1 /* 2 * SBP2 driver (SCSI over IEEE1394) 3 * 4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 /* 22 * The basic structure of this driver is based on the old storage driver, 23 * drivers/ieee1394/sbp2.c, originally written by 24 * James Goodwin <jamesg@filanet.com> 25 * with later contributions and ongoing maintenance from 26 * Ben Collins <bcollins@debian.org>, 27 * Stefan Richter <stefanr@s5r6.in-berlin.de> 28 * and many others. 29 */ 30 31 #include <linux/blkdev.h> 32 #include <linux/bug.h> 33 #include <linux/completion.h> 34 #include <linux/delay.h> 35 #include <linux/device.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/firewire.h> 38 #include <linux/firewire-constants.h> 39 #include <linux/init.h> 40 #include <linux/jiffies.h> 41 #include <linux/kernel.h> 42 #include <linux/kref.h> 43 #include <linux/list.h> 44 #include <linux/mod_devicetable.h> 45 #include <linux/module.h> 46 #include <linux/moduleparam.h> 47 #include <linux/scatterlist.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/string.h> 51 #include <linux/stringify.h> 52 #include <linux/workqueue.h> 53 54 #include <asm/byteorder.h> 55 #include <asm/system.h> 56 57 #include <scsi/scsi.h> 58 #include <scsi/scsi_cmnd.h> 59 #include <scsi/scsi_device.h> 60 #include <scsi/scsi_host.h> 61 62 /* 63 * So far only bridges from Oxford Semiconductor are known to support 64 * concurrent logins. Depending on firmware, four or two concurrent logins 65 * are possible on OXFW911 and newer Oxsemi bridges. 66 * 67 * Concurrent logins are useful together with cluster filesystems. 68 */ 69 static int sbp2_param_exclusive_login = 1; 70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 72 "(default = Y, use N for concurrent initiators)"); 73 74 /* 75 * Flags for firmware oddities 76 * 77 * - 128kB max transfer 78 * Limit transfer size. Necessary for some old bridges. 79 * 80 * - 36 byte inquiry 81 * When scsi_mod probes the device, let the inquiry command look like that 82 * from MS Windows. 83 * 84 * - skip mode page 8 85 * Suppress sending of mode_sense for mode page 8 if the device pretends to 86 * support the SCSI Primary Block commands instead of Reduced Block Commands. 87 * 88 * - fix capacity 89 * Tell sd_mod to correct the last sector number reported by read_capacity. 90 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 91 * Don't use this with devices which don't have this bug. 92 * 93 * - delay inquiry 94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 95 * 96 * - power condition 97 * Set the power condition field in the START STOP UNIT commands sent by 98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). 99 * Some disks need this to spin down or to resume properly. 100 * 101 * - override internal blacklist 102 * Instead of adding to the built-in blacklist, use only the workarounds 103 * specified in the module load parameter. 104 * Useful if a blacklist entry interfered with a non-broken device. 105 */ 106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 107 #define SBP2_WORKAROUND_INQUIRY_36 0x2 108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 111 #define SBP2_INQUIRY_DELAY 12 112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 113 #define SBP2_WORKAROUND_OVERRIDE 0x100 114 115 static int sbp2_param_workarounds; 116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 123 ", set power condition in start stop unit = " 124 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 126 ", or a combination)"); 127 128 /* I don't know why the SCSI stack doesn't define something like this... */ 129 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *); 130 131 static const char sbp2_driver_name[] = "sbp2"; 132 133 /* 134 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 135 * and one struct scsi_device per sbp2_logical_unit. 136 */ 137 struct sbp2_logical_unit { 138 struct sbp2_target *tgt; 139 struct list_head link; 140 struct fw_address_handler address_handler; 141 struct list_head orb_list; 142 143 u64 command_block_agent_address; 144 u16 lun; 145 int login_id; 146 147 /* 148 * The generation is updated once we've logged in or reconnected 149 * to the logical unit. Thus, I/O to the device will automatically 150 * fail and get retried if it happens in a window where the device 151 * is not ready, e.g. after a bus reset but before we reconnect. 152 */ 153 int generation; 154 int retries; 155 struct delayed_work work; 156 bool has_sdev; 157 bool blocked; 158 }; 159 160 /* 161 * We create one struct sbp2_target per IEEE 1212 Unit Directory 162 * and one struct Scsi_Host per sbp2_target. 163 */ 164 struct sbp2_target { 165 struct kref kref; 166 struct fw_unit *unit; 167 const char *bus_id; 168 struct list_head lu_list; 169 170 u64 management_agent_address; 171 u64 guid; 172 int directory_id; 173 int node_id; 174 int address_high; 175 unsigned int workarounds; 176 unsigned int mgt_orb_timeout; 177 unsigned int max_payload; 178 179 int dont_block; /* counter for each logical unit */ 180 int blocked; /* ditto */ 181 }; 182 183 static struct fw_device *target_device(struct sbp2_target *tgt) 184 { 185 return fw_parent_device(tgt->unit); 186 } 187 188 /* Impossible login_id, to detect logout attempt before successful login */ 189 #define INVALID_LOGIN_ID 0x10000 190 191 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 192 #define SBP2_ORB_NULL 0x80000000 193 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 194 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 195 196 /* 197 * There is no transport protocol limit to the CDB length, but we implement 198 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 199 */ 200 #define SBP2_MAX_CDB_SIZE 16 201 202 /* 203 * The default maximum s/g segment size of a FireWire controller is 204 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to 205 * be quadlet-aligned, we set the length limit to 0xffff & ~3. 206 */ 207 #define SBP2_MAX_SEG_SIZE 0xfffc 208 209 /* Unit directory keys */ 210 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 211 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 212 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 213 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 214 215 /* Management orb opcodes */ 216 #define SBP2_LOGIN_REQUEST 0x0 217 #define SBP2_QUERY_LOGINS_REQUEST 0x1 218 #define SBP2_RECONNECT_REQUEST 0x3 219 #define SBP2_SET_PASSWORD_REQUEST 0x4 220 #define SBP2_LOGOUT_REQUEST 0x7 221 #define SBP2_ABORT_TASK_REQUEST 0xb 222 #define SBP2_ABORT_TASK_SET 0xc 223 #define SBP2_LOGICAL_UNIT_RESET 0xe 224 #define SBP2_TARGET_RESET_REQUEST 0xf 225 226 /* Offsets for command block agent registers */ 227 #define SBP2_AGENT_STATE 0x00 228 #define SBP2_AGENT_RESET 0x04 229 #define SBP2_ORB_POINTER 0x08 230 #define SBP2_DOORBELL 0x10 231 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 232 233 /* Status write response codes */ 234 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 235 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 236 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 237 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 238 239 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 240 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 241 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 242 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 243 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 244 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 245 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 246 #define STATUS_GET_DATA(v) ((v).data) 247 248 struct sbp2_status { 249 u32 status; 250 u32 orb_low; 251 u8 data[24]; 252 }; 253 254 struct sbp2_pointer { 255 __be32 high; 256 __be32 low; 257 }; 258 259 struct sbp2_orb { 260 struct fw_transaction t; 261 struct kref kref; 262 dma_addr_t request_bus; 263 int rcode; 264 struct sbp2_pointer pointer; 265 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 266 struct list_head link; 267 }; 268 269 #define MANAGEMENT_ORB_LUN(v) ((v)) 270 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 271 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 272 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 273 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 274 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 275 276 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 277 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 278 279 struct sbp2_management_orb { 280 struct sbp2_orb base; 281 struct { 282 struct sbp2_pointer password; 283 struct sbp2_pointer response; 284 __be32 misc; 285 __be32 length; 286 struct sbp2_pointer status_fifo; 287 } request; 288 __be32 response[4]; 289 dma_addr_t response_bus; 290 struct completion done; 291 struct sbp2_status status; 292 }; 293 294 struct sbp2_login_response { 295 __be32 misc; 296 struct sbp2_pointer command_block_agent; 297 __be32 reconnect_hold; 298 }; 299 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 300 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 301 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 302 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 303 #define COMMAND_ORB_SPEED(v) ((v) << 24) 304 #define COMMAND_ORB_DIRECTION ((1) << 27) 305 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 306 #define COMMAND_ORB_NOTIFY ((1) << 31) 307 308 struct sbp2_command_orb { 309 struct sbp2_orb base; 310 struct { 311 struct sbp2_pointer next; 312 struct sbp2_pointer data_descriptor; 313 __be32 misc; 314 u8 command_block[SBP2_MAX_CDB_SIZE]; 315 } request; 316 struct scsi_cmnd *cmd; 317 scsi_done_fn_t done; 318 struct sbp2_logical_unit *lu; 319 320 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 321 dma_addr_t page_table_bus; 322 }; 323 324 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 325 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 326 327 /* 328 * List of devices with known bugs. 329 * 330 * The firmware_revision field, masked with 0xffff00, is the best 331 * indicator for the type of bridge chip of a device. It yields a few 332 * false positives but this did not break correctly behaving devices 333 * so far. 334 */ 335 static const struct { 336 u32 firmware_revision; 337 u32 model; 338 unsigned int workarounds; 339 } sbp2_workarounds_table[] = { 340 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 341 .firmware_revision = 0x002800, 342 .model = 0x001010, 343 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 344 SBP2_WORKAROUND_MODE_SENSE_8 | 345 SBP2_WORKAROUND_POWER_CONDITION, 346 }, 347 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 348 .firmware_revision = 0x002800, 349 .model = 0x000000, 350 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 351 }, 352 /* Initio bridges, actually only needed for some older ones */ { 353 .firmware_revision = 0x000200, 354 .model = SBP2_ROM_VALUE_WILDCARD, 355 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 356 }, 357 /* PL-3507 bridge with Prolific firmware */ { 358 .firmware_revision = 0x012800, 359 .model = SBP2_ROM_VALUE_WILDCARD, 360 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 361 }, 362 /* Symbios bridge */ { 363 .firmware_revision = 0xa0b800, 364 .model = SBP2_ROM_VALUE_WILDCARD, 365 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 366 }, 367 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 368 .firmware_revision = 0x002600, 369 .model = SBP2_ROM_VALUE_WILDCARD, 370 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 371 }, 372 /* 373 * iPod 2nd generation: needs 128k max transfer size workaround 374 * iPod 3rd generation: needs fix capacity workaround 375 */ 376 { 377 .firmware_revision = 0x0a2700, 378 .model = 0x000000, 379 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 380 SBP2_WORKAROUND_FIX_CAPACITY, 381 }, 382 /* iPod 4th generation */ { 383 .firmware_revision = 0x0a2700, 384 .model = 0x000021, 385 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 386 }, 387 /* iPod mini */ { 388 .firmware_revision = 0x0a2700, 389 .model = 0x000022, 390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 391 }, 392 /* iPod mini */ { 393 .firmware_revision = 0x0a2700, 394 .model = 0x000023, 395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 396 }, 397 /* iPod Photo */ { 398 .firmware_revision = 0x0a2700, 399 .model = 0x00007e, 400 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 401 } 402 }; 403 404 static void free_orb(struct kref *kref) 405 { 406 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 407 408 kfree(orb); 409 } 410 411 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 412 int tcode, int destination, int source, 413 int generation, int speed, 414 unsigned long long offset, 415 void *payload, size_t length, void *callback_data) 416 { 417 struct sbp2_logical_unit *lu = callback_data; 418 struct sbp2_orb *orb; 419 struct sbp2_status status; 420 unsigned long flags; 421 422 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 423 length < 8 || length > sizeof(status)) { 424 fw_send_response(card, request, RCODE_TYPE_ERROR); 425 return; 426 } 427 428 status.status = be32_to_cpup(payload); 429 status.orb_low = be32_to_cpup(payload + 4); 430 memset(status.data, 0, sizeof(status.data)); 431 if (length > 8) 432 memcpy(status.data, payload + 8, length - 8); 433 434 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 435 fw_notify("non-orb related status write, not handled\n"); 436 fw_send_response(card, request, RCODE_COMPLETE); 437 return; 438 } 439 440 /* Lookup the orb corresponding to this status write. */ 441 spin_lock_irqsave(&card->lock, flags); 442 list_for_each_entry(orb, &lu->orb_list, link) { 443 if (STATUS_GET_ORB_HIGH(status) == 0 && 444 STATUS_GET_ORB_LOW(status) == orb->request_bus) { 445 orb->rcode = RCODE_COMPLETE; 446 list_del(&orb->link); 447 break; 448 } 449 } 450 spin_unlock_irqrestore(&card->lock, flags); 451 452 if (&orb->link != &lu->orb_list) { 453 orb->callback(orb, &status); 454 kref_put(&orb->kref, free_orb); 455 } else { 456 fw_error("status write for unknown orb\n"); 457 } 458 459 fw_send_response(card, request, RCODE_COMPLETE); 460 } 461 462 static void complete_transaction(struct fw_card *card, int rcode, 463 void *payload, size_t length, void *data) 464 { 465 struct sbp2_orb *orb = data; 466 unsigned long flags; 467 468 /* 469 * This is a little tricky. We can get the status write for 470 * the orb before we get this callback. The status write 471 * handler above will assume the orb pointer transaction was 472 * successful and set the rcode to RCODE_COMPLETE for the orb. 473 * So this callback only sets the rcode if it hasn't already 474 * been set and only does the cleanup if the transaction 475 * failed and we didn't already get a status write. 476 */ 477 spin_lock_irqsave(&card->lock, flags); 478 479 if (orb->rcode == -1) 480 orb->rcode = rcode; 481 if (orb->rcode != RCODE_COMPLETE) { 482 list_del(&orb->link); 483 spin_unlock_irqrestore(&card->lock, flags); 484 orb->callback(orb, NULL); 485 } else { 486 spin_unlock_irqrestore(&card->lock, flags); 487 } 488 489 kref_put(&orb->kref, free_orb); 490 } 491 492 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 493 int node_id, int generation, u64 offset) 494 { 495 struct fw_device *device = target_device(lu->tgt); 496 unsigned long flags; 497 498 orb->pointer.high = 0; 499 orb->pointer.low = cpu_to_be32(orb->request_bus); 500 501 spin_lock_irqsave(&device->card->lock, flags); 502 list_add_tail(&orb->link, &lu->orb_list); 503 spin_unlock_irqrestore(&device->card->lock, flags); 504 505 /* Take a ref for the orb list and for the transaction callback. */ 506 kref_get(&orb->kref); 507 kref_get(&orb->kref); 508 509 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 510 node_id, generation, device->max_speed, offset, 511 &orb->pointer, sizeof(orb->pointer), 512 complete_transaction, orb); 513 } 514 515 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 516 { 517 struct fw_device *device = target_device(lu->tgt); 518 struct sbp2_orb *orb, *next; 519 struct list_head list; 520 unsigned long flags; 521 int retval = -ENOENT; 522 523 INIT_LIST_HEAD(&list); 524 spin_lock_irqsave(&device->card->lock, flags); 525 list_splice_init(&lu->orb_list, &list); 526 spin_unlock_irqrestore(&device->card->lock, flags); 527 528 list_for_each_entry_safe(orb, next, &list, link) { 529 retval = 0; 530 if (fw_cancel_transaction(device->card, &orb->t) == 0) 531 continue; 532 533 orb->rcode = RCODE_CANCELLED; 534 orb->callback(orb, NULL); 535 } 536 537 return retval; 538 } 539 540 static void complete_management_orb(struct sbp2_orb *base_orb, 541 struct sbp2_status *status) 542 { 543 struct sbp2_management_orb *orb = 544 container_of(base_orb, struct sbp2_management_orb, base); 545 546 if (status) 547 memcpy(&orb->status, status, sizeof(*status)); 548 complete(&orb->done); 549 } 550 551 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 552 int generation, int function, 553 int lun_or_login_id, void *response) 554 { 555 struct fw_device *device = target_device(lu->tgt); 556 struct sbp2_management_orb *orb; 557 unsigned int timeout; 558 int retval = -ENOMEM; 559 560 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 561 return 0; 562 563 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 564 if (orb == NULL) 565 return -ENOMEM; 566 567 kref_init(&orb->base.kref); 568 orb->response_bus = 569 dma_map_single(device->card->device, &orb->response, 570 sizeof(orb->response), DMA_FROM_DEVICE); 571 if (dma_mapping_error(device->card->device, orb->response_bus)) 572 goto fail_mapping_response; 573 574 orb->request.response.high = 0; 575 orb->request.response.low = cpu_to_be32(orb->response_bus); 576 577 orb->request.misc = cpu_to_be32( 578 MANAGEMENT_ORB_NOTIFY | 579 MANAGEMENT_ORB_FUNCTION(function) | 580 MANAGEMENT_ORB_LUN(lun_or_login_id)); 581 orb->request.length = cpu_to_be32( 582 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 583 584 orb->request.status_fifo.high = 585 cpu_to_be32(lu->address_handler.offset >> 32); 586 orb->request.status_fifo.low = 587 cpu_to_be32(lu->address_handler.offset); 588 589 if (function == SBP2_LOGIN_REQUEST) { 590 /* Ask for 2^2 == 4 seconds reconnect grace period */ 591 orb->request.misc |= cpu_to_be32( 592 MANAGEMENT_ORB_RECONNECT(2) | 593 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 594 timeout = lu->tgt->mgt_orb_timeout; 595 } else { 596 timeout = SBP2_ORB_TIMEOUT; 597 } 598 599 init_completion(&orb->done); 600 orb->base.callback = complete_management_orb; 601 602 orb->base.request_bus = 603 dma_map_single(device->card->device, &orb->request, 604 sizeof(orb->request), DMA_TO_DEVICE); 605 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 606 goto fail_mapping_request; 607 608 sbp2_send_orb(&orb->base, lu, node_id, generation, 609 lu->tgt->management_agent_address); 610 611 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 612 613 retval = -EIO; 614 if (sbp2_cancel_orbs(lu) == 0) { 615 fw_error("%s: orb reply timed out, rcode=0x%02x\n", 616 lu->tgt->bus_id, orb->base.rcode); 617 goto out; 618 } 619 620 if (orb->base.rcode != RCODE_COMPLETE) { 621 fw_error("%s: management write failed, rcode 0x%02x\n", 622 lu->tgt->bus_id, orb->base.rcode); 623 goto out; 624 } 625 626 if (STATUS_GET_RESPONSE(orb->status) != 0 || 627 STATUS_GET_SBP_STATUS(orb->status) != 0) { 628 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id, 629 STATUS_GET_RESPONSE(orb->status), 630 STATUS_GET_SBP_STATUS(orb->status)); 631 goto out; 632 } 633 634 retval = 0; 635 out: 636 dma_unmap_single(device->card->device, orb->base.request_bus, 637 sizeof(orb->request), DMA_TO_DEVICE); 638 fail_mapping_request: 639 dma_unmap_single(device->card->device, orb->response_bus, 640 sizeof(orb->response), DMA_FROM_DEVICE); 641 fail_mapping_response: 642 if (response) 643 memcpy(response, orb->response, sizeof(orb->response)); 644 kref_put(&orb->base.kref, free_orb); 645 646 return retval; 647 } 648 649 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 650 { 651 struct fw_device *device = target_device(lu->tgt); 652 __be32 d = 0; 653 654 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 655 lu->tgt->node_id, lu->generation, device->max_speed, 656 lu->command_block_agent_address + SBP2_AGENT_RESET, 657 &d, sizeof(d)); 658 } 659 660 static void complete_agent_reset_write_no_wait(struct fw_card *card, 661 int rcode, void *payload, size_t length, void *data) 662 { 663 kfree(data); 664 } 665 666 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 667 { 668 struct fw_device *device = target_device(lu->tgt); 669 struct fw_transaction *t; 670 static __be32 d; 671 672 t = kmalloc(sizeof(*t), GFP_ATOMIC); 673 if (t == NULL) 674 return; 675 676 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 677 lu->tgt->node_id, lu->generation, device->max_speed, 678 lu->command_block_agent_address + SBP2_AGENT_RESET, 679 &d, sizeof(d), complete_agent_reset_write_no_wait, t); 680 } 681 682 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu) 683 { 684 /* 685 * We may access dont_block without taking card->lock here: 686 * All callers of sbp2_allow_block() and all callers of sbp2_unblock() 687 * are currently serialized against each other. 688 * And a wrong result in sbp2_conditionally_block()'s access of 689 * dont_block is rather harmless, it simply misses its first chance. 690 */ 691 --lu->tgt->dont_block; 692 } 693 694 /* 695 * Blocks lu->tgt if all of the following conditions are met: 696 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 697 * logical units have been finished (indicated by dont_block == 0). 698 * - lu->generation is stale. 699 * 700 * Note, scsi_block_requests() must be called while holding card->lock, 701 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 702 * unblock the target. 703 */ 704 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 705 { 706 struct sbp2_target *tgt = lu->tgt; 707 struct fw_card *card = target_device(tgt)->card; 708 struct Scsi_Host *shost = 709 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 710 unsigned long flags; 711 712 spin_lock_irqsave(&card->lock, flags); 713 if (!tgt->dont_block && !lu->blocked && 714 lu->generation != card->generation) { 715 lu->blocked = true; 716 if (++tgt->blocked == 1) 717 scsi_block_requests(shost); 718 } 719 spin_unlock_irqrestore(&card->lock, flags); 720 } 721 722 /* 723 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 724 * Note, it is harmless to run scsi_unblock_requests() outside the 725 * card->lock protected section. On the other hand, running it inside 726 * the section might clash with shost->host_lock. 727 */ 728 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 729 { 730 struct sbp2_target *tgt = lu->tgt; 731 struct fw_card *card = target_device(tgt)->card; 732 struct Scsi_Host *shost = 733 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 734 unsigned long flags; 735 bool unblock = false; 736 737 spin_lock_irqsave(&card->lock, flags); 738 if (lu->blocked && lu->generation == card->generation) { 739 lu->blocked = false; 740 unblock = --tgt->blocked == 0; 741 } 742 spin_unlock_irqrestore(&card->lock, flags); 743 744 if (unblock) 745 scsi_unblock_requests(shost); 746 } 747 748 /* 749 * Prevents future blocking of tgt and unblocks it. 750 * Note, it is harmless to run scsi_unblock_requests() outside the 751 * card->lock protected section. On the other hand, running it inside 752 * the section might clash with shost->host_lock. 753 */ 754 static void sbp2_unblock(struct sbp2_target *tgt) 755 { 756 struct fw_card *card = target_device(tgt)->card; 757 struct Scsi_Host *shost = 758 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 759 unsigned long flags; 760 761 spin_lock_irqsave(&card->lock, flags); 762 ++tgt->dont_block; 763 spin_unlock_irqrestore(&card->lock, flags); 764 765 scsi_unblock_requests(shost); 766 } 767 768 static int sbp2_lun2int(u16 lun) 769 { 770 struct scsi_lun eight_bytes_lun; 771 772 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 773 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 774 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 775 776 return scsilun_to_int(&eight_bytes_lun); 777 } 778 779 static void sbp2_release_target(struct kref *kref) 780 { 781 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref); 782 struct sbp2_logical_unit *lu, *next; 783 struct Scsi_Host *shost = 784 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 785 struct scsi_device *sdev; 786 struct fw_device *device = target_device(tgt); 787 788 /* prevent deadlocks */ 789 sbp2_unblock(tgt); 790 791 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 792 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 793 if (sdev) { 794 scsi_remove_device(sdev); 795 scsi_device_put(sdev); 796 } 797 if (lu->login_id != INVALID_LOGIN_ID) { 798 int generation, node_id; 799 /* 800 * tgt->node_id may be obsolete here if we failed 801 * during initial login or after a bus reset where 802 * the topology changed. 803 */ 804 generation = device->generation; 805 smp_rmb(); /* node_id vs. generation */ 806 node_id = device->node_id; 807 sbp2_send_management_orb(lu, node_id, generation, 808 SBP2_LOGOUT_REQUEST, 809 lu->login_id, NULL); 810 } 811 fw_core_remove_address_handler(&lu->address_handler); 812 list_del(&lu->link); 813 kfree(lu); 814 } 815 scsi_remove_host(shost); 816 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no); 817 818 fw_unit_put(tgt->unit); 819 scsi_host_put(shost); 820 fw_device_put(device); 821 } 822 823 static struct workqueue_struct *sbp2_wq; 824 825 static void sbp2_target_put(struct sbp2_target *tgt) 826 { 827 kref_put(&tgt->kref, sbp2_release_target); 828 } 829 830 /* 831 * Always get the target's kref when scheduling work on one its units. 832 * Each workqueue job is responsible to call sbp2_target_put() upon return. 833 */ 834 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 835 { 836 kref_get(&lu->tgt->kref); 837 if (!queue_delayed_work(sbp2_wq, &lu->work, delay)) 838 sbp2_target_put(lu->tgt); 839 } 840 841 /* 842 * Write retransmit retry values into the BUSY_TIMEOUT register. 843 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 844 * default retry_limit value is 0 (i.e. never retry transmission). We write a 845 * saner value after logging into the device. 846 * - The dual-phase retry protocol is optional to implement, and if not 847 * supported, writes to the dual-phase portion of the register will be 848 * ignored. We try to write the original 1394-1995 default here. 849 * - In the case of devices that are also SBP-3-compliant, all writes are 850 * ignored, as the register is read-only, but contains single-phase retry of 851 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 852 * write attempt is safe and yields more consistent behavior for all devices. 853 * 854 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 855 * and section 6.4 of the SBP-3 spec for further details. 856 */ 857 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 858 { 859 struct fw_device *device = target_device(lu->tgt); 860 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 861 862 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 863 lu->tgt->node_id, lu->generation, device->max_speed, 864 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, 865 &d, sizeof(d)); 866 } 867 868 static void sbp2_reconnect(struct work_struct *work); 869 870 static void sbp2_login(struct work_struct *work) 871 { 872 struct sbp2_logical_unit *lu = 873 container_of(work, struct sbp2_logical_unit, work.work); 874 struct sbp2_target *tgt = lu->tgt; 875 struct fw_device *device = target_device(tgt); 876 struct Scsi_Host *shost; 877 struct scsi_device *sdev; 878 struct sbp2_login_response response; 879 int generation, node_id, local_node_id; 880 881 if (fw_device_is_shutdown(device)) 882 goto out; 883 884 generation = device->generation; 885 smp_rmb(); /* node IDs must not be older than generation */ 886 node_id = device->node_id; 887 local_node_id = device->card->node_id; 888 889 /* If this is a re-login attempt, log out, or we might be rejected. */ 890 if (lu->has_sdev) 891 sbp2_send_management_orb(lu, device->node_id, generation, 892 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 893 894 if (sbp2_send_management_orb(lu, node_id, generation, 895 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 896 if (lu->retries++ < 5) { 897 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 898 } else { 899 fw_error("%s: failed to login to LUN %04x\n", 900 tgt->bus_id, lu->lun); 901 /* Let any waiting I/O fail from now on. */ 902 sbp2_unblock(lu->tgt); 903 } 904 goto out; 905 } 906 907 tgt->node_id = node_id; 908 tgt->address_high = local_node_id << 16; 909 smp_wmb(); /* node IDs must not be older than generation */ 910 lu->generation = generation; 911 912 lu->command_block_agent_address = 913 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 914 << 32) | be32_to_cpu(response.command_block_agent.low); 915 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 916 917 fw_notify("%s: logged in to LUN %04x (%d retries)\n", 918 tgt->bus_id, lu->lun, lu->retries); 919 920 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 921 sbp2_set_busy_timeout(lu); 922 923 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect); 924 sbp2_agent_reset(lu); 925 926 /* This was a re-login. */ 927 if (lu->has_sdev) { 928 sbp2_cancel_orbs(lu); 929 sbp2_conditionally_unblock(lu); 930 goto out; 931 } 932 933 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 934 ssleep(SBP2_INQUIRY_DELAY); 935 936 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 937 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 938 /* 939 * FIXME: We are unable to perform reconnects while in sbp2_login(). 940 * Therefore __scsi_add_device() will get into trouble if a bus reset 941 * happens in parallel. It will either fail or leave us with an 942 * unusable sdev. As a workaround we check for this and retry the 943 * whole login and SCSI probing. 944 */ 945 946 /* Reported error during __scsi_add_device() */ 947 if (IS_ERR(sdev)) 948 goto out_logout_login; 949 950 /* Unreported error during __scsi_add_device() */ 951 smp_rmb(); /* get current card generation */ 952 if (generation != device->card->generation) { 953 scsi_remove_device(sdev); 954 scsi_device_put(sdev); 955 goto out_logout_login; 956 } 957 958 /* No error during __scsi_add_device() */ 959 lu->has_sdev = true; 960 scsi_device_put(sdev); 961 sbp2_allow_block(lu); 962 goto out; 963 964 out_logout_login: 965 smp_rmb(); /* generation may have changed */ 966 generation = device->generation; 967 smp_rmb(); /* node_id must not be older than generation */ 968 969 sbp2_send_management_orb(lu, device->node_id, generation, 970 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 971 /* 972 * If a bus reset happened, sbp2_update will have requeued 973 * lu->work already. Reset the work from reconnect to login. 974 */ 975 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 976 out: 977 sbp2_target_put(tgt); 978 } 979 980 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 981 { 982 struct sbp2_logical_unit *lu; 983 984 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 985 if (!lu) 986 return -ENOMEM; 987 988 lu->address_handler.length = 0x100; 989 lu->address_handler.address_callback = sbp2_status_write; 990 lu->address_handler.callback_data = lu; 991 992 if (fw_core_add_address_handler(&lu->address_handler, 993 &fw_high_memory_region) < 0) { 994 kfree(lu); 995 return -ENOMEM; 996 } 997 998 lu->tgt = tgt; 999 lu->lun = lun_entry & 0xffff; 1000 lu->login_id = INVALID_LOGIN_ID; 1001 lu->retries = 0; 1002 lu->has_sdev = false; 1003 lu->blocked = false; 1004 ++tgt->dont_block; 1005 INIT_LIST_HEAD(&lu->orb_list); 1006 INIT_DELAYED_WORK(&lu->work, sbp2_login); 1007 1008 list_add_tail(&lu->link, &tgt->lu_list); 1009 return 0; 1010 } 1011 1012 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory) 1013 { 1014 struct fw_csr_iterator ci; 1015 int key, value; 1016 1017 fw_csr_iterator_init(&ci, directory); 1018 while (fw_csr_iterator_next(&ci, &key, &value)) 1019 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1020 sbp2_add_logical_unit(tgt, value) < 0) 1021 return -ENOMEM; 1022 return 0; 1023 } 1024 1025 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory, 1026 u32 *model, u32 *firmware_revision) 1027 { 1028 struct fw_csr_iterator ci; 1029 int key, value; 1030 1031 fw_csr_iterator_init(&ci, directory); 1032 while (fw_csr_iterator_next(&ci, &key, &value)) { 1033 switch (key) { 1034 1035 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1036 tgt->management_agent_address = 1037 CSR_REGISTER_BASE + 4 * value; 1038 break; 1039 1040 case CSR_DIRECTORY_ID: 1041 tgt->directory_id = value; 1042 break; 1043 1044 case CSR_MODEL: 1045 *model = value; 1046 break; 1047 1048 case SBP2_CSR_FIRMWARE_REVISION: 1049 *firmware_revision = value; 1050 break; 1051 1052 case SBP2_CSR_UNIT_CHARACTERISTICS: 1053 /* the timeout value is stored in 500ms units */ 1054 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; 1055 break; 1056 1057 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1058 if (sbp2_add_logical_unit(tgt, value) < 0) 1059 return -ENOMEM; 1060 break; 1061 1062 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1063 /* Adjust for the increment in the iterator */ 1064 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1065 return -ENOMEM; 1066 break; 1067 } 1068 } 1069 return 0; 1070 } 1071 1072 /* 1073 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 1074 * provided in the config rom. Most devices do provide a value, which 1075 * we'll use for login management orbs, but with some sane limits. 1076 */ 1077 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) 1078 { 1079 unsigned int timeout = tgt->mgt_orb_timeout; 1080 1081 if (timeout > 40000) 1082 fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n", 1083 tgt->bus_id, timeout / 1000); 1084 1085 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); 1086 } 1087 1088 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1089 u32 firmware_revision) 1090 { 1091 int i; 1092 unsigned int w = sbp2_param_workarounds; 1093 1094 if (w) 1095 fw_notify("Please notify linux1394-devel@lists.sourceforge.net " 1096 "if you need the workarounds parameter for %s\n", 1097 tgt->bus_id); 1098 1099 if (w & SBP2_WORKAROUND_OVERRIDE) 1100 goto out; 1101 1102 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1103 1104 if (sbp2_workarounds_table[i].firmware_revision != 1105 (firmware_revision & 0xffffff00)) 1106 continue; 1107 1108 if (sbp2_workarounds_table[i].model != model && 1109 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1110 continue; 1111 1112 w |= sbp2_workarounds_table[i].workarounds; 1113 break; 1114 } 1115 out: 1116 if (w) 1117 fw_notify("Workarounds for %s: 0x%x " 1118 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1119 tgt->bus_id, w, firmware_revision, model); 1120 tgt->workarounds = w; 1121 } 1122 1123 static struct scsi_host_template scsi_driver_template; 1124 1125 static int sbp2_probe(struct device *dev) 1126 { 1127 struct fw_unit *unit = fw_unit(dev); 1128 struct fw_device *device = fw_parent_device(unit); 1129 struct sbp2_target *tgt; 1130 struct sbp2_logical_unit *lu; 1131 struct Scsi_Host *shost; 1132 u32 model, firmware_revision; 1133 1134 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE) 1135 BUG_ON(dma_set_max_seg_size(device->card->device, 1136 SBP2_MAX_SEG_SIZE)); 1137 1138 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1139 if (shost == NULL) 1140 return -ENOMEM; 1141 1142 tgt = (struct sbp2_target *)shost->hostdata; 1143 dev_set_drvdata(&unit->device, tgt); 1144 tgt->unit = unit; 1145 kref_init(&tgt->kref); 1146 INIT_LIST_HEAD(&tgt->lu_list); 1147 tgt->bus_id = dev_name(&unit->device); 1148 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1149 1150 if (fw_device_enable_phys_dma(device) < 0) 1151 goto fail_shost_put; 1152 1153 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1154 1155 if (scsi_add_host(shost, &unit->device) < 0) 1156 goto fail_shost_put; 1157 1158 fw_device_get(device); 1159 fw_unit_get(unit); 1160 1161 /* implicit directory ID */ 1162 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1163 + CSR_CONFIG_ROM) & 0xffffff; 1164 1165 firmware_revision = SBP2_ROM_VALUE_MISSING; 1166 model = SBP2_ROM_VALUE_MISSING; 1167 1168 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1169 &firmware_revision) < 0) 1170 goto fail_tgt_put; 1171 1172 sbp2_clamp_management_orb_timeout(tgt); 1173 sbp2_init_workarounds(tgt, model, firmware_revision); 1174 1175 /* 1176 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1177 * and so on up to 4096 bytes. The SBP-2 max_payload field 1178 * specifies the max payload size as 2 ^ (max_payload + 2), so 1179 * if we set this to max_speed + 7, we get the right value. 1180 */ 1181 tgt->max_payload = min(device->max_speed + 7, 10U); 1182 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1); 1183 1184 /* Do the login in a workqueue so we can easily reschedule retries. */ 1185 list_for_each_entry(lu, &tgt->lu_list, link) 1186 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1187 return 0; 1188 1189 fail_tgt_put: 1190 sbp2_target_put(tgt); 1191 return -ENOMEM; 1192 1193 fail_shost_put: 1194 scsi_host_put(shost); 1195 return -ENOMEM; 1196 } 1197 1198 static int sbp2_remove(struct device *dev) 1199 { 1200 struct fw_unit *unit = fw_unit(dev); 1201 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1202 1203 sbp2_target_put(tgt); 1204 return 0; 1205 } 1206 1207 static void sbp2_reconnect(struct work_struct *work) 1208 { 1209 struct sbp2_logical_unit *lu = 1210 container_of(work, struct sbp2_logical_unit, work.work); 1211 struct sbp2_target *tgt = lu->tgt; 1212 struct fw_device *device = target_device(tgt); 1213 int generation, node_id, local_node_id; 1214 1215 if (fw_device_is_shutdown(device)) 1216 goto out; 1217 1218 generation = device->generation; 1219 smp_rmb(); /* node IDs must not be older than generation */ 1220 node_id = device->node_id; 1221 local_node_id = device->card->node_id; 1222 1223 if (sbp2_send_management_orb(lu, node_id, generation, 1224 SBP2_RECONNECT_REQUEST, 1225 lu->login_id, NULL) < 0) { 1226 /* 1227 * If reconnect was impossible even though we are in the 1228 * current generation, fall back and try to log in again. 1229 * 1230 * We could check for "Function rejected" status, but 1231 * looking at the bus generation as simpler and more general. 1232 */ 1233 smp_rmb(); /* get current card generation */ 1234 if (generation == device->card->generation || 1235 lu->retries++ >= 5) { 1236 fw_error("%s: failed to reconnect\n", tgt->bus_id); 1237 lu->retries = 0; 1238 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 1239 } 1240 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1241 goto out; 1242 } 1243 1244 tgt->node_id = node_id; 1245 tgt->address_high = local_node_id << 16; 1246 smp_wmb(); /* node IDs must not be older than generation */ 1247 lu->generation = generation; 1248 1249 fw_notify("%s: reconnected to LUN %04x (%d retries)\n", 1250 tgt->bus_id, lu->lun, lu->retries); 1251 1252 sbp2_agent_reset(lu); 1253 sbp2_cancel_orbs(lu); 1254 sbp2_conditionally_unblock(lu); 1255 out: 1256 sbp2_target_put(tgt); 1257 } 1258 1259 static void sbp2_update(struct fw_unit *unit) 1260 { 1261 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1262 struct sbp2_logical_unit *lu; 1263 1264 fw_device_enable_phys_dma(fw_parent_device(unit)); 1265 1266 /* 1267 * Fw-core serializes sbp2_update() against sbp2_remove(). 1268 * Iteration over tgt->lu_list is therefore safe here. 1269 */ 1270 list_for_each_entry(lu, &tgt->lu_list, link) { 1271 sbp2_conditionally_block(lu); 1272 lu->retries = 0; 1273 sbp2_queue_work(lu, 0); 1274 } 1275 } 1276 1277 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1278 #define SBP2_SW_VERSION_ENTRY 0x00010483 1279 1280 static const struct ieee1394_device_id sbp2_id_table[] = { 1281 { 1282 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1283 IEEE1394_MATCH_VERSION, 1284 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1285 .version = SBP2_SW_VERSION_ENTRY, 1286 }, 1287 { } 1288 }; 1289 1290 static struct fw_driver sbp2_driver = { 1291 .driver = { 1292 .owner = THIS_MODULE, 1293 .name = sbp2_driver_name, 1294 .bus = &fw_bus_type, 1295 .probe = sbp2_probe, 1296 .remove = sbp2_remove, 1297 }, 1298 .update = sbp2_update, 1299 .id_table = sbp2_id_table, 1300 }; 1301 1302 static void sbp2_unmap_scatterlist(struct device *card_device, 1303 struct sbp2_command_orb *orb) 1304 { 1305 if (scsi_sg_count(orb->cmd)) 1306 dma_unmap_sg(card_device, scsi_sglist(orb->cmd), 1307 scsi_sg_count(orb->cmd), 1308 orb->cmd->sc_data_direction); 1309 1310 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1311 dma_unmap_single(card_device, orb->page_table_bus, 1312 sizeof(orb->page_table), DMA_TO_DEVICE); 1313 } 1314 1315 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1316 { 1317 int sam_status; 1318 1319 sense_data[0] = 0x70; 1320 sense_data[1] = 0x0; 1321 sense_data[2] = sbp2_status[1]; 1322 sense_data[3] = sbp2_status[4]; 1323 sense_data[4] = sbp2_status[5]; 1324 sense_data[5] = sbp2_status[6]; 1325 sense_data[6] = sbp2_status[7]; 1326 sense_data[7] = 10; 1327 sense_data[8] = sbp2_status[8]; 1328 sense_data[9] = sbp2_status[9]; 1329 sense_data[10] = sbp2_status[10]; 1330 sense_data[11] = sbp2_status[11]; 1331 sense_data[12] = sbp2_status[2]; 1332 sense_data[13] = sbp2_status[3]; 1333 sense_data[14] = sbp2_status[12]; 1334 sense_data[15] = sbp2_status[13]; 1335 1336 sam_status = sbp2_status[0] & 0x3f; 1337 1338 switch (sam_status) { 1339 case SAM_STAT_GOOD: 1340 case SAM_STAT_CHECK_CONDITION: 1341 case SAM_STAT_CONDITION_MET: 1342 case SAM_STAT_BUSY: 1343 case SAM_STAT_RESERVATION_CONFLICT: 1344 case SAM_STAT_COMMAND_TERMINATED: 1345 return DID_OK << 16 | sam_status; 1346 1347 default: 1348 return DID_ERROR << 16; 1349 } 1350 } 1351 1352 static void complete_command_orb(struct sbp2_orb *base_orb, 1353 struct sbp2_status *status) 1354 { 1355 struct sbp2_command_orb *orb = 1356 container_of(base_orb, struct sbp2_command_orb, base); 1357 struct fw_device *device = target_device(orb->lu->tgt); 1358 int result; 1359 1360 if (status != NULL) { 1361 if (STATUS_GET_DEAD(*status)) 1362 sbp2_agent_reset_no_wait(orb->lu); 1363 1364 switch (STATUS_GET_RESPONSE(*status)) { 1365 case SBP2_STATUS_REQUEST_COMPLETE: 1366 result = DID_OK << 16; 1367 break; 1368 case SBP2_STATUS_TRANSPORT_FAILURE: 1369 result = DID_BUS_BUSY << 16; 1370 break; 1371 case SBP2_STATUS_ILLEGAL_REQUEST: 1372 case SBP2_STATUS_VENDOR_DEPENDENT: 1373 default: 1374 result = DID_ERROR << 16; 1375 break; 1376 } 1377 1378 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1379 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1380 orb->cmd->sense_buffer); 1381 } else { 1382 /* 1383 * If the orb completes with status == NULL, something 1384 * went wrong, typically a bus reset happened mid-orb 1385 * or when sending the write (less likely). 1386 */ 1387 result = DID_BUS_BUSY << 16; 1388 sbp2_conditionally_block(orb->lu); 1389 } 1390 1391 dma_unmap_single(device->card->device, orb->base.request_bus, 1392 sizeof(orb->request), DMA_TO_DEVICE); 1393 sbp2_unmap_scatterlist(device->card->device, orb); 1394 1395 orb->cmd->result = result; 1396 orb->done(orb->cmd); 1397 } 1398 1399 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1400 struct fw_device *device, struct sbp2_logical_unit *lu) 1401 { 1402 struct scatterlist *sg = scsi_sglist(orb->cmd); 1403 int i, n; 1404 1405 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd), 1406 orb->cmd->sc_data_direction); 1407 if (n == 0) 1408 goto fail; 1409 1410 /* 1411 * Handle the special case where there is only one element in 1412 * the scatter list by converting it to an immediate block 1413 * request. This is also a workaround for broken devices such 1414 * as the second generation iPod which doesn't support page 1415 * tables. 1416 */ 1417 if (n == 1) { 1418 orb->request.data_descriptor.high = 1419 cpu_to_be32(lu->tgt->address_high); 1420 orb->request.data_descriptor.low = 1421 cpu_to_be32(sg_dma_address(sg)); 1422 orb->request.misc |= 1423 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1424 return 0; 1425 } 1426 1427 for_each_sg(sg, sg, n, i) { 1428 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1429 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1430 } 1431 1432 orb->page_table_bus = 1433 dma_map_single(device->card->device, orb->page_table, 1434 sizeof(orb->page_table), DMA_TO_DEVICE); 1435 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1436 goto fail_page_table; 1437 1438 /* 1439 * The data_descriptor pointer is the one case where we need 1440 * to fill in the node ID part of the address. All other 1441 * pointers assume that the data referenced reside on the 1442 * initiator (i.e. us), but data_descriptor can refer to data 1443 * on other nodes so we need to put our ID in descriptor.high. 1444 */ 1445 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1446 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1447 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1448 COMMAND_ORB_DATA_SIZE(n)); 1449 1450 return 0; 1451 1452 fail_page_table: 1453 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd), 1454 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); 1455 fail: 1456 return -ENOMEM; 1457 } 1458 1459 /* SCSI stack integration */ 1460 1461 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done) 1462 { 1463 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1464 struct fw_device *device = target_device(lu->tgt); 1465 struct sbp2_command_orb *orb; 1466 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1467 1468 /* 1469 * Bidirectional commands are not yet implemented, and unknown 1470 * transfer direction not handled. 1471 */ 1472 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { 1473 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n"); 1474 cmd->result = DID_ERROR << 16; 1475 done(cmd); 1476 return 0; 1477 } 1478 1479 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1480 if (orb == NULL) { 1481 fw_notify("failed to alloc orb\n"); 1482 return SCSI_MLQUEUE_HOST_BUSY; 1483 } 1484 1485 /* Initialize rcode to something not RCODE_COMPLETE. */ 1486 orb->base.rcode = -1; 1487 kref_init(&orb->base.kref); 1488 1489 orb->lu = lu; 1490 orb->done = done; 1491 orb->cmd = cmd; 1492 1493 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1494 orb->request.misc = cpu_to_be32( 1495 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1496 COMMAND_ORB_SPEED(device->max_speed) | 1497 COMMAND_ORB_NOTIFY); 1498 1499 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1500 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1501 1502 generation = device->generation; 1503 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1504 1505 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1506 goto out; 1507 1508 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1509 1510 orb->base.callback = complete_command_orb; 1511 orb->base.request_bus = 1512 dma_map_single(device->card->device, &orb->request, 1513 sizeof(orb->request), DMA_TO_DEVICE); 1514 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1515 sbp2_unmap_scatterlist(device->card->device, orb); 1516 goto out; 1517 } 1518 1519 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1520 lu->command_block_agent_address + SBP2_ORB_POINTER); 1521 retval = 0; 1522 out: 1523 kref_put(&orb->base.kref, free_orb); 1524 return retval; 1525 } 1526 1527 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1528 { 1529 struct sbp2_logical_unit *lu = sdev->hostdata; 1530 1531 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1532 if (!lu) 1533 return -ENOSYS; 1534 1535 sdev->allow_restart = 1; 1536 1537 /* SBP-2 requires quadlet alignment of the data buffers. */ 1538 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1539 1540 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1541 sdev->inquiry_len = 36; 1542 1543 return 0; 1544 } 1545 1546 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1547 { 1548 struct sbp2_logical_unit *lu = sdev->hostdata; 1549 1550 sdev->use_10_for_rw = 1; 1551 1552 if (sbp2_param_exclusive_login) 1553 sdev->manage_start_stop = 1; 1554 1555 if (sdev->type == TYPE_ROM) 1556 sdev->use_10_for_ms = 1; 1557 1558 if (sdev->type == TYPE_DISK && 1559 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1560 sdev->skip_ms_page_8 = 1; 1561 1562 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1563 sdev->fix_capacity = 1; 1564 1565 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1566 sdev->start_stop_pwr_cond = 1; 1567 1568 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1569 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512); 1570 1571 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE); 1572 1573 return 0; 1574 } 1575 1576 /* 1577 * Called by scsi stack when something has really gone wrong. Usually 1578 * called when a command has timed-out for some reason. 1579 */ 1580 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1581 { 1582 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1583 1584 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id); 1585 sbp2_agent_reset(lu); 1586 sbp2_cancel_orbs(lu); 1587 1588 return SUCCESS; 1589 } 1590 1591 /* 1592 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1593 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1594 * 1595 * This is the concatenation of target port identifier and logical unit 1596 * identifier as per SAM-2...SAM-4 annex A. 1597 */ 1598 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1599 struct device_attribute *attr, char *buf) 1600 { 1601 struct scsi_device *sdev = to_scsi_device(dev); 1602 struct sbp2_logical_unit *lu; 1603 1604 if (!sdev) 1605 return 0; 1606 1607 lu = sdev->hostdata; 1608 1609 return sprintf(buf, "%016llx:%06x:%04x\n", 1610 (unsigned long long)lu->tgt->guid, 1611 lu->tgt->directory_id, lu->lun); 1612 } 1613 1614 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1615 1616 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { 1617 &dev_attr_ieee1394_id, 1618 NULL 1619 }; 1620 1621 static struct scsi_host_template scsi_driver_template = { 1622 .module = THIS_MODULE, 1623 .name = "SBP-2 IEEE-1394", 1624 .proc_name = sbp2_driver_name, 1625 .queuecommand = sbp2_scsi_queuecommand, 1626 .slave_alloc = sbp2_scsi_slave_alloc, 1627 .slave_configure = sbp2_scsi_slave_configure, 1628 .eh_abort_handler = sbp2_scsi_abort, 1629 .this_id = -1, 1630 .sg_tablesize = SG_ALL, 1631 .use_clustering = ENABLE_CLUSTERING, 1632 .cmd_per_lun = 1, 1633 .can_queue = 1, 1634 .sdev_attrs = sbp2_scsi_sysfs_attrs, 1635 }; 1636 1637 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1638 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1639 MODULE_LICENSE("GPL"); 1640 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1641 1642 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1643 #ifndef CONFIG_IEEE1394_SBP2_MODULE 1644 MODULE_ALIAS("sbp2"); 1645 #endif 1646 1647 static int __init sbp2_init(void) 1648 { 1649 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME); 1650 if (!sbp2_wq) 1651 return -ENOMEM; 1652 1653 return driver_register(&sbp2_driver.driver); 1654 } 1655 1656 static void __exit sbp2_cleanup(void) 1657 { 1658 driver_unregister(&sbp2_driver.driver); 1659 destroy_workqueue(sbp2_wq); 1660 } 1661 1662 module_init(sbp2_init); 1663 module_exit(sbp2_cleanup); 1664