xref: /linux/drivers/firewire/sbp2.c (revision ec2212088c42ff7d1362629ec26dda4f3e8bdad3)
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30 
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
53 
54 #include <asm/byteorder.h>
55 #include <asm/system.h>
56 
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_device.h>
60 #include <scsi/scsi_host.h>
61 
62 /*
63  * So far only bridges from Oxford Semiconductor are known to support
64  * concurrent logins. Depending on firmware, four or two concurrent logins
65  * are possible on OXFW911 and newer Oxsemi bridges.
66  *
67  * Concurrent logins are useful together with cluster filesystems.
68  */
69 static bool sbp2_param_exclusive_login = 1;
70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72 		 "(default = Y, use N for concurrent initiators)");
73 
74 /*
75  * Flags for firmware oddities
76  *
77  * - 128kB max transfer
78  *   Limit transfer size. Necessary for some old bridges.
79  *
80  * - 36 byte inquiry
81  *   When scsi_mod probes the device, let the inquiry command look like that
82  *   from MS Windows.
83  *
84  * - skip mode page 8
85  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
86  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
87  *
88  * - fix capacity
89  *   Tell sd_mod to correct the last sector number reported by read_capacity.
90  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
91  *   Don't use this with devices which don't have this bug.
92  *
93  * - delay inquiry
94  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
95  *
96  * - power condition
97  *   Set the power condition field in the START STOP UNIT commands sent by
98  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99  *   Some disks need this to spin down or to resume properly.
100  *
101  * - override internal blacklist
102  *   Instead of adding to the built-in blacklist, use only the workarounds
103  *   specified in the module load parameter.
104  *   Useful if a blacklist entry interfered with a non-broken device.
105  */
106 #define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
107 #define SBP2_WORKAROUND_INQUIRY_36	0x2
108 #define SBP2_WORKAROUND_MODE_SENSE_8	0x4
109 #define SBP2_WORKAROUND_FIX_CAPACITY	0x8
110 #define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
111 #define SBP2_INQUIRY_DELAY		12
112 #define SBP2_WORKAROUND_POWER_CONDITION	0x20
113 #define SBP2_WORKAROUND_OVERRIDE	0x100
114 
115 static int sbp2_param_workarounds;
116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118 	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119 	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
120 	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121 	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122 	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123 	", set power condition in start stop unit = "
124 				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125 	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126 	", or a combination)");
127 
128 /*
129  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
130  * and one struct scsi_device per sbp2_logical_unit.
131  */
132 struct sbp2_logical_unit {
133 	struct sbp2_target *tgt;
134 	struct list_head link;
135 	struct fw_address_handler address_handler;
136 	struct list_head orb_list;
137 
138 	u64 command_block_agent_address;
139 	u16 lun;
140 	int login_id;
141 
142 	/*
143 	 * The generation is updated once we've logged in or reconnected
144 	 * to the logical unit.  Thus, I/O to the device will automatically
145 	 * fail and get retried if it happens in a window where the device
146 	 * is not ready, e.g. after a bus reset but before we reconnect.
147 	 */
148 	int generation;
149 	int retries;
150 	struct delayed_work work;
151 	bool has_sdev;
152 	bool blocked;
153 };
154 
155 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
156 {
157 	queue_delayed_work(fw_workqueue, &lu->work, delay);
158 }
159 
160 /*
161  * We create one struct sbp2_target per IEEE 1212 Unit Directory
162  * and one struct Scsi_Host per sbp2_target.
163  */
164 struct sbp2_target {
165 	struct fw_unit *unit;
166 	struct list_head lu_list;
167 
168 	u64 management_agent_address;
169 	u64 guid;
170 	int directory_id;
171 	int node_id;
172 	int address_high;
173 	unsigned int workarounds;
174 	unsigned int mgt_orb_timeout;
175 	unsigned int max_payload;
176 
177 	int dont_block;	/* counter for each logical unit */
178 	int blocked;	/* ditto */
179 };
180 
181 static struct fw_device *target_parent_device(struct sbp2_target *tgt)
182 {
183 	return fw_parent_device(tgt->unit);
184 }
185 
186 static const struct device *tgt_dev(const struct sbp2_target *tgt)
187 {
188 	return &tgt->unit->device;
189 }
190 
191 static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
192 {
193 	return &lu->tgt->unit->device;
194 }
195 
196 /* Impossible login_id, to detect logout attempt before successful login */
197 #define INVALID_LOGIN_ID 0x10000
198 
199 #define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
200 #define SBP2_ORB_NULL			0x80000000
201 #define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
202 #define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
203 
204 /*
205  * There is no transport protocol limit to the CDB length,  but we implement
206  * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
207  */
208 #define SBP2_MAX_CDB_SIZE		16
209 
210 /*
211  * The default maximum s/g segment size of a FireWire controller is
212  * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
213  * be quadlet-aligned, we set the length limit to 0xffff & ~3.
214  */
215 #define SBP2_MAX_SEG_SIZE		0xfffc
216 
217 /* Unit directory keys */
218 #define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
219 #define SBP2_CSR_FIRMWARE_REVISION	0x3c
220 #define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
221 #define SBP2_CSR_UNIT_UNIQUE_ID		0x8d
222 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
223 
224 /* Management orb opcodes */
225 #define SBP2_LOGIN_REQUEST		0x0
226 #define SBP2_QUERY_LOGINS_REQUEST	0x1
227 #define SBP2_RECONNECT_REQUEST		0x3
228 #define SBP2_SET_PASSWORD_REQUEST	0x4
229 #define SBP2_LOGOUT_REQUEST		0x7
230 #define SBP2_ABORT_TASK_REQUEST		0xb
231 #define SBP2_ABORT_TASK_SET		0xc
232 #define SBP2_LOGICAL_UNIT_RESET		0xe
233 #define SBP2_TARGET_RESET_REQUEST	0xf
234 
235 /* Offsets for command block agent registers */
236 #define SBP2_AGENT_STATE		0x00
237 #define SBP2_AGENT_RESET		0x04
238 #define SBP2_ORB_POINTER		0x08
239 #define SBP2_DOORBELL			0x10
240 #define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
241 
242 /* Status write response codes */
243 #define SBP2_STATUS_REQUEST_COMPLETE	0x0
244 #define SBP2_STATUS_TRANSPORT_FAILURE	0x1
245 #define SBP2_STATUS_ILLEGAL_REQUEST	0x2
246 #define SBP2_STATUS_VENDOR_DEPENDENT	0x3
247 
248 #define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
249 #define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
250 #define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
251 #define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
252 #define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
253 #define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
254 #define STATUS_GET_ORB_LOW(v)		((v).orb_low)
255 #define STATUS_GET_DATA(v)		((v).data)
256 
257 struct sbp2_status {
258 	u32 status;
259 	u32 orb_low;
260 	u8 data[24];
261 };
262 
263 struct sbp2_pointer {
264 	__be32 high;
265 	__be32 low;
266 };
267 
268 struct sbp2_orb {
269 	struct fw_transaction t;
270 	struct kref kref;
271 	dma_addr_t request_bus;
272 	int rcode;
273 	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
274 	struct list_head link;
275 };
276 
277 #define MANAGEMENT_ORB_LUN(v)			((v))
278 #define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
279 #define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
280 #define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
281 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
282 #define MANAGEMENT_ORB_NOTIFY			((1) << 31)
283 
284 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
285 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
286 
287 struct sbp2_management_orb {
288 	struct sbp2_orb base;
289 	struct {
290 		struct sbp2_pointer password;
291 		struct sbp2_pointer response;
292 		__be32 misc;
293 		__be32 length;
294 		struct sbp2_pointer status_fifo;
295 	} request;
296 	__be32 response[4];
297 	dma_addr_t response_bus;
298 	struct completion done;
299 	struct sbp2_status status;
300 };
301 
302 struct sbp2_login_response {
303 	__be32 misc;
304 	struct sbp2_pointer command_block_agent;
305 	__be32 reconnect_hold;
306 };
307 #define COMMAND_ORB_DATA_SIZE(v)	((v))
308 #define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
309 #define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
310 #define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
311 #define COMMAND_ORB_SPEED(v)		((v) << 24)
312 #define COMMAND_ORB_DIRECTION		((1) << 27)
313 #define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
314 #define COMMAND_ORB_NOTIFY		((1) << 31)
315 
316 struct sbp2_command_orb {
317 	struct sbp2_orb base;
318 	struct {
319 		struct sbp2_pointer next;
320 		struct sbp2_pointer data_descriptor;
321 		__be32 misc;
322 		u8 command_block[SBP2_MAX_CDB_SIZE];
323 	} request;
324 	struct scsi_cmnd *cmd;
325 	struct sbp2_logical_unit *lu;
326 
327 	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
328 	dma_addr_t page_table_bus;
329 };
330 
331 #define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
332 #define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
333 
334 /*
335  * List of devices with known bugs.
336  *
337  * The firmware_revision field, masked with 0xffff00, is the best
338  * indicator for the type of bridge chip of a device.  It yields a few
339  * false positives but this did not break correctly behaving devices
340  * so far.
341  */
342 static const struct {
343 	u32 firmware_revision;
344 	u32 model;
345 	unsigned int workarounds;
346 } sbp2_workarounds_table[] = {
347 	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
348 		.firmware_revision	= 0x002800,
349 		.model			= 0x001010,
350 		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
351 					  SBP2_WORKAROUND_MODE_SENSE_8 |
352 					  SBP2_WORKAROUND_POWER_CONDITION,
353 	},
354 	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
355 		.firmware_revision	= 0x002800,
356 		.model			= 0x000000,
357 		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
358 	},
359 	/* Initio bridges, actually only needed for some older ones */ {
360 		.firmware_revision	= 0x000200,
361 		.model			= SBP2_ROM_VALUE_WILDCARD,
362 		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
363 	},
364 	/* PL-3507 bridge with Prolific firmware */ {
365 		.firmware_revision	= 0x012800,
366 		.model			= SBP2_ROM_VALUE_WILDCARD,
367 		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
368 	},
369 	/* Symbios bridge */ {
370 		.firmware_revision	= 0xa0b800,
371 		.model			= SBP2_ROM_VALUE_WILDCARD,
372 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
373 	},
374 	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
375 		.firmware_revision	= 0x002600,
376 		.model			= SBP2_ROM_VALUE_WILDCARD,
377 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
378 	},
379 	/*
380 	 * iPod 2nd generation: needs 128k max transfer size workaround
381 	 * iPod 3rd generation: needs fix capacity workaround
382 	 */
383 	{
384 		.firmware_revision	= 0x0a2700,
385 		.model			= 0x000000,
386 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
387 					  SBP2_WORKAROUND_FIX_CAPACITY,
388 	},
389 	/* iPod 4th generation */ {
390 		.firmware_revision	= 0x0a2700,
391 		.model			= 0x000021,
392 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
393 	},
394 	/* iPod mini */ {
395 		.firmware_revision	= 0x0a2700,
396 		.model			= 0x000022,
397 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
398 	},
399 	/* iPod mini */ {
400 		.firmware_revision	= 0x0a2700,
401 		.model			= 0x000023,
402 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
403 	},
404 	/* iPod Photo */ {
405 		.firmware_revision	= 0x0a2700,
406 		.model			= 0x00007e,
407 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
408 	}
409 };
410 
411 static void free_orb(struct kref *kref)
412 {
413 	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
414 
415 	kfree(orb);
416 }
417 
418 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
419 			      int tcode, int destination, int source,
420 			      int generation, unsigned long long offset,
421 			      void *payload, size_t length, void *callback_data)
422 {
423 	struct sbp2_logical_unit *lu = callback_data;
424 	struct sbp2_orb *orb;
425 	struct sbp2_status status;
426 	unsigned long flags;
427 
428 	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
429 	    length < 8 || length > sizeof(status)) {
430 		fw_send_response(card, request, RCODE_TYPE_ERROR);
431 		return;
432 	}
433 
434 	status.status  = be32_to_cpup(payload);
435 	status.orb_low = be32_to_cpup(payload + 4);
436 	memset(status.data, 0, sizeof(status.data));
437 	if (length > 8)
438 		memcpy(status.data, payload + 8, length - 8);
439 
440 	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
441 		dev_notice(lu_dev(lu),
442 			   "non-ORB related status write, not handled\n");
443 		fw_send_response(card, request, RCODE_COMPLETE);
444 		return;
445 	}
446 
447 	/* Lookup the orb corresponding to this status write. */
448 	spin_lock_irqsave(&card->lock, flags);
449 	list_for_each_entry(orb, &lu->orb_list, link) {
450 		if (STATUS_GET_ORB_HIGH(status) == 0 &&
451 		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
452 			orb->rcode = RCODE_COMPLETE;
453 			list_del(&orb->link);
454 			break;
455 		}
456 	}
457 	spin_unlock_irqrestore(&card->lock, flags);
458 
459 	if (&orb->link != &lu->orb_list) {
460 		orb->callback(orb, &status);
461 		kref_put(&orb->kref, free_orb); /* orb callback reference */
462 	} else {
463 		dev_err(lu_dev(lu), "status write for unknown ORB\n");
464 	}
465 
466 	fw_send_response(card, request, RCODE_COMPLETE);
467 }
468 
469 static void complete_transaction(struct fw_card *card, int rcode,
470 				 void *payload, size_t length, void *data)
471 {
472 	struct sbp2_orb *orb = data;
473 	unsigned long flags;
474 
475 	/*
476 	 * This is a little tricky.  We can get the status write for
477 	 * the orb before we get this callback.  The status write
478 	 * handler above will assume the orb pointer transaction was
479 	 * successful and set the rcode to RCODE_COMPLETE for the orb.
480 	 * So this callback only sets the rcode if it hasn't already
481 	 * been set and only does the cleanup if the transaction
482 	 * failed and we didn't already get a status write.
483 	 */
484 	spin_lock_irqsave(&card->lock, flags);
485 
486 	if (orb->rcode == -1)
487 		orb->rcode = rcode;
488 	if (orb->rcode != RCODE_COMPLETE) {
489 		list_del(&orb->link);
490 		spin_unlock_irqrestore(&card->lock, flags);
491 
492 		orb->callback(orb, NULL);
493 		kref_put(&orb->kref, free_orb); /* orb callback reference */
494 	} else {
495 		spin_unlock_irqrestore(&card->lock, flags);
496 	}
497 
498 	kref_put(&orb->kref, free_orb); /* transaction callback reference */
499 }
500 
501 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
502 			  int node_id, int generation, u64 offset)
503 {
504 	struct fw_device *device = target_parent_device(lu->tgt);
505 	struct sbp2_pointer orb_pointer;
506 	unsigned long flags;
507 
508 	orb_pointer.high = 0;
509 	orb_pointer.low = cpu_to_be32(orb->request_bus);
510 
511 	spin_lock_irqsave(&device->card->lock, flags);
512 	list_add_tail(&orb->link, &lu->orb_list);
513 	spin_unlock_irqrestore(&device->card->lock, flags);
514 
515 	kref_get(&orb->kref); /* transaction callback reference */
516 	kref_get(&orb->kref); /* orb callback reference */
517 
518 	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
519 			node_id, generation, device->max_speed, offset,
520 			&orb_pointer, 8, complete_transaction, orb);
521 }
522 
523 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
524 {
525 	struct fw_device *device = target_parent_device(lu->tgt);
526 	struct sbp2_orb *orb, *next;
527 	struct list_head list;
528 	unsigned long flags;
529 	int retval = -ENOENT;
530 
531 	INIT_LIST_HEAD(&list);
532 	spin_lock_irqsave(&device->card->lock, flags);
533 	list_splice_init(&lu->orb_list, &list);
534 	spin_unlock_irqrestore(&device->card->lock, flags);
535 
536 	list_for_each_entry_safe(orb, next, &list, link) {
537 		retval = 0;
538 		if (fw_cancel_transaction(device->card, &orb->t) == 0)
539 			continue;
540 
541 		orb->rcode = RCODE_CANCELLED;
542 		orb->callback(orb, NULL);
543 		kref_put(&orb->kref, free_orb); /* orb callback reference */
544 	}
545 
546 	return retval;
547 }
548 
549 static void complete_management_orb(struct sbp2_orb *base_orb,
550 				    struct sbp2_status *status)
551 {
552 	struct sbp2_management_orb *orb =
553 		container_of(base_orb, struct sbp2_management_orb, base);
554 
555 	if (status)
556 		memcpy(&orb->status, status, sizeof(*status));
557 	complete(&orb->done);
558 }
559 
560 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
561 				    int generation, int function,
562 				    int lun_or_login_id, void *response)
563 {
564 	struct fw_device *device = target_parent_device(lu->tgt);
565 	struct sbp2_management_orb *orb;
566 	unsigned int timeout;
567 	int retval = -ENOMEM;
568 
569 	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
570 		return 0;
571 
572 	orb = kzalloc(sizeof(*orb), GFP_NOIO);
573 	if (orb == NULL)
574 		return -ENOMEM;
575 
576 	kref_init(&orb->base.kref);
577 	orb->response_bus =
578 		dma_map_single(device->card->device, &orb->response,
579 			       sizeof(orb->response), DMA_FROM_DEVICE);
580 	if (dma_mapping_error(device->card->device, orb->response_bus))
581 		goto fail_mapping_response;
582 
583 	orb->request.response.high = 0;
584 	orb->request.response.low  = cpu_to_be32(orb->response_bus);
585 
586 	orb->request.misc = cpu_to_be32(
587 		MANAGEMENT_ORB_NOTIFY |
588 		MANAGEMENT_ORB_FUNCTION(function) |
589 		MANAGEMENT_ORB_LUN(lun_or_login_id));
590 	orb->request.length = cpu_to_be32(
591 		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
592 
593 	orb->request.status_fifo.high =
594 		cpu_to_be32(lu->address_handler.offset >> 32);
595 	orb->request.status_fifo.low  =
596 		cpu_to_be32(lu->address_handler.offset);
597 
598 	if (function == SBP2_LOGIN_REQUEST) {
599 		/* Ask for 2^2 == 4 seconds reconnect grace period */
600 		orb->request.misc |= cpu_to_be32(
601 			MANAGEMENT_ORB_RECONNECT(2) |
602 			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
603 		timeout = lu->tgt->mgt_orb_timeout;
604 	} else {
605 		timeout = SBP2_ORB_TIMEOUT;
606 	}
607 
608 	init_completion(&orb->done);
609 	orb->base.callback = complete_management_orb;
610 
611 	orb->base.request_bus =
612 		dma_map_single(device->card->device, &orb->request,
613 			       sizeof(orb->request), DMA_TO_DEVICE);
614 	if (dma_mapping_error(device->card->device, orb->base.request_bus))
615 		goto fail_mapping_request;
616 
617 	sbp2_send_orb(&orb->base, lu, node_id, generation,
618 		      lu->tgt->management_agent_address);
619 
620 	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
621 
622 	retval = -EIO;
623 	if (sbp2_cancel_orbs(lu) == 0) {
624 		dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
625 			orb->base.rcode);
626 		goto out;
627 	}
628 
629 	if (orb->base.rcode != RCODE_COMPLETE) {
630 		dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
631 			orb->base.rcode);
632 		goto out;
633 	}
634 
635 	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
636 	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
637 		dev_err(lu_dev(lu), "error status: %d:%d\n",
638 			 STATUS_GET_RESPONSE(orb->status),
639 			 STATUS_GET_SBP_STATUS(orb->status));
640 		goto out;
641 	}
642 
643 	retval = 0;
644  out:
645 	dma_unmap_single(device->card->device, orb->base.request_bus,
646 			 sizeof(orb->request), DMA_TO_DEVICE);
647  fail_mapping_request:
648 	dma_unmap_single(device->card->device, orb->response_bus,
649 			 sizeof(orb->response), DMA_FROM_DEVICE);
650  fail_mapping_response:
651 	if (response)
652 		memcpy(response, orb->response, sizeof(orb->response));
653 	kref_put(&orb->base.kref, free_orb);
654 
655 	return retval;
656 }
657 
658 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
659 {
660 	struct fw_device *device = target_parent_device(lu->tgt);
661 	__be32 d = 0;
662 
663 	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
664 			   lu->tgt->node_id, lu->generation, device->max_speed,
665 			   lu->command_block_agent_address + SBP2_AGENT_RESET,
666 			   &d, 4);
667 }
668 
669 static void complete_agent_reset_write_no_wait(struct fw_card *card,
670 		int rcode, void *payload, size_t length, void *data)
671 {
672 	kfree(data);
673 }
674 
675 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
676 {
677 	struct fw_device *device = target_parent_device(lu->tgt);
678 	struct fw_transaction *t;
679 	static __be32 d;
680 
681 	t = kmalloc(sizeof(*t), GFP_ATOMIC);
682 	if (t == NULL)
683 		return;
684 
685 	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
686 			lu->tgt->node_id, lu->generation, device->max_speed,
687 			lu->command_block_agent_address + SBP2_AGENT_RESET,
688 			&d, 4, complete_agent_reset_write_no_wait, t);
689 }
690 
691 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
692 {
693 	/*
694 	 * We may access dont_block without taking card->lock here:
695 	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
696 	 * are currently serialized against each other.
697 	 * And a wrong result in sbp2_conditionally_block()'s access of
698 	 * dont_block is rather harmless, it simply misses its first chance.
699 	 */
700 	--lu->tgt->dont_block;
701 }
702 
703 /*
704  * Blocks lu->tgt if all of the following conditions are met:
705  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
706  *     logical units have been finished (indicated by dont_block == 0).
707  *   - lu->generation is stale.
708  *
709  * Note, scsi_block_requests() must be called while holding card->lock,
710  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
711  * unblock the target.
712  */
713 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
714 {
715 	struct sbp2_target *tgt = lu->tgt;
716 	struct fw_card *card = target_parent_device(tgt)->card;
717 	struct Scsi_Host *shost =
718 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
719 	unsigned long flags;
720 
721 	spin_lock_irqsave(&card->lock, flags);
722 	if (!tgt->dont_block && !lu->blocked &&
723 	    lu->generation != card->generation) {
724 		lu->blocked = true;
725 		if (++tgt->blocked == 1)
726 			scsi_block_requests(shost);
727 	}
728 	spin_unlock_irqrestore(&card->lock, flags);
729 }
730 
731 /*
732  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
733  * Note, it is harmless to run scsi_unblock_requests() outside the
734  * card->lock protected section.  On the other hand, running it inside
735  * the section might clash with shost->host_lock.
736  */
737 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
738 {
739 	struct sbp2_target *tgt = lu->tgt;
740 	struct fw_card *card = target_parent_device(tgt)->card;
741 	struct Scsi_Host *shost =
742 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
743 	unsigned long flags;
744 	bool unblock = false;
745 
746 	spin_lock_irqsave(&card->lock, flags);
747 	if (lu->blocked && lu->generation == card->generation) {
748 		lu->blocked = false;
749 		unblock = --tgt->blocked == 0;
750 	}
751 	spin_unlock_irqrestore(&card->lock, flags);
752 
753 	if (unblock)
754 		scsi_unblock_requests(shost);
755 }
756 
757 /*
758  * Prevents future blocking of tgt and unblocks it.
759  * Note, it is harmless to run scsi_unblock_requests() outside the
760  * card->lock protected section.  On the other hand, running it inside
761  * the section might clash with shost->host_lock.
762  */
763 static void sbp2_unblock(struct sbp2_target *tgt)
764 {
765 	struct fw_card *card = target_parent_device(tgt)->card;
766 	struct Scsi_Host *shost =
767 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
768 	unsigned long flags;
769 
770 	spin_lock_irqsave(&card->lock, flags);
771 	++tgt->dont_block;
772 	spin_unlock_irqrestore(&card->lock, flags);
773 
774 	scsi_unblock_requests(shost);
775 }
776 
777 static int sbp2_lun2int(u16 lun)
778 {
779 	struct scsi_lun eight_bytes_lun;
780 
781 	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
782 	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
783 	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
784 
785 	return scsilun_to_int(&eight_bytes_lun);
786 }
787 
788 /*
789  * Write retransmit retry values into the BUSY_TIMEOUT register.
790  * - The single-phase retry protocol is supported by all SBP-2 devices, but the
791  *   default retry_limit value is 0 (i.e. never retry transmission). We write a
792  *   saner value after logging into the device.
793  * - The dual-phase retry protocol is optional to implement, and if not
794  *   supported, writes to the dual-phase portion of the register will be
795  *   ignored. We try to write the original 1394-1995 default here.
796  * - In the case of devices that are also SBP-3-compliant, all writes are
797  *   ignored, as the register is read-only, but contains single-phase retry of
798  *   15, which is what we're trying to set for all SBP-2 device anyway, so this
799  *   write attempt is safe and yields more consistent behavior for all devices.
800  *
801  * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
802  * and section 6.4 of the SBP-3 spec for further details.
803  */
804 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
805 {
806 	struct fw_device *device = target_parent_device(lu->tgt);
807 	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
808 
809 	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
810 			   lu->tgt->node_id, lu->generation, device->max_speed,
811 			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
812 }
813 
814 static void sbp2_reconnect(struct work_struct *work);
815 
816 static void sbp2_login(struct work_struct *work)
817 {
818 	struct sbp2_logical_unit *lu =
819 		container_of(work, struct sbp2_logical_unit, work.work);
820 	struct sbp2_target *tgt = lu->tgt;
821 	struct fw_device *device = target_parent_device(tgt);
822 	struct Scsi_Host *shost;
823 	struct scsi_device *sdev;
824 	struct sbp2_login_response response;
825 	int generation, node_id, local_node_id;
826 
827 	if (fw_device_is_shutdown(device))
828 		return;
829 
830 	generation    = device->generation;
831 	smp_rmb();    /* node IDs must not be older than generation */
832 	node_id       = device->node_id;
833 	local_node_id = device->card->node_id;
834 
835 	/* If this is a re-login attempt, log out, or we might be rejected. */
836 	if (lu->has_sdev)
837 		sbp2_send_management_orb(lu, device->node_id, generation,
838 				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
839 
840 	if (sbp2_send_management_orb(lu, node_id, generation,
841 				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
842 		if (lu->retries++ < 5) {
843 			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
844 		} else {
845 			dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
846 				lu->lun);
847 			/* Let any waiting I/O fail from now on. */
848 			sbp2_unblock(lu->tgt);
849 		}
850 		return;
851 	}
852 
853 	tgt->node_id	  = node_id;
854 	tgt->address_high = local_node_id << 16;
855 	smp_wmb();	  /* node IDs must not be older than generation */
856 	lu->generation	  = generation;
857 
858 	lu->command_block_agent_address =
859 		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
860 		      << 32) | be32_to_cpu(response.command_block_agent.low);
861 	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
862 
863 	dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
864 		   lu->lun, lu->retries);
865 
866 	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
867 	sbp2_set_busy_timeout(lu);
868 
869 	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
870 	sbp2_agent_reset(lu);
871 
872 	/* This was a re-login. */
873 	if (lu->has_sdev) {
874 		sbp2_cancel_orbs(lu);
875 		sbp2_conditionally_unblock(lu);
876 
877 		return;
878 	}
879 
880 	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
881 		ssleep(SBP2_INQUIRY_DELAY);
882 
883 	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
884 	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
885 	/*
886 	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
887 	 * Therefore __scsi_add_device() will get into trouble if a bus reset
888 	 * happens in parallel.  It will either fail or leave us with an
889 	 * unusable sdev.  As a workaround we check for this and retry the
890 	 * whole login and SCSI probing.
891 	 */
892 
893 	/* Reported error during __scsi_add_device() */
894 	if (IS_ERR(sdev))
895 		goto out_logout_login;
896 
897 	/* Unreported error during __scsi_add_device() */
898 	smp_rmb(); /* get current card generation */
899 	if (generation != device->card->generation) {
900 		scsi_remove_device(sdev);
901 		scsi_device_put(sdev);
902 		goto out_logout_login;
903 	}
904 
905 	/* No error during __scsi_add_device() */
906 	lu->has_sdev = true;
907 	scsi_device_put(sdev);
908 	sbp2_allow_block(lu);
909 
910 	return;
911 
912  out_logout_login:
913 	smp_rmb(); /* generation may have changed */
914 	generation = device->generation;
915 	smp_rmb(); /* node_id must not be older than generation */
916 
917 	sbp2_send_management_orb(lu, device->node_id, generation,
918 				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
919 	/*
920 	 * If a bus reset happened, sbp2_update will have requeued
921 	 * lu->work already.  Reset the work from reconnect to login.
922 	 */
923 	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
924 }
925 
926 static void sbp2_reconnect(struct work_struct *work)
927 {
928 	struct sbp2_logical_unit *lu =
929 		container_of(work, struct sbp2_logical_unit, work.work);
930 	struct sbp2_target *tgt = lu->tgt;
931 	struct fw_device *device = target_parent_device(tgt);
932 	int generation, node_id, local_node_id;
933 
934 	if (fw_device_is_shutdown(device))
935 		return;
936 
937 	generation    = device->generation;
938 	smp_rmb();    /* node IDs must not be older than generation */
939 	node_id       = device->node_id;
940 	local_node_id = device->card->node_id;
941 
942 	if (sbp2_send_management_orb(lu, node_id, generation,
943 				     SBP2_RECONNECT_REQUEST,
944 				     lu->login_id, NULL) < 0) {
945 		/*
946 		 * If reconnect was impossible even though we are in the
947 		 * current generation, fall back and try to log in again.
948 		 *
949 		 * We could check for "Function rejected" status, but
950 		 * looking at the bus generation as simpler and more general.
951 		 */
952 		smp_rmb(); /* get current card generation */
953 		if (generation == device->card->generation ||
954 		    lu->retries++ >= 5) {
955 			dev_err(tgt_dev(tgt), "failed to reconnect\n");
956 			lu->retries = 0;
957 			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
958 		}
959 		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
960 
961 		return;
962 	}
963 
964 	tgt->node_id      = node_id;
965 	tgt->address_high = local_node_id << 16;
966 	smp_wmb();	  /* node IDs must not be older than generation */
967 	lu->generation	  = generation;
968 
969 	dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
970 		   lu->lun, lu->retries);
971 
972 	sbp2_agent_reset(lu);
973 	sbp2_cancel_orbs(lu);
974 	sbp2_conditionally_unblock(lu);
975 }
976 
977 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
978 {
979 	struct sbp2_logical_unit *lu;
980 
981 	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
982 	if (!lu)
983 		return -ENOMEM;
984 
985 	lu->address_handler.length           = 0x100;
986 	lu->address_handler.address_callback = sbp2_status_write;
987 	lu->address_handler.callback_data    = lu;
988 
989 	if (fw_core_add_address_handler(&lu->address_handler,
990 					&fw_high_memory_region) < 0) {
991 		kfree(lu);
992 		return -ENOMEM;
993 	}
994 
995 	lu->tgt      = tgt;
996 	lu->lun      = lun_entry & 0xffff;
997 	lu->login_id = INVALID_LOGIN_ID;
998 	lu->retries  = 0;
999 	lu->has_sdev = false;
1000 	lu->blocked  = false;
1001 	++tgt->dont_block;
1002 	INIT_LIST_HEAD(&lu->orb_list);
1003 	INIT_DELAYED_WORK(&lu->work, sbp2_login);
1004 
1005 	list_add_tail(&lu->link, &tgt->lu_list);
1006 	return 0;
1007 }
1008 
1009 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1010 				    const u32 *leaf)
1011 {
1012 	if ((leaf[0] & 0xffff0000) == 0x00020000)
1013 		tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1014 }
1015 
1016 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1017 				      const u32 *directory)
1018 {
1019 	struct fw_csr_iterator ci;
1020 	int key, value;
1021 
1022 	fw_csr_iterator_init(&ci, directory);
1023 	while (fw_csr_iterator_next(&ci, &key, &value))
1024 		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1025 		    sbp2_add_logical_unit(tgt, value) < 0)
1026 			return -ENOMEM;
1027 	return 0;
1028 }
1029 
1030 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1031 			      u32 *model, u32 *firmware_revision)
1032 {
1033 	struct fw_csr_iterator ci;
1034 	int key, value;
1035 
1036 	fw_csr_iterator_init(&ci, directory);
1037 	while (fw_csr_iterator_next(&ci, &key, &value)) {
1038 		switch (key) {
1039 
1040 		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1041 			tgt->management_agent_address =
1042 					CSR_REGISTER_BASE + 4 * value;
1043 			break;
1044 
1045 		case CSR_DIRECTORY_ID:
1046 			tgt->directory_id = value;
1047 			break;
1048 
1049 		case CSR_MODEL:
1050 			*model = value;
1051 			break;
1052 
1053 		case SBP2_CSR_FIRMWARE_REVISION:
1054 			*firmware_revision = value;
1055 			break;
1056 
1057 		case SBP2_CSR_UNIT_CHARACTERISTICS:
1058 			/* the timeout value is stored in 500ms units */
1059 			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1060 			break;
1061 
1062 		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1063 			if (sbp2_add_logical_unit(tgt, value) < 0)
1064 				return -ENOMEM;
1065 			break;
1066 
1067 		case SBP2_CSR_UNIT_UNIQUE_ID:
1068 			sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1069 			break;
1070 
1071 		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1072 			/* Adjust for the increment in the iterator */
1073 			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1074 				return -ENOMEM;
1075 			break;
1076 		}
1077 	}
1078 	return 0;
1079 }
1080 
1081 /*
1082  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1083  * provided in the config rom. Most devices do provide a value, which
1084  * we'll use for login management orbs, but with some sane limits.
1085  */
1086 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1087 {
1088 	unsigned int timeout = tgt->mgt_orb_timeout;
1089 
1090 	if (timeout > 40000)
1091 		dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1092 			   timeout / 1000);
1093 
1094 	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1095 }
1096 
1097 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1098 				  u32 firmware_revision)
1099 {
1100 	int i;
1101 	unsigned int w = sbp2_param_workarounds;
1102 
1103 	if (w)
1104 		dev_notice(tgt_dev(tgt),
1105 			   "Please notify linux1394-devel@lists.sf.net "
1106 			   "if you need the workarounds parameter\n");
1107 
1108 	if (w & SBP2_WORKAROUND_OVERRIDE)
1109 		goto out;
1110 
1111 	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1112 
1113 		if (sbp2_workarounds_table[i].firmware_revision !=
1114 		    (firmware_revision & 0xffffff00))
1115 			continue;
1116 
1117 		if (sbp2_workarounds_table[i].model != model &&
1118 		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1119 			continue;
1120 
1121 		w |= sbp2_workarounds_table[i].workarounds;
1122 		break;
1123 	}
1124  out:
1125 	if (w)
1126 		dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1127 			   "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1128 			   w, firmware_revision, model);
1129 	tgt->workarounds = w;
1130 }
1131 
1132 static struct scsi_host_template scsi_driver_template;
1133 static int sbp2_remove(struct device *dev);
1134 
1135 static int sbp2_probe(struct device *dev)
1136 {
1137 	struct fw_unit *unit = fw_unit(dev);
1138 	struct fw_device *device = fw_parent_device(unit);
1139 	struct sbp2_target *tgt;
1140 	struct sbp2_logical_unit *lu;
1141 	struct Scsi_Host *shost;
1142 	u32 model, firmware_revision;
1143 
1144 	/* cannot (or should not) handle targets on the local node */
1145 	if (device->is_local)
1146 		return -ENODEV;
1147 
1148 	if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1149 		BUG_ON(dma_set_max_seg_size(device->card->device,
1150 					    SBP2_MAX_SEG_SIZE));
1151 
1152 	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1153 	if (shost == NULL)
1154 		return -ENOMEM;
1155 
1156 	tgt = (struct sbp2_target *)shost->hostdata;
1157 	dev_set_drvdata(&unit->device, tgt);
1158 	tgt->unit = unit;
1159 	INIT_LIST_HEAD(&tgt->lu_list);
1160 	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1161 
1162 	if (fw_device_enable_phys_dma(device) < 0)
1163 		goto fail_shost_put;
1164 
1165 	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1166 
1167 	if (scsi_add_host(shost, &unit->device) < 0)
1168 		goto fail_shost_put;
1169 
1170 	/* implicit directory ID */
1171 	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1172 			     + CSR_CONFIG_ROM) & 0xffffff;
1173 
1174 	firmware_revision = SBP2_ROM_VALUE_MISSING;
1175 	model		  = SBP2_ROM_VALUE_MISSING;
1176 
1177 	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1178 			       &firmware_revision) < 0)
1179 		goto fail_remove;
1180 
1181 	sbp2_clamp_management_orb_timeout(tgt);
1182 	sbp2_init_workarounds(tgt, model, firmware_revision);
1183 
1184 	/*
1185 	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1186 	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1187 	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1188 	 * if we set this to max_speed + 7, we get the right value.
1189 	 */
1190 	tgt->max_payload = min3(device->max_speed + 7, 10U,
1191 				device->card->max_receive - 1);
1192 
1193 	/* Do the login in a workqueue so we can easily reschedule retries. */
1194 	list_for_each_entry(lu, &tgt->lu_list, link)
1195 		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1196 
1197 	return 0;
1198 
1199  fail_remove:
1200 	sbp2_remove(dev);
1201 	return -ENOMEM;
1202 
1203  fail_shost_put:
1204 	scsi_host_put(shost);
1205 	return -ENOMEM;
1206 }
1207 
1208 static void sbp2_update(struct fw_unit *unit)
1209 {
1210 	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1211 	struct sbp2_logical_unit *lu;
1212 
1213 	fw_device_enable_phys_dma(fw_parent_device(unit));
1214 
1215 	/*
1216 	 * Fw-core serializes sbp2_update() against sbp2_remove().
1217 	 * Iteration over tgt->lu_list is therefore safe here.
1218 	 */
1219 	list_for_each_entry(lu, &tgt->lu_list, link) {
1220 		sbp2_conditionally_block(lu);
1221 		lu->retries = 0;
1222 		sbp2_queue_work(lu, 0);
1223 	}
1224 }
1225 
1226 static int sbp2_remove(struct device *dev)
1227 {
1228 	struct fw_unit *unit = fw_unit(dev);
1229 	struct fw_device *device = fw_parent_device(unit);
1230 	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1231 	struct sbp2_logical_unit *lu, *next;
1232 	struct Scsi_Host *shost =
1233 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1234 	struct scsi_device *sdev;
1235 
1236 	/* prevent deadlocks */
1237 	sbp2_unblock(tgt);
1238 
1239 	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1240 		cancel_delayed_work_sync(&lu->work);
1241 		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1242 		if (sdev) {
1243 			scsi_remove_device(sdev);
1244 			scsi_device_put(sdev);
1245 		}
1246 		if (lu->login_id != INVALID_LOGIN_ID) {
1247 			int generation, node_id;
1248 			/*
1249 			 * tgt->node_id may be obsolete here if we failed
1250 			 * during initial login or after a bus reset where
1251 			 * the topology changed.
1252 			 */
1253 			generation = device->generation;
1254 			smp_rmb(); /* node_id vs. generation */
1255 			node_id    = device->node_id;
1256 			sbp2_send_management_orb(lu, node_id, generation,
1257 						 SBP2_LOGOUT_REQUEST,
1258 						 lu->login_id, NULL);
1259 		}
1260 		fw_core_remove_address_handler(&lu->address_handler);
1261 		list_del(&lu->link);
1262 		kfree(lu);
1263 	}
1264 	scsi_remove_host(shost);
1265 	dev_notice(dev, "released target %d:0:0\n", shost->host_no);
1266 
1267 	scsi_host_put(shost);
1268 	return 0;
1269 }
1270 
1271 #define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1272 #define SBP2_SW_VERSION_ENTRY	0x00010483
1273 
1274 static const struct ieee1394_device_id sbp2_id_table[] = {
1275 	{
1276 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1277 				IEEE1394_MATCH_VERSION,
1278 		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1279 		.version      = SBP2_SW_VERSION_ENTRY,
1280 	},
1281 	{ }
1282 };
1283 
1284 static struct fw_driver sbp2_driver = {
1285 	.driver   = {
1286 		.owner  = THIS_MODULE,
1287 		.name   = KBUILD_MODNAME,
1288 		.bus    = &fw_bus_type,
1289 		.probe  = sbp2_probe,
1290 		.remove = sbp2_remove,
1291 	},
1292 	.update   = sbp2_update,
1293 	.id_table = sbp2_id_table,
1294 };
1295 
1296 static void sbp2_unmap_scatterlist(struct device *card_device,
1297 				   struct sbp2_command_orb *orb)
1298 {
1299 	if (scsi_sg_count(orb->cmd))
1300 		dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1301 			     scsi_sg_count(orb->cmd),
1302 			     orb->cmd->sc_data_direction);
1303 
1304 	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1305 		dma_unmap_single(card_device, orb->page_table_bus,
1306 				 sizeof(orb->page_table), DMA_TO_DEVICE);
1307 }
1308 
1309 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1310 {
1311 	int sam_status;
1312 	int sfmt = (sbp2_status[0] >> 6) & 0x03;
1313 
1314 	if (sfmt == 2 || sfmt == 3) {
1315 		/*
1316 		 * Reserved for future standardization (2) or
1317 		 * Status block format vendor-dependent (3)
1318 		 */
1319 		return DID_ERROR << 16;
1320 	}
1321 
1322 	sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1323 	sense_data[1] = 0x0;
1324 	sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1325 	sense_data[3] = sbp2_status[4];
1326 	sense_data[4] = sbp2_status[5];
1327 	sense_data[5] = sbp2_status[6];
1328 	sense_data[6] = sbp2_status[7];
1329 	sense_data[7] = 10;
1330 	sense_data[8] = sbp2_status[8];
1331 	sense_data[9] = sbp2_status[9];
1332 	sense_data[10] = sbp2_status[10];
1333 	sense_data[11] = sbp2_status[11];
1334 	sense_data[12] = sbp2_status[2];
1335 	sense_data[13] = sbp2_status[3];
1336 	sense_data[14] = sbp2_status[12];
1337 	sense_data[15] = sbp2_status[13];
1338 
1339 	sam_status = sbp2_status[0] & 0x3f;
1340 
1341 	switch (sam_status) {
1342 	case SAM_STAT_GOOD:
1343 	case SAM_STAT_CHECK_CONDITION:
1344 	case SAM_STAT_CONDITION_MET:
1345 	case SAM_STAT_BUSY:
1346 	case SAM_STAT_RESERVATION_CONFLICT:
1347 	case SAM_STAT_COMMAND_TERMINATED:
1348 		return DID_OK << 16 | sam_status;
1349 
1350 	default:
1351 		return DID_ERROR << 16;
1352 	}
1353 }
1354 
1355 static void complete_command_orb(struct sbp2_orb *base_orb,
1356 				 struct sbp2_status *status)
1357 {
1358 	struct sbp2_command_orb *orb =
1359 		container_of(base_orb, struct sbp2_command_orb, base);
1360 	struct fw_device *device = target_parent_device(orb->lu->tgt);
1361 	int result;
1362 
1363 	if (status != NULL) {
1364 		if (STATUS_GET_DEAD(*status))
1365 			sbp2_agent_reset_no_wait(orb->lu);
1366 
1367 		switch (STATUS_GET_RESPONSE(*status)) {
1368 		case SBP2_STATUS_REQUEST_COMPLETE:
1369 			result = DID_OK << 16;
1370 			break;
1371 		case SBP2_STATUS_TRANSPORT_FAILURE:
1372 			result = DID_BUS_BUSY << 16;
1373 			break;
1374 		case SBP2_STATUS_ILLEGAL_REQUEST:
1375 		case SBP2_STATUS_VENDOR_DEPENDENT:
1376 		default:
1377 			result = DID_ERROR << 16;
1378 			break;
1379 		}
1380 
1381 		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1382 			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1383 							   orb->cmd->sense_buffer);
1384 	} else {
1385 		/*
1386 		 * If the orb completes with status == NULL, something
1387 		 * went wrong, typically a bus reset happened mid-orb
1388 		 * or when sending the write (less likely).
1389 		 */
1390 		result = DID_BUS_BUSY << 16;
1391 		sbp2_conditionally_block(orb->lu);
1392 	}
1393 
1394 	dma_unmap_single(device->card->device, orb->base.request_bus,
1395 			 sizeof(orb->request), DMA_TO_DEVICE);
1396 	sbp2_unmap_scatterlist(device->card->device, orb);
1397 
1398 	orb->cmd->result = result;
1399 	orb->cmd->scsi_done(orb->cmd);
1400 }
1401 
1402 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1403 		struct fw_device *device, struct sbp2_logical_unit *lu)
1404 {
1405 	struct scatterlist *sg = scsi_sglist(orb->cmd);
1406 	int i, n;
1407 
1408 	n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1409 		       orb->cmd->sc_data_direction);
1410 	if (n == 0)
1411 		goto fail;
1412 
1413 	/*
1414 	 * Handle the special case where there is only one element in
1415 	 * the scatter list by converting it to an immediate block
1416 	 * request. This is also a workaround for broken devices such
1417 	 * as the second generation iPod which doesn't support page
1418 	 * tables.
1419 	 */
1420 	if (n == 1) {
1421 		orb->request.data_descriptor.high =
1422 			cpu_to_be32(lu->tgt->address_high);
1423 		orb->request.data_descriptor.low  =
1424 			cpu_to_be32(sg_dma_address(sg));
1425 		orb->request.misc |=
1426 			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1427 		return 0;
1428 	}
1429 
1430 	for_each_sg(sg, sg, n, i) {
1431 		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1432 		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1433 	}
1434 
1435 	orb->page_table_bus =
1436 		dma_map_single(device->card->device, orb->page_table,
1437 			       sizeof(orb->page_table), DMA_TO_DEVICE);
1438 	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1439 		goto fail_page_table;
1440 
1441 	/*
1442 	 * The data_descriptor pointer is the one case where we need
1443 	 * to fill in the node ID part of the address.  All other
1444 	 * pointers assume that the data referenced reside on the
1445 	 * initiator (i.e. us), but data_descriptor can refer to data
1446 	 * on other nodes so we need to put our ID in descriptor.high.
1447 	 */
1448 	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1449 	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1450 	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1451 					 COMMAND_ORB_DATA_SIZE(n));
1452 
1453 	return 0;
1454 
1455  fail_page_table:
1456 	dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1457 		     scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1458  fail:
1459 	return -ENOMEM;
1460 }
1461 
1462 /* SCSI stack integration */
1463 
1464 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1465 				  struct scsi_cmnd *cmd)
1466 {
1467 	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1468 	struct fw_device *device = target_parent_device(lu->tgt);
1469 	struct sbp2_command_orb *orb;
1470 	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1471 
1472 	/*
1473 	 * Bidirectional commands are not yet implemented, and unknown
1474 	 * transfer direction not handled.
1475 	 */
1476 	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1477 		dev_err(lu_dev(lu), "cannot handle bidirectional command\n");
1478 		cmd->result = DID_ERROR << 16;
1479 		cmd->scsi_done(cmd);
1480 		return 0;
1481 	}
1482 
1483 	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1484 	if (orb == NULL) {
1485 		dev_notice(lu_dev(lu), "failed to alloc ORB\n");
1486 		return SCSI_MLQUEUE_HOST_BUSY;
1487 	}
1488 
1489 	/* Initialize rcode to something not RCODE_COMPLETE. */
1490 	orb->base.rcode = -1;
1491 	kref_init(&orb->base.kref);
1492 	orb->lu = lu;
1493 	orb->cmd = cmd;
1494 	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1495 	orb->request.misc = cpu_to_be32(
1496 		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1497 		COMMAND_ORB_SPEED(device->max_speed) |
1498 		COMMAND_ORB_NOTIFY);
1499 
1500 	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1501 		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1502 
1503 	generation = device->generation;
1504 	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1505 
1506 	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1507 		goto out;
1508 
1509 	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1510 
1511 	orb->base.callback = complete_command_orb;
1512 	orb->base.request_bus =
1513 		dma_map_single(device->card->device, &orb->request,
1514 			       sizeof(orb->request), DMA_TO_DEVICE);
1515 	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1516 		sbp2_unmap_scatterlist(device->card->device, orb);
1517 		goto out;
1518 	}
1519 
1520 	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1521 		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1522 	retval = 0;
1523  out:
1524 	kref_put(&orb->base.kref, free_orb);
1525 	return retval;
1526 }
1527 
1528 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1529 {
1530 	struct sbp2_logical_unit *lu = sdev->hostdata;
1531 
1532 	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1533 	if (!lu)
1534 		return -ENOSYS;
1535 
1536 	sdev->allow_restart = 1;
1537 
1538 	/* SBP-2 requires quadlet alignment of the data buffers. */
1539 	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1540 
1541 	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1542 		sdev->inquiry_len = 36;
1543 
1544 	return 0;
1545 }
1546 
1547 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1548 {
1549 	struct sbp2_logical_unit *lu = sdev->hostdata;
1550 
1551 	sdev->use_10_for_rw = 1;
1552 
1553 	if (sbp2_param_exclusive_login)
1554 		sdev->manage_start_stop = 1;
1555 
1556 	if (sdev->type == TYPE_ROM)
1557 		sdev->use_10_for_ms = 1;
1558 
1559 	if (sdev->type == TYPE_DISK &&
1560 	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1561 		sdev->skip_ms_page_8 = 1;
1562 
1563 	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1564 		sdev->fix_capacity = 1;
1565 
1566 	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1567 		sdev->start_stop_pwr_cond = 1;
1568 
1569 	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1570 		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1571 
1572 	blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1573 
1574 	return 0;
1575 }
1576 
1577 /*
1578  * Called by scsi stack when something has really gone wrong.  Usually
1579  * called when a command has timed-out for some reason.
1580  */
1581 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1582 {
1583 	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1584 
1585 	dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1586 	sbp2_agent_reset(lu);
1587 	sbp2_cancel_orbs(lu);
1588 
1589 	return SUCCESS;
1590 }
1591 
1592 /*
1593  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1594  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1595  *
1596  * This is the concatenation of target port identifier and logical unit
1597  * identifier as per SAM-2...SAM-4 annex A.
1598  */
1599 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1600 			struct device_attribute *attr, char *buf)
1601 {
1602 	struct scsi_device *sdev = to_scsi_device(dev);
1603 	struct sbp2_logical_unit *lu;
1604 
1605 	if (!sdev)
1606 		return 0;
1607 
1608 	lu = sdev->hostdata;
1609 
1610 	return sprintf(buf, "%016llx:%06x:%04x\n",
1611 			(unsigned long long)lu->tgt->guid,
1612 			lu->tgt->directory_id, lu->lun);
1613 }
1614 
1615 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1616 
1617 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1618 	&dev_attr_ieee1394_id,
1619 	NULL
1620 };
1621 
1622 static struct scsi_host_template scsi_driver_template = {
1623 	.module			= THIS_MODULE,
1624 	.name			= "SBP-2 IEEE-1394",
1625 	.proc_name		= "sbp2",
1626 	.queuecommand		= sbp2_scsi_queuecommand,
1627 	.slave_alloc		= sbp2_scsi_slave_alloc,
1628 	.slave_configure	= sbp2_scsi_slave_configure,
1629 	.eh_abort_handler	= sbp2_scsi_abort,
1630 	.this_id		= -1,
1631 	.sg_tablesize		= SG_ALL,
1632 	.use_clustering		= ENABLE_CLUSTERING,
1633 	.cmd_per_lun		= 1,
1634 	.can_queue		= 1,
1635 	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1636 };
1637 
1638 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1639 MODULE_DESCRIPTION("SCSI over IEEE1394");
1640 MODULE_LICENSE("GPL");
1641 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1642 
1643 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1644 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1645 MODULE_ALIAS("sbp2");
1646 #endif
1647 
1648 static int __init sbp2_init(void)
1649 {
1650 	return driver_register(&sbp2_driver.driver);
1651 }
1652 
1653 static void __exit sbp2_cleanup(void)
1654 {
1655 	driver_unregister(&sbp2_driver.driver);
1656 }
1657 
1658 module_init(sbp2_init);
1659 module_exit(sbp2_cleanup);
1660