send_response(card, request, RCODE_COMPLETE); 444 return; 445 } 446 447 /* Lookup the orb corresponding to this status write. */ 448 spin_lock_irqsave(&card->lock, flags); 449 list_for_each_entry(orb, &lu->orb_list, link) { 450 if (STATUS_GET_ORB_HIGH(status) == 0 && 451 STATUS_GET_ORB_LOW(status) == orb->request_bus) { 452 orb->rcode = RCODE_COMPLETE; 453 list_del(&orb->link); 454 break; 455 } 456 } 457 spin_unlock_irqrestore(&card->lock, flags); 458 459 if (&orb->link != &lu->orb_list) { 460 orb->callback(orb, &status); 461 kref_put(&orb->kref, free_orb); /* orb callback reference */ 462 } else { 463 dev_err(lu_dev(lu), "status write for unknown ORB\n"); 464 } 465 466 fw_send_response(card, request, RCODE_COMPLETE); 467 } 468 469 static void complete_transaction(struct fw_card *card, int rcode, 470 void *payload, size_t length, void *data) 471 { 472 struct sbp2_orb *orb = data; 473 unsigned long flags; 474 475 /* 476 * This is a little tricky. We can get the status write for 477 * the orb before we get this callback. The status write 478 * handler above will assume the orb pointer transaction was 479 * successful and set the rcode to RCODE_COMPLETE for the orb. 480 * So this callback only sets the rcode if it hasn't already 481 * been set and only does the cleanup if the transaction 482 * failed and we didn't already get a status write. 483 */ 484 spin_lock_irqsave(&card->lock, flags); 485 486 if (orb->rcode == -1) 487 orb->rcode = rcode; 488 if (orb->rcode != RCODE_COMPLETE) { 489 list_del(&orb->link); 490 spin_unlock_irqrestore(&card->lock, flags); 491 492 orb->callback(orb, NULL); 493 kref_put(&orb->kref, free_orb); /* orb callback reference */ 494 } else { 495 spin_unlock_irqrestore(&card->lock, flags); 496 } 497 498 kref_put(&orb->kref, free_orb); /* transaction callback reference */ 499 } 500 501 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 502 int node_id, int generation, u64 offset) 503 { 504 struct fw_device *device = target_parent_device(lu->tgt); 505 struct sbp2_pointer orb_pointer; 506 unsigned long flags; 507 508 orb_pointer.high = 0; 509 orb_pointer.low = cpu_to_be32(orb->request_bus); 510 511 spin_lock_irqsave(&device->card->lock, flags); 512 list_add_tail(&orb->link, &lu->orb_list); 513 spin_unlock_irqrestore(&device->card->lock, flags); 514 515 kref_get(&orb->kref); /* transaction callback reference */ 516 kref_get(&orb->kref); /* orb callback reference */ 517 518 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 519 node_id, generation, device->max_speed, offset, 520 &orb_pointer, 8, complete_transaction, orb); 521 } 522 523 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 524 { 525 struct fw_device *device = target_parent_device(lu->tgt); 526 struct sbp2_orb *orb, *next; 527 struct list_head list; 528 unsigned long flags; 529 int retval = -ENOENT; 530 531 INIT_LIST_HEAD(&list); 532 spin_lock_irqsave(&device->card->lock, flags); 533 list_splice_init(&lu->orb_list, &list); 534 spin_unlock_irqrestore(&device->card->lock, flags); 535 536 list_for_each_entry_safe(orb, next, &list, link) { 537 retval = 0; 538 if (fw_cancel_transaction(device->card, &orb->t) == 0) 539 continue; 540 541 orb->rcode = RCODE_CANCELLED; 542 orb->callback(orb, NULL); 543 kref_put(&orb->kref, free_orb); /* orb callback reference */ 544 } 545 546 return retval; 547 } 548 549 static void complete_management_orb(struct sbp2_orb *base_orb, 550 struct sbp2_status *status) 551 { 552 struct sbp2_management_orb *orb = 553 container_of(base_orb, struct sbp2_management_orb, base); 554 555 if (status) 556 memcpy(&orb->status, status, sizeof(*status)); 557 complete(&orb->done); 558 } 559 560 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 561 int generation, int function, 562 int lun_or_login_id, void *response) 563 { 564 struct fw_device *device = target_parent_device(lu->tgt); 565 struct sbp2_management_orb *orb; 566 unsigned int timeout; 567 int retval = -ENOMEM; 568 569 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 570 return 0; 571 572 orb = kzalloc(sizeof(*orb), GFP_NOIO); 573 if (orb == NULL) 574 return -ENOMEM; 575 576 kref_init(&orb->base.kref); 577 orb->response_bus = 578 dma_map_single(device->card->device, &orb->response, 579 sizeof(orb->response), DMA_FROM_DEVICE); 580 if (dma_mapping_error(device->card->device, orb->response_bus)) 581 goto fail_mapping_response; 582 583 orb->request.response.high = 0; 584 orb->request.response.low = cpu_to_be32(orb->response_bus); 585 586 orb->request.misc = cpu_to_be32( 587 MANAGEMENT_ORB_NOTIFY | 588 MANAGEMENT_ORB_FUNCTION(function) | 589 MANAGEMENT_ORB_LUN(lun_or_login_id)); 590 orb->request.length = cpu_to_be32( 591 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 592 593 orb->request.status_fifo.high = 594 cpu_to_be32(lu->address_handler.offset >> 32); 595 orb->request.status_fifo.low = 596 cpu_to_be32(lu->address_handler.offset); 597 598 if (function == SBP2_LOGIN_REQUEST) { 599 /* Ask for 2^2 == 4 seconds reconnect grace period */ 600 orb->request.misc |= cpu_to_be32( 601 MANAGEMENT_ORB_RECONNECT(2) | 602 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 603 timeout = lu->tgt->mgt_orb_timeout; 604 } else { 605 timeout = SBP2_ORB_TIMEOUT; 606 } 607 608 init_completion(&orb->done); 609 orb->base.callback = complete_management_orb; 610 611 orb->base.request_bus = 612 dma_map_single(device->card->device, &orb->request, 613 sizeof(orb->request), DMA_TO_DEVICE); 614 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 615 goto fail_mapping_request; 616 617 sbp2_send_orb(&orb->base, lu, node_id, generation, 618 lu->tgt->management_agent_address); 619 620 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 621 622 retval = -EIO; 623 if (sbp2_cancel_orbs(lu) == 0) { 624 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n", 625 orb->base.rcode); 626 goto out; 627 } 628 629 if (orb->base.rcode != RCODE_COMPLETE) { 630 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n", 631 orb->base.rcode); 632 goto out; 633 } 634 635 if (STATUS_GET_RESPONSE(orb->status) != 0 || 636 STATUS_GET_SBP_STATUS(orb->status) != 0) { 637 dev_err(lu_dev(lu), "error status: %d:%d\n", 638 STATUS_GET_RESPONSE(orb->status), 639 STATUS_GET_SBP_STATUS(orb->status)); 640 goto out; 641 } 642 643 retval = 0; 644 out: 645 dma_unmap_single(device->card->device, orb->base.request_bus, 646 sizeof(orb->request), DMA_TO_DEVICE); 647 fail_mapping_request: 648 dma_unmap_single(device->card->device, orb->response_bus, 649 sizeof(orb->response), DMA_FROM_DEVICE); 650 fail_mapping_response: 651 if (response) 652 memcpy(response, orb->response, sizeof(orb->response)); 653 kref_put(&orb->base.kref, free_orb); 654 655 return retval; 656 } 657 658 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 659 { 660 struct fw_device *device = target_parent_device(lu->tgt); 661 __be32 d = 0; 662 663 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 664 lu->tgt->node_id, lu->generation, device->max_speed, 665 lu->command_block_agent_address + SBP2_AGENT_RESET, 666 &d, 4); 667 } 668 669 static void complete_agent_reset_write_no_wait(struct fw_card *card, 670 int rcode, void *payload, size_t length, void *data) 671 { 672 kfree(data); 673 } 674 675 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 676 { 677 struct fw_device *device = target_parent_device(lu->tgt); 678 struct fw_transaction *t; 679 static __be32 d; 680 681 t = kmalloc(sizeof(*t), GFP_ATOMIC); 682 if (t == NULL) 683 return; 684 685 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 686 lu->tgt->node_id, lu->generation, device->max_speed, 687 lu->command_block_agent_address + SBP2_AGENT_RESET, 688 &d, 4, complete_agent_reset_write_no_wait, t); 689 } 690 691 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu) 692 { 693 /* 694 * We may access dont_block without taking card->lock here: 695 * All callers of sbp2_allow_block() and all callers of sbp2_unblock() 696 * are currently serialized against each other. 697 * And a wrong result in sbp2_conditionally_block()'s access of 698 * dont_block is rather harmless, it simply misses its first chance. 699 */ 700 --lu->tgt->dont_block; 701 } 702 703 /* 704 * Blocks lu->tgt if all of the following conditions are met: 705 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 706 * logical units have been finished (indicated by dont_block == 0). 707 * - lu->generation is stale. 708 * 709 * Note, scsi_block_requests() must be called while holding card->lock, 710 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 711 * unblock the target. 712 */ 713 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 714 { 715 struct sbp2_target *tgt = lu->tgt; 716 struct fw_card *card = target_parent_device(tgt)->card; 717 struct Scsi_Host *shost = 718 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 719 unsigned long flags; 720 721 spin_lock_irqsave(&card->lock, flags); 722 if (!tgt->dont_block && !lu->blocked && 723 lu->generation != card->generation) { 724 lu->blocked = true; 725 if (++tgt->blocked == 1) 726 scsi_block_requests(shost); 727 } 728 spin_unlock_irqrestore(&card->lock, flags); 729 } 730 731 /* 732 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 733 * Note, it is harmless to run scsi_unblock_requests() outside the 734 * card->lock protected section. On the other hand, running it inside 735 * the section might clash with shost->host_lock. 736 */ 737 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 738 { 739 struct sbp2_target *tgt = lu->tgt; 740 struct fw_card *card = target_parent_device(tgt)->card; 741 struct Scsi_Host *shost = 742 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 743 unsigned long flags; 744 bool unblock = false; 745 746 spin_lock_irqsave(&card->lock, flags); 747 if (lu->blocked && lu->generation == card->generation) { 748 lu->blocked = false; 749 unblock = --tgt->blocked == 0; 750 } 751 spin_unlock_irqrestore(&card->lock, flags); 752 753 if (unblock) 754 scsi_unblock_requests(shost); 755 } 756 757 /* 758 * Prevents future blocking of tgt and unblocks it. 759 * Note, it is harmless to run scsi_unblock_requests() outside the 760 * card->lock protected section. On the other hand, running it inside 761 * the section might clash with shost->host_lock. 762 */ 763 static void sbp2_unblock(struct sbp2_target *tgt) 764 { 765 struct fw_card *card = target_parent_device(tgt)->card; 766 struct Scsi_Host *shost = 767 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 768 unsigned long flags; 769 770 spin_lock_irqsave(&card->lock, flags); 771 ++tgt->dont_block; 772 spin_unlock_irqrestore(&card->lock, flags); 773 774 scsi_unblock_requests(shost); 775 } 776 777 static int sbp2_lun2int(u16 lun) 778 { 779 struct scsi_lun eight_bytes_lun; 780 781 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 782 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 783 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 784 785 return scsilun_to_int(&eight_bytes_lun); 786 } 787 788 /* 789 * Write retransmit retry values into the BUSY_TIMEOUT register. 790 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 791 * default retry_limit value is 0 (i.e. never retry transmission). We write a 792 * saner value after logging into the device. 793 * - The dual-phase retry protocol is optional to implement, and if not 794 * supported, writes to the dual-phase portion of the register will be 795 * ignored. We try to write the original 1394-1995 default here. 796 * - In the case of devices that are also SBP-3-compliant, all writes are 797 * ignored, as the register is read-only, but contains single-phase retry of 798 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 799 * write attempt is safe and yields more consistent behavior for all devices. 800 * 801 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 802 * and section 6.4 of the SBP-3 spec for further details. 803 */ 804 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 805 { 806 struct fw_device *device = target_parent_device(lu->tgt); 807 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 808 809 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 810 lu->tgt->node_id, lu->generation, device->max_speed, 811 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4); 812 } 813 814 static void sbp2_reconnect(struct work_struct *work); 815 816 static void sbp2_login(struct work_struct *work) 817 { 818 struct sbp2_logical_unit *lu = 819 container_of(work, struct sbp2_logical_unit, work.work); 820 struct sbp2_target *tgt = lu->tgt; 821 struct fw_device *device = target_parent_device(tgt); 822 struct Scsi_Host *shost; 823 struct scsi_device *sdev; 824 struct sbp2_login_response response; 825 int generation, node_id, local_node_id; 826 827 if (fw_device_is_shutdown(device)) 828 return; 829 830 generation = device->generation; 831 smp_rmb(); /* node IDs must not be older than generation */ 832 node_id = device->node_id; 833 local_node_id = device->card->node_id; 834 835 /* If this is a re-login attempt, log out, or we might be rejected. */ 836 if (lu->has_sdev) 837 sbp2_send_management_orb(lu, device->node_id, generation, 838 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 839 840 if (sbp2_send_management_orb(lu, node_id, generation, 841 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 842 if (lu->retries++ < 5) { 843 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 844 } else { 845 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n", 846 lu->lun); 847 /* Let any waiting I/O fail from now on. */ 848 sbp2_unblock(lu->tgt); 849 } 850 return; 851 } 852 853 tgt->node_id = node_id; 854 tgt->address_high = local_node_id << 16; 855 smp_wmb(); /* node IDs must not be older than generation */ 856 lu->generation = generation; 857 858 lu->command_block_agent_address = 859 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 860 << 32) | be32_to_cpu(response.command_block_agent.low); 861 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 862 863 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n", 864 lu->lun, lu->retries); 865 866 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 867 sbp2_set_busy_timeout(lu); 868 869 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect); 870 sbp2_agent_reset(lu); 871 872 /* This was a re-login. */ 873 if (lu->has_sdev) { 874 sbp2_cancel_orbs(lu); 875 sbp2_conditionally_unblock(lu); 876 877 return; 878 } 879 880 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 881 ssleep(SBP2_INQUIRY_DELAY); 882 883 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 884 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 885 /* 886 * FIXME: We are unable to perform reconnects while in sbp2_login(). 887 * Therefore __scsi_add_device() will get into trouble if a bus reset 888 * happens in parallel. It will either fail or leave us with an 889 * unusable sdev. As a workaround we check for this and retry the 890 * whole login and SCSI probing. 891 */ 892 893 /* Reported error during __scsi_add_device() */ 894 if (IS_ERR(sdev)) 895 goto out_logout_login; 896 897 /* Unreported error during __scsi_add_device() */ 898 smp_rmb(); /* get current card generation */ 899 if (generation != device->card->generation) { 900 scsi_remove_device(sdev); 901 scsi_device_put(sdev); 902 goto out_logout_login; 903 } 904 905 /* No error during __scsi_add_device() */ 906 lu->has_sdev = true; 907 scsi_device_put(sdev); 908 sbp2_allow_block(lu); 909 910 return; 911 912 out_logout_login: 913 smp_rmb(); /* generation may have changed */ 914 generation = device->generation; 915 smp_rmb(); /* node_id must not be older than generation */ 916 917 sbp2_send_management_orb(lu, device->node_id, generation, 918 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 919 /* 920 * If a bus reset happened, sbp2_update will have requeued 921 * lu->work already. Reset the work from reconnect to login. 922 */ 923 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 924 } 925 926 static void sbp2_reconnect(struct work_struct *work) 927 { 928 struct sbp2_logical_unit *lu = 929 container_of(work, struct sbp2_logical_unit, work.work); 930 struct sbp2_target *tgt = lu->tgt; 931 struct fw_device *device = target_parent_device(tgt); 932 int generation, node_id, local_node_id; 933 934 if (fw_device_is_shutdown(device)) 935 return; 936 937 generation = device->generation; 938 smp_rmb(); /* node IDs must not be older than generation */ 939 node_id = device->node_id; 940 local_node_id = device->card->node_id; 941 942 if (sbp2_send_management_orb(lu, node_id, generation, 943 SBP2_RECONNECT_REQUEST, 944 lu->login_id, NULL) < 0) { 945 /* 946 * If reconnect was impossible even though we are in the 947 * current generation, fall back and try to log in again. 948 * 949 * We could check for "Function rejected" status, but 950 * looking at the bus generation as simpler and more general. 951 */ 952 smp_rmb(); /* get current card generation */ 953 if (generation == device->card->generation || 954 lu->retries++ >= 5) { 955 dev_err(tgt_dev(tgt), "failed to reconnect\n"); 956 lu->retries = 0; 957 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 958 } 959 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 960 961 return; 962 } 963 964 tgt->node_id = node_id; 965 tgt->address_high = local_node_id << 16; 966 smp_wmb(); /* node IDs must not be older than generation */ 967 lu->generation = generation; 968 969 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n", 970 lu->lun, lu->retries); 971 972 sbp2_agent_reset(lu); 973 sbp2_cancel_orbs(lu); 974 sbp2_conditionally_unblock(lu); 975 } 976 977 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 978 { 979 struct sbp2_logical_unit *lu; 980 981 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 982 if (!lu) 983 return -ENOMEM; 984 985 lu->address_handler.length = 0x100; 986 lu->address_handler.address_callback = sbp2_status_write; 987 lu->address_handler.callback_data = lu; 988 989 if (fw_core_add_address_handler(&lu->address_handler, 990 &fw_high_memory_region) < 0) { 991 kfree(lu); 992 return -ENOMEM; 993 } 994 995 lu->tgt = tgt; 996 lu->lun = lun_entry & 0xffff; 997 lu->login_id = INVALID_LOGIN_ID; 998 lu->retries = 0; 999 lu->has_sdev = false; 1000 lu->blocked = false; 1001 ++tgt->dont_block; 1002 INIT_LIST_HEAD(&lu->orb_list); 1003 INIT_DELAYED_WORK(&lu->work, sbp2_login); 1004 1005 list_add_tail(&lu->link, &tgt->lu_list); 1006 return 0; 1007 } 1008 1009 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt, 1010 const u32 *leaf) 1011 { 1012 if ((leaf[0] & 0xffff0000) == 0x00020000) 1013 tgt->guid = (u64)leaf[1] << 32 | leaf[2]; 1014 } 1015 1016 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, 1017 const u32 *directory) 1018 { 1019 struct fw_csr_iterator ci; 1020 int key, value; 1021 1022 fw_csr_iterator_init(&ci, directory); 1023 while (fw_csr_iterator_next(&ci, &key, &value)) 1024 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1025 sbp2_add_logical_unit(tgt, value) < 0) 1026 return -ENOMEM; 1027 return 0; 1028 } 1029 1030 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory, 1031 u32 *model, u32 *firmware_revision) 1032 { 1033 struct fw_csr_iterator ci; 1034 int key, value; 1035 1036 fw_csr_iterator_init(&ci, directory); 1037 while (fw_csr_iterator_next(&ci, &key, &value)) { 1038 switch (key) { 1039 1040 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1041 tgt->management_agent_address = 1042 CSR_REGISTER_BASE + 4 * value; 1043 break; 1044 1045 case CSR_DIRECTORY_ID: 1046 tgt->directory_id = value; 1047 break; 1048 1049 case CSR_MODEL: 1050 *model = value; 1051 break; 1052 1053 case SBP2_CSR_FIRMWARE_REVISION: 1054 *firmware_revision = value; 1055 break; 1056 1057 case SBP2_CSR_UNIT_CHARACTERISTICS: 1058 /* the timeout value is stored in 500ms units */ 1059 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; 1060 break; 1061 1062 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1063 if (sbp2_add_logical_unit(tgt, value) < 0) 1064 return -ENOMEM; 1065 break; 1066 1067 case SBP2_CSR_UNIT_UNIQUE_ID: 1068 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value); 1069 break; 1070 1071 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1072 /* Adjust for the increment in the iterator */ 1073 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1074 return -ENOMEM; 1075 break; 1076 } 1077 } 1078 return 0; 1079 } 1080 1081 /* 1082 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 1083 * provided in the config rom. Most devices do provide a value, which 1084 * we'll use for login management orbs, but with some sane limits. 1085 */ 1086 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) 1087 { 1088 unsigned int timeout = tgt->mgt_orb_timeout; 1089 1090 if (timeout > 40000) 1091 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n", 1092 timeout / 1000); 1093 1094 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); 1095 } 1096 1097 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1098 u32 firmware_revision) 1099 { 1100 int i; 1101 unsigned int w = sbp2_param_workarounds; 1102 1103 if (w) 1104 dev_notice(tgt_dev(tgt), 1105 "Please notify linux1394-devel@lists.sf.net " 1106 "if you need the workarounds parameter\n"); 1107 1108 if (w & SBP2_WORKAROUND_OVERRIDE) 1109 goto out; 1110 1111 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1112 1113 if (sbp2_workarounds_table[i].firmware_revision != 1114 (firmware_revision & 0xffffff00)) 1115 continue; 1116 1117 if (sbp2_workarounds_table[i].model != model && 1118 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1119 continue; 1120 1121 w |= sbp2_workarounds_table[i].workarounds; 1122 break; 1123 } 1124 out: 1125 if (w) 1126 dev_notice(tgt_dev(tgt), "workarounds 0x%x " 1127 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1128 w, firmware_revision, model); 1129 tgt->workarounds = w; 1130 } 1131 1132 static struct scsi_host_template scsi_driver_template; 1133 static int sbp2_remove(struct device *dev); 1134 1135 static int sbp2_probe(struct device *dev) 1136 { 1137 struct fw_unit *unit = fw_unit(dev); 1138 struct fw_device *device = fw_parent_device(unit); 1139 struct sbp2_target *tgt; 1140 struct sbp2_logical_unit *lu; 1141 struct Scsi_Host *shost; 1142 u32 model, firmware_revision; 1143 1144 /* cannot (or should not) handle targets on the local node */ 1145 if (device->is_local) 1146 return -ENODEV; 1147 1148 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE) 1149 BUG_ON(dma_set_max_seg_size(device->card->device, 1150 SBP2_MAX_SEG_SIZE)); 1151 1152 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1153 if (shost == NULL) 1154 return -ENOMEM; 1155 1156 tgt = (struct sbp2_target *)shost->hostdata; 1157 dev_set_drvdata(&unit->device, tgt); 1158 tgt->unit = unit; 1159 INIT_LIST_HEAD(&tgt->lu_list); 1160 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1161 1162 if (fw_device_enable_phys_dma(device) < 0) 1163 goto fail_shost_put; 1164 1165 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1166 1167 if (scsi_add_host(shost, &unit->device) < 0) 1168 goto fail_shost_put; 1169 1170 /* implicit directory ID */ 1171 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1172 + CSR_CONFIG_ROM) & 0xffffff; 1173 1174 firmware_revision = SBP2_ROM_VALUE_MISSING; 1175 model = SBP2_ROM_VALUE_MISSING; 1176 1177 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1178 &firmware_revision) < 0) 1179 goto fail_remove; 1180 1181 sbp2_clamp_management_orb_timeout(tgt); 1182 sbp2_init_workarounds(tgt, model, firmware_revision); 1183 1184 /* 1185 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1186 * and so on up to 4096 bytes. The SBP-2 max_payload field 1187 * specifies the max payload size as 2 ^ (max_payload + 2), so 1188 * if we set this to max_speed + 7, we get the right value. 1189 */ 1190 tgt->max_payload = min3(device->max_speed + 7, 10U, 1191 device->card->max_receive - 1); 1192 1193 /* Do the login in a workqueue so we can easily reschedule retries. */ 1194 list_for_each_entry(lu, &tgt->lu_list, link) 1195 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1196 1197 return 0; 1198 1199 fail_remove: 1200 sbp2_remove(dev); 1201 return -ENOMEM; 1202 1203 fail_shost_put: 1204 scsi_host_put(shost); 1205 return -ENOMEM; 1206 } 1207 1208 static void sbp2_update(struct fw_unit *unit) 1209 { 1210 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1211 struct sbp2_logical_unit *lu; 1212 1213 fw_device_enable_phys_dma(fw_parent_device(unit)); 1214 1215 /* 1216 * Fw-core serializes sbp2_update() against sbp2_remove(). 1217 * Iteration over tgt->lu_list is therefore safe here. 1218 */ 1219 list_for_each_entry(lu, &tgt->lu_list, link) { 1220 sbp2_conditionally_block(lu); 1221 lu->retries = 0; 1222 sbp2_queue_work(lu, 0); 1223 } 1224 } 1225 1226 static int sbp2_remove(struct device *dev) 1227 { 1228 struct fw_unit *unit = fw_unit(dev); 1229 struct fw_device *device = fw_parent_device(unit); 1230 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1231 struct sbp2_logical_unit *lu, *next; 1232 struct Scsi_Host *shost = 1233 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 1234 struct scsi_device *sdev; 1235 1236 /* prevent deadlocks */ 1237 sbp2_unblock(tgt); 1238 1239 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 1240 cancel_delayed_work_sync(&lu->work); 1241 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 1242 if (sdev) { 1243 scsi_remove_device(sdev); 1244 scsi_device_put(sdev); 1245 } 1246 if (lu->login_id != INVALID_LOGIN_ID) { 1247 int generation, node_id; 1248 /* 1249 * tgt->node_id may be obsolete here if we failed 1250 * during initial login or after a bus reset where 1251 * the topology changed. 1252 */ 1253 generation = device->generation; 1254 smp_rmb(); /* node_id vs. generation */ 1255 node_id = device->node_id; 1256 sbp2_send_management_orb(lu, node_id, generation, 1257 SBP2_LOGOUT_REQUEST, 1258 lu->login_id, NULL); 1259 } 1260 fw_core_remove_address_handler(&lu->address_handler); 1261 list_del(&lu->link); 1262 kfree(lu); 1263 } 1264 scsi_remove_host(shost); 1265 dev_notice(dev, "released target %d:0:0\n", shost->host_no); 1266 1267 scsi_host_put(shost); 1268 return 0; 1269 } 1270 1271 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1272 #define SBP2_SW_VERSION_ENTRY 0x00010483 1273 1274 static const struct ieee1394_device_id sbp2_id_table[] = { 1275 { 1276 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1277 IEEE1394_MATCH_VERSION, 1278 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1279 .version = SBP2_SW_VERSION_ENTRY, 1280 }, 1281 { } 1282 }; 1283 1284 static struct fw_driver sbp2_driver = { 1285 .driver = { 1286 .owner = THIS_MODULE, 1287 .name = KBUILD_MODNAME, 1288 .bus = &fw_bus_type, 1289 .probe = sbp2_probe, 1290 .remove = sbp2_remove, 1291 }, 1292 .update = sbp2_update, 1293 .id_table = sbp2_id_table, 1294 }; 1295 1296 static void sbp2_unmap_scatterlist(struct device *card_device, 1297 struct sbp2_command_orb *orb) 1298 { 1299 if (scsi_sg_count(orb->cmd)) 1300 dma_unmap_sg(card_device, scsi_sglist(orb->cmd), 1301 scsi_sg_count(orb->cmd), 1302 orb->cmd->sc_data_direction); 1303 1304 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1305 dma_unmap_single(card_device, orb->page_table_bus, 1306 sizeof(orb->page_table), DMA_TO_DEVICE); 1307 } 1308 1309 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1310 { 1311 int sam_status; 1312 int sfmt = (sbp2_status[0] >> 6) & 0x03; 1313 1314 if (sfmt == 2 || sfmt == 3) { 1315 /* 1316 * Reserved for future standardization (2) or 1317 * Status block format vendor-dependent (3) 1318 */ 1319 return DID_ERROR << 16; 1320 } 1321 1322 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80); 1323 sense_data[1] = 0x0; 1324 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f); 1325 sense_data[3] = sbp2_status[4]; 1326 sense_data[4] = sbp2_status[5]; 1327 sense_data[5] = sbp2_status[6]; 1328 sense_data[6] = sbp2_status[7]; 1329 sense_data[7] = 10; 1330 sense_data[8] = sbp2_status[8]; 1331 sense_data[9] = sbp2_status[9]; 1332 sense_data[10] = sbp2_status[10]; 1333 sense_data[11] = sbp2_status[11]; 1334 sense_data[12] = sbp2_status[2]; 1335 sense_data[13] = sbp2_status[3]; 1336 sense_data[14] = sbp2_status[12]; 1337 sense_data[15] = sbp2_status[13]; 1338 1339 sam_status = sbp2_status[0] & 0x3f; 1340 1341 switch (sam_status) { 1342 case SAM_STAT_GOOD: 1343 case SAM_STAT_CHECK_CONDITION: 1344 case SAM_STAT_CONDITION_MET: 1345 case SAM_STAT_BUSY: 1346 case SAM_STAT_RESERVATION_CONFLICT: 1347 case SAM_STAT_COMMAND_TERMINATED: 1348 return DID_OK << 16 | sam_status; 1349 1350 default: 1351 return DID_ERROR << 16; 1352 } 1353 } 1354 1355 static void complete_command_orb(struct sbp2_orb *base_orb, 1356 struct sbp2_status *status) 1357 { 1358 struct sbp2_command_orb *orb = 1359 container_of(base_orb, struct sbp2_command_orb, base); 1360 struct fw_device *device = target_parent_device(orb->lu->tgt); 1361 int result; 1362 1363 if (status != NULL) { 1364 if (STATUS_GET_DEAD(*status)) 1365 sbp2_agent_reset_no_wait(orb->lu); 1366 1367 switch (STATUS_GET_RESPONSE(*status)) { 1368 case SBP2_STATUS_REQUEST_COMPLETE: 1369 result = DID_OK << 16; 1370 break; 1371 case SBP2_STATUS_TRANSPORT_FAILURE: 1372 result = DID_BUS_BUSY << 16; 1373 break; 1374 case SBP2_STATUS_ILLEGAL_REQUEST: 1375 case SBP2_STATUS_VENDOR_DEPENDENT: 1376 default: 1377 result = DID_ERROR << 16; 1378 break; 1379 } 1380 1381 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1382 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1383 orb->cmd->sense_buffer); 1384 } else { 1385 /* 1386 * If the orb completes with status == NULL, something 1387 * went wrong, typically a bus reset happened mid-orb 1388 * or when sending the write (less likely). 1389 */ 1390 result = DID_BUS_BUSY << 16; 1391 sbp2_conditionally_block(orb->lu); 1392 } 1393 1394 dma_unmap_single(device->card->device, orb->base.request_bus, 1395 sizeof(orb->request), DMA_TO_DEVICE); 1396 sbp2_unmap_scatterlist(device->card->device, orb); 1397 1398 orb->cmd->result = result; 1399 orb->cmd->scsi_done(orb->cmd); 1400 } 1401 1402 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1403 struct fw_device *device, struct sbp2_logical_unit *lu) 1404 { 1405 struct scatterlist *sg = scsi_sglist(orb->cmd); 1406 int i, n; 1407 1408 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd), 1409 orb->cmd->sc_data_direction); 1410 if (n == 0) 1411 goto fail; 1412 1413 /* 1414 * Handle the special case where there is only one element in 1415 * the scatter list by converting it to an immediate block 1416 * request. This is also a workaround for broken devices such 1417 * as the second generation iPod which doesn't support page 1418 * tables. 1419 */ 1420 if (n == 1) { 1421 orb->request.data_descriptor.high = 1422 cpu_to_be32(lu->tgt->address_high); 1423 orb->request.data_descriptor.low = 1424 cpu_to_be32(sg_dma_address(sg)); 1425 orb->request.misc |= 1426 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1427 return 0; 1428 } 1429 1430 for_each_sg(sg, sg, n, i) { 1431 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1432 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1433 } 1434 1435 orb->page_table_bus = 1436 dma_map_single(device->card->device, orb->page_table, 1437 sizeof(orb->page_table), DMA_TO_DEVICE); 1438 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1439 goto fail_page_table; 1440 1441 /* 1442 * The data_descriptor pointer is the one case where we need 1443 * to fill in the node ID part of the address. All other 1444 * pointers assume that the data referenced reside on the 1445 * initiator (i.e. us), but data_descriptor can refer to data 1446 * on other nodes so we need to put our ID in descriptor.high. 1447 */ 1448 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1449 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1450 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1451 COMMAND_ORB_DATA_SIZE(n)); 1452 1453 return 0; 1454 1455 fail_page_table: 1456 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd), 1457 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); 1458 fail: 1459 return -ENOMEM; 1460 } 1461 1462 /* SCSI stack integration */ 1463 1464 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost, 1465 struct scsi_cmnd *cmd) 1466 { 1467 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1468 struct fw_device *device = target_parent_device(lu->tgt); 1469 struct sbp2_command_orb *orb; 1470 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1471 1472 /* 1473 * Bidirectional commands are not yet implemented, and unknown 1474 * transfer direction not handled. 1475 */ 1476 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { 1477 dev_err(lu_dev(lu), "cannot handle bidirectional command\n"); 1478 cmd->result = DID_ERROR << 16; 1479 cmd->scsi_done(cmd); 1480 return 0; 1481 } 1482 1483 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1484 if (orb == NULL) { 1485 dev_notice(lu_dev(lu), "failed to alloc ORB\n"); 1486 return SCSI_MLQUEUE_HOST_BUSY; 1487 } 1488 1489 /* Initialize rcode to something not RCODE_COMPLETE. */ 1490 orb->base.rcode = -1; 1491 kref_init(&orb->base.kref); 1492 orb->lu = lu; 1493 orb->cmd = cmd; 1494 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1495 orb->request.misc = cpu_to_be32( 1496 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1497 COMMAND_ORB_SPEED(device->max_speed) | 1498 COMMAND_ORB_NOTIFY); 1499 1500 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1501 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1502 1503 generation = device->generation; 1504 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1505 1506 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1507 goto out; 1508 1509 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1510 1511 orb->base.callback = complete_command_orb; 1512 orb->base.request_bus = 1513 dma_map_single(device->card->device, &orb->request, 1514 sizeof(orb->request), DMA_TO_DEVICE); 1515 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1516 sbp2_unmap_scatterlist(device->card->device, orb); 1517 goto out; 1518 } 1519 1520 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1521 lu->command_block_agent_address + SBP2_ORB_POINTER); 1522 retval = 0; 1523 out: 1524 kref_put(&orb->base.kref, free_orb); 1525 return retval; 1526 } 1527 1528 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1529 { 1530 struct sbp2_logical_unit *lu = sdev->hostdata; 1531 1532 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1533 if (!lu) 1534 return -ENOSYS; 1535 1536 sdev->allow_restart = 1; 1537 1538 /* SBP-2 requires quadlet alignment of the data buffers. */ 1539 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1540 1541 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1542 sdev->inquiry_len = 36; 1543 1544 return 0; 1545 } 1546 1547 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1548 { 1549 struct sbp2_logical_unit *lu = sdev->hostdata; 1550 1551 sdev->use_10_for_rw = 1; 1552 1553 if (sbp2_param_exclusive_login) 1554 sdev->manage_start_stop = 1; 1555 1556 if (sdev->type == TYPE_ROM) 1557 sdev->use_10_for_ms = 1; 1558 1559 if (sdev->type == TYPE_DISK && 1560 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1561 sdev->skip_ms_page_8 = 1; 1562 1563 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1564 sdev->fix_capacity = 1; 1565 1566 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1567 sdev->start_stop_pwr_cond = 1; 1568 1569 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1570 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); 1571 1572 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE); 1573 1574 return 0; 1575 } 1576 1577 /* 1578 * Called by scsi stack when something has really gone wrong. Usually 1579 * called when a command has timed-out for some reason. 1580 */ 1581 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1582 { 1583 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1584 1585 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n"); 1586 sbp2_agent_reset(lu); 1587 sbp2_cancel_orbs(lu); 1588 1589 return SUCCESS; 1590 } 1591 1592 /* 1593 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1594 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1595 * 1596 * This is the concatenation of target port identifier and logical unit 1597 * identifier as per SAM-2...SAM-4 annex A. 1598 */ 1599 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1600 struct device_attribute *attr, char *buf) 1601 { 1602 struct scsi_device *sdev = to_scsi_device(dev); 1603 struct sbp2_logical_unit *lu; 1604 1605 if (!sdev) 1606 return 0; 1607 1608 lu = sdev->hostdata; 1609 1610 return sprintf(buf, "%016llx:%06x:%04x\n", 1611 (unsigned long long)lu->tgt->guid, 1612 lu->tgt->directory_id, lu->lun); 1613 } 1614 1615 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1616 1617 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { 1618 &dev_attr_ieee1394_id, 1619 NULL 1620 }; 1621 1622 static struct scsi_host_template scsi_driver_template = { 1623 .module = THIS_MODULE, 1624 .name = "SBP-2 IEEE-1394", 1625 .proc_name = "sbp2", 1626 .queuecommand = sbp2_scsi_queuecommand, 1627 .slave_alloc = sbp2_scsi_slave_alloc, 1628 .slave_configure = sbp2_scsi_slave_configure, 1629 .eh_abort_handler = sbp2_scsi_abort, 1630 .this_id = -1, 1631 .sg_tablesize = SG_ALL, 1632 .use_clustering = ENABLE_CLUSTERING, 1633 .cmd_per_lun = 1, 1634 .can_queue = 1, 1635 .sdev_attrs = sbp2_scsi_sysfs_attrs, 1636 }; 1637 1638 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1639 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1640 MODULE_LICENSE("GPL"); 1641 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1642 1643 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1644 #ifndef CONFIG_IEEE1394_SBP2_MODULE 1645 MODULE_ALIAS("sbp2"); 1646 #endif 1647 1648 static int __init sbp2_init(void) 1649 { 1650 return driver_register(&sbp2_driver.driver); 1651 } 1652 1653 static void __exit sbp2_cleanup(void) 1654 { 1655 driver_unregister(&sbp2_driver.driver); 1656 } 1657 1658 module_init(sbp2_init); 1659 module_exit(sbp2_cleanup); 1660