1 /* 2 * SBP2 driver (SCSI over IEEE1394) 3 * 4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 /* 22 * The basic structure of this driver is based on the old storage driver, 23 * drivers/ieee1394/sbp2.c, originally written by 24 * James Goodwin <jamesg@filanet.com> 25 * with later contributions and ongoing maintenance from 26 * Ben Collins <bcollins@debian.org>, 27 * Stefan Richter <stefanr@s5r6.in-berlin.de> 28 * and many others. 29 */ 30 31 #include <linux/blkdev.h> 32 #include <linux/bug.h> 33 #include <linux/completion.h> 34 #include <linux/delay.h> 35 #include <linux/device.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/firewire.h> 38 #include <linux/firewire-constants.h> 39 #include <linux/init.h> 40 #include <linux/jiffies.h> 41 #include <linux/kernel.h> 42 #include <linux/kref.h> 43 #include <linux/list.h> 44 #include <linux/mod_devicetable.h> 45 #include <linux/module.h> 46 #include <linux/moduleparam.h> 47 #include <linux/scatterlist.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/string.h> 51 #include <linux/stringify.h> 52 #include <linux/workqueue.h> 53 54 #include <asm/byteorder.h> 55 #include <asm/system.h> 56 57 #include <scsi/scsi.h> 58 #include <scsi/scsi_cmnd.h> 59 #include <scsi/scsi_device.h> 60 #include <scsi/scsi_host.h> 61 62 /* 63 * So far only bridges from Oxford Semiconductor are known to support 64 * concurrent logins. Depending on firmware, four or two concurrent logins 65 * are possible on OXFW911 and newer Oxsemi bridges. 66 * 67 * Concurrent logins are useful together with cluster filesystems. 68 */ 69 static bool sbp2_param_exclusive_login = 1; 70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 72 "(default = Y, use N for concurrent initiators)"); 73 74 /* 75 * Flags for firmware oddities 76 * 77 * - 128kB max transfer 78 * Limit transfer size. Necessary for some old bridges. 79 * 80 * - 36 byte inquiry 81 * When scsi_mod probes the device, let the inquiry command look like that 82 * from MS Windows. 83 * 84 * - skip mode page 8 85 * Suppress sending of mode_sense for mode page 8 if the device pretends to 86 * support the SCSI Primary Block commands instead of Reduced Block Commands. 87 * 88 * - fix capacity 89 * Tell sd_mod to correct the last sector number reported by read_capacity. 90 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 91 * Don't use this with devices which don't have this bug. 92 * 93 * - delay inquiry 94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 95 * 96 * - power condition 97 * Set the power condition field in the START STOP UNIT commands sent by 98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). 99 * Some disks need this to spin down or to resume properly. 100 * 101 * - override internal blacklist 102 * Instead of adding to the built-in blacklist, use only the workarounds 103 * specified in the module load parameter. 104 * Useful if a blacklist entry interfered with a non-broken device. 105 */ 106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 107 #define SBP2_WORKAROUND_INQUIRY_36 0x2 108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 111 #define SBP2_INQUIRY_DELAY 12 112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 113 #define SBP2_WORKAROUND_OVERRIDE 0x100 114 115 static int sbp2_param_workarounds; 116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 123 ", set power condition in start stop unit = " 124 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 126 ", or a combination)"); 127 128 static const char sbp2_driver_name[] = "sbp2"; 129 130 /* 131 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 132 * and one struct scsi_device per sbp2_logical_unit. 133 */ 134 struct sbp2_logical_unit { 135 struct sbp2_target *tgt; 136 struct list_head link; 137 struct fw_address_handler address_handler; 138 struct list_head orb_list; 139 140 u64 command_block_agent_address; 141 u16 lun; 142 int login_id; 143 144 /* 145 * The generation is updated once we've logged in or reconnected 146 * to the logical unit. Thus, I/O to the device will automatically 147 * fail and get retried if it happens in a window where the device 148 * is not ready, e.g. after a bus reset but before we reconnect. 149 */ 150 int generation; 151 int retries; 152 struct delayed_work work; 153 bool has_sdev; 154 bool blocked; 155 }; 156 157 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 158 { 159 queue_delayed_work(fw_workqueue, &lu->work, delay); 160 } 161 162 /* 163 * We create one struct sbp2_target per IEEE 1212 Unit Directory 164 * and one struct Scsi_Host per sbp2_target. 165 */ 166 struct sbp2_target { 167 struct fw_unit *unit; 168 const char *bus_id; 169 struct list_head lu_list; 170 171 u64 management_agent_address; 172 u64 guid; 173 int directory_id; 174 int node_id; 175 int address_high; 176 unsigned int workarounds; 177 unsigned int mgt_orb_timeout; 178 unsigned int max_payload; 179 180 int dont_block; /* counter for each logical unit */ 181 int blocked; /* ditto */ 182 }; 183 184 static struct fw_device *target_device(struct sbp2_target *tgt) 185 { 186 return fw_parent_device(tgt->unit); 187 } 188 189 /* Impossible login_id, to detect logout attempt before successful login */ 190 #define INVALID_LOGIN_ID 0x10000 191 192 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 193 #define SBP2_ORB_NULL 0x80000000 194 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 195 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 196 197 /* 198 * There is no transport protocol limit to the CDB length, but we implement 199 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 200 */ 201 #define SBP2_MAX_CDB_SIZE 16 202 203 /* 204 * The default maximum s/g segment size of a FireWire controller is 205 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to 206 * be quadlet-aligned, we set the length limit to 0xffff & ~3. 207 */ 208 #define SBP2_MAX_SEG_SIZE 0xfffc 209 210 /* Unit directory keys */ 211 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 212 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 213 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 214 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 215 216 /* Management orb opcodes */ 217 #define SBP2_LOGIN_REQUEST 0x0 218 #define SBP2_QUERY_LOGINS_REQUEST 0x1 219 #define SBP2_RECONNECT_REQUEST 0x3 220 #define SBP2_SET_PASSWORD_REQUEST 0x4 221 #define SBP2_LOGOUT_REQUEST 0x7 222 #define SBP2_ABORT_TASK_REQUEST 0xb 223 #define SBP2_ABORT_TASK_SET 0xc 224 #define SBP2_LOGICAL_UNIT_RESET 0xe 225 #define SBP2_TARGET_RESET_REQUEST 0xf 226 227 /* Offsets for command block agent registers */ 228 #define SBP2_AGENT_STATE 0x00 229 #define SBP2_AGENT_RESET 0x04 230 #define SBP2_ORB_POINTER 0x08 231 #define SBP2_DOORBELL 0x10 232 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 233 234 /* Status write response codes */ 235 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 236 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 237 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 238 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 239 240 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 241 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 242 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 243 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 244 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 245 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 246 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 247 #define STATUS_GET_DATA(v) ((v).data) 248 249 struct sbp2_status { 250 u32 status; 251 u32 orb_low; 252 u8 data[24]; 253 }; 254 255 struct sbp2_pointer { 256 __be32 high; 257 __be32 low; 258 }; 259 260 struct sbp2_orb { 261 struct fw_transaction t; 262 struct kref kref; 263 dma_addr_t request_bus; 264 int rcode; 265 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 266 struct list_head link; 267 }; 268 269 #define MANAGEMENT_ORB_LUN(v) ((v)) 270 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 271 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 272 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 273 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 274 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 275 276 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 277 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 278 279 struct sbp2_management_orb { 280 struct sbp2_orb base; 281 struct { 282 struct sbp2_pointer password; 283 struct sbp2_pointer response; 284 __be32 misc; 285 __be32 length; 286 struct sbp2_pointer status_fifo; 287 } request; 288 __be32 response[4]; 289 dma_addr_t response_bus; 290 struct completion done; 291 struct sbp2_status status; 292 }; 293 294 struct sbp2_login_response { 295 __be32 misc; 296 struct sbp2_pointer command_block_agent; 297 __be32 reconnect_hold; 298 }; 299 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 300 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 301 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 302 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 303 #define COMMAND_ORB_SPEED(v) ((v) << 24) 304 #define COMMAND_ORB_DIRECTION ((1) << 27) 305 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 306 #define COMMAND_ORB_NOTIFY ((1) << 31) 307 308 struct sbp2_command_orb { 309 struct sbp2_orb base; 310 struct { 311 struct sbp2_pointer next; 312 struct sbp2_pointer data_descriptor; 313 __be32 misc; 314 u8 command_block[SBP2_MAX_CDB_SIZE]; 315 } request; 316 struct scsi_cmnd *cmd; 317 struct sbp2_logical_unit *lu; 318 319 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 320 dma_addr_t page_table_bus; 321 }; 322 323 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 324 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 325 326 /* 327 * List of devices with known bugs. 328 * 329 * The firmware_revision field, masked with 0xffff00, is the best 330 * indicator for the type of bridge chip of a device. It yields a few 331 * false positives but this did not break correctly behaving devices 332 * so far. 333 */ 334 static const struct { 335 u32 firmware_revision; 336 u32 model; 337 unsigned int workarounds; 338 } sbp2_workarounds_table[] = { 339 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 340 .firmware_revision = 0x002800, 341 .model = 0x001010, 342 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 343 SBP2_WORKAROUND_MODE_SENSE_8 | 344 SBP2_WORKAROUND_POWER_CONDITION, 345 }, 346 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 347 .firmware_revision = 0x002800, 348 .model = 0x000000, 349 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 350 }, 351 /* Initio bridges, actually only needed for some older ones */ { 352 .firmware_revision = 0x000200, 353 .model = SBP2_ROM_VALUE_WILDCARD, 354 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 355 }, 356 /* PL-3507 bridge with Prolific firmware */ { 357 .firmware_revision = 0x012800, 358 .model = SBP2_ROM_VALUE_WILDCARD, 359 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 360 }, 361 /* Symbios bridge */ { 362 .firmware_revision = 0xa0b800, 363 .model = SBP2_ROM_VALUE_WILDCARD, 364 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 365 }, 366 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 367 .firmware_revision = 0x002600, 368 .model = SBP2_ROM_VALUE_WILDCARD, 369 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 370 }, 371 /* 372 * iPod 2nd generation: needs 128k max transfer size workaround 373 * iPod 3rd generation: needs fix capacity workaround 374 */ 375 { 376 .firmware_revision = 0x0a2700, 377 .model = 0x000000, 378 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 379 SBP2_WORKAROUND_FIX_CAPACITY, 380 }, 381 /* iPod 4th generation */ { 382 .firmware_revision = 0x0a2700, 383 .model = 0x000021, 384 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 385 }, 386 /* iPod mini */ { 387 .firmware_revision = 0x0a2700, 388 .model = 0x000022, 389 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 390 }, 391 /* iPod mini */ { 392 .firmware_revision = 0x0a2700, 393 .model = 0x000023, 394 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 395 }, 396 /* iPod Photo */ { 397 .firmware_revision = 0x0a2700, 398 .model = 0x00007e, 399 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 400 } 401 }; 402 403 static void free_orb(struct kref *kref) 404 { 405 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 406 407 kfree(orb); 408 } 409 410 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 411 int tcode, int destination, int source, 412 int generation, unsigned long long offset, 413 void *payload, size_t length, void *callback_data) 414 { 415 struct sbp2_logical_unit *lu = callback_data; 416 struct sbp2_orb *orb; 417 struct sbp2_status status; 418 unsigned long flags; 419 420 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 421 length < 8 || length > sizeof(status)) { 422 fw_send_response(card, request, RCODE_TYPE_ERROR); 423 return; 424 } 425 426 status.status = be32_to_cpup(payload); 427 status.orb_low = be32_to_cpup(payload + 4); 428 memset(status.data, 0, sizeof(status.data)); 429 if (length > 8) 430 memcpy(status.data, payload + 8, length - 8); 431 432 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 433 fw_notify("non-orb related status write, not handled\n"); 434 fw_send_response(card, request, RCODE_COMPLETE); 435 return; 436 } 437 438 /* Lookup the orb corresponding to this status write. */ 439 spin_lock_irqsave(&card->lock, flags); 440 list_for_each_entry(orb, &lu->orb_list, link) { 441 if (STATUS_GET_ORB_HIGH(status) == 0 && 442 STATUS_GET_ORB_LOW(status) == orb->request_bus) { 443 orb->rcode = RCODE_COMPLETE; 444 list_del(&orb->link); 445 break; 446 } 447 } 448 spin_unlock_irqrestore(&card->lock, flags); 449 450 if (&orb->link != &lu->orb_list) { 451 orb->callback(orb, &status); 452 kref_put(&orb->kref, free_orb); /* orb callback reference */ 453 } else { 454 fw_error("status write for unknown orb\n"); 455 } 456 457 fw_send_response(card, request, RCODE_COMPLETE); 458 } 459 460 static void complete_transaction(struct fw_card *card, int rcode, 461 void *payload, size_t length, void *data) 462 { 463 struct sbp2_orb *orb = data; 464 unsigned long flags; 465 466 /* 467 * This is a little tricky. We can get the status write for 468 * the orb before we get this callback. The status write 469 * handler above will assume the orb pointer transaction was 470 * successful and set the rcode to RCODE_COMPLETE for the orb. 471 * So this callback only sets the rcode if it hasn't already 472 * been set and only does the cleanup if the transaction 473 * failed and we didn't already get a status write. 474 */ 475 spin_lock_irqsave(&card->lock, flags); 476 477 if (orb->rcode == -1) 478 orb->rcode = rcode; 479 if (orb->rcode != RCODE_COMPLETE) { 480 list_del(&orb->link); 481 spin_unlock_irqrestore(&card->lock, flags); 482 483 orb->callback(orb, NULL); 484 kref_put(&orb->kref, free_orb); /* orb callback reference */ 485 } else { 486 spin_unlock_irqrestore(&card->lock, flags); 487 } 488 489 kref_put(&orb->kref, free_orb); /* transaction callback reference */ 490 } 491 492 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 493 int node_id, int generation, u64 offset) 494 { 495 struct fw_device *device = target_device(lu->tgt); 496 struct sbp2_pointer orb_pointer; 497 unsigned long flags; 498 499 orb_pointer.high = 0; 500 orb_pointer.low = cpu_to_be32(orb->request_bus); 501 502 spin_lock_irqsave(&device->card->lock, flags); 503 list_add_tail(&orb->link, &lu->orb_list); 504 spin_unlock_irqrestore(&device->card->lock, flags); 505 506 kref_get(&orb->kref); /* transaction callback reference */ 507 kref_get(&orb->kref); /* orb callback reference */ 508 509 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 510 node_id, generation, device->max_speed, offset, 511 &orb_pointer, 8, complete_transaction, orb); 512 } 513 514 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 515 { 516 struct fw_device *device = target_device(lu->tgt); 517 struct sbp2_orb *orb, *next; 518 struct list_head list; 519 unsigned long flags; 520 int retval = -ENOENT; 521 522 INIT_LIST_HEAD(&list); 523 spin_lock_irqsave(&device->card->lock, flags); 524 list_splice_init(&lu->orb_list, &list); 525 spin_unlock_irqrestore(&device->card->lock, flags); 526 527 list_for_each_entry_safe(orb, next, &list, link) { 528 retval = 0; 529 if (fw_cancel_transaction(device->card, &orb->t) == 0) 530 continue; 531 532 orb->rcode = RCODE_CANCELLED; 533 orb->callback(orb, NULL); 534 kref_put(&orb->kref, free_orb); /* orb callback reference */ 535 } 536 537 return retval; 538 } 539 540 static void complete_management_orb(struct sbp2_orb *base_orb, 541 struct sbp2_status *status) 542 { 543 struct sbp2_management_orb *orb = 544 container_of(base_orb, struct sbp2_management_orb, base); 545 546 if (status) 547 memcpy(&orb->status, status, sizeof(*status)); 548 complete(&orb->done); 549 } 550 551 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 552 int generation, int function, 553 int lun_or_login_id, void *response) 554 { 555 struct fw_device *device = target_device(lu->tgt); 556 struct sbp2_management_orb *orb; 557 unsigned int timeout; 558 int retval = -ENOMEM; 559 560 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 561 return 0; 562 563 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 564 if (orb == NULL) 565 return -ENOMEM; 566 567 kref_init(&orb->base.kref); 568 orb->response_bus = 569 dma_map_single(device->card->device, &orb->response, 570 sizeof(orb->response), DMA_FROM_DEVICE); 571 if (dma_mapping_error(device->card->device, orb->response_bus)) 572 goto fail_mapping_response; 573 574 orb->request.response.high = 0; 575 orb->request.response.low = cpu_to_be32(orb->response_bus); 576 577 orb->request.misc = cpu_to_be32( 578 MANAGEMENT_ORB_NOTIFY | 579 MANAGEMENT_ORB_FUNCTION(function) | 580 MANAGEMENT_ORB_LUN(lun_or_login_id)); 581 orb->request.length = cpu_to_be32( 582 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 583 584 orb->request.status_fifo.high = 585 cpu_to_be32(lu->address_handler.offset >> 32); 586 orb->request.status_fifo.low = 587 cpu_to_be32(lu->address_handler.offset); 588 589 if (function == SBP2_LOGIN_REQUEST) { 590 /* Ask for 2^2 == 4 seconds reconnect grace period */ 591 orb->request.misc |= cpu_to_be32( 592 MANAGEMENT_ORB_RECONNECT(2) | 593 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 594 timeout = lu->tgt->mgt_orb_timeout; 595 } else { 596 timeout = SBP2_ORB_TIMEOUT; 597 } 598 599 init_completion(&orb->done); 600 orb->base.callback = complete_management_orb; 601 602 orb->base.request_bus = 603 dma_map_single(device->card->device, &orb->request, 604 sizeof(orb->request), DMA_TO_DEVICE); 605 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 606 goto fail_mapping_request; 607 608 sbp2_send_orb(&orb->base, lu, node_id, generation, 609 lu->tgt->management_agent_address); 610 611 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 612 613 retval = -EIO; 614 if (sbp2_cancel_orbs(lu) == 0) { 615 fw_error("%s: orb reply timed out, rcode=0x%02x\n", 616 lu->tgt->bus_id, orb->base.rcode); 617 goto out; 618 } 619 620 if (orb->base.rcode != RCODE_COMPLETE) { 621 fw_error("%s: management write failed, rcode 0x%02x\n", 622 lu->tgt->bus_id, orb->base.rcode); 623 goto out; 624 } 625 626 if (STATUS_GET_RESPONSE(orb->status) != 0 || 627 STATUS_GET_SBP_STATUS(orb->status) != 0) { 628 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id, 629 STATUS_GET_RESPONSE(orb->status), 630 STATUS_GET_SBP_STATUS(orb->status)); 631 goto out; 632 } 633 634 retval = 0; 635 out: 636 dma_unmap_single(device->card->device, orb->base.request_bus, 637 sizeof(orb->request), DMA_TO_DEVICE); 638 fail_mapping_request: 639 dma_unmap_single(device->card->device, orb->response_bus, 640 sizeof(orb->response), DMA_FROM_DEVICE); 641 fail_mapping_response: 642 if (response) 643 memcpy(response, orb->response, sizeof(orb->response)); 644 kref_put(&orb->base.kref, free_orb); 645 646 return retval; 647 } 648 649 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 650 { 651 struct fw_device *device = target_device(lu->tgt); 652 __be32 d = 0; 653 654 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 655 lu->tgt->node_id, lu->generation, device->max_speed, 656 lu->command_block_agent_address + SBP2_AGENT_RESET, 657 &d, 4); 658 } 659 660 static void complete_agent_reset_write_no_wait(struct fw_card *card, 661 int rcode, void *payload, size_t length, void *data) 662 { 663 kfree(data); 664 } 665 666 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 667 { 668 struct fw_device *device = target_device(lu->tgt); 669 struct fw_transaction *t; 670 static __be32 d; 671 672 t = kmalloc(sizeof(*t), GFP_ATOMIC); 673 if (t == NULL) 674 return; 675 676 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 677 lu->tgt->node_id, lu->generation, device->max_speed, 678 lu->command_block_agent_address + SBP2_AGENT_RESET, 679 &d, 4, complete_agent_reset_write_no_wait, t); 680 } 681 682 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu) 683 { 684 /* 685 * We may access dont_block without taking card->lock here: 686 * All callers of sbp2_allow_block() and all callers of sbp2_unblock() 687 * are currently serialized against each other. 688 * And a wrong result in sbp2_conditionally_block()'s access of 689 * dont_block is rather harmless, it simply misses its first chance. 690 */ 691 --lu->tgt->dont_block; 692 } 693 694 /* 695 * Blocks lu->tgt if all of the following conditions are met: 696 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 697 * logical units have been finished (indicated by dont_block == 0). 698 * - lu->generation is stale. 699 * 700 * Note, scsi_block_requests() must be called while holding card->lock, 701 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 702 * unblock the target. 703 */ 704 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 705 { 706 struct sbp2_target *tgt = lu->tgt; 707 struct fw_card *card = target_device(tgt)->card; 708 struct Scsi_Host *shost = 709 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 710 unsigned long flags; 711 712 spin_lock_irqsave(&card->lock, flags); 713 if (!tgt->dont_block && !lu->blocked && 714 lu->generation != card->generation) { 715 lu->blocked = true; 716 if (++tgt->blocked == 1) 717 scsi_block_requests(shost); 718 } 719 spin_unlock_irqrestore(&card->lock, flags); 720 } 721 722 /* 723 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 724 * Note, it is harmless to run scsi_unblock_requests() outside the 725 * card->lock protected section. On the other hand, running it inside 726 * the section might clash with shost->host_lock. 727 */ 728 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 729 { 730 struct sbp2_target *tgt = lu->tgt; 731 struct fw_card *card = target_device(tgt)->card; 732 struct Scsi_Host *shost = 733 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 734 unsigned long flags; 735 bool unblock = false; 736 737 spin_lock_irqsave(&card->lock, flags); 738 if (lu->blocked && lu->generation == card->generation) { 739 lu->blocked = false; 740 unblock = --tgt->blocked == 0; 741 } 742 spin_unlock_irqrestore(&card->lock, flags); 743 744 if (unblock) 745 scsi_unblock_requests(shost); 746 } 747 748 /* 749 * Prevents future blocking of tgt and unblocks it. 750 * Note, it is harmless to run scsi_unblock_requests() outside the 751 * card->lock protected section. On the other hand, running it inside 752 * the section might clash with shost->host_lock. 753 */ 754 static void sbp2_unblock(struct sbp2_target *tgt) 755 { 756 struct fw_card *card = target_device(tgt)->card; 757 struct Scsi_Host *shost = 758 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 759 unsigned long flags; 760 761 spin_lock_irqsave(&card->lock, flags); 762 ++tgt->dont_block; 763 spin_unlock_irqrestore(&card->lock, flags); 764 765 scsi_unblock_requests(shost); 766 } 767 768 static int sbp2_lun2int(u16 lun) 769 { 770 struct scsi_lun eight_bytes_lun; 771 772 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 773 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 774 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 775 776 return scsilun_to_int(&eight_bytes_lun); 777 } 778 779 /* 780 * Write retransmit retry values into the BUSY_TIMEOUT register. 781 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 782 * default retry_limit value is 0 (i.e. never retry transmission). We write a 783 * saner value after logging into the device. 784 * - The dual-phase retry protocol is optional to implement, and if not 785 * supported, writes to the dual-phase portion of the register will be 786 * ignored. We try to write the original 1394-1995 default here. 787 * - In the case of devices that are also SBP-3-compliant, all writes are 788 * ignored, as the register is read-only, but contains single-phase retry of 789 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 790 * write attempt is safe and yields more consistent behavior for all devices. 791 * 792 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 793 * and section 6.4 of the SBP-3 spec for further details. 794 */ 795 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 796 { 797 struct fw_device *device = target_device(lu->tgt); 798 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 799 800 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 801 lu->tgt->node_id, lu->generation, device->max_speed, 802 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4); 803 } 804 805 static void sbp2_reconnect(struct work_struct *work); 806 807 static void sbp2_login(struct work_struct *work) 808 { 809 struct sbp2_logical_unit *lu = 810 container_of(work, struct sbp2_logical_unit, work.work); 811 struct sbp2_target *tgt = lu->tgt; 812 struct fw_device *device = target_device(tgt); 813 struct Scsi_Host *shost; 814 struct scsi_device *sdev; 815 struct sbp2_login_response response; 816 int generation, node_id, local_node_id; 817 818 if (fw_device_is_shutdown(device)) 819 return; 820 821 generation = device->generation; 822 smp_rmb(); /* node IDs must not be older than generation */ 823 node_id = device->node_id; 824 local_node_id = device->card->node_id; 825 826 /* If this is a re-login attempt, log out, or we might be rejected. */ 827 if (lu->has_sdev) 828 sbp2_send_management_orb(lu, device->node_id, generation, 829 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 830 831 if (sbp2_send_management_orb(lu, node_id, generation, 832 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 833 if (lu->retries++ < 5) { 834 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 835 } else { 836 fw_error("%s: failed to login to LUN %04x\n", 837 tgt->bus_id, lu->lun); 838 /* Let any waiting I/O fail from now on. */ 839 sbp2_unblock(lu->tgt); 840 } 841 return; 842 } 843 844 tgt->node_id = node_id; 845 tgt->address_high = local_node_id << 16; 846 smp_wmb(); /* node IDs must not be older than generation */ 847 lu->generation = generation; 848 849 lu->command_block_agent_address = 850 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 851 << 32) | be32_to_cpu(response.command_block_agent.low); 852 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 853 854 fw_notify("%s: logged in to LUN %04x (%d retries)\n", 855 tgt->bus_id, lu->lun, lu->retries); 856 857 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 858 sbp2_set_busy_timeout(lu); 859 860 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect); 861 sbp2_agent_reset(lu); 862 863 /* This was a re-login. */ 864 if (lu->has_sdev) { 865 sbp2_cancel_orbs(lu); 866 sbp2_conditionally_unblock(lu); 867 868 return; 869 } 870 871 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 872 ssleep(SBP2_INQUIRY_DELAY); 873 874 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 875 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 876 /* 877 * FIXME: We are unable to perform reconnects while in sbp2_login(). 878 * Therefore __scsi_add_device() will get into trouble if a bus reset 879 * happens in parallel. It will either fail or leave us with an 880 * unusable sdev. As a workaround we check for this and retry the 881 * whole login and SCSI probing. 882 */ 883 884 /* Reported error during __scsi_add_device() */ 885 if (IS_ERR(sdev)) 886 goto out_logout_login; 887 888 /* Unreported error during __scsi_add_device() */ 889 smp_rmb(); /* get current card generation */ 890 if (generation != device->card->generation) { 891 scsi_remove_device(sdev); 892 scsi_device_put(sdev); 893 goto out_logout_login; 894 } 895 896 /* No error during __scsi_add_device() */ 897 lu->has_sdev = true; 898 scsi_device_put(sdev); 899 sbp2_allow_block(lu); 900 901 return; 902 903 out_logout_login: 904 smp_rmb(); /* generation may have changed */ 905 generation = device->generation; 906 smp_rmb(); /* node_id must not be older than generation */ 907 908 sbp2_send_management_orb(lu, device->node_id, generation, 909 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 910 /* 911 * If a bus reset happened, sbp2_update will have requeued 912 * lu->work already. Reset the work from reconnect to login. 913 */ 914 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 915 } 916 917 static void sbp2_reconnect(struct work_struct *work) 918 { 919 struct sbp2_logical_unit *lu = 920 container_of(work, struct sbp2_logical_unit, work.work); 921 struct sbp2_target *tgt = lu->tgt; 922 struct fw_device *device = target_device(tgt); 923 int generation, node_id, local_node_id; 924 925 if (fw_device_is_shutdown(device)) 926 return; 927 928 generation = device->generation; 929 smp_rmb(); /* node IDs must not be older than generation */ 930 node_id = device->node_id; 931 local_node_id = device->card->node_id; 932 933 if (sbp2_send_management_orb(lu, node_id, generation, 934 SBP2_RECONNECT_REQUEST, 935 lu->login_id, NULL) < 0) { 936 /* 937 * If reconnect was impossible even though we are in the 938 * current generation, fall back and try to log in again. 939 * 940 * We could check for "Function rejected" status, but 941 * looking at the bus generation as simpler and more general. 942 */ 943 smp_rmb(); /* get current card generation */ 944 if (generation == device->card->generation || 945 lu->retries++ >= 5) { 946 fw_error("%s: failed to reconnect\n", tgt->bus_id); 947 lu->retries = 0; 948 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 949 } 950 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 951 952 return; 953 } 954 955 tgt->node_id = node_id; 956 tgt->address_high = local_node_id << 16; 957 smp_wmb(); /* node IDs must not be older than generation */ 958 lu->generation = generation; 959 960 fw_notify("%s: reconnected to LUN %04x (%d retries)\n", 961 tgt->bus_id, lu->lun, lu->retries); 962 963 sbp2_agent_reset(lu); 964 sbp2_cancel_orbs(lu); 965 sbp2_conditionally_unblock(lu); 966 } 967 968 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 969 { 970 struct sbp2_logical_unit *lu; 971 972 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 973 if (!lu) 974 return -ENOMEM; 975 976 lu->address_handler.length = 0x100; 977 lu->address_handler.address_callback = sbp2_status_write; 978 lu->address_handler.callback_data = lu; 979 980 if (fw_core_add_address_handler(&lu->address_handler, 981 &fw_high_memory_region) < 0) { 982 kfree(lu); 983 return -ENOMEM; 984 } 985 986 lu->tgt = tgt; 987 lu->lun = lun_entry & 0xffff; 988 lu->login_id = INVALID_LOGIN_ID; 989 lu->retries = 0; 990 lu->has_sdev = false; 991 lu->blocked = false; 992 ++tgt->dont_block; 993 INIT_LIST_HEAD(&lu->orb_list); 994 INIT_DELAYED_WORK(&lu->work, sbp2_login); 995 996 list_add_tail(&lu->link, &tgt->lu_list); 997 return 0; 998 } 999 1000 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, 1001 const u32 *directory) 1002 { 1003 struct fw_csr_iterator ci; 1004 int key, value; 1005 1006 fw_csr_iterator_init(&ci, directory); 1007 while (fw_csr_iterator_next(&ci, &key, &value)) 1008 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1009 sbp2_add_logical_unit(tgt, value) < 0) 1010 return -ENOMEM; 1011 return 0; 1012 } 1013 1014 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory, 1015 u32 *model, u32 *firmware_revision) 1016 { 1017 struct fw_csr_iterator ci; 1018 int key, value; 1019 1020 fw_csr_iterator_init(&ci, directory); 1021 while (fw_csr_iterator_next(&ci, &key, &value)) { 1022 switch (key) { 1023 1024 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1025 tgt->management_agent_address = 1026 CSR_REGISTER_BASE + 4 * value; 1027 break; 1028 1029 case CSR_DIRECTORY_ID: 1030 tgt->directory_id = value; 1031 break; 1032 1033 case CSR_MODEL: 1034 *model = value; 1035 break; 1036 1037 case SBP2_CSR_FIRMWARE_REVISION: 1038 *firmware_revision = value; 1039 break; 1040 1041 case SBP2_CSR_UNIT_CHARACTERISTICS: 1042 /* the timeout value is stored in 500ms units */ 1043 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; 1044 break; 1045 1046 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1047 if (sbp2_add_logical_unit(tgt, value) < 0) 1048 return -ENOMEM; 1049 break; 1050 1051 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1052 /* Adjust for the increment in the iterator */ 1053 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1054 return -ENOMEM; 1055 break; 1056 } 1057 } 1058 return 0; 1059 } 1060 1061 /* 1062 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 1063 * provided in the config rom. Most devices do provide a value, which 1064 * we'll use for login management orbs, but with some sane limits. 1065 */ 1066 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) 1067 { 1068 unsigned int timeout = tgt->mgt_orb_timeout; 1069 1070 if (timeout > 40000) 1071 fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n", 1072 tgt->bus_id, timeout / 1000); 1073 1074 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); 1075 } 1076 1077 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1078 u32 firmware_revision) 1079 { 1080 int i; 1081 unsigned int w = sbp2_param_workarounds; 1082 1083 if (w) 1084 fw_notify("Please notify linux1394-devel@lists.sourceforge.net " 1085 "if you need the workarounds parameter for %s\n", 1086 tgt->bus_id); 1087 1088 if (w & SBP2_WORKAROUND_OVERRIDE) 1089 goto out; 1090 1091 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1092 1093 if (sbp2_workarounds_table[i].firmware_revision != 1094 (firmware_revision & 0xffffff00)) 1095 continue; 1096 1097 if (sbp2_workarounds_table[i].model != model && 1098 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1099 continue; 1100 1101 w |= sbp2_workarounds_table[i].workarounds; 1102 break; 1103 } 1104 out: 1105 if (w) 1106 fw_notify("Workarounds for %s: 0x%x " 1107 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1108 tgt->bus_id, w, firmware_revision, model); 1109 tgt->workarounds = w; 1110 } 1111 1112 static struct scsi_host_template scsi_driver_template; 1113 static int sbp2_remove(struct device *dev); 1114 1115 static int sbp2_probe(struct device *dev) 1116 { 1117 struct fw_unit *unit = fw_unit(dev); 1118 struct fw_device *device = fw_parent_device(unit); 1119 struct sbp2_target *tgt; 1120 struct sbp2_logical_unit *lu; 1121 struct Scsi_Host *shost; 1122 u32 model, firmware_revision; 1123 1124 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE) 1125 BUG_ON(dma_set_max_seg_size(device->card->device, 1126 SBP2_MAX_SEG_SIZE)); 1127 1128 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1129 if (shost == NULL) 1130 return -ENOMEM; 1131 1132 tgt = (struct sbp2_target *)shost->hostdata; 1133 dev_set_drvdata(&unit->device, tgt); 1134 tgt->unit = unit; 1135 INIT_LIST_HEAD(&tgt->lu_list); 1136 tgt->bus_id = dev_name(&unit->device); 1137 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1138 1139 if (fw_device_enable_phys_dma(device) < 0) 1140 goto fail_shost_put; 1141 1142 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1143 1144 if (scsi_add_host(shost, &unit->device) < 0) 1145 goto fail_shost_put; 1146 1147 /* implicit directory ID */ 1148 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1149 + CSR_CONFIG_ROM) & 0xffffff; 1150 1151 firmware_revision = SBP2_ROM_VALUE_MISSING; 1152 model = SBP2_ROM_VALUE_MISSING; 1153 1154 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1155 &firmware_revision) < 0) 1156 goto fail_remove; 1157 1158 sbp2_clamp_management_orb_timeout(tgt); 1159 sbp2_init_workarounds(tgt, model, firmware_revision); 1160 1161 /* 1162 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1163 * and so on up to 4096 bytes. The SBP-2 max_payload field 1164 * specifies the max payload size as 2 ^ (max_payload + 2), so 1165 * if we set this to max_speed + 7, we get the right value. 1166 */ 1167 tgt->max_payload = min3(device->max_speed + 7, 10U, 1168 device->card->max_receive - 1); 1169 1170 /* Do the login in a workqueue so we can easily reschedule retries. */ 1171 list_for_each_entry(lu, &tgt->lu_list, link) 1172 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1173 1174 return 0; 1175 1176 fail_remove: 1177 sbp2_remove(dev); 1178 return -ENOMEM; 1179 1180 fail_shost_put: 1181 scsi_host_put(shost); 1182 return -ENOMEM; 1183 } 1184 1185 static void sbp2_update(struct fw_unit *unit) 1186 { 1187 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1188 struct sbp2_logical_unit *lu; 1189 1190 fw_device_enable_phys_dma(fw_parent_device(unit)); 1191 1192 /* 1193 * Fw-core serializes sbp2_update() against sbp2_remove(). 1194 * Iteration over tgt->lu_list is therefore safe here. 1195 */ 1196 list_for_each_entry(lu, &tgt->lu_list, link) { 1197 sbp2_conditionally_block(lu); 1198 lu->retries = 0; 1199 sbp2_queue_work(lu, 0); 1200 } 1201 } 1202 1203 static int sbp2_remove(struct device *dev) 1204 { 1205 struct fw_unit *unit = fw_unit(dev); 1206 struct fw_device *device = fw_parent_device(unit); 1207 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1208 struct sbp2_logical_unit *lu, *next; 1209 struct Scsi_Host *shost = 1210 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 1211 struct scsi_device *sdev; 1212 1213 /* prevent deadlocks */ 1214 sbp2_unblock(tgt); 1215 1216 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 1217 cancel_delayed_work_sync(&lu->work); 1218 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 1219 if (sdev) { 1220 scsi_remove_device(sdev); 1221 scsi_device_put(sdev); 1222 } 1223 if (lu->login_id != INVALID_LOGIN_ID) { 1224 int generation, node_id; 1225 /* 1226 * tgt->node_id may be obsolete here if we failed 1227 * during initial login or after a bus reset where 1228 * the topology changed. 1229 */ 1230 generation = device->generation; 1231 smp_rmb(); /* node_id vs. generation */ 1232 node_id = device->node_id; 1233 sbp2_send_management_orb(lu, node_id, generation, 1234 SBP2_LOGOUT_REQUEST, 1235 lu->login_id, NULL); 1236 } 1237 fw_core_remove_address_handler(&lu->address_handler); 1238 list_del(&lu->link); 1239 kfree(lu); 1240 } 1241 scsi_remove_host(shost); 1242 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no); 1243 1244 scsi_host_put(shost); 1245 return 0; 1246 } 1247 1248 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1249 #define SBP2_SW_VERSION_ENTRY 0x00010483 1250 1251 static const struct ieee1394_device_id sbp2_id_table[] = { 1252 { 1253 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1254 IEEE1394_MATCH_VERSION, 1255 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1256 .version = SBP2_SW_VERSION_ENTRY, 1257 }, 1258 { } 1259 }; 1260 1261 static struct fw_driver sbp2_driver = { 1262 .driver = { 1263 .owner = THIS_MODULE, 1264 .name = sbp2_driver_name, 1265 .bus = &fw_bus_type, 1266 .probe = sbp2_probe, 1267 .remove = sbp2_remove, 1268 }, 1269 .update = sbp2_update, 1270 .id_table = sbp2_id_table, 1271 }; 1272 1273 static void sbp2_unmap_scatterlist(struct device *card_device, 1274 struct sbp2_command_orb *orb) 1275 { 1276 if (scsi_sg_count(orb->cmd)) 1277 dma_unmap_sg(card_device, scsi_sglist(orb->cmd), 1278 scsi_sg_count(orb->cmd), 1279 orb->cmd->sc_data_direction); 1280 1281 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1282 dma_unmap_single(card_device, orb->page_table_bus, 1283 sizeof(orb->page_table), DMA_TO_DEVICE); 1284 } 1285 1286 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1287 { 1288 int sam_status; 1289 1290 sense_data[0] = 0x70; 1291 sense_data[1] = 0x0; 1292 sense_data[2] = sbp2_status[1]; 1293 sense_data[3] = sbp2_status[4]; 1294 sense_data[4] = sbp2_status[5]; 1295 sense_data[5] = sbp2_status[6]; 1296 sense_data[6] = sbp2_status[7]; 1297 sense_data[7] = 10; 1298 sense_data[8] = sbp2_status[8]; 1299 sense_data[9] = sbp2_status[9]; 1300 sense_data[10] = sbp2_status[10]; 1301 sense_data[11] = sbp2_status[11]; 1302 sense_data[12] = sbp2_status[2]; 1303 sense_data[13] = sbp2_status[3]; 1304 sense_data[14] = sbp2_status[12]; 1305 sense_data[15] = sbp2_status[13]; 1306 1307 sam_status = sbp2_status[0] & 0x3f; 1308 1309 switch (sam_status) { 1310 case SAM_STAT_GOOD: 1311 case SAM_STAT_CHECK_CONDITION: 1312 case SAM_STAT_CONDITION_MET: 1313 case SAM_STAT_BUSY: 1314 case SAM_STAT_RESERVATION_CONFLICT: 1315 case SAM_STAT_COMMAND_TERMINATED: 1316 return DID_OK << 16 | sam_status; 1317 1318 default: 1319 return DID_ERROR << 16; 1320 } 1321 } 1322 1323 static void complete_command_orb(struct sbp2_orb *base_orb, 1324 struct sbp2_status *status) 1325 { 1326 struct sbp2_command_orb *orb = 1327 container_of(base_orb, struct sbp2_command_orb, base); 1328 struct fw_device *device = target_device(orb->lu->tgt); 1329 int result; 1330 1331 if (status != NULL) { 1332 if (STATUS_GET_DEAD(*status)) 1333 sbp2_agent_reset_no_wait(orb->lu); 1334 1335 switch (STATUS_GET_RESPONSE(*status)) { 1336 case SBP2_STATUS_REQUEST_COMPLETE: 1337 result = DID_OK << 16; 1338 break; 1339 case SBP2_STATUS_TRANSPORT_FAILURE: 1340 result = DID_BUS_BUSY << 16; 1341 break; 1342 case SBP2_STATUS_ILLEGAL_REQUEST: 1343 case SBP2_STATUS_VENDOR_DEPENDENT: 1344 default: 1345 result = DID_ERROR << 16; 1346 break; 1347 } 1348 1349 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1350 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1351 orb->cmd->sense_buffer); 1352 } else { 1353 /* 1354 * If the orb completes with status == NULL, something 1355 * went wrong, typically a bus reset happened mid-orb 1356 * or when sending the write (less likely). 1357 */ 1358 result = DID_BUS_BUSY << 16; 1359 sbp2_conditionally_block(orb->lu); 1360 } 1361 1362 dma_unmap_single(device->card->device, orb->base.request_bus, 1363 sizeof(orb->request), DMA_TO_DEVICE); 1364 sbp2_unmap_scatterlist(device->card->device, orb); 1365 1366 orb->cmd->result = result; 1367 orb->cmd->scsi_done(orb->cmd); 1368 } 1369 1370 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1371 struct fw_device *device, struct sbp2_logical_unit *lu) 1372 { 1373 struct scatterlist *sg = scsi_sglist(orb->cmd); 1374 int i, n; 1375 1376 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd), 1377 orb->cmd->sc_data_direction); 1378 if (n == 0) 1379 goto fail; 1380 1381 /* 1382 * Handle the special case where there is only one element in 1383 * the scatter list by converting it to an immediate block 1384 * request. This is also a workaround for broken devices such 1385 * as the second generation iPod which doesn't support page 1386 * tables. 1387 */ 1388 if (n == 1) { 1389 orb->request.data_descriptor.high = 1390 cpu_to_be32(lu->tgt->address_high); 1391 orb->request.data_descriptor.low = 1392 cpu_to_be32(sg_dma_address(sg)); 1393 orb->request.misc |= 1394 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1395 return 0; 1396 } 1397 1398 for_each_sg(sg, sg, n, i) { 1399 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1400 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1401 } 1402 1403 orb->page_table_bus = 1404 dma_map_single(device->card->device, orb->page_table, 1405 sizeof(orb->page_table), DMA_TO_DEVICE); 1406 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1407 goto fail_page_table; 1408 1409 /* 1410 * The data_descriptor pointer is the one case where we need 1411 * to fill in the node ID part of the address. All other 1412 * pointers assume that the data referenced reside on the 1413 * initiator (i.e. us), but data_descriptor can refer to data 1414 * on other nodes so we need to put our ID in descriptor.high. 1415 */ 1416 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1417 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1418 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1419 COMMAND_ORB_DATA_SIZE(n)); 1420 1421 return 0; 1422 1423 fail_page_table: 1424 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd), 1425 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); 1426 fail: 1427 return -ENOMEM; 1428 } 1429 1430 /* SCSI stack integration */ 1431 1432 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost, 1433 struct scsi_cmnd *cmd) 1434 { 1435 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1436 struct fw_device *device = target_device(lu->tgt); 1437 struct sbp2_command_orb *orb; 1438 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1439 1440 /* 1441 * Bidirectional commands are not yet implemented, and unknown 1442 * transfer direction not handled. 1443 */ 1444 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { 1445 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n"); 1446 cmd->result = DID_ERROR << 16; 1447 cmd->scsi_done(cmd); 1448 return 0; 1449 } 1450 1451 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1452 if (orb == NULL) { 1453 fw_notify("failed to alloc orb\n"); 1454 return SCSI_MLQUEUE_HOST_BUSY; 1455 } 1456 1457 /* Initialize rcode to something not RCODE_COMPLETE. */ 1458 orb->base.rcode = -1; 1459 kref_init(&orb->base.kref); 1460 orb->lu = lu; 1461 orb->cmd = cmd; 1462 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1463 orb->request.misc = cpu_to_be32( 1464 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1465 COMMAND_ORB_SPEED(device->max_speed) | 1466 COMMAND_ORB_NOTIFY); 1467 1468 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1469 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1470 1471 generation = device->generation; 1472 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1473 1474 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1475 goto out; 1476 1477 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1478 1479 orb->base.callback = complete_command_orb; 1480 orb->base.request_bus = 1481 dma_map_single(device->card->device, &orb->request, 1482 sizeof(orb->request), DMA_TO_DEVICE); 1483 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1484 sbp2_unmap_scatterlist(device->card->device, orb); 1485 goto out; 1486 } 1487 1488 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1489 lu->command_block_agent_address + SBP2_ORB_POINTER); 1490 retval = 0; 1491 out: 1492 kref_put(&orb->base.kref, free_orb); 1493 return retval; 1494 } 1495 1496 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1497 { 1498 struct sbp2_logical_unit *lu = sdev->hostdata; 1499 1500 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1501 if (!lu) 1502 return -ENOSYS; 1503 1504 sdev->allow_restart = 1; 1505 1506 /* SBP-2 requires quadlet alignment of the data buffers. */ 1507 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1508 1509 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1510 sdev->inquiry_len = 36; 1511 1512 return 0; 1513 } 1514 1515 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1516 { 1517 struct sbp2_logical_unit *lu = sdev->hostdata; 1518 1519 sdev->use_10_for_rw = 1; 1520 1521 if (sbp2_param_exclusive_login) 1522 sdev->manage_start_stop = 1; 1523 1524 if (sdev->type == TYPE_ROM) 1525 sdev->use_10_for_ms = 1; 1526 1527 if (sdev->type == TYPE_DISK && 1528 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1529 sdev->skip_ms_page_8 = 1; 1530 1531 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1532 sdev->fix_capacity = 1; 1533 1534 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1535 sdev->start_stop_pwr_cond = 1; 1536 1537 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1538 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); 1539 1540 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE); 1541 1542 return 0; 1543 } 1544 1545 /* 1546 * Called by scsi stack when something has really gone wrong. Usually 1547 * called when a command has timed-out for some reason. 1548 */ 1549 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1550 { 1551 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1552 1553 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id); 1554 sbp2_agent_reset(lu); 1555 sbp2_cancel_orbs(lu); 1556 1557 return SUCCESS; 1558 } 1559 1560 /* 1561 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1562 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1563 * 1564 * This is the concatenation of target port identifier and logical unit 1565 * identifier as per SAM-2...SAM-4 annex A. 1566 */ 1567 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1568 struct device_attribute *attr, char *buf) 1569 { 1570 struct scsi_device *sdev = to_scsi_device(dev); 1571 struct sbp2_logical_unit *lu; 1572 1573 if (!sdev) 1574 return 0; 1575 1576 lu = sdev->hostdata; 1577 1578 return sprintf(buf, "%016llx:%06x:%04x\n", 1579 (unsigned long long)lu->tgt->guid, 1580 lu->tgt->directory_id, lu->lun); 1581 } 1582 1583 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1584 1585 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { 1586 &dev_attr_ieee1394_id, 1587 NULL 1588 }; 1589 1590 static struct scsi_host_template scsi_driver_template = { 1591 .module = THIS_MODULE, 1592 .name = "SBP-2 IEEE-1394", 1593 .proc_name = sbp2_driver_name, 1594 .queuecommand = sbp2_scsi_queuecommand, 1595 .slave_alloc = sbp2_scsi_slave_alloc, 1596 .slave_configure = sbp2_scsi_slave_configure, 1597 .eh_abort_handler = sbp2_scsi_abort, 1598 .this_id = -1, 1599 .sg_tablesize = SG_ALL, 1600 .use_clustering = ENABLE_CLUSTERING, 1601 .cmd_per_lun = 1, 1602 .can_queue = 1, 1603 .sdev_attrs = sbp2_scsi_sysfs_attrs, 1604 }; 1605 1606 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1607 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1608 MODULE_LICENSE("GPL"); 1609 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1610 1611 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1612 #ifndef CONFIG_IEEE1394_SBP2_MODULE 1613 MODULE_ALIAS("sbp2"); 1614 #endif 1615 1616 static int __init sbp2_init(void) 1617 { 1618 return driver_register(&sbp2_driver.driver); 1619 } 1620 1621 static void __exit sbp2_cleanup(void) 1622 { 1623 driver_unregister(&sbp2_driver.driver); 1624 } 1625 1626 module_init(sbp2_init); 1627 module_exit(sbp2_cleanup); 1628