1 /* 2 * SBP2 driver (SCSI over IEEE1394) 3 * 4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 /* 22 * The basic structure of this driver is based on the old storage driver, 23 * drivers/ieee1394/sbp2.c, originally written by 24 * James Goodwin <jamesg@filanet.com> 25 * with later contributions and ongoing maintenance from 26 * Ben Collins <bcollins@debian.org>, 27 * Stefan Richter <stefanr@s5r6.in-berlin.de> 28 * and many others. 29 */ 30 31 #include <linux/blkdev.h> 32 #include <linux/bug.h> 33 #include <linux/completion.h> 34 #include <linux/delay.h> 35 #include <linux/device.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/firewire.h> 38 #include <linux/firewire-constants.h> 39 #include <linux/init.h> 40 #include <linux/jiffies.h> 41 #include <linux/kernel.h> 42 #include <linux/kref.h> 43 #include <linux/list.h> 44 #include <linux/mod_devicetable.h> 45 #include <linux/module.h> 46 #include <linux/moduleparam.h> 47 #include <linux/scatterlist.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/string.h> 51 #include <linux/stringify.h> 52 #include <linux/workqueue.h> 53 54 #include <asm/byteorder.h> 55 #include <asm/system.h> 56 57 #include <scsi/scsi.h> 58 #include <scsi/scsi_cmnd.h> 59 #include <scsi/scsi_device.h> 60 #include <scsi/scsi_host.h> 61 62 /* 63 * So far only bridges from Oxford Semiconductor are known to support 64 * concurrent logins. Depending on firmware, four or two concurrent logins 65 * are possible on OXFW911 and newer Oxsemi bridges. 66 * 67 * Concurrent logins are useful together with cluster filesystems. 68 */ 69 static int sbp2_param_exclusive_login = 1; 70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 72 "(default = Y, use N for concurrent initiators)"); 73 74 /* 75 * Flags for firmware oddities 76 * 77 * - 128kB max transfer 78 * Limit transfer size. Necessary for some old bridges. 79 * 80 * - 36 byte inquiry 81 * When scsi_mod probes the device, let the inquiry command look like that 82 * from MS Windows. 83 * 84 * - skip mode page 8 85 * Suppress sending of mode_sense for mode page 8 if the device pretends to 86 * support the SCSI Primary Block commands instead of Reduced Block Commands. 87 * 88 * - fix capacity 89 * Tell sd_mod to correct the last sector number reported by read_capacity. 90 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 91 * Don't use this with devices which don't have this bug. 92 * 93 * - delay inquiry 94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 95 * 96 * - power condition 97 * Set the power condition field in the START STOP UNIT commands sent by 98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). 99 * Some disks need this to spin down or to resume properly. 100 * 101 * - override internal blacklist 102 * Instead of adding to the built-in blacklist, use only the workarounds 103 * specified in the module load parameter. 104 * Useful if a blacklist entry interfered with a non-broken device. 105 */ 106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 107 #define SBP2_WORKAROUND_INQUIRY_36 0x2 108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 111 #define SBP2_INQUIRY_DELAY 12 112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 113 #define SBP2_WORKAROUND_OVERRIDE 0x100 114 115 static int sbp2_param_workarounds; 116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 123 ", set power condition in start stop unit = " 124 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 126 ", or a combination)"); 127 128 /* I don't know why the SCSI stack doesn't define something like this... */ 129 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *); 130 131 static const char sbp2_driver_name[] = "sbp2"; 132 133 /* 134 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 135 * and one struct scsi_device per sbp2_logical_unit. 136 */ 137 struct sbp2_logical_unit { 138 struct sbp2_target *tgt; 139 struct list_head link; 140 struct fw_address_handler address_handler; 141 struct list_head orb_list; 142 143 u64 command_block_agent_address; 144 u16 lun; 145 int login_id; 146 147 /* 148 * The generation is updated once we've logged in or reconnected 149 * to the logical unit. Thus, I/O to the device will automatically 150 * fail and get retried if it happens in a window where the device 151 * is not ready, e.g. after a bus reset but before we reconnect. 152 */ 153 int generation; 154 int retries; 155 struct delayed_work work; 156 bool has_sdev; 157 bool blocked; 158 }; 159 160 /* 161 * We create one struct sbp2_target per IEEE 1212 Unit Directory 162 * and one struct Scsi_Host per sbp2_target. 163 */ 164 struct sbp2_target { 165 struct kref kref; 166 struct fw_unit *unit; 167 const char *bus_id; 168 struct list_head lu_list; 169 170 u64 management_agent_address; 171 u64 guid; 172 int directory_id; 173 int node_id; 174 int address_high; 175 unsigned int workarounds; 176 unsigned int mgt_orb_timeout; 177 unsigned int max_payload; 178 179 int dont_block; /* counter for each logical unit */ 180 int blocked; /* ditto */ 181 }; 182 183 static struct fw_device *target_device(struct sbp2_target *tgt) 184 { 185 return fw_parent_device(tgt->unit); 186 } 187 188 /* Impossible login_id, to detect logout attempt before successful login */ 189 #define INVALID_LOGIN_ID 0x10000 190 191 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 192 #define SBP2_ORB_NULL 0x80000000 193 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 194 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 195 196 /* 197 * There is no transport protocol limit to the CDB length, but we implement 198 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 199 */ 200 #define SBP2_MAX_CDB_SIZE 16 201 202 /* 203 * The default maximum s/g segment size of a FireWire controller is 204 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to 205 * be quadlet-aligned, we set the length limit to 0xffff & ~3. 206 */ 207 #define SBP2_MAX_SEG_SIZE 0xfffc 208 209 /* Unit directory keys */ 210 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 211 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 212 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 213 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 214 215 /* Management orb opcodes */ 216 #define SBP2_LOGIN_REQUEST 0x0 217 #define SBP2_QUERY_LOGINS_REQUEST 0x1 218 #define SBP2_RECONNECT_REQUEST 0x3 219 #define SBP2_SET_PASSWORD_REQUEST 0x4 220 #define SBP2_LOGOUT_REQUEST 0x7 221 #define SBP2_ABORT_TASK_REQUEST 0xb 222 #define SBP2_ABORT_TASK_SET 0xc 223 #define SBP2_LOGICAL_UNIT_RESET 0xe 224 #define SBP2_TARGET_RESET_REQUEST 0xf 225 226 /* Offsets for command block agent registers */ 227 #define SBP2_AGENT_STATE 0x00 228 #define SBP2_AGENT_RESET 0x04 229 #define SBP2_ORB_POINTER 0x08 230 #define SBP2_DOORBELL 0x10 231 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 232 233 /* Status write response codes */ 234 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 235 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 236 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 237 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 238 239 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 240 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 241 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 242 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 243 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 244 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 245 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 246 #define STATUS_GET_DATA(v) ((v).data) 247 248 struct sbp2_status { 249 u32 status; 250 u32 orb_low; 251 u8 data[24]; 252 }; 253 254 struct sbp2_pointer { 255 __be32 high; 256 __be32 low; 257 }; 258 259 struct sbp2_orb { 260 struct fw_transaction t; 261 struct kref kref; 262 dma_addr_t request_bus; 263 int rcode; 264 struct sbp2_pointer pointer; 265 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 266 struct list_head link; 267 }; 268 269 #define MANAGEMENT_ORB_LUN(v) ((v)) 270 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 271 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 272 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 273 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 274 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 275 276 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 277 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 278 279 struct sbp2_management_orb { 280 struct sbp2_orb base; 281 struct { 282 struct sbp2_pointer password; 283 struct sbp2_pointer response; 284 __be32 misc; 285 __be32 length; 286 struct sbp2_pointer status_fifo; 287 } request; 288 __be32 response[4]; 289 dma_addr_t response_bus; 290 struct completion done; 291 struct sbp2_status status; 292 }; 293 294 struct sbp2_login_response { 295 __be32 misc; 296 struct sbp2_pointer command_block_agent; 297 __be32 reconnect_hold; 298 }; 299 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 300 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 301 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 302 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 303 #define COMMAND_ORB_SPEED(v) ((v) << 24) 304 #define COMMAND_ORB_DIRECTION ((1) << 27) 305 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 306 #define COMMAND_ORB_NOTIFY ((1) << 31) 307 308 struct sbp2_command_orb { 309 struct sbp2_orb base; 310 struct { 311 struct sbp2_pointer next; 312 struct sbp2_pointer data_descriptor; 313 __be32 misc; 314 u8 command_block[SBP2_MAX_CDB_SIZE]; 315 } request; 316 struct scsi_cmnd *cmd; 317 scsi_done_fn_t done; 318 struct sbp2_logical_unit *lu; 319 320 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 321 dma_addr_t page_table_bus; 322 }; 323 324 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 325 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 326 327 /* 328 * List of devices with known bugs. 329 * 330 * The firmware_revision field, masked with 0xffff00, is the best 331 * indicator for the type of bridge chip of a device. It yields a few 332 * false positives but this did not break correctly behaving devices 333 * so far. 334 */ 335 static const struct { 336 u32 firmware_revision; 337 u32 model; 338 unsigned int workarounds; 339 } sbp2_workarounds_table[] = { 340 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 341 .firmware_revision = 0x002800, 342 .model = 0x001010, 343 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 344 SBP2_WORKAROUND_MODE_SENSE_8 | 345 SBP2_WORKAROUND_POWER_CONDITION, 346 }, 347 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 348 .firmware_revision = 0x002800, 349 .model = 0x000000, 350 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 351 }, 352 /* Initio bridges, actually only needed for some older ones */ { 353 .firmware_revision = 0x000200, 354 .model = SBP2_ROM_VALUE_WILDCARD, 355 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 356 }, 357 /* PL-3507 bridge with Prolific firmware */ { 358 .firmware_revision = 0x012800, 359 .model = SBP2_ROM_VALUE_WILDCARD, 360 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 361 }, 362 /* Symbios bridge */ { 363 .firmware_revision = 0xa0b800, 364 .model = SBP2_ROM_VALUE_WILDCARD, 365 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 366 }, 367 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 368 .firmware_revision = 0x002600, 369 .model = SBP2_ROM_VALUE_WILDCARD, 370 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 371 }, 372 /* 373 * iPod 2nd generation: needs 128k max transfer size workaround 374 * iPod 3rd generation: needs fix capacity workaround 375 */ 376 { 377 .firmware_revision = 0x0a2700, 378 .model = 0x000000, 379 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 380 SBP2_WORKAROUND_FIX_CAPACITY, 381 }, 382 /* iPod 4th generation */ { 383 .firmware_revision = 0x0a2700, 384 .model = 0x000021, 385 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 386 }, 387 /* iPod mini */ { 388 .firmware_revision = 0x0a2700, 389 .model = 0x000022, 390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 391 }, 392 /* iPod mini */ { 393 .firmware_revision = 0x0a2700, 394 .model = 0x000023, 395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 396 }, 397 /* iPod Photo */ { 398 .firmware_revision = 0x0a2700, 399 .model = 0x00007e, 400 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 401 } 402 }; 403 404 static void free_orb(struct kref *kref) 405 { 406 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 407 408 kfree(orb); 409 } 410 411 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 412 int tcode, int destination, int source, 413 int generation, unsigned long long offset, 414 void *payload, size_t length, void *callback_data) 415 { 416 struct sbp2_logical_unit *lu = callback_data; 417 struct sbp2_orb *orb; 418 struct sbp2_status status; 419 unsigned long flags; 420 421 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 422 length < 8 || length > sizeof(status)) { 423 fw_send_response(card, request, RCODE_TYPE_ERROR); 424 return; 425 } 426 427 status.status = be32_to_cpup(payload); 428 status.orb_low = be32_to_cpup(payload + 4); 429 memset(status.data, 0, sizeof(status.data)); 430 if (length > 8) 431 memcpy(status.data, payload + 8, length - 8); 432 433 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 434 fw_notify("non-orb related status write, not handled\n"); 435 fw_send_response(card, request, RCODE_COMPLETE); 436 return; 437 } 438 439 /* Lookup the orb corresponding to this status write. */ 440 spin_lock_irqsave(&card->lock, flags); 441 list_for_each_entry(orb, &lu->orb_list, link) { 442 if (STATUS_GET_ORB_HIGH(status) == 0 && 443 STATUS_GET_ORB_LOW(status) == orb->request_bus) { 444 orb->rcode = RCODE_COMPLETE; 445 list_del(&orb->link); 446 break; 447 } 448 } 449 spin_unlock_irqrestore(&card->lock, flags); 450 451 if (&orb->link != &lu->orb_list) { 452 orb->callback(orb, &status); 453 kref_put(&orb->kref, free_orb); 454 } else { 455 fw_error("status write for unknown orb\n"); 456 } 457 458 fw_send_response(card, request, RCODE_COMPLETE); 459 } 460 461 static void complete_transaction(struct fw_card *card, int rcode, 462 void *payload, size_t length, void *data) 463 { 464 struct sbp2_orb *orb = data; 465 unsigned long flags; 466 467 /* 468 * This is a little tricky. We can get the status write for 469 * the orb before we get this callback. The status write 470 * handler above will assume the orb pointer transaction was 471 * successful and set the rcode to RCODE_COMPLETE for the orb. 472 * So this callback only sets the rcode if it hasn't already 473 * been set and only does the cleanup if the transaction 474 * failed and we didn't already get a status write. 475 */ 476 spin_lock_irqsave(&card->lock, flags); 477 478 if (orb->rcode == -1) 479 orb->rcode = rcode; 480 if (orb->rcode != RCODE_COMPLETE) { 481 list_del(&orb->link); 482 spin_unlock_irqrestore(&card->lock, flags); 483 orb->callback(orb, NULL); 484 } else { 485 spin_unlock_irqrestore(&card->lock, flags); 486 } 487 488 kref_put(&orb->kref, free_orb); 489 } 490 491 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 492 int node_id, int generation, u64 offset) 493 { 494 struct fw_device *device = target_device(lu->tgt); 495 unsigned long flags; 496 497 orb->pointer.high = 0; 498 orb->pointer.low = cpu_to_be32(orb->request_bus); 499 500 spin_lock_irqsave(&device->card->lock, flags); 501 list_add_tail(&orb->link, &lu->orb_list); 502 spin_unlock_irqrestore(&device->card->lock, flags); 503 504 /* Take a ref for the orb list and for the transaction callback. */ 505 kref_get(&orb->kref); 506 kref_get(&orb->kref); 507 508 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 509 node_id, generation, device->max_speed, offset, 510 &orb->pointer, 8, complete_transaction, orb); 511 } 512 513 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 514 { 515 struct fw_device *device = target_device(lu->tgt); 516 struct sbp2_orb *orb, *next; 517 struct list_head list; 518 unsigned long flags; 519 int retval = -ENOENT; 520 521 INIT_LIST_HEAD(&list); 522 spin_lock_irqsave(&device->card->lock, flags); 523 list_splice_init(&lu->orb_list, &list); 524 spin_unlock_irqrestore(&device->card->lock, flags); 525 526 list_for_each_entry_safe(orb, next, &list, link) { 527 retval = 0; 528 if (fw_cancel_transaction(device->card, &orb->t) == 0) 529 continue; 530 531 orb->rcode = RCODE_CANCELLED; 532 orb->callback(orb, NULL); 533 } 534 535 return retval; 536 } 537 538 static void complete_management_orb(struct sbp2_orb *base_orb, 539 struct sbp2_status *status) 540 { 541 struct sbp2_management_orb *orb = 542 container_of(base_orb, struct sbp2_management_orb, base); 543 544 if (status) 545 memcpy(&orb->status, status, sizeof(*status)); 546 complete(&orb->done); 547 } 548 549 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 550 int generation, int function, 551 int lun_or_login_id, void *response) 552 { 553 struct fw_device *device = target_device(lu->tgt); 554 struct sbp2_management_orb *orb; 555 unsigned int timeout; 556 int retval = -ENOMEM; 557 558 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 559 return 0; 560 561 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 562 if (orb == NULL) 563 return -ENOMEM; 564 565 kref_init(&orb->base.kref); 566 orb->response_bus = 567 dma_map_single(device->card->device, &orb->response, 568 sizeof(orb->response), DMA_FROM_DEVICE); 569 if (dma_mapping_error(device->card->device, orb->response_bus)) 570 goto fail_mapping_response; 571 572 orb->request.response.high = 0; 573 orb->request.response.low = cpu_to_be32(orb->response_bus); 574 575 orb->request.misc = cpu_to_be32( 576 MANAGEMENT_ORB_NOTIFY | 577 MANAGEMENT_ORB_FUNCTION(function) | 578 MANAGEMENT_ORB_LUN(lun_or_login_id)); 579 orb->request.length = cpu_to_be32( 580 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 581 582 orb->request.status_fifo.high = 583 cpu_to_be32(lu->address_handler.offset >> 32); 584 orb->request.status_fifo.low = 585 cpu_to_be32(lu->address_handler.offset); 586 587 if (function == SBP2_LOGIN_REQUEST) { 588 /* Ask for 2^2 == 4 seconds reconnect grace period */ 589 orb->request.misc |= cpu_to_be32( 590 MANAGEMENT_ORB_RECONNECT(2) | 591 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 592 timeout = lu->tgt->mgt_orb_timeout; 593 } else { 594 timeout = SBP2_ORB_TIMEOUT; 595 } 596 597 init_completion(&orb->done); 598 orb->base.callback = complete_management_orb; 599 600 orb->base.request_bus = 601 dma_map_single(device->card->device, &orb->request, 602 sizeof(orb->request), DMA_TO_DEVICE); 603 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 604 goto fail_mapping_request; 605 606 sbp2_send_orb(&orb->base, lu, node_id, generation, 607 lu->tgt->management_agent_address); 608 609 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 610 611 retval = -EIO; 612 if (sbp2_cancel_orbs(lu) == 0) { 613 fw_error("%s: orb reply timed out, rcode=0x%02x\n", 614 lu->tgt->bus_id, orb->base.rcode); 615 goto out; 616 } 617 618 if (orb->base.rcode != RCODE_COMPLETE) { 619 fw_error("%s: management write failed, rcode 0x%02x\n", 620 lu->tgt->bus_id, orb->base.rcode); 621 goto out; 622 } 623 624 if (STATUS_GET_RESPONSE(orb->status) != 0 || 625 STATUS_GET_SBP_STATUS(orb->status) != 0) { 626 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id, 627 STATUS_GET_RESPONSE(orb->status), 628 STATUS_GET_SBP_STATUS(orb->status)); 629 goto out; 630 } 631 632 retval = 0; 633 out: 634 dma_unmap_single(device->card->device, orb->base.request_bus, 635 sizeof(orb->request), DMA_TO_DEVICE); 636 fail_mapping_request: 637 dma_unmap_single(device->card->device, orb->response_bus, 638 sizeof(orb->response), DMA_FROM_DEVICE); 639 fail_mapping_response: 640 if (response) 641 memcpy(response, orb->response, sizeof(orb->response)); 642 kref_put(&orb->base.kref, free_orb); 643 644 return retval; 645 } 646 647 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 648 { 649 struct fw_device *device = target_device(lu->tgt); 650 __be32 d = 0; 651 652 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 653 lu->tgt->node_id, lu->generation, device->max_speed, 654 lu->command_block_agent_address + SBP2_AGENT_RESET, 655 &d, 4); 656 } 657 658 static void complete_agent_reset_write_no_wait(struct fw_card *card, 659 int rcode, void *payload, size_t length, void *data) 660 { 661 kfree(data); 662 } 663 664 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 665 { 666 struct fw_device *device = target_device(lu->tgt); 667 struct fw_transaction *t; 668 static __be32 d; 669 670 t = kmalloc(sizeof(*t), GFP_ATOMIC); 671 if (t == NULL) 672 return; 673 674 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 675 lu->tgt->node_id, lu->generation, device->max_speed, 676 lu->command_block_agent_address + SBP2_AGENT_RESET, 677 &d, 4, complete_agent_reset_write_no_wait, t); 678 } 679 680 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu) 681 { 682 /* 683 * We may access dont_block without taking card->lock here: 684 * All callers of sbp2_allow_block() and all callers of sbp2_unblock() 685 * are currently serialized against each other. 686 * And a wrong result in sbp2_conditionally_block()'s access of 687 * dont_block is rather harmless, it simply misses its first chance. 688 */ 689 --lu->tgt->dont_block; 690 } 691 692 /* 693 * Blocks lu->tgt if all of the following conditions are met: 694 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 695 * logical units have been finished (indicated by dont_block == 0). 696 * - lu->generation is stale. 697 * 698 * Note, scsi_block_requests() must be called while holding card->lock, 699 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 700 * unblock the target. 701 */ 702 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 703 { 704 struct sbp2_target *tgt = lu->tgt; 705 struct fw_card *card = target_device(tgt)->card; 706 struct Scsi_Host *shost = 707 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 708 unsigned long flags; 709 710 spin_lock_irqsave(&card->lock, flags); 711 if (!tgt->dont_block && !lu->blocked && 712 lu->generation != card->generation) { 713 lu->blocked = true; 714 if (++tgt->blocked == 1) 715 scsi_block_requests(shost); 716 } 717 spin_unlock_irqrestore(&card->lock, flags); 718 } 719 720 /* 721 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 722 * Note, it is harmless to run scsi_unblock_requests() outside the 723 * card->lock protected section. On the other hand, running it inside 724 * the section might clash with shost->host_lock. 725 */ 726 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 727 { 728 struct sbp2_target *tgt = lu->tgt; 729 struct fw_card *card = target_device(tgt)->card; 730 struct Scsi_Host *shost = 731 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 732 unsigned long flags; 733 bool unblock = false; 734 735 spin_lock_irqsave(&card->lock, flags); 736 if (lu->blocked && lu->generation == card->generation) { 737 lu->blocked = false; 738 unblock = --tgt->blocked == 0; 739 } 740 spin_unlock_irqrestore(&card->lock, flags); 741 742 if (unblock) 743 scsi_unblock_requests(shost); 744 } 745 746 /* 747 * Prevents future blocking of tgt and unblocks it. 748 * Note, it is harmless to run scsi_unblock_requests() outside the 749 * card->lock protected section. On the other hand, running it inside 750 * the section might clash with shost->host_lock. 751 */ 752 static void sbp2_unblock(struct sbp2_target *tgt) 753 { 754 struct fw_card *card = target_device(tgt)->card; 755 struct Scsi_Host *shost = 756 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 757 unsigned long flags; 758 759 spin_lock_irqsave(&card->lock, flags); 760 ++tgt->dont_block; 761 spin_unlock_irqrestore(&card->lock, flags); 762 763 scsi_unblock_requests(shost); 764 } 765 766 static int sbp2_lun2int(u16 lun) 767 { 768 struct scsi_lun eight_bytes_lun; 769 770 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 771 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 772 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 773 774 return scsilun_to_int(&eight_bytes_lun); 775 } 776 777 static void sbp2_release_target(struct kref *kref) 778 { 779 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref); 780 struct sbp2_logical_unit *lu, *next; 781 struct Scsi_Host *shost = 782 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 783 struct scsi_device *sdev; 784 struct fw_device *device = target_device(tgt); 785 786 /* prevent deadlocks */ 787 sbp2_unblock(tgt); 788 789 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 790 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 791 if (sdev) { 792 scsi_remove_device(sdev); 793 scsi_device_put(sdev); 794 } 795 if (lu->login_id != INVALID_LOGIN_ID) { 796 int generation, node_id; 797 /* 798 * tgt->node_id may be obsolete here if we failed 799 * during initial login or after a bus reset where 800 * the topology changed. 801 */ 802 generation = device->generation; 803 smp_rmb(); /* node_id vs. generation */ 804 node_id = device->node_id; 805 sbp2_send_management_orb(lu, node_id, generation, 806 SBP2_LOGOUT_REQUEST, 807 lu->login_id, NULL); 808 } 809 fw_core_remove_address_handler(&lu->address_handler); 810 list_del(&lu->link); 811 kfree(lu); 812 } 813 scsi_remove_host(shost); 814 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no); 815 816 fw_unit_put(tgt->unit); 817 scsi_host_put(shost); 818 fw_device_put(device); 819 } 820 821 static void sbp2_target_get(struct sbp2_target *tgt) 822 { 823 kref_get(&tgt->kref); 824 } 825 826 static void sbp2_target_put(struct sbp2_target *tgt) 827 { 828 kref_put(&tgt->kref, sbp2_release_target); 829 } 830 831 static struct workqueue_struct *sbp2_wq; 832 833 /* 834 * Always get the target's kref when scheduling work on one its units. 835 * Each workqueue job is responsible to call sbp2_target_put() upon return. 836 */ 837 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 838 { 839 sbp2_target_get(lu->tgt); 840 if (!queue_delayed_work(sbp2_wq, &lu->work, delay)) 841 sbp2_target_put(lu->tgt); 842 } 843 844 /* 845 * Write retransmit retry values into the BUSY_TIMEOUT register. 846 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 847 * default retry_limit value is 0 (i.e. never retry transmission). We write a 848 * saner value after logging into the device. 849 * - The dual-phase retry protocol is optional to implement, and if not 850 * supported, writes to the dual-phase portion of the register will be 851 * ignored. We try to write the original 1394-1995 default here. 852 * - In the case of devices that are also SBP-3-compliant, all writes are 853 * ignored, as the register is read-only, but contains single-phase retry of 854 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 855 * write attempt is safe and yields more consistent behavior for all devices. 856 * 857 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 858 * and section 6.4 of the SBP-3 spec for further details. 859 */ 860 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 861 { 862 struct fw_device *device = target_device(lu->tgt); 863 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 864 865 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 866 lu->tgt->node_id, lu->generation, device->max_speed, 867 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4); 868 } 869 870 static void sbp2_reconnect(struct work_struct *work); 871 872 static void sbp2_login(struct work_struct *work) 873 { 874 struct sbp2_logical_unit *lu = 875 container_of(work, struct sbp2_logical_unit, work.work); 876 struct sbp2_target *tgt = lu->tgt; 877 struct fw_device *device = target_device(tgt); 878 struct Scsi_Host *shost; 879 struct scsi_device *sdev; 880 struct sbp2_login_response response; 881 int generation, node_id, local_node_id; 882 883 if (fw_device_is_shutdown(device)) 884 goto out; 885 886 generation = device->generation; 887 smp_rmb(); /* node IDs must not be older than generation */ 888 node_id = device->node_id; 889 local_node_id = device->card->node_id; 890 891 /* If this is a re-login attempt, log out, or we might be rejected. */ 892 if (lu->has_sdev) 893 sbp2_send_management_orb(lu, device->node_id, generation, 894 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 895 896 if (sbp2_send_management_orb(lu, node_id, generation, 897 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 898 if (lu->retries++ < 5) { 899 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 900 } else { 901 fw_error("%s: failed to login to LUN %04x\n", 902 tgt->bus_id, lu->lun); 903 /* Let any waiting I/O fail from now on. */ 904 sbp2_unblock(lu->tgt); 905 } 906 goto out; 907 } 908 909 tgt->node_id = node_id; 910 tgt->address_high = local_node_id << 16; 911 smp_wmb(); /* node IDs must not be older than generation */ 912 lu->generation = generation; 913 914 lu->command_block_agent_address = 915 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 916 << 32) | be32_to_cpu(response.command_block_agent.low); 917 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 918 919 fw_notify("%s: logged in to LUN %04x (%d retries)\n", 920 tgt->bus_id, lu->lun, lu->retries); 921 922 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 923 sbp2_set_busy_timeout(lu); 924 925 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect); 926 sbp2_agent_reset(lu); 927 928 /* This was a re-login. */ 929 if (lu->has_sdev) { 930 sbp2_cancel_orbs(lu); 931 sbp2_conditionally_unblock(lu); 932 goto out; 933 } 934 935 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 936 ssleep(SBP2_INQUIRY_DELAY); 937 938 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 939 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 940 /* 941 * FIXME: We are unable to perform reconnects while in sbp2_login(). 942 * Therefore __scsi_add_device() will get into trouble if a bus reset 943 * happens in parallel. It will either fail or leave us with an 944 * unusable sdev. As a workaround we check for this and retry the 945 * whole login and SCSI probing. 946 */ 947 948 /* Reported error during __scsi_add_device() */ 949 if (IS_ERR(sdev)) 950 goto out_logout_login; 951 952 /* Unreported error during __scsi_add_device() */ 953 smp_rmb(); /* get current card generation */ 954 if (generation != device->card->generation) { 955 scsi_remove_device(sdev); 956 scsi_device_put(sdev); 957 goto out_logout_login; 958 } 959 960 /* No error during __scsi_add_device() */ 961 lu->has_sdev = true; 962 scsi_device_put(sdev); 963 sbp2_allow_block(lu); 964 goto out; 965 966 out_logout_login: 967 smp_rmb(); /* generation may have changed */ 968 generation = device->generation; 969 smp_rmb(); /* node_id must not be older than generation */ 970 971 sbp2_send_management_orb(lu, device->node_id, generation, 972 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 973 /* 974 * If a bus reset happened, sbp2_update will have requeued 975 * lu->work already. Reset the work from reconnect to login. 976 */ 977 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 978 out: 979 sbp2_target_put(tgt); 980 } 981 982 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 983 { 984 struct sbp2_logical_unit *lu; 985 986 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 987 if (!lu) 988 return -ENOMEM; 989 990 lu->address_handler.length = 0x100; 991 lu->address_handler.address_callback = sbp2_status_write; 992 lu->address_handler.callback_data = lu; 993 994 if (fw_core_add_address_handler(&lu->address_handler, 995 &fw_high_memory_region) < 0) { 996 kfree(lu); 997 return -ENOMEM; 998 } 999 1000 lu->tgt = tgt; 1001 lu->lun = lun_entry & 0xffff; 1002 lu->login_id = INVALID_LOGIN_ID; 1003 lu->retries = 0; 1004 lu->has_sdev = false; 1005 lu->blocked = false; 1006 ++tgt->dont_block; 1007 INIT_LIST_HEAD(&lu->orb_list); 1008 INIT_DELAYED_WORK(&lu->work, sbp2_login); 1009 1010 list_add_tail(&lu->link, &tgt->lu_list); 1011 return 0; 1012 } 1013 1014 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, 1015 const u32 *directory) 1016 { 1017 struct fw_csr_iterator ci; 1018 int key, value; 1019 1020 fw_csr_iterator_init(&ci, directory); 1021 while (fw_csr_iterator_next(&ci, &key, &value)) 1022 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1023 sbp2_add_logical_unit(tgt, value) < 0) 1024 return -ENOMEM; 1025 return 0; 1026 } 1027 1028 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory, 1029 u32 *model, u32 *firmware_revision) 1030 { 1031 struct fw_csr_iterator ci; 1032 int key, value; 1033 1034 fw_csr_iterator_init(&ci, directory); 1035 while (fw_csr_iterator_next(&ci, &key, &value)) { 1036 switch (key) { 1037 1038 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1039 tgt->management_agent_address = 1040 CSR_REGISTER_BASE + 4 * value; 1041 break; 1042 1043 case CSR_DIRECTORY_ID: 1044 tgt->directory_id = value; 1045 break; 1046 1047 case CSR_MODEL: 1048 *model = value; 1049 break; 1050 1051 case SBP2_CSR_FIRMWARE_REVISION: 1052 *firmware_revision = value; 1053 break; 1054 1055 case SBP2_CSR_UNIT_CHARACTERISTICS: 1056 /* the timeout value is stored in 500ms units */ 1057 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; 1058 break; 1059 1060 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1061 if (sbp2_add_logical_unit(tgt, value) < 0) 1062 return -ENOMEM; 1063 break; 1064 1065 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1066 /* Adjust for the increment in the iterator */ 1067 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1068 return -ENOMEM; 1069 break; 1070 } 1071 } 1072 return 0; 1073 } 1074 1075 /* 1076 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 1077 * provided in the config rom. Most devices do provide a value, which 1078 * we'll use for login management orbs, but with some sane limits. 1079 */ 1080 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) 1081 { 1082 unsigned int timeout = tgt->mgt_orb_timeout; 1083 1084 if (timeout > 40000) 1085 fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n", 1086 tgt->bus_id, timeout / 1000); 1087 1088 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); 1089 } 1090 1091 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1092 u32 firmware_revision) 1093 { 1094 int i; 1095 unsigned int w = sbp2_param_workarounds; 1096 1097 if (w) 1098 fw_notify("Please notify linux1394-devel@lists.sourceforge.net " 1099 "if you need the workarounds parameter for %s\n", 1100 tgt->bus_id); 1101 1102 if (w & SBP2_WORKAROUND_OVERRIDE) 1103 goto out; 1104 1105 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1106 1107 if (sbp2_workarounds_table[i].firmware_revision != 1108 (firmware_revision & 0xffffff00)) 1109 continue; 1110 1111 if (sbp2_workarounds_table[i].model != model && 1112 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1113 continue; 1114 1115 w |= sbp2_workarounds_table[i].workarounds; 1116 break; 1117 } 1118 out: 1119 if (w) 1120 fw_notify("Workarounds for %s: 0x%x " 1121 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1122 tgt->bus_id, w, firmware_revision, model); 1123 tgt->workarounds = w; 1124 } 1125 1126 static struct scsi_host_template scsi_driver_template; 1127 1128 static int sbp2_probe(struct device *dev) 1129 { 1130 struct fw_unit *unit = fw_unit(dev); 1131 struct fw_device *device = fw_parent_device(unit); 1132 struct sbp2_target *tgt; 1133 struct sbp2_logical_unit *lu; 1134 struct Scsi_Host *shost; 1135 u32 model, firmware_revision; 1136 1137 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE) 1138 BUG_ON(dma_set_max_seg_size(device->card->device, 1139 SBP2_MAX_SEG_SIZE)); 1140 1141 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1142 if (shost == NULL) 1143 return -ENOMEM; 1144 1145 tgt = (struct sbp2_target *)shost->hostdata; 1146 dev_set_drvdata(&unit->device, tgt); 1147 tgt->unit = unit; 1148 kref_init(&tgt->kref); 1149 INIT_LIST_HEAD(&tgt->lu_list); 1150 tgt->bus_id = dev_name(&unit->device); 1151 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1152 1153 if (fw_device_enable_phys_dma(device) < 0) 1154 goto fail_shost_put; 1155 1156 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1157 1158 if (scsi_add_host(shost, &unit->device) < 0) 1159 goto fail_shost_put; 1160 1161 fw_device_get(device); 1162 fw_unit_get(unit); 1163 1164 /* implicit directory ID */ 1165 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1166 + CSR_CONFIG_ROM) & 0xffffff; 1167 1168 firmware_revision = SBP2_ROM_VALUE_MISSING; 1169 model = SBP2_ROM_VALUE_MISSING; 1170 1171 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1172 &firmware_revision) < 0) 1173 goto fail_tgt_put; 1174 1175 sbp2_clamp_management_orb_timeout(tgt); 1176 sbp2_init_workarounds(tgt, model, firmware_revision); 1177 1178 /* 1179 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1180 * and so on up to 4096 bytes. The SBP-2 max_payload field 1181 * specifies the max payload size as 2 ^ (max_payload + 2), so 1182 * if we set this to max_speed + 7, we get the right value. 1183 */ 1184 tgt->max_payload = min(device->max_speed + 7, 10U); 1185 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1); 1186 1187 /* Do the login in a workqueue so we can easily reschedule retries. */ 1188 list_for_each_entry(lu, &tgt->lu_list, link) 1189 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1190 return 0; 1191 1192 fail_tgt_put: 1193 sbp2_target_put(tgt); 1194 return -ENOMEM; 1195 1196 fail_shost_put: 1197 scsi_host_put(shost); 1198 return -ENOMEM; 1199 } 1200 1201 static int sbp2_remove(struct device *dev) 1202 { 1203 struct fw_unit *unit = fw_unit(dev); 1204 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1205 1206 sbp2_target_put(tgt); 1207 return 0; 1208 } 1209 1210 static void sbp2_reconnect(struct work_struct *work) 1211 { 1212 struct sbp2_logical_unit *lu = 1213 container_of(work, struct sbp2_logical_unit, work.work); 1214 struct sbp2_target *tgt = lu->tgt; 1215 struct fw_device *device = target_device(tgt); 1216 int generation, node_id, local_node_id; 1217 1218 if (fw_device_is_shutdown(device)) 1219 goto out; 1220 1221 generation = device->generation; 1222 smp_rmb(); /* node IDs must not be older than generation */ 1223 node_id = device->node_id; 1224 local_node_id = device->card->node_id; 1225 1226 if (sbp2_send_management_orb(lu, node_id, generation, 1227 SBP2_RECONNECT_REQUEST, 1228 lu->login_id, NULL) < 0) { 1229 /* 1230 * If reconnect was impossible even though we are in the 1231 * current generation, fall back and try to log in again. 1232 * 1233 * We could check for "Function rejected" status, but 1234 * looking at the bus generation as simpler and more general. 1235 */ 1236 smp_rmb(); /* get current card generation */ 1237 if (generation == device->card->generation || 1238 lu->retries++ >= 5) { 1239 fw_error("%s: failed to reconnect\n", tgt->bus_id); 1240 lu->retries = 0; 1241 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 1242 } 1243 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1244 goto out; 1245 } 1246 1247 tgt->node_id = node_id; 1248 tgt->address_high = local_node_id << 16; 1249 smp_wmb(); /* node IDs must not be older than generation */ 1250 lu->generation = generation; 1251 1252 fw_notify("%s: reconnected to LUN %04x (%d retries)\n", 1253 tgt->bus_id, lu->lun, lu->retries); 1254 1255 sbp2_agent_reset(lu); 1256 sbp2_cancel_orbs(lu); 1257 sbp2_conditionally_unblock(lu); 1258 out: 1259 sbp2_target_put(tgt); 1260 } 1261 1262 static void sbp2_update(struct fw_unit *unit) 1263 { 1264 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1265 struct sbp2_logical_unit *lu; 1266 1267 fw_device_enable_phys_dma(fw_parent_device(unit)); 1268 1269 /* 1270 * Fw-core serializes sbp2_update() against sbp2_remove(). 1271 * Iteration over tgt->lu_list is therefore safe here. 1272 */ 1273 list_for_each_entry(lu, &tgt->lu_list, link) { 1274 sbp2_conditionally_block(lu); 1275 lu->retries = 0; 1276 sbp2_queue_work(lu, 0); 1277 } 1278 } 1279 1280 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1281 #define SBP2_SW_VERSION_ENTRY 0x00010483 1282 1283 static const struct ieee1394_device_id sbp2_id_table[] = { 1284 { 1285 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1286 IEEE1394_MATCH_VERSION, 1287 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1288 .version = SBP2_SW_VERSION_ENTRY, 1289 }, 1290 { } 1291 }; 1292 1293 static struct fw_driver sbp2_driver = { 1294 .driver = { 1295 .owner = THIS_MODULE, 1296 .name = sbp2_driver_name, 1297 .bus = &fw_bus_type, 1298 .probe = sbp2_probe, 1299 .remove = sbp2_remove, 1300 }, 1301 .update = sbp2_update, 1302 .id_table = sbp2_id_table, 1303 }; 1304 1305 static void sbp2_unmap_scatterlist(struct device *card_device, 1306 struct sbp2_command_orb *orb) 1307 { 1308 if (scsi_sg_count(orb->cmd)) 1309 dma_unmap_sg(card_device, scsi_sglist(orb->cmd), 1310 scsi_sg_count(orb->cmd), 1311 orb->cmd->sc_data_direction); 1312 1313 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1314 dma_unmap_single(card_device, orb->page_table_bus, 1315 sizeof(orb->page_table), DMA_TO_DEVICE); 1316 } 1317 1318 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1319 { 1320 int sam_status; 1321 1322 sense_data[0] = 0x70; 1323 sense_data[1] = 0x0; 1324 sense_data[2] = sbp2_status[1]; 1325 sense_data[3] = sbp2_status[4]; 1326 sense_data[4] = sbp2_status[5]; 1327 sense_data[5] = sbp2_status[6]; 1328 sense_data[6] = sbp2_status[7]; 1329 sense_data[7] = 10; 1330 sense_data[8] = sbp2_status[8]; 1331 sense_data[9] = sbp2_status[9]; 1332 sense_data[10] = sbp2_status[10]; 1333 sense_data[11] = sbp2_status[11]; 1334 sense_data[12] = sbp2_status[2]; 1335 sense_data[13] = sbp2_status[3]; 1336 sense_data[14] = sbp2_status[12]; 1337 sense_data[15] = sbp2_status[13]; 1338 1339 sam_status = sbp2_status[0] & 0x3f; 1340 1341 switch (sam_status) { 1342 case SAM_STAT_GOOD: 1343 case SAM_STAT_CHECK_CONDITION: 1344 case SAM_STAT_CONDITION_MET: 1345 case SAM_STAT_BUSY: 1346 case SAM_STAT_RESERVATION_CONFLICT: 1347 case SAM_STAT_COMMAND_TERMINATED: 1348 return DID_OK << 16 | sam_status; 1349 1350 default: 1351 return DID_ERROR << 16; 1352 } 1353 } 1354 1355 static void complete_command_orb(struct sbp2_orb *base_orb, 1356 struct sbp2_status *status) 1357 { 1358 struct sbp2_command_orb *orb = 1359 container_of(base_orb, struct sbp2_command_orb, base); 1360 struct fw_device *device = target_device(orb->lu->tgt); 1361 int result; 1362 1363 if (status != NULL) { 1364 if (STATUS_GET_DEAD(*status)) 1365 sbp2_agent_reset_no_wait(orb->lu); 1366 1367 switch (STATUS_GET_RESPONSE(*status)) { 1368 case SBP2_STATUS_REQUEST_COMPLETE: 1369 result = DID_OK << 16; 1370 break; 1371 case SBP2_STATUS_TRANSPORT_FAILURE: 1372 result = DID_BUS_BUSY << 16; 1373 break; 1374 case SBP2_STATUS_ILLEGAL_REQUEST: 1375 case SBP2_STATUS_VENDOR_DEPENDENT: 1376 default: 1377 result = DID_ERROR << 16; 1378 break; 1379 } 1380 1381 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1382 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1383 orb->cmd->sense_buffer); 1384 } else { 1385 /* 1386 * If the orb completes with status == NULL, something 1387 * went wrong, typically a bus reset happened mid-orb 1388 * or when sending the write (less likely). 1389 */ 1390 result = DID_BUS_BUSY << 16; 1391 sbp2_conditionally_block(orb->lu); 1392 } 1393 1394 dma_unmap_single(device->card->device, orb->base.request_bus, 1395 sizeof(orb->request), DMA_TO_DEVICE); 1396 sbp2_unmap_scatterlist(device->card->device, orb); 1397 1398 orb->cmd->result = result; 1399 orb->done(orb->cmd); 1400 } 1401 1402 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1403 struct fw_device *device, struct sbp2_logical_unit *lu) 1404 { 1405 struct scatterlist *sg = scsi_sglist(orb->cmd); 1406 int i, n; 1407 1408 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd), 1409 orb->cmd->sc_data_direction); 1410 if (n == 0) 1411 goto fail; 1412 1413 /* 1414 * Handle the special case where there is only one element in 1415 * the scatter list by converting it to an immediate block 1416 * request. This is also a workaround for broken devices such 1417 * as the second generation iPod which doesn't support page 1418 * tables. 1419 */ 1420 if (n == 1) { 1421 orb->request.data_descriptor.high = 1422 cpu_to_be32(lu->tgt->address_high); 1423 orb->request.data_descriptor.low = 1424 cpu_to_be32(sg_dma_address(sg)); 1425 orb->request.misc |= 1426 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1427 return 0; 1428 } 1429 1430 for_each_sg(sg, sg, n, i) { 1431 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1432 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1433 } 1434 1435 orb->page_table_bus = 1436 dma_map_single(device->card->device, orb->page_table, 1437 sizeof(orb->page_table), DMA_TO_DEVICE); 1438 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1439 goto fail_page_table; 1440 1441 /* 1442 * The data_descriptor pointer is the one case where we need 1443 * to fill in the node ID part of the address. All other 1444 * pointers assume that the data referenced reside on the 1445 * initiator (i.e. us), but data_descriptor can refer to data 1446 * on other nodes so we need to put our ID in descriptor.high. 1447 */ 1448 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1449 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1450 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1451 COMMAND_ORB_DATA_SIZE(n)); 1452 1453 return 0; 1454 1455 fail_page_table: 1456 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd), 1457 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); 1458 fail: 1459 return -ENOMEM; 1460 } 1461 1462 /* SCSI stack integration */ 1463 1464 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done) 1465 { 1466 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1467 struct fw_device *device = target_device(lu->tgt); 1468 struct sbp2_command_orb *orb; 1469 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1470 1471 /* 1472 * Bidirectional commands are not yet implemented, and unknown 1473 * transfer direction not handled. 1474 */ 1475 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { 1476 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n"); 1477 cmd->result = DID_ERROR << 16; 1478 done(cmd); 1479 return 0; 1480 } 1481 1482 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1483 if (orb == NULL) { 1484 fw_notify("failed to alloc orb\n"); 1485 return SCSI_MLQUEUE_HOST_BUSY; 1486 } 1487 1488 /* Initialize rcode to something not RCODE_COMPLETE. */ 1489 orb->base.rcode = -1; 1490 kref_init(&orb->base.kref); 1491 1492 orb->lu = lu; 1493 orb->done = done; 1494 orb->cmd = cmd; 1495 1496 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1497 orb->request.misc = cpu_to_be32( 1498 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1499 COMMAND_ORB_SPEED(device->max_speed) | 1500 COMMAND_ORB_NOTIFY); 1501 1502 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1503 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1504 1505 generation = device->generation; 1506 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1507 1508 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1509 goto out; 1510 1511 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1512 1513 orb->base.callback = complete_command_orb; 1514 orb->base.request_bus = 1515 dma_map_single(device->card->device, &orb->request, 1516 sizeof(orb->request), DMA_TO_DEVICE); 1517 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1518 sbp2_unmap_scatterlist(device->card->device, orb); 1519 goto out; 1520 } 1521 1522 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1523 lu->command_block_agent_address + SBP2_ORB_POINTER); 1524 retval = 0; 1525 out: 1526 kref_put(&orb->base.kref, free_orb); 1527 return retval; 1528 } 1529 1530 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1531 { 1532 struct sbp2_logical_unit *lu = sdev->hostdata; 1533 1534 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1535 if (!lu) 1536 return -ENOSYS; 1537 1538 sdev->allow_restart = 1; 1539 1540 /* SBP-2 requires quadlet alignment of the data buffers. */ 1541 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1542 1543 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1544 sdev->inquiry_len = 36; 1545 1546 return 0; 1547 } 1548 1549 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1550 { 1551 struct sbp2_logical_unit *lu = sdev->hostdata; 1552 1553 sdev->use_10_for_rw = 1; 1554 1555 if (sbp2_param_exclusive_login) 1556 sdev->manage_start_stop = 1; 1557 1558 if (sdev->type == TYPE_ROM) 1559 sdev->use_10_for_ms = 1; 1560 1561 if (sdev->type == TYPE_DISK && 1562 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1563 sdev->skip_ms_page_8 = 1; 1564 1565 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1566 sdev->fix_capacity = 1; 1567 1568 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1569 sdev->start_stop_pwr_cond = 1; 1570 1571 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1572 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); 1573 1574 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE); 1575 1576 return 0; 1577 } 1578 1579 /* 1580 * Called by scsi stack when something has really gone wrong. Usually 1581 * called when a command has timed-out for some reason. 1582 */ 1583 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1584 { 1585 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1586 1587 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id); 1588 sbp2_agent_reset(lu); 1589 sbp2_cancel_orbs(lu); 1590 1591 return SUCCESS; 1592 } 1593 1594 /* 1595 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1596 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1597 * 1598 * This is the concatenation of target port identifier and logical unit 1599 * identifier as per SAM-2...SAM-4 annex A. 1600 */ 1601 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1602 struct device_attribute *attr, char *buf) 1603 { 1604 struct scsi_device *sdev = to_scsi_device(dev); 1605 struct sbp2_logical_unit *lu; 1606 1607 if (!sdev) 1608 return 0; 1609 1610 lu = sdev->hostdata; 1611 1612 return sprintf(buf, "%016llx:%06x:%04x\n", 1613 (unsigned long long)lu->tgt->guid, 1614 lu->tgt->directory_id, lu->lun); 1615 } 1616 1617 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1618 1619 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { 1620 &dev_attr_ieee1394_id, 1621 NULL 1622 }; 1623 1624 static struct scsi_host_template scsi_driver_template = { 1625 .module = THIS_MODULE, 1626 .name = "SBP-2 IEEE-1394", 1627 .proc_name = sbp2_driver_name, 1628 .queuecommand = sbp2_scsi_queuecommand, 1629 .slave_alloc = sbp2_scsi_slave_alloc, 1630 .slave_configure = sbp2_scsi_slave_configure, 1631 .eh_abort_handler = sbp2_scsi_abort, 1632 .this_id = -1, 1633 .sg_tablesize = SG_ALL, 1634 .use_clustering = ENABLE_CLUSTERING, 1635 .cmd_per_lun = 1, 1636 .can_queue = 1, 1637 .sdev_attrs = sbp2_scsi_sysfs_attrs, 1638 }; 1639 1640 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1641 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1642 MODULE_LICENSE("GPL"); 1643 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1644 1645 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1646 #ifndef CONFIG_IEEE1394_SBP2_MODULE 1647 MODULE_ALIAS("sbp2"); 1648 #endif 1649 1650 static int __init sbp2_init(void) 1651 { 1652 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME); 1653 if (!sbp2_wq) 1654 return -ENOMEM; 1655 1656 return driver_register(&sbp2_driver.driver); 1657 } 1658 1659 static void __exit sbp2_cleanup(void) 1660 { 1661 driver_unregister(&sbp2_driver.driver); 1662 destroy_workqueue(sbp2_wq); 1663 } 1664 1665 module_init(sbp2_init); 1666 module_exit(sbp2_cleanup); 1667