xref: /linux/drivers/firewire/sbp2.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30 
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
53 
54 #include <asm/byteorder.h>
55 #include <asm/system.h>
56 
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_device.h>
60 #include <scsi/scsi_host.h>
61 
62 /*
63  * So far only bridges from Oxford Semiconductor are known to support
64  * concurrent logins. Depending on firmware, four or two concurrent logins
65  * are possible on OXFW911 and newer Oxsemi bridges.
66  *
67  * Concurrent logins are useful together with cluster filesystems.
68  */
69 static bool sbp2_param_exclusive_login = 1;
70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72 		 "(default = Y, use N for concurrent initiators)");
73 
74 /*
75  * Flags for firmware oddities
76  *
77  * - 128kB max transfer
78  *   Limit transfer size. Necessary for some old bridges.
79  *
80  * - 36 byte inquiry
81  *   When scsi_mod probes the device, let the inquiry command look like that
82  *   from MS Windows.
83  *
84  * - skip mode page 8
85  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
86  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
87  *
88  * - fix capacity
89  *   Tell sd_mod to correct the last sector number reported by read_capacity.
90  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
91  *   Don't use this with devices which don't have this bug.
92  *
93  * - delay inquiry
94  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
95  *
96  * - power condition
97  *   Set the power condition field in the START STOP UNIT commands sent by
98  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99  *   Some disks need this to spin down or to resume properly.
100  *
101  * - override internal blacklist
102  *   Instead of adding to the built-in blacklist, use only the workarounds
103  *   specified in the module load parameter.
104  *   Useful if a blacklist entry interfered with a non-broken device.
105  */
106 #define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
107 #define SBP2_WORKAROUND_INQUIRY_36	0x2
108 #define SBP2_WORKAROUND_MODE_SENSE_8	0x4
109 #define SBP2_WORKAROUND_FIX_CAPACITY	0x8
110 #define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
111 #define SBP2_INQUIRY_DELAY		12
112 #define SBP2_WORKAROUND_POWER_CONDITION	0x20
113 #define SBP2_WORKAROUND_OVERRIDE	0x100
114 
115 static int sbp2_param_workarounds;
116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118 	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119 	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
120 	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121 	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122 	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123 	", set power condition in start stop unit = "
124 				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125 	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126 	", or a combination)");
127 
128 static const char sbp2_driver_name[] = "sbp2";
129 
130 /*
131  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
132  * and one struct scsi_device per sbp2_logical_unit.
133  */
134 struct sbp2_logical_unit {
135 	struct sbp2_target *tgt;
136 	struct list_head link;
137 	struct fw_address_handler address_handler;
138 	struct list_head orb_list;
139 
140 	u64 command_block_agent_address;
141 	u16 lun;
142 	int login_id;
143 
144 	/*
145 	 * The generation is updated once we've logged in or reconnected
146 	 * to the logical unit.  Thus, I/O to the device will automatically
147 	 * fail and get retried if it happens in a window where the device
148 	 * is not ready, e.g. after a bus reset but before we reconnect.
149 	 */
150 	int generation;
151 	int retries;
152 	struct delayed_work work;
153 	bool has_sdev;
154 	bool blocked;
155 };
156 
157 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
158 {
159 	queue_delayed_work(fw_workqueue, &lu->work, delay);
160 }
161 
162 /*
163  * We create one struct sbp2_target per IEEE 1212 Unit Directory
164  * and one struct Scsi_Host per sbp2_target.
165  */
166 struct sbp2_target {
167 	struct fw_unit *unit;
168 	const char *bus_id;
169 	struct list_head lu_list;
170 
171 	u64 management_agent_address;
172 	u64 guid;
173 	int directory_id;
174 	int node_id;
175 	int address_high;
176 	unsigned int workarounds;
177 	unsigned int mgt_orb_timeout;
178 	unsigned int max_payload;
179 
180 	int dont_block;	/* counter for each logical unit */
181 	int blocked;	/* ditto */
182 };
183 
184 static struct fw_device *target_device(struct sbp2_target *tgt)
185 {
186 	return fw_parent_device(tgt->unit);
187 }
188 
189 /* Impossible login_id, to detect logout attempt before successful login */
190 #define INVALID_LOGIN_ID 0x10000
191 
192 #define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
193 #define SBP2_ORB_NULL			0x80000000
194 #define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
195 #define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
196 
197 /*
198  * There is no transport protocol limit to the CDB length,  but we implement
199  * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
200  */
201 #define SBP2_MAX_CDB_SIZE		16
202 
203 /*
204  * The default maximum s/g segment size of a FireWire controller is
205  * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
206  * be quadlet-aligned, we set the length limit to 0xffff & ~3.
207  */
208 #define SBP2_MAX_SEG_SIZE		0xfffc
209 
210 /* Unit directory keys */
211 #define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
212 #define SBP2_CSR_FIRMWARE_REVISION	0x3c
213 #define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
214 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
215 
216 /* Management orb opcodes */
217 #define SBP2_LOGIN_REQUEST		0x0
218 #define SBP2_QUERY_LOGINS_REQUEST	0x1
219 #define SBP2_RECONNECT_REQUEST		0x3
220 #define SBP2_SET_PASSWORD_REQUEST	0x4
221 #define SBP2_LOGOUT_REQUEST		0x7
222 #define SBP2_ABORT_TASK_REQUEST		0xb
223 #define SBP2_ABORT_TASK_SET		0xc
224 #define SBP2_LOGICAL_UNIT_RESET		0xe
225 #define SBP2_TARGET_RESET_REQUEST	0xf
226 
227 /* Offsets for command block agent registers */
228 #define SBP2_AGENT_STATE		0x00
229 #define SBP2_AGENT_RESET		0x04
230 #define SBP2_ORB_POINTER		0x08
231 #define SBP2_DOORBELL			0x10
232 #define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
233 
234 /* Status write response codes */
235 #define SBP2_STATUS_REQUEST_COMPLETE	0x0
236 #define SBP2_STATUS_TRANSPORT_FAILURE	0x1
237 #define SBP2_STATUS_ILLEGAL_REQUEST	0x2
238 #define SBP2_STATUS_VENDOR_DEPENDENT	0x3
239 
240 #define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
241 #define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
242 #define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
243 #define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
244 #define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
245 #define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
246 #define STATUS_GET_ORB_LOW(v)		((v).orb_low)
247 #define STATUS_GET_DATA(v)		((v).data)
248 
249 struct sbp2_status {
250 	u32 status;
251 	u32 orb_low;
252 	u8 data[24];
253 };
254 
255 struct sbp2_pointer {
256 	__be32 high;
257 	__be32 low;
258 };
259 
260 struct sbp2_orb {
261 	struct fw_transaction t;
262 	struct kref kref;
263 	dma_addr_t request_bus;
264 	int rcode;
265 	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
266 	struct list_head link;
267 };
268 
269 #define MANAGEMENT_ORB_LUN(v)			((v))
270 #define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
271 #define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
272 #define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
273 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
274 #define MANAGEMENT_ORB_NOTIFY			((1) << 31)
275 
276 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
277 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
278 
279 struct sbp2_management_orb {
280 	struct sbp2_orb base;
281 	struct {
282 		struct sbp2_pointer password;
283 		struct sbp2_pointer response;
284 		__be32 misc;
285 		__be32 length;
286 		struct sbp2_pointer status_fifo;
287 	} request;
288 	__be32 response[4];
289 	dma_addr_t response_bus;
290 	struct completion done;
291 	struct sbp2_status status;
292 };
293 
294 struct sbp2_login_response {
295 	__be32 misc;
296 	struct sbp2_pointer command_block_agent;
297 	__be32 reconnect_hold;
298 };
299 #define COMMAND_ORB_DATA_SIZE(v)	((v))
300 #define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
301 #define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
302 #define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
303 #define COMMAND_ORB_SPEED(v)		((v) << 24)
304 #define COMMAND_ORB_DIRECTION		((1) << 27)
305 #define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
306 #define COMMAND_ORB_NOTIFY		((1) << 31)
307 
308 struct sbp2_command_orb {
309 	struct sbp2_orb base;
310 	struct {
311 		struct sbp2_pointer next;
312 		struct sbp2_pointer data_descriptor;
313 		__be32 misc;
314 		u8 command_block[SBP2_MAX_CDB_SIZE];
315 	} request;
316 	struct scsi_cmnd *cmd;
317 	struct sbp2_logical_unit *lu;
318 
319 	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
320 	dma_addr_t page_table_bus;
321 };
322 
323 #define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
324 #define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
325 
326 /*
327  * List of devices with known bugs.
328  *
329  * The firmware_revision field, masked with 0xffff00, is the best
330  * indicator for the type of bridge chip of a device.  It yields a few
331  * false positives but this did not break correctly behaving devices
332  * so far.
333  */
334 static const struct {
335 	u32 firmware_revision;
336 	u32 model;
337 	unsigned int workarounds;
338 } sbp2_workarounds_table[] = {
339 	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
340 		.firmware_revision	= 0x002800,
341 		.model			= 0x001010,
342 		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
343 					  SBP2_WORKAROUND_MODE_SENSE_8 |
344 					  SBP2_WORKAROUND_POWER_CONDITION,
345 	},
346 	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
347 		.firmware_revision	= 0x002800,
348 		.model			= 0x000000,
349 		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
350 	},
351 	/* Initio bridges, actually only needed for some older ones */ {
352 		.firmware_revision	= 0x000200,
353 		.model			= SBP2_ROM_VALUE_WILDCARD,
354 		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
355 	},
356 	/* PL-3507 bridge with Prolific firmware */ {
357 		.firmware_revision	= 0x012800,
358 		.model			= SBP2_ROM_VALUE_WILDCARD,
359 		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
360 	},
361 	/* Symbios bridge */ {
362 		.firmware_revision	= 0xa0b800,
363 		.model			= SBP2_ROM_VALUE_WILDCARD,
364 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
365 	},
366 	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
367 		.firmware_revision	= 0x002600,
368 		.model			= SBP2_ROM_VALUE_WILDCARD,
369 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
370 	},
371 	/*
372 	 * iPod 2nd generation: needs 128k max transfer size workaround
373 	 * iPod 3rd generation: needs fix capacity workaround
374 	 */
375 	{
376 		.firmware_revision	= 0x0a2700,
377 		.model			= 0x000000,
378 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
379 					  SBP2_WORKAROUND_FIX_CAPACITY,
380 	},
381 	/* iPod 4th generation */ {
382 		.firmware_revision	= 0x0a2700,
383 		.model			= 0x000021,
384 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
385 	},
386 	/* iPod mini */ {
387 		.firmware_revision	= 0x0a2700,
388 		.model			= 0x000022,
389 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
390 	},
391 	/* iPod mini */ {
392 		.firmware_revision	= 0x0a2700,
393 		.model			= 0x000023,
394 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
395 	},
396 	/* iPod Photo */ {
397 		.firmware_revision	= 0x0a2700,
398 		.model			= 0x00007e,
399 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
400 	}
401 };
402 
403 static void free_orb(struct kref *kref)
404 {
405 	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
406 
407 	kfree(orb);
408 }
409 
410 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
411 			      int tcode, int destination, int source,
412 			      int generation, unsigned long long offset,
413 			      void *payload, size_t length, void *callback_data)
414 {
415 	struct sbp2_logical_unit *lu = callback_data;
416 	struct sbp2_orb *orb;
417 	struct sbp2_status status;
418 	unsigned long flags;
419 
420 	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
421 	    length < 8 || length > sizeof(status)) {
422 		fw_send_response(card, request, RCODE_TYPE_ERROR);
423 		return;
424 	}
425 
426 	status.status  = be32_to_cpup(payload);
427 	status.orb_low = be32_to_cpup(payload + 4);
428 	memset(status.data, 0, sizeof(status.data));
429 	if (length > 8)
430 		memcpy(status.data, payload + 8, length - 8);
431 
432 	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
433 		fw_notify("non-orb related status write, not handled\n");
434 		fw_send_response(card, request, RCODE_COMPLETE);
435 		return;
436 	}
437 
438 	/* Lookup the orb corresponding to this status write. */
439 	spin_lock_irqsave(&card->lock, flags);
440 	list_for_each_entry(orb, &lu->orb_list, link) {
441 		if (STATUS_GET_ORB_HIGH(status) == 0 &&
442 		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
443 			orb->rcode = RCODE_COMPLETE;
444 			list_del(&orb->link);
445 			break;
446 		}
447 	}
448 	spin_unlock_irqrestore(&card->lock, flags);
449 
450 	if (&orb->link != &lu->orb_list) {
451 		orb->callback(orb, &status);
452 		kref_put(&orb->kref, free_orb); /* orb callback reference */
453 	} else {
454 		fw_error("status write for unknown orb\n");
455 	}
456 
457 	fw_send_response(card, request, RCODE_COMPLETE);
458 }
459 
460 static void complete_transaction(struct fw_card *card, int rcode,
461 				 void *payload, size_t length, void *data)
462 {
463 	struct sbp2_orb *orb = data;
464 	unsigned long flags;
465 
466 	/*
467 	 * This is a little tricky.  We can get the status write for
468 	 * the orb before we get this callback.  The status write
469 	 * handler above will assume the orb pointer transaction was
470 	 * successful and set the rcode to RCODE_COMPLETE for the orb.
471 	 * So this callback only sets the rcode if it hasn't already
472 	 * been set and only does the cleanup if the transaction
473 	 * failed and we didn't already get a status write.
474 	 */
475 	spin_lock_irqsave(&card->lock, flags);
476 
477 	if (orb->rcode == -1)
478 		orb->rcode = rcode;
479 	if (orb->rcode != RCODE_COMPLETE) {
480 		list_del(&orb->link);
481 		spin_unlock_irqrestore(&card->lock, flags);
482 
483 		orb->callback(orb, NULL);
484 		kref_put(&orb->kref, free_orb); /* orb callback reference */
485 	} else {
486 		spin_unlock_irqrestore(&card->lock, flags);
487 	}
488 
489 	kref_put(&orb->kref, free_orb); /* transaction callback reference */
490 }
491 
492 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
493 			  int node_id, int generation, u64 offset)
494 {
495 	struct fw_device *device = target_device(lu->tgt);
496 	struct sbp2_pointer orb_pointer;
497 	unsigned long flags;
498 
499 	orb_pointer.high = 0;
500 	orb_pointer.low = cpu_to_be32(orb->request_bus);
501 
502 	spin_lock_irqsave(&device->card->lock, flags);
503 	list_add_tail(&orb->link, &lu->orb_list);
504 	spin_unlock_irqrestore(&device->card->lock, flags);
505 
506 	kref_get(&orb->kref); /* transaction callback reference */
507 	kref_get(&orb->kref); /* orb callback reference */
508 
509 	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
510 			node_id, generation, device->max_speed, offset,
511 			&orb_pointer, 8, complete_transaction, orb);
512 }
513 
514 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
515 {
516 	struct fw_device *device = target_device(lu->tgt);
517 	struct sbp2_orb *orb, *next;
518 	struct list_head list;
519 	unsigned long flags;
520 	int retval = -ENOENT;
521 
522 	INIT_LIST_HEAD(&list);
523 	spin_lock_irqsave(&device->card->lock, flags);
524 	list_splice_init(&lu->orb_list, &list);
525 	spin_unlock_irqrestore(&device->card->lock, flags);
526 
527 	list_for_each_entry_safe(orb, next, &list, link) {
528 		retval = 0;
529 		if (fw_cancel_transaction(device->card, &orb->t) == 0)
530 			continue;
531 
532 		orb->rcode = RCODE_CANCELLED;
533 		orb->callback(orb, NULL);
534 		kref_put(&orb->kref, free_orb); /* orb callback reference */
535 	}
536 
537 	return retval;
538 }
539 
540 static void complete_management_orb(struct sbp2_orb *base_orb,
541 				    struct sbp2_status *status)
542 {
543 	struct sbp2_management_orb *orb =
544 		container_of(base_orb, struct sbp2_management_orb, base);
545 
546 	if (status)
547 		memcpy(&orb->status, status, sizeof(*status));
548 	complete(&orb->done);
549 }
550 
551 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
552 				    int generation, int function,
553 				    int lun_or_login_id, void *response)
554 {
555 	struct fw_device *device = target_device(lu->tgt);
556 	struct sbp2_management_orb *orb;
557 	unsigned int timeout;
558 	int retval = -ENOMEM;
559 
560 	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
561 		return 0;
562 
563 	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
564 	if (orb == NULL)
565 		return -ENOMEM;
566 
567 	kref_init(&orb->base.kref);
568 	orb->response_bus =
569 		dma_map_single(device->card->device, &orb->response,
570 			       sizeof(orb->response), DMA_FROM_DEVICE);
571 	if (dma_mapping_error(device->card->device, orb->response_bus))
572 		goto fail_mapping_response;
573 
574 	orb->request.response.high = 0;
575 	orb->request.response.low  = cpu_to_be32(orb->response_bus);
576 
577 	orb->request.misc = cpu_to_be32(
578 		MANAGEMENT_ORB_NOTIFY |
579 		MANAGEMENT_ORB_FUNCTION(function) |
580 		MANAGEMENT_ORB_LUN(lun_or_login_id));
581 	orb->request.length = cpu_to_be32(
582 		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
583 
584 	orb->request.status_fifo.high =
585 		cpu_to_be32(lu->address_handler.offset >> 32);
586 	orb->request.status_fifo.low  =
587 		cpu_to_be32(lu->address_handler.offset);
588 
589 	if (function == SBP2_LOGIN_REQUEST) {
590 		/* Ask for 2^2 == 4 seconds reconnect grace period */
591 		orb->request.misc |= cpu_to_be32(
592 			MANAGEMENT_ORB_RECONNECT(2) |
593 			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
594 		timeout = lu->tgt->mgt_orb_timeout;
595 	} else {
596 		timeout = SBP2_ORB_TIMEOUT;
597 	}
598 
599 	init_completion(&orb->done);
600 	orb->base.callback = complete_management_orb;
601 
602 	orb->base.request_bus =
603 		dma_map_single(device->card->device, &orb->request,
604 			       sizeof(orb->request), DMA_TO_DEVICE);
605 	if (dma_mapping_error(device->card->device, orb->base.request_bus))
606 		goto fail_mapping_request;
607 
608 	sbp2_send_orb(&orb->base, lu, node_id, generation,
609 		      lu->tgt->management_agent_address);
610 
611 	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
612 
613 	retval = -EIO;
614 	if (sbp2_cancel_orbs(lu) == 0) {
615 		fw_error("%s: orb reply timed out, rcode=0x%02x\n",
616 			 lu->tgt->bus_id, orb->base.rcode);
617 		goto out;
618 	}
619 
620 	if (orb->base.rcode != RCODE_COMPLETE) {
621 		fw_error("%s: management write failed, rcode 0x%02x\n",
622 			 lu->tgt->bus_id, orb->base.rcode);
623 		goto out;
624 	}
625 
626 	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
627 	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
628 		fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
629 			 STATUS_GET_RESPONSE(orb->status),
630 			 STATUS_GET_SBP_STATUS(orb->status));
631 		goto out;
632 	}
633 
634 	retval = 0;
635  out:
636 	dma_unmap_single(device->card->device, orb->base.request_bus,
637 			 sizeof(orb->request), DMA_TO_DEVICE);
638  fail_mapping_request:
639 	dma_unmap_single(device->card->device, orb->response_bus,
640 			 sizeof(orb->response), DMA_FROM_DEVICE);
641  fail_mapping_response:
642 	if (response)
643 		memcpy(response, orb->response, sizeof(orb->response));
644 	kref_put(&orb->base.kref, free_orb);
645 
646 	return retval;
647 }
648 
649 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
650 {
651 	struct fw_device *device = target_device(lu->tgt);
652 	__be32 d = 0;
653 
654 	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
655 			   lu->tgt->node_id, lu->generation, device->max_speed,
656 			   lu->command_block_agent_address + SBP2_AGENT_RESET,
657 			   &d, 4);
658 }
659 
660 static void complete_agent_reset_write_no_wait(struct fw_card *card,
661 		int rcode, void *payload, size_t length, void *data)
662 {
663 	kfree(data);
664 }
665 
666 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
667 {
668 	struct fw_device *device = target_device(lu->tgt);
669 	struct fw_transaction *t;
670 	static __be32 d;
671 
672 	t = kmalloc(sizeof(*t), GFP_ATOMIC);
673 	if (t == NULL)
674 		return;
675 
676 	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
677 			lu->tgt->node_id, lu->generation, device->max_speed,
678 			lu->command_block_agent_address + SBP2_AGENT_RESET,
679 			&d, 4, complete_agent_reset_write_no_wait, t);
680 }
681 
682 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
683 {
684 	/*
685 	 * We may access dont_block without taking card->lock here:
686 	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
687 	 * are currently serialized against each other.
688 	 * And a wrong result in sbp2_conditionally_block()'s access of
689 	 * dont_block is rather harmless, it simply misses its first chance.
690 	 */
691 	--lu->tgt->dont_block;
692 }
693 
694 /*
695  * Blocks lu->tgt if all of the following conditions are met:
696  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
697  *     logical units have been finished (indicated by dont_block == 0).
698  *   - lu->generation is stale.
699  *
700  * Note, scsi_block_requests() must be called while holding card->lock,
701  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
702  * unblock the target.
703  */
704 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
705 {
706 	struct sbp2_target *tgt = lu->tgt;
707 	struct fw_card *card = target_device(tgt)->card;
708 	struct Scsi_Host *shost =
709 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
710 	unsigned long flags;
711 
712 	spin_lock_irqsave(&card->lock, flags);
713 	if (!tgt->dont_block && !lu->blocked &&
714 	    lu->generation != card->generation) {
715 		lu->blocked = true;
716 		if (++tgt->blocked == 1)
717 			scsi_block_requests(shost);
718 	}
719 	spin_unlock_irqrestore(&card->lock, flags);
720 }
721 
722 /*
723  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
724  * Note, it is harmless to run scsi_unblock_requests() outside the
725  * card->lock protected section.  On the other hand, running it inside
726  * the section might clash with shost->host_lock.
727  */
728 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
729 {
730 	struct sbp2_target *tgt = lu->tgt;
731 	struct fw_card *card = target_device(tgt)->card;
732 	struct Scsi_Host *shost =
733 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
734 	unsigned long flags;
735 	bool unblock = false;
736 
737 	spin_lock_irqsave(&card->lock, flags);
738 	if (lu->blocked && lu->generation == card->generation) {
739 		lu->blocked = false;
740 		unblock = --tgt->blocked == 0;
741 	}
742 	spin_unlock_irqrestore(&card->lock, flags);
743 
744 	if (unblock)
745 		scsi_unblock_requests(shost);
746 }
747 
748 /*
749  * Prevents future blocking of tgt and unblocks it.
750  * Note, it is harmless to run scsi_unblock_requests() outside the
751  * card->lock protected section.  On the other hand, running it inside
752  * the section might clash with shost->host_lock.
753  */
754 static void sbp2_unblock(struct sbp2_target *tgt)
755 {
756 	struct fw_card *card = target_device(tgt)->card;
757 	struct Scsi_Host *shost =
758 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
759 	unsigned long flags;
760 
761 	spin_lock_irqsave(&card->lock, flags);
762 	++tgt->dont_block;
763 	spin_unlock_irqrestore(&card->lock, flags);
764 
765 	scsi_unblock_requests(shost);
766 }
767 
768 static int sbp2_lun2int(u16 lun)
769 {
770 	struct scsi_lun eight_bytes_lun;
771 
772 	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
773 	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
774 	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
775 
776 	return scsilun_to_int(&eight_bytes_lun);
777 }
778 
779 /*
780  * Write retransmit retry values into the BUSY_TIMEOUT register.
781  * - The single-phase retry protocol is supported by all SBP-2 devices, but the
782  *   default retry_limit value is 0 (i.e. never retry transmission). We write a
783  *   saner value after logging into the device.
784  * - The dual-phase retry protocol is optional to implement, and if not
785  *   supported, writes to the dual-phase portion of the register will be
786  *   ignored. We try to write the original 1394-1995 default here.
787  * - In the case of devices that are also SBP-3-compliant, all writes are
788  *   ignored, as the register is read-only, but contains single-phase retry of
789  *   15, which is what we're trying to set for all SBP-2 device anyway, so this
790  *   write attempt is safe and yields more consistent behavior for all devices.
791  *
792  * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
793  * and section 6.4 of the SBP-3 spec for further details.
794  */
795 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
796 {
797 	struct fw_device *device = target_device(lu->tgt);
798 	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
799 
800 	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
801 			   lu->tgt->node_id, lu->generation, device->max_speed,
802 			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
803 }
804 
805 static void sbp2_reconnect(struct work_struct *work);
806 
807 static void sbp2_login(struct work_struct *work)
808 {
809 	struct sbp2_logical_unit *lu =
810 		container_of(work, struct sbp2_logical_unit, work.work);
811 	struct sbp2_target *tgt = lu->tgt;
812 	struct fw_device *device = target_device(tgt);
813 	struct Scsi_Host *shost;
814 	struct scsi_device *sdev;
815 	struct sbp2_login_response response;
816 	int generation, node_id, local_node_id;
817 
818 	if (fw_device_is_shutdown(device))
819 		return;
820 
821 	generation    = device->generation;
822 	smp_rmb();    /* node IDs must not be older than generation */
823 	node_id       = device->node_id;
824 	local_node_id = device->card->node_id;
825 
826 	/* If this is a re-login attempt, log out, or we might be rejected. */
827 	if (lu->has_sdev)
828 		sbp2_send_management_orb(lu, device->node_id, generation,
829 				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
830 
831 	if (sbp2_send_management_orb(lu, node_id, generation,
832 				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
833 		if (lu->retries++ < 5) {
834 			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
835 		} else {
836 			fw_error("%s: failed to login to LUN %04x\n",
837 				 tgt->bus_id, lu->lun);
838 			/* Let any waiting I/O fail from now on. */
839 			sbp2_unblock(lu->tgt);
840 		}
841 		return;
842 	}
843 
844 	tgt->node_id	  = node_id;
845 	tgt->address_high = local_node_id << 16;
846 	smp_wmb();	  /* node IDs must not be older than generation */
847 	lu->generation	  = generation;
848 
849 	lu->command_block_agent_address =
850 		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
851 		      << 32) | be32_to_cpu(response.command_block_agent.low);
852 	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
853 
854 	fw_notify("%s: logged in to LUN %04x (%d retries)\n",
855 		  tgt->bus_id, lu->lun, lu->retries);
856 
857 	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
858 	sbp2_set_busy_timeout(lu);
859 
860 	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
861 	sbp2_agent_reset(lu);
862 
863 	/* This was a re-login. */
864 	if (lu->has_sdev) {
865 		sbp2_cancel_orbs(lu);
866 		sbp2_conditionally_unblock(lu);
867 
868 		return;
869 	}
870 
871 	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
872 		ssleep(SBP2_INQUIRY_DELAY);
873 
874 	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
875 	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
876 	/*
877 	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
878 	 * Therefore __scsi_add_device() will get into trouble if a bus reset
879 	 * happens in parallel.  It will either fail or leave us with an
880 	 * unusable sdev.  As a workaround we check for this and retry the
881 	 * whole login and SCSI probing.
882 	 */
883 
884 	/* Reported error during __scsi_add_device() */
885 	if (IS_ERR(sdev))
886 		goto out_logout_login;
887 
888 	/* Unreported error during __scsi_add_device() */
889 	smp_rmb(); /* get current card generation */
890 	if (generation != device->card->generation) {
891 		scsi_remove_device(sdev);
892 		scsi_device_put(sdev);
893 		goto out_logout_login;
894 	}
895 
896 	/* No error during __scsi_add_device() */
897 	lu->has_sdev = true;
898 	scsi_device_put(sdev);
899 	sbp2_allow_block(lu);
900 
901 	return;
902 
903  out_logout_login:
904 	smp_rmb(); /* generation may have changed */
905 	generation = device->generation;
906 	smp_rmb(); /* node_id must not be older than generation */
907 
908 	sbp2_send_management_orb(lu, device->node_id, generation,
909 				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
910 	/*
911 	 * If a bus reset happened, sbp2_update will have requeued
912 	 * lu->work already.  Reset the work from reconnect to login.
913 	 */
914 	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
915 }
916 
917 static void sbp2_reconnect(struct work_struct *work)
918 {
919 	struct sbp2_logical_unit *lu =
920 		container_of(work, struct sbp2_logical_unit, work.work);
921 	struct sbp2_target *tgt = lu->tgt;
922 	struct fw_device *device = target_device(tgt);
923 	int generation, node_id, local_node_id;
924 
925 	if (fw_device_is_shutdown(device))
926 		return;
927 
928 	generation    = device->generation;
929 	smp_rmb();    /* node IDs must not be older than generation */
930 	node_id       = device->node_id;
931 	local_node_id = device->card->node_id;
932 
933 	if (sbp2_send_management_orb(lu, node_id, generation,
934 				     SBP2_RECONNECT_REQUEST,
935 				     lu->login_id, NULL) < 0) {
936 		/*
937 		 * If reconnect was impossible even though we are in the
938 		 * current generation, fall back and try to log in again.
939 		 *
940 		 * We could check for "Function rejected" status, but
941 		 * looking at the bus generation as simpler and more general.
942 		 */
943 		smp_rmb(); /* get current card generation */
944 		if (generation == device->card->generation ||
945 		    lu->retries++ >= 5) {
946 			fw_error("%s: failed to reconnect\n", tgt->bus_id);
947 			lu->retries = 0;
948 			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
949 		}
950 		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
951 
952 		return;
953 	}
954 
955 	tgt->node_id      = node_id;
956 	tgt->address_high = local_node_id << 16;
957 	smp_wmb();	  /* node IDs must not be older than generation */
958 	lu->generation	  = generation;
959 
960 	fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
961 		  tgt->bus_id, lu->lun, lu->retries);
962 
963 	sbp2_agent_reset(lu);
964 	sbp2_cancel_orbs(lu);
965 	sbp2_conditionally_unblock(lu);
966 }
967 
968 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
969 {
970 	struct sbp2_logical_unit *lu;
971 
972 	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
973 	if (!lu)
974 		return -ENOMEM;
975 
976 	lu->address_handler.length           = 0x100;
977 	lu->address_handler.address_callback = sbp2_status_write;
978 	lu->address_handler.callback_data    = lu;
979 
980 	if (fw_core_add_address_handler(&lu->address_handler,
981 					&fw_high_memory_region) < 0) {
982 		kfree(lu);
983 		return -ENOMEM;
984 	}
985 
986 	lu->tgt      = tgt;
987 	lu->lun      = lun_entry & 0xffff;
988 	lu->login_id = INVALID_LOGIN_ID;
989 	lu->retries  = 0;
990 	lu->has_sdev = false;
991 	lu->blocked  = false;
992 	++tgt->dont_block;
993 	INIT_LIST_HEAD(&lu->orb_list);
994 	INIT_DELAYED_WORK(&lu->work, sbp2_login);
995 
996 	list_add_tail(&lu->link, &tgt->lu_list);
997 	return 0;
998 }
999 
1000 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1001 				      const u32 *directory)
1002 {
1003 	struct fw_csr_iterator ci;
1004 	int key, value;
1005 
1006 	fw_csr_iterator_init(&ci, directory);
1007 	while (fw_csr_iterator_next(&ci, &key, &value))
1008 		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1009 		    sbp2_add_logical_unit(tgt, value) < 0)
1010 			return -ENOMEM;
1011 	return 0;
1012 }
1013 
1014 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1015 			      u32 *model, u32 *firmware_revision)
1016 {
1017 	struct fw_csr_iterator ci;
1018 	int key, value;
1019 
1020 	fw_csr_iterator_init(&ci, directory);
1021 	while (fw_csr_iterator_next(&ci, &key, &value)) {
1022 		switch (key) {
1023 
1024 		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1025 			tgt->management_agent_address =
1026 					CSR_REGISTER_BASE + 4 * value;
1027 			break;
1028 
1029 		case CSR_DIRECTORY_ID:
1030 			tgt->directory_id = value;
1031 			break;
1032 
1033 		case CSR_MODEL:
1034 			*model = value;
1035 			break;
1036 
1037 		case SBP2_CSR_FIRMWARE_REVISION:
1038 			*firmware_revision = value;
1039 			break;
1040 
1041 		case SBP2_CSR_UNIT_CHARACTERISTICS:
1042 			/* the timeout value is stored in 500ms units */
1043 			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1044 			break;
1045 
1046 		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1047 			if (sbp2_add_logical_unit(tgt, value) < 0)
1048 				return -ENOMEM;
1049 			break;
1050 
1051 		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1052 			/* Adjust for the increment in the iterator */
1053 			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1054 				return -ENOMEM;
1055 			break;
1056 		}
1057 	}
1058 	return 0;
1059 }
1060 
1061 /*
1062  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1063  * provided in the config rom. Most devices do provide a value, which
1064  * we'll use for login management orbs, but with some sane limits.
1065  */
1066 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1067 {
1068 	unsigned int timeout = tgt->mgt_orb_timeout;
1069 
1070 	if (timeout > 40000)
1071 		fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
1072 			  tgt->bus_id, timeout / 1000);
1073 
1074 	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1075 }
1076 
1077 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1078 				  u32 firmware_revision)
1079 {
1080 	int i;
1081 	unsigned int w = sbp2_param_workarounds;
1082 
1083 	if (w)
1084 		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1085 			  "if you need the workarounds parameter for %s\n",
1086 			  tgt->bus_id);
1087 
1088 	if (w & SBP2_WORKAROUND_OVERRIDE)
1089 		goto out;
1090 
1091 	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1092 
1093 		if (sbp2_workarounds_table[i].firmware_revision !=
1094 		    (firmware_revision & 0xffffff00))
1095 			continue;
1096 
1097 		if (sbp2_workarounds_table[i].model != model &&
1098 		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1099 			continue;
1100 
1101 		w |= sbp2_workarounds_table[i].workarounds;
1102 		break;
1103 	}
1104  out:
1105 	if (w)
1106 		fw_notify("Workarounds for %s: 0x%x "
1107 			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1108 			  tgt->bus_id, w, firmware_revision, model);
1109 	tgt->workarounds = w;
1110 }
1111 
1112 static struct scsi_host_template scsi_driver_template;
1113 static int sbp2_remove(struct device *dev);
1114 
1115 static int sbp2_probe(struct device *dev)
1116 {
1117 	struct fw_unit *unit = fw_unit(dev);
1118 	struct fw_device *device = fw_parent_device(unit);
1119 	struct sbp2_target *tgt;
1120 	struct sbp2_logical_unit *lu;
1121 	struct Scsi_Host *shost;
1122 	u32 model, firmware_revision;
1123 
1124 	if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1125 		BUG_ON(dma_set_max_seg_size(device->card->device,
1126 					    SBP2_MAX_SEG_SIZE));
1127 
1128 	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1129 	if (shost == NULL)
1130 		return -ENOMEM;
1131 
1132 	tgt = (struct sbp2_target *)shost->hostdata;
1133 	dev_set_drvdata(&unit->device, tgt);
1134 	tgt->unit = unit;
1135 	INIT_LIST_HEAD(&tgt->lu_list);
1136 	tgt->bus_id = dev_name(&unit->device);
1137 	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1138 
1139 	if (fw_device_enable_phys_dma(device) < 0)
1140 		goto fail_shost_put;
1141 
1142 	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1143 
1144 	if (scsi_add_host(shost, &unit->device) < 0)
1145 		goto fail_shost_put;
1146 
1147 	/* implicit directory ID */
1148 	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1149 			     + CSR_CONFIG_ROM) & 0xffffff;
1150 
1151 	firmware_revision = SBP2_ROM_VALUE_MISSING;
1152 	model		  = SBP2_ROM_VALUE_MISSING;
1153 
1154 	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1155 			       &firmware_revision) < 0)
1156 		goto fail_remove;
1157 
1158 	sbp2_clamp_management_orb_timeout(tgt);
1159 	sbp2_init_workarounds(tgt, model, firmware_revision);
1160 
1161 	/*
1162 	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1163 	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1164 	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1165 	 * if we set this to max_speed + 7, we get the right value.
1166 	 */
1167 	tgt->max_payload = min3(device->max_speed + 7, 10U,
1168 				device->card->max_receive - 1);
1169 
1170 	/* Do the login in a workqueue so we can easily reschedule retries. */
1171 	list_for_each_entry(lu, &tgt->lu_list, link)
1172 		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1173 
1174 	return 0;
1175 
1176  fail_remove:
1177 	sbp2_remove(dev);
1178 	return -ENOMEM;
1179 
1180  fail_shost_put:
1181 	scsi_host_put(shost);
1182 	return -ENOMEM;
1183 }
1184 
1185 static void sbp2_update(struct fw_unit *unit)
1186 {
1187 	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1188 	struct sbp2_logical_unit *lu;
1189 
1190 	fw_device_enable_phys_dma(fw_parent_device(unit));
1191 
1192 	/*
1193 	 * Fw-core serializes sbp2_update() against sbp2_remove().
1194 	 * Iteration over tgt->lu_list is therefore safe here.
1195 	 */
1196 	list_for_each_entry(lu, &tgt->lu_list, link) {
1197 		sbp2_conditionally_block(lu);
1198 		lu->retries = 0;
1199 		sbp2_queue_work(lu, 0);
1200 	}
1201 }
1202 
1203 static int sbp2_remove(struct device *dev)
1204 {
1205 	struct fw_unit *unit = fw_unit(dev);
1206 	struct fw_device *device = fw_parent_device(unit);
1207 	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1208 	struct sbp2_logical_unit *lu, *next;
1209 	struct Scsi_Host *shost =
1210 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1211 	struct scsi_device *sdev;
1212 
1213 	/* prevent deadlocks */
1214 	sbp2_unblock(tgt);
1215 
1216 	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1217 		cancel_delayed_work_sync(&lu->work);
1218 		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1219 		if (sdev) {
1220 			scsi_remove_device(sdev);
1221 			scsi_device_put(sdev);
1222 		}
1223 		if (lu->login_id != INVALID_LOGIN_ID) {
1224 			int generation, node_id;
1225 			/*
1226 			 * tgt->node_id may be obsolete here if we failed
1227 			 * during initial login or after a bus reset where
1228 			 * the topology changed.
1229 			 */
1230 			generation = device->generation;
1231 			smp_rmb(); /* node_id vs. generation */
1232 			node_id    = device->node_id;
1233 			sbp2_send_management_orb(lu, node_id, generation,
1234 						 SBP2_LOGOUT_REQUEST,
1235 						 lu->login_id, NULL);
1236 		}
1237 		fw_core_remove_address_handler(&lu->address_handler);
1238 		list_del(&lu->link);
1239 		kfree(lu);
1240 	}
1241 	scsi_remove_host(shost);
1242 	fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
1243 
1244 	scsi_host_put(shost);
1245 	return 0;
1246 }
1247 
1248 #define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1249 #define SBP2_SW_VERSION_ENTRY	0x00010483
1250 
1251 static const struct ieee1394_device_id sbp2_id_table[] = {
1252 	{
1253 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1254 				IEEE1394_MATCH_VERSION,
1255 		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1256 		.version      = SBP2_SW_VERSION_ENTRY,
1257 	},
1258 	{ }
1259 };
1260 
1261 static struct fw_driver sbp2_driver = {
1262 	.driver   = {
1263 		.owner  = THIS_MODULE,
1264 		.name   = sbp2_driver_name,
1265 		.bus    = &fw_bus_type,
1266 		.probe  = sbp2_probe,
1267 		.remove = sbp2_remove,
1268 	},
1269 	.update   = sbp2_update,
1270 	.id_table = sbp2_id_table,
1271 };
1272 
1273 static void sbp2_unmap_scatterlist(struct device *card_device,
1274 				   struct sbp2_command_orb *orb)
1275 {
1276 	if (scsi_sg_count(orb->cmd))
1277 		dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1278 			     scsi_sg_count(orb->cmd),
1279 			     orb->cmd->sc_data_direction);
1280 
1281 	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1282 		dma_unmap_single(card_device, orb->page_table_bus,
1283 				 sizeof(orb->page_table), DMA_TO_DEVICE);
1284 }
1285 
1286 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1287 {
1288 	int sam_status;
1289 
1290 	sense_data[0] = 0x70;
1291 	sense_data[1] = 0x0;
1292 	sense_data[2] = sbp2_status[1];
1293 	sense_data[3] = sbp2_status[4];
1294 	sense_data[4] = sbp2_status[5];
1295 	sense_data[5] = sbp2_status[6];
1296 	sense_data[6] = sbp2_status[7];
1297 	sense_data[7] = 10;
1298 	sense_data[8] = sbp2_status[8];
1299 	sense_data[9] = sbp2_status[9];
1300 	sense_data[10] = sbp2_status[10];
1301 	sense_data[11] = sbp2_status[11];
1302 	sense_data[12] = sbp2_status[2];
1303 	sense_data[13] = sbp2_status[3];
1304 	sense_data[14] = sbp2_status[12];
1305 	sense_data[15] = sbp2_status[13];
1306 
1307 	sam_status = sbp2_status[0] & 0x3f;
1308 
1309 	switch (sam_status) {
1310 	case SAM_STAT_GOOD:
1311 	case SAM_STAT_CHECK_CONDITION:
1312 	case SAM_STAT_CONDITION_MET:
1313 	case SAM_STAT_BUSY:
1314 	case SAM_STAT_RESERVATION_CONFLICT:
1315 	case SAM_STAT_COMMAND_TERMINATED:
1316 		return DID_OK << 16 | sam_status;
1317 
1318 	default:
1319 		return DID_ERROR << 16;
1320 	}
1321 }
1322 
1323 static void complete_command_orb(struct sbp2_orb *base_orb,
1324 				 struct sbp2_status *status)
1325 {
1326 	struct sbp2_command_orb *orb =
1327 		container_of(base_orb, struct sbp2_command_orb, base);
1328 	struct fw_device *device = target_device(orb->lu->tgt);
1329 	int result;
1330 
1331 	if (status != NULL) {
1332 		if (STATUS_GET_DEAD(*status))
1333 			sbp2_agent_reset_no_wait(orb->lu);
1334 
1335 		switch (STATUS_GET_RESPONSE(*status)) {
1336 		case SBP2_STATUS_REQUEST_COMPLETE:
1337 			result = DID_OK << 16;
1338 			break;
1339 		case SBP2_STATUS_TRANSPORT_FAILURE:
1340 			result = DID_BUS_BUSY << 16;
1341 			break;
1342 		case SBP2_STATUS_ILLEGAL_REQUEST:
1343 		case SBP2_STATUS_VENDOR_DEPENDENT:
1344 		default:
1345 			result = DID_ERROR << 16;
1346 			break;
1347 		}
1348 
1349 		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1350 			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1351 							   orb->cmd->sense_buffer);
1352 	} else {
1353 		/*
1354 		 * If the orb completes with status == NULL, something
1355 		 * went wrong, typically a bus reset happened mid-orb
1356 		 * or when sending the write (less likely).
1357 		 */
1358 		result = DID_BUS_BUSY << 16;
1359 		sbp2_conditionally_block(orb->lu);
1360 	}
1361 
1362 	dma_unmap_single(device->card->device, orb->base.request_bus,
1363 			 sizeof(orb->request), DMA_TO_DEVICE);
1364 	sbp2_unmap_scatterlist(device->card->device, orb);
1365 
1366 	orb->cmd->result = result;
1367 	orb->cmd->scsi_done(orb->cmd);
1368 }
1369 
1370 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1371 		struct fw_device *device, struct sbp2_logical_unit *lu)
1372 {
1373 	struct scatterlist *sg = scsi_sglist(orb->cmd);
1374 	int i, n;
1375 
1376 	n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1377 		       orb->cmd->sc_data_direction);
1378 	if (n == 0)
1379 		goto fail;
1380 
1381 	/*
1382 	 * Handle the special case where there is only one element in
1383 	 * the scatter list by converting it to an immediate block
1384 	 * request. This is also a workaround for broken devices such
1385 	 * as the second generation iPod which doesn't support page
1386 	 * tables.
1387 	 */
1388 	if (n == 1) {
1389 		orb->request.data_descriptor.high =
1390 			cpu_to_be32(lu->tgt->address_high);
1391 		orb->request.data_descriptor.low  =
1392 			cpu_to_be32(sg_dma_address(sg));
1393 		orb->request.misc |=
1394 			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1395 		return 0;
1396 	}
1397 
1398 	for_each_sg(sg, sg, n, i) {
1399 		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1400 		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1401 	}
1402 
1403 	orb->page_table_bus =
1404 		dma_map_single(device->card->device, orb->page_table,
1405 			       sizeof(orb->page_table), DMA_TO_DEVICE);
1406 	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1407 		goto fail_page_table;
1408 
1409 	/*
1410 	 * The data_descriptor pointer is the one case where we need
1411 	 * to fill in the node ID part of the address.  All other
1412 	 * pointers assume that the data referenced reside on the
1413 	 * initiator (i.e. us), but data_descriptor can refer to data
1414 	 * on other nodes so we need to put our ID in descriptor.high.
1415 	 */
1416 	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1417 	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1418 	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1419 					 COMMAND_ORB_DATA_SIZE(n));
1420 
1421 	return 0;
1422 
1423  fail_page_table:
1424 	dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1425 		     scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1426  fail:
1427 	return -ENOMEM;
1428 }
1429 
1430 /* SCSI stack integration */
1431 
1432 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1433 				  struct scsi_cmnd *cmd)
1434 {
1435 	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1436 	struct fw_device *device = target_device(lu->tgt);
1437 	struct sbp2_command_orb *orb;
1438 	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1439 
1440 	/*
1441 	 * Bidirectional commands are not yet implemented, and unknown
1442 	 * transfer direction not handled.
1443 	 */
1444 	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1445 		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1446 		cmd->result = DID_ERROR << 16;
1447 		cmd->scsi_done(cmd);
1448 		return 0;
1449 	}
1450 
1451 	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1452 	if (orb == NULL) {
1453 		fw_notify("failed to alloc orb\n");
1454 		return SCSI_MLQUEUE_HOST_BUSY;
1455 	}
1456 
1457 	/* Initialize rcode to something not RCODE_COMPLETE. */
1458 	orb->base.rcode = -1;
1459 	kref_init(&orb->base.kref);
1460 	orb->lu = lu;
1461 	orb->cmd = cmd;
1462 	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1463 	orb->request.misc = cpu_to_be32(
1464 		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1465 		COMMAND_ORB_SPEED(device->max_speed) |
1466 		COMMAND_ORB_NOTIFY);
1467 
1468 	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1469 		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1470 
1471 	generation = device->generation;
1472 	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1473 
1474 	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1475 		goto out;
1476 
1477 	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1478 
1479 	orb->base.callback = complete_command_orb;
1480 	orb->base.request_bus =
1481 		dma_map_single(device->card->device, &orb->request,
1482 			       sizeof(orb->request), DMA_TO_DEVICE);
1483 	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1484 		sbp2_unmap_scatterlist(device->card->device, orb);
1485 		goto out;
1486 	}
1487 
1488 	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1489 		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1490 	retval = 0;
1491  out:
1492 	kref_put(&orb->base.kref, free_orb);
1493 	return retval;
1494 }
1495 
1496 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1497 {
1498 	struct sbp2_logical_unit *lu = sdev->hostdata;
1499 
1500 	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1501 	if (!lu)
1502 		return -ENOSYS;
1503 
1504 	sdev->allow_restart = 1;
1505 
1506 	/* SBP-2 requires quadlet alignment of the data buffers. */
1507 	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1508 
1509 	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1510 		sdev->inquiry_len = 36;
1511 
1512 	return 0;
1513 }
1514 
1515 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1516 {
1517 	struct sbp2_logical_unit *lu = sdev->hostdata;
1518 
1519 	sdev->use_10_for_rw = 1;
1520 
1521 	if (sbp2_param_exclusive_login)
1522 		sdev->manage_start_stop = 1;
1523 
1524 	if (sdev->type == TYPE_ROM)
1525 		sdev->use_10_for_ms = 1;
1526 
1527 	if (sdev->type == TYPE_DISK &&
1528 	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1529 		sdev->skip_ms_page_8 = 1;
1530 
1531 	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1532 		sdev->fix_capacity = 1;
1533 
1534 	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1535 		sdev->start_stop_pwr_cond = 1;
1536 
1537 	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1538 		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1539 
1540 	blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1541 
1542 	return 0;
1543 }
1544 
1545 /*
1546  * Called by scsi stack when something has really gone wrong.  Usually
1547  * called when a command has timed-out for some reason.
1548  */
1549 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1550 {
1551 	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1552 
1553 	fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1554 	sbp2_agent_reset(lu);
1555 	sbp2_cancel_orbs(lu);
1556 
1557 	return SUCCESS;
1558 }
1559 
1560 /*
1561  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1562  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1563  *
1564  * This is the concatenation of target port identifier and logical unit
1565  * identifier as per SAM-2...SAM-4 annex A.
1566  */
1567 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1568 			struct device_attribute *attr, char *buf)
1569 {
1570 	struct scsi_device *sdev = to_scsi_device(dev);
1571 	struct sbp2_logical_unit *lu;
1572 
1573 	if (!sdev)
1574 		return 0;
1575 
1576 	lu = sdev->hostdata;
1577 
1578 	return sprintf(buf, "%016llx:%06x:%04x\n",
1579 			(unsigned long long)lu->tgt->guid,
1580 			lu->tgt->directory_id, lu->lun);
1581 }
1582 
1583 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1584 
1585 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1586 	&dev_attr_ieee1394_id,
1587 	NULL
1588 };
1589 
1590 static struct scsi_host_template scsi_driver_template = {
1591 	.module			= THIS_MODULE,
1592 	.name			= "SBP-2 IEEE-1394",
1593 	.proc_name		= sbp2_driver_name,
1594 	.queuecommand		= sbp2_scsi_queuecommand,
1595 	.slave_alloc		= sbp2_scsi_slave_alloc,
1596 	.slave_configure	= sbp2_scsi_slave_configure,
1597 	.eh_abort_handler	= sbp2_scsi_abort,
1598 	.this_id		= -1,
1599 	.sg_tablesize		= SG_ALL,
1600 	.use_clustering		= ENABLE_CLUSTERING,
1601 	.cmd_per_lun		= 1,
1602 	.can_queue		= 1,
1603 	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1604 };
1605 
1606 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1607 MODULE_DESCRIPTION("SCSI over IEEE1394");
1608 MODULE_LICENSE("GPL");
1609 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1610 
1611 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1612 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1613 MODULE_ALIAS("sbp2");
1614 #endif
1615 
1616 static int __init sbp2_init(void)
1617 {
1618 	return driver_register(&sbp2_driver.driver);
1619 }
1620 
1621 static void __exit sbp2_cleanup(void)
1622 {
1623 	driver_unregister(&sbp2_driver.driver);
1624 }
1625 
1626 module_init(sbp2_init);
1627 module_exit(sbp2_cleanup);
1628