1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SBP2 driver (SCSI over IEEE1394) 4 * 5 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 /* 9 * The basic structure of this driver is based on the old storage driver, 10 * drivers/ieee1394/sbp2.c, originally written by 11 * James Goodwin <jamesg@filanet.com> 12 * with later contributions and ongoing maintenance from 13 * Ben Collins <bcollins@debian.org>, 14 * Stefan Richter <stefanr@s5r6.in-berlin.de> 15 * and many others. 16 */ 17 18 #include <linux/blkdev.h> 19 #include <linux/bug.h> 20 #include <linux/completion.h> 21 #include <linux/delay.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/firewire.h> 25 #include <linux/firewire-constants.h> 26 #include <linux/init.h> 27 #include <linux/jiffies.h> 28 #include <linux/kernel.h> 29 #include <linux/kref.h> 30 #include <linux/list.h> 31 #include <linux/mod_devicetable.h> 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/scatterlist.h> 35 #include <linux/slab.h> 36 #include <linux/spinlock.h> 37 #include <linux/string.h> 38 #include <linux/stringify.h> 39 #include <linux/workqueue.h> 40 41 #include <asm/byteorder.h> 42 43 #include <scsi/scsi.h> 44 #include <scsi/scsi_cmnd.h> 45 #include <scsi/scsi_device.h> 46 #include <scsi/scsi_host.h> 47 48 /* 49 * So far only bridges from Oxford Semiconductor are known to support 50 * concurrent logins. Depending on firmware, four or two concurrent logins 51 * are possible on OXFW911 and newer Oxsemi bridges. 52 * 53 * Concurrent logins are useful together with cluster filesystems. 54 */ 55 static bool sbp2_param_exclusive_login = 1; 56 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 57 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 58 "(default = Y, use N for concurrent initiators)"); 59 60 /* 61 * Flags for firmware oddities 62 * 63 * - 128kB max transfer 64 * Limit transfer size. Necessary for some old bridges. 65 * 66 * - 36 byte inquiry 67 * When scsi_mod probes the device, let the inquiry command look like that 68 * from MS Windows. 69 * 70 * - skip mode page 8 71 * Suppress sending of mode_sense for mode page 8 if the device pretends to 72 * support the SCSI Primary Block commands instead of Reduced Block Commands. 73 * 74 * - fix capacity 75 * Tell sd_mod to correct the last sector number reported by read_capacity. 76 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 77 * Don't use this with devices which don't have this bug. 78 * 79 * - delay inquiry 80 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 81 * 82 * - power condition 83 * Set the power condition field in the START STOP UNIT commands sent by 84 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). 85 * Some disks need this to spin down or to resume properly. 86 * 87 * - override internal blacklist 88 * Instead of adding to the built-in blacklist, use only the workarounds 89 * specified in the module load parameter. 90 * Useful if a blacklist entry interfered with a non-broken device. 91 */ 92 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 93 #define SBP2_WORKAROUND_INQUIRY_36 0x2 94 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 95 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 96 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 97 #define SBP2_INQUIRY_DELAY 12 98 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 99 #define SBP2_WORKAROUND_OVERRIDE 0x100 100 101 static int sbp2_param_workarounds; 102 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 103 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 104 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 105 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 106 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 107 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 108 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 109 ", set power condition in start stop unit = " 110 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 111 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 112 ", or a combination)"); 113 114 /* 115 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 116 * and one struct scsi_device per sbp2_logical_unit. 117 */ 118 struct sbp2_logical_unit { 119 struct sbp2_target *tgt; 120 struct list_head link; 121 struct fw_address_handler address_handler; 122 struct list_head orb_list; 123 124 u64 command_block_agent_address; 125 u16 lun; 126 int login_id; 127 128 /* 129 * The generation is updated once we've logged in or reconnected 130 * to the logical unit. Thus, I/O to the device will automatically 131 * fail and get retried if it happens in a window where the device 132 * is not ready, e.g. after a bus reset but before we reconnect. 133 */ 134 int generation; 135 int retries; 136 work_func_t workfn; 137 struct delayed_work work; 138 bool has_sdev; 139 bool blocked; 140 }; 141 142 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 143 { 144 queue_delayed_work(fw_workqueue, &lu->work, delay); 145 } 146 147 /* 148 * We create one struct sbp2_target per IEEE 1212 Unit Directory 149 * and one struct Scsi_Host per sbp2_target. 150 */ 151 struct sbp2_target { 152 struct fw_unit *unit; 153 struct list_head lu_list; 154 155 u64 management_agent_address; 156 u64 guid; 157 int directory_id; 158 int node_id; 159 int address_high; 160 unsigned int workarounds; 161 unsigned int mgt_orb_timeout; 162 unsigned int max_payload; 163 164 spinlock_t lock; 165 int dont_block; /* counter for each logical unit */ 166 int blocked; /* ditto */ 167 }; 168 169 static struct fw_device *target_parent_device(struct sbp2_target *tgt) 170 { 171 return fw_parent_device(tgt->unit); 172 } 173 174 static const struct device *tgt_dev(const struct sbp2_target *tgt) 175 { 176 return &tgt->unit->device; 177 } 178 179 static const struct device *lu_dev(const struct sbp2_logical_unit *lu) 180 { 181 return &lu->tgt->unit->device; 182 } 183 184 /* Impossible login_id, to detect logout attempt before successful login */ 185 #define INVALID_LOGIN_ID 0x10000 186 187 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 188 #define SBP2_ORB_NULL 0x80000000 189 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 190 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 191 192 /* 193 * There is no transport protocol limit to the CDB length, but we implement 194 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 195 */ 196 #define SBP2_MAX_CDB_SIZE 16 197 198 /* 199 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this 200 * for compatibility with earlier versions of this driver. 201 */ 202 #define SBP2_MAX_SEG_SIZE 0xfffc 203 204 /* Unit directory keys */ 205 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 206 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 207 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 208 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d 209 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 210 211 /* Management orb opcodes */ 212 #define SBP2_LOGIN_REQUEST 0x0 213 #define SBP2_QUERY_LOGINS_REQUEST 0x1 214 #define SBP2_RECONNECT_REQUEST 0x3 215 #define SBP2_SET_PASSWORD_REQUEST 0x4 216 #define SBP2_LOGOUT_REQUEST 0x7 217 #define SBP2_ABORT_TASK_REQUEST 0xb 218 #define SBP2_ABORT_TASK_SET 0xc 219 #define SBP2_LOGICAL_UNIT_RESET 0xe 220 #define SBP2_TARGET_RESET_REQUEST 0xf 221 222 /* Offsets for command block agent registers */ 223 #define SBP2_AGENT_STATE 0x00 224 #define SBP2_AGENT_RESET 0x04 225 #define SBP2_ORB_POINTER 0x08 226 #define SBP2_DOORBELL 0x10 227 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 228 229 /* Status write response codes */ 230 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 231 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 232 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 233 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 234 235 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 236 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 237 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 238 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 239 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 240 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 241 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 242 #define STATUS_GET_DATA(v) ((v).data) 243 244 struct sbp2_status { 245 u32 status; 246 u32 orb_low; 247 u8 data[24]; 248 }; 249 250 struct sbp2_pointer { 251 __be32 high; 252 __be32 low; 253 }; 254 255 struct sbp2_orb { 256 struct fw_transaction t; 257 struct kref kref; 258 dma_addr_t request_bus; 259 int rcode; 260 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 261 struct sbp2_logical_unit *lu; 262 struct list_head link; 263 }; 264 265 #define MANAGEMENT_ORB_LUN(v) ((v)) 266 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 267 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 268 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 269 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 270 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 271 272 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 273 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 274 275 struct sbp2_management_orb { 276 struct sbp2_orb base; 277 struct { 278 struct sbp2_pointer password; 279 struct sbp2_pointer response; 280 __be32 misc; 281 __be32 length; 282 struct sbp2_pointer status_fifo; 283 } request; 284 __be32 response[4]; 285 dma_addr_t response_bus; 286 struct completion done; 287 struct sbp2_status status; 288 }; 289 290 struct sbp2_login_response { 291 __be32 misc; 292 struct sbp2_pointer command_block_agent; 293 __be32 reconnect_hold; 294 }; 295 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 296 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 297 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 298 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 299 #define COMMAND_ORB_SPEED(v) ((v) << 24) 300 #define COMMAND_ORB_DIRECTION ((1) << 27) 301 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 302 #define COMMAND_ORB_NOTIFY ((1) << 31) 303 304 struct sbp2_command_orb { 305 struct sbp2_orb base; 306 struct { 307 struct sbp2_pointer next; 308 struct sbp2_pointer data_descriptor; 309 __be32 misc; 310 u8 command_block[SBP2_MAX_CDB_SIZE]; 311 } request; 312 struct scsi_cmnd *cmd; 313 314 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 315 dma_addr_t page_table_bus; 316 }; 317 318 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 319 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 320 321 /* 322 * List of devices with known bugs. 323 * 324 * The firmware_revision field, masked with 0xffff00, is the best 325 * indicator for the type of bridge chip of a device. It yields a few 326 * false positives but this did not break correctly behaving devices 327 * so far. 328 */ 329 static const struct { 330 u32 firmware_revision; 331 u32 model; 332 unsigned int workarounds; 333 } sbp2_workarounds_table[] = { 334 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 335 .firmware_revision = 0x002800, 336 .model = 0x001010, 337 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 338 SBP2_WORKAROUND_MODE_SENSE_8 | 339 SBP2_WORKAROUND_POWER_CONDITION, 340 }, 341 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 342 .firmware_revision = 0x002800, 343 .model = 0x000000, 344 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 345 }, 346 /* Initio bridges, actually only needed for some older ones */ { 347 .firmware_revision = 0x000200, 348 .model = SBP2_ROM_VALUE_WILDCARD, 349 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 350 }, 351 /* PL-3507 bridge with Prolific firmware */ { 352 .firmware_revision = 0x012800, 353 .model = SBP2_ROM_VALUE_WILDCARD, 354 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 355 }, 356 /* Symbios bridge */ { 357 .firmware_revision = 0xa0b800, 358 .model = SBP2_ROM_VALUE_WILDCARD, 359 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 360 }, 361 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 362 .firmware_revision = 0x002600, 363 .model = SBP2_ROM_VALUE_WILDCARD, 364 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 365 }, 366 /* 367 * iPod 2nd generation: needs 128k max transfer size workaround 368 * iPod 3rd generation: needs fix capacity workaround 369 */ 370 { 371 .firmware_revision = 0x0a2700, 372 .model = 0x000000, 373 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 374 SBP2_WORKAROUND_FIX_CAPACITY, 375 }, 376 /* iPod 4th generation */ { 377 .firmware_revision = 0x0a2700, 378 .model = 0x000021, 379 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 380 }, 381 /* iPod mini */ { 382 .firmware_revision = 0x0a2700, 383 .model = 0x000022, 384 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 385 }, 386 /* iPod mini */ { 387 .firmware_revision = 0x0a2700, 388 .model = 0x000023, 389 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 390 }, 391 /* iPod Photo */ { 392 .firmware_revision = 0x0a2700, 393 .model = 0x00007e, 394 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 395 } 396 }; 397 398 static void free_orb(struct kref *kref) 399 { 400 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 401 402 kfree(orb); 403 } 404 405 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 406 int tcode, int destination, int source, 407 int generation, unsigned long long offset, 408 void *payload, size_t length, void *callback_data) 409 { 410 struct sbp2_logical_unit *lu = callback_data; 411 struct sbp2_orb *orb = NULL, *iter; 412 struct sbp2_status status; 413 unsigned long flags; 414 415 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 416 length < 8 || length > sizeof(status)) { 417 fw_send_response(card, request, RCODE_TYPE_ERROR); 418 return; 419 } 420 421 status.status = be32_to_cpup(payload); 422 status.orb_low = be32_to_cpup(payload + 4); 423 memset(status.data, 0, sizeof(status.data)); 424 if (length > 8) 425 memcpy(status.data, payload + 8, length - 8); 426 427 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 428 dev_notice(lu_dev(lu), 429 "non-ORB related status write, not handled\n"); 430 fw_send_response(card, request, RCODE_COMPLETE); 431 return; 432 } 433 434 /* Lookup the orb corresponding to this status write. */ 435 spin_lock_irqsave(&lu->tgt->lock, flags); 436 list_for_each_entry(iter, &lu->orb_list, link) { 437 if (STATUS_GET_ORB_HIGH(status) == 0 && 438 STATUS_GET_ORB_LOW(status) == iter->request_bus) { 439 iter->rcode = RCODE_COMPLETE; 440 list_del(&iter->link); 441 orb = iter; 442 break; 443 } 444 } 445 spin_unlock_irqrestore(&lu->tgt->lock, flags); 446 447 if (orb) { 448 orb->callback(orb, &status); 449 kref_put(&orb->kref, free_orb); /* orb callback reference */ 450 } else { 451 dev_err(lu_dev(lu), "status write for unknown ORB\n"); 452 } 453 454 fw_send_response(card, request, RCODE_COMPLETE); 455 } 456 457 static void complete_transaction(struct fw_card *card, int rcode, 458 void *payload, size_t length, void *data) 459 { 460 struct sbp2_orb *orb = data; 461 unsigned long flags; 462 463 /* 464 * This is a little tricky. We can get the status write for 465 * the orb before we get this callback. The status write 466 * handler above will assume the orb pointer transaction was 467 * successful and set the rcode to RCODE_COMPLETE for the orb. 468 * So this callback only sets the rcode if it hasn't already 469 * been set and only does the cleanup if the transaction 470 * failed and we didn't already get a status write. 471 */ 472 spin_lock_irqsave(&orb->lu->tgt->lock, flags); 473 474 if (orb->rcode == -1) 475 orb->rcode = rcode; 476 if (orb->rcode != RCODE_COMPLETE) { 477 list_del(&orb->link); 478 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags); 479 480 orb->callback(orb, NULL); 481 kref_put(&orb->kref, free_orb); /* orb callback reference */ 482 } else { 483 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags); 484 } 485 486 kref_put(&orb->kref, free_orb); /* transaction callback reference */ 487 } 488 489 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 490 int node_id, int generation, u64 offset) 491 { 492 struct fw_device *device = target_parent_device(lu->tgt); 493 struct sbp2_pointer orb_pointer; 494 unsigned long flags; 495 496 orb_pointer.high = 0; 497 orb_pointer.low = cpu_to_be32(orb->request_bus); 498 499 orb->lu = lu; 500 spin_lock_irqsave(&lu->tgt->lock, flags); 501 list_add_tail(&orb->link, &lu->orb_list); 502 spin_unlock_irqrestore(&lu->tgt->lock, flags); 503 504 kref_get(&orb->kref); /* transaction callback reference */ 505 kref_get(&orb->kref); /* orb callback reference */ 506 507 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 508 node_id, generation, device->max_speed, offset, 509 &orb_pointer, 8, complete_transaction, orb); 510 } 511 512 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 513 { 514 struct fw_device *device = target_parent_device(lu->tgt); 515 struct sbp2_orb *orb, *next; 516 struct list_head list; 517 int retval = -ENOENT; 518 519 INIT_LIST_HEAD(&list); 520 spin_lock_irq(&lu->tgt->lock); 521 list_splice_init(&lu->orb_list, &list); 522 spin_unlock_irq(&lu->tgt->lock); 523 524 list_for_each_entry_safe(orb, next, &list, link) { 525 retval = 0; 526 if (fw_cancel_transaction(device->card, &orb->t) == 0) 527 continue; 528 529 orb->rcode = RCODE_CANCELLED; 530 orb->callback(orb, NULL); 531 kref_put(&orb->kref, free_orb); /* orb callback reference */ 532 } 533 534 return retval; 535 } 536 537 static void complete_management_orb(struct sbp2_orb *base_orb, 538 struct sbp2_status *status) 539 { 540 struct sbp2_management_orb *orb = 541 container_of(base_orb, struct sbp2_management_orb, base); 542 543 if (status) 544 memcpy(&orb->status, status, sizeof(*status)); 545 complete(&orb->done); 546 } 547 548 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 549 int generation, int function, 550 int lun_or_login_id, void *response) 551 { 552 struct fw_device *device = target_parent_device(lu->tgt); 553 struct sbp2_management_orb *orb; 554 unsigned int timeout; 555 int retval = -ENOMEM; 556 557 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 558 return 0; 559 560 orb = kzalloc(sizeof(*orb), GFP_NOIO); 561 if (orb == NULL) 562 return -ENOMEM; 563 564 kref_init(&orb->base.kref); 565 orb->response_bus = 566 dma_map_single(device->card->device, &orb->response, 567 sizeof(orb->response), DMA_FROM_DEVICE); 568 if (dma_mapping_error(device->card->device, orb->response_bus)) 569 goto fail_mapping_response; 570 571 orb->request.response.high = 0; 572 orb->request.response.low = cpu_to_be32(orb->response_bus); 573 574 orb->request.misc = cpu_to_be32( 575 MANAGEMENT_ORB_NOTIFY | 576 MANAGEMENT_ORB_FUNCTION(function) | 577 MANAGEMENT_ORB_LUN(lun_or_login_id)); 578 orb->request.length = cpu_to_be32( 579 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 580 581 orb->request.status_fifo.high = 582 cpu_to_be32(lu->address_handler.offset >> 32); 583 orb->request.status_fifo.low = 584 cpu_to_be32(lu->address_handler.offset); 585 586 if (function == SBP2_LOGIN_REQUEST) { 587 /* Ask for 2^2 == 4 seconds reconnect grace period */ 588 orb->request.misc |= cpu_to_be32( 589 MANAGEMENT_ORB_RECONNECT(2) | 590 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 591 timeout = lu->tgt->mgt_orb_timeout; 592 } else { 593 timeout = SBP2_ORB_TIMEOUT; 594 } 595 596 init_completion(&orb->done); 597 orb->base.callback = complete_management_orb; 598 599 orb->base.request_bus = 600 dma_map_single(device->card->device, &orb->request, 601 sizeof(orb->request), DMA_TO_DEVICE); 602 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 603 goto fail_mapping_request; 604 605 sbp2_send_orb(&orb->base, lu, node_id, generation, 606 lu->tgt->management_agent_address); 607 608 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 609 610 retval = -EIO; 611 if (sbp2_cancel_orbs(lu) == 0) { 612 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n", 613 orb->base.rcode); 614 goto out; 615 } 616 617 if (orb->base.rcode != RCODE_COMPLETE) { 618 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n", 619 orb->base.rcode); 620 goto out; 621 } 622 623 if (STATUS_GET_RESPONSE(orb->status) != 0 || 624 STATUS_GET_SBP_STATUS(orb->status) != 0) { 625 dev_err(lu_dev(lu), "error status: %d:%d\n", 626 STATUS_GET_RESPONSE(orb->status), 627 STATUS_GET_SBP_STATUS(orb->status)); 628 goto out; 629 } 630 631 retval = 0; 632 out: 633 dma_unmap_single(device->card->device, orb->base.request_bus, 634 sizeof(orb->request), DMA_TO_DEVICE); 635 fail_mapping_request: 636 dma_unmap_single(device->card->device, orb->response_bus, 637 sizeof(orb->response), DMA_FROM_DEVICE); 638 fail_mapping_response: 639 if (response) 640 memcpy(response, orb->response, sizeof(orb->response)); 641 kref_put(&orb->base.kref, free_orb); 642 643 return retval; 644 } 645 646 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 647 { 648 struct fw_device *device = target_parent_device(lu->tgt); 649 __be32 d = 0; 650 651 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 652 lu->tgt->node_id, lu->generation, device->max_speed, 653 lu->command_block_agent_address + SBP2_AGENT_RESET, 654 &d, 4); 655 } 656 657 static void complete_agent_reset_write_no_wait(struct fw_card *card, 658 int rcode, void *payload, size_t length, void *data) 659 { 660 kfree(data); 661 } 662 663 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 664 { 665 struct fw_device *device = target_parent_device(lu->tgt); 666 struct fw_transaction *t; 667 static __be32 d; 668 669 t = kmalloc(sizeof(*t), GFP_ATOMIC); 670 if (t == NULL) 671 return; 672 673 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 674 lu->tgt->node_id, lu->generation, device->max_speed, 675 lu->command_block_agent_address + SBP2_AGENT_RESET, 676 &d, 4, complete_agent_reset_write_no_wait, t); 677 } 678 679 static inline void sbp2_allow_block(struct sbp2_target *tgt) 680 { 681 spin_lock_irq(&tgt->lock); 682 --tgt->dont_block; 683 spin_unlock_irq(&tgt->lock); 684 } 685 686 /* 687 * Blocks lu->tgt if all of the following conditions are met: 688 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 689 * logical units have been finished (indicated by dont_block == 0). 690 * - lu->generation is stale. 691 * 692 * Note, scsi_block_requests() must be called while holding tgt->lock, 693 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 694 * unblock the target. 695 */ 696 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 697 { 698 struct sbp2_target *tgt = lu->tgt; 699 struct fw_card *card = target_parent_device(tgt)->card; 700 struct Scsi_Host *shost = 701 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 702 unsigned long flags; 703 704 spin_lock_irqsave(&tgt->lock, flags); 705 if (!tgt->dont_block && !lu->blocked && 706 lu->generation != card->generation) { 707 lu->blocked = true; 708 if (++tgt->blocked == 1) 709 scsi_block_requests(shost); 710 } 711 spin_unlock_irqrestore(&tgt->lock, flags); 712 } 713 714 /* 715 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 716 * Note, it is harmless to run scsi_unblock_requests() outside the 717 * tgt->lock protected section. On the other hand, running it inside 718 * the section might clash with shost->host_lock. 719 */ 720 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 721 { 722 struct sbp2_target *tgt = lu->tgt; 723 struct fw_card *card = target_parent_device(tgt)->card; 724 struct Scsi_Host *shost = 725 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 726 bool unblock = false; 727 728 spin_lock_irq(&tgt->lock); 729 if (lu->blocked && lu->generation == card->generation) { 730 lu->blocked = false; 731 unblock = --tgt->blocked == 0; 732 } 733 spin_unlock_irq(&tgt->lock); 734 735 if (unblock) 736 scsi_unblock_requests(shost); 737 } 738 739 /* 740 * Prevents future blocking of tgt and unblocks it. 741 * Note, it is harmless to run scsi_unblock_requests() outside the 742 * tgt->lock protected section. On the other hand, running it inside 743 * the section might clash with shost->host_lock. 744 */ 745 static void sbp2_unblock(struct sbp2_target *tgt) 746 { 747 struct Scsi_Host *shost = 748 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 749 750 spin_lock_irq(&tgt->lock); 751 ++tgt->dont_block; 752 spin_unlock_irq(&tgt->lock); 753 754 scsi_unblock_requests(shost); 755 } 756 757 static int sbp2_lun2int(u16 lun) 758 { 759 struct scsi_lun eight_bytes_lun; 760 761 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 762 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 763 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 764 765 return scsilun_to_int(&eight_bytes_lun); 766 } 767 768 /* 769 * Write retransmit retry values into the BUSY_TIMEOUT register. 770 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 771 * default retry_limit value is 0 (i.e. never retry transmission). We write a 772 * saner value after logging into the device. 773 * - The dual-phase retry protocol is optional to implement, and if not 774 * supported, writes to the dual-phase portion of the register will be 775 * ignored. We try to write the original 1394-1995 default here. 776 * - In the case of devices that are also SBP-3-compliant, all writes are 777 * ignored, as the register is read-only, but contains single-phase retry of 778 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 779 * write attempt is safe and yields more consistent behavior for all devices. 780 * 781 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 782 * and section 6.4 of the SBP-3 spec for further details. 783 */ 784 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 785 { 786 struct fw_device *device = target_parent_device(lu->tgt); 787 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 788 789 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 790 lu->tgt->node_id, lu->generation, device->max_speed, 791 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4); 792 } 793 794 static void sbp2_reconnect(struct work_struct *work); 795 796 static void sbp2_login(struct work_struct *work) 797 { 798 struct sbp2_logical_unit *lu = 799 container_of(work, struct sbp2_logical_unit, work.work); 800 struct sbp2_target *tgt = lu->tgt; 801 struct fw_device *device = target_parent_device(tgt); 802 struct Scsi_Host *shost; 803 struct scsi_device *sdev; 804 struct sbp2_login_response response; 805 int generation, node_id, local_node_id; 806 807 if (fw_device_is_shutdown(device)) 808 return; 809 810 generation = device->generation; 811 smp_rmb(); /* node IDs must not be older than generation */ 812 node_id = device->node_id; 813 local_node_id = device->card->node_id; 814 815 /* If this is a re-login attempt, log out, or we might be rejected. */ 816 if (lu->has_sdev) 817 sbp2_send_management_orb(lu, device->node_id, generation, 818 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 819 820 if (sbp2_send_management_orb(lu, node_id, generation, 821 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 822 if (lu->retries++ < 5) { 823 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 824 } else { 825 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n", 826 lu->lun); 827 /* Let any waiting I/O fail from now on. */ 828 sbp2_unblock(lu->tgt); 829 } 830 return; 831 } 832 833 tgt->node_id = node_id; 834 tgt->address_high = local_node_id << 16; 835 smp_wmb(); /* node IDs must not be older than generation */ 836 lu->generation = generation; 837 838 lu->command_block_agent_address = 839 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 840 << 32) | be32_to_cpu(response.command_block_agent.low); 841 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 842 843 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n", 844 lu->lun, lu->retries); 845 846 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 847 sbp2_set_busy_timeout(lu); 848 849 lu->workfn = sbp2_reconnect; 850 sbp2_agent_reset(lu); 851 852 /* This was a re-login. */ 853 if (lu->has_sdev) { 854 sbp2_cancel_orbs(lu); 855 sbp2_conditionally_unblock(lu); 856 857 return; 858 } 859 860 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 861 ssleep(SBP2_INQUIRY_DELAY); 862 863 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 864 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 865 /* 866 * FIXME: We are unable to perform reconnects while in sbp2_login(). 867 * Therefore __scsi_add_device() will get into trouble if a bus reset 868 * happens in parallel. It will either fail or leave us with an 869 * unusable sdev. As a workaround we check for this and retry the 870 * whole login and SCSI probing. 871 */ 872 873 /* Reported error during __scsi_add_device() */ 874 if (IS_ERR(sdev)) 875 goto out_logout_login; 876 877 /* Unreported error during __scsi_add_device() */ 878 smp_rmb(); /* get current card generation */ 879 if (generation != device->card->generation) { 880 scsi_remove_device(sdev); 881 scsi_device_put(sdev); 882 goto out_logout_login; 883 } 884 885 /* No error during __scsi_add_device() */ 886 lu->has_sdev = true; 887 scsi_device_put(sdev); 888 sbp2_allow_block(tgt); 889 890 return; 891 892 out_logout_login: 893 smp_rmb(); /* generation may have changed */ 894 generation = device->generation; 895 smp_rmb(); /* node_id must not be older than generation */ 896 897 sbp2_send_management_orb(lu, device->node_id, generation, 898 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 899 /* 900 * If a bus reset happened, sbp2_update will have requeued 901 * lu->work already. Reset the work from reconnect to login. 902 */ 903 lu->workfn = sbp2_login; 904 } 905 906 static void sbp2_reconnect(struct work_struct *work) 907 { 908 struct sbp2_logical_unit *lu = 909 container_of(work, struct sbp2_logical_unit, work.work); 910 struct sbp2_target *tgt = lu->tgt; 911 struct fw_device *device = target_parent_device(tgt); 912 int generation, node_id, local_node_id; 913 914 if (fw_device_is_shutdown(device)) 915 return; 916 917 generation = device->generation; 918 smp_rmb(); /* node IDs must not be older than generation */ 919 node_id = device->node_id; 920 local_node_id = device->card->node_id; 921 922 if (sbp2_send_management_orb(lu, node_id, generation, 923 SBP2_RECONNECT_REQUEST, 924 lu->login_id, NULL) < 0) { 925 /* 926 * If reconnect was impossible even though we are in the 927 * current generation, fall back and try to log in again. 928 * 929 * We could check for "Function rejected" status, but 930 * looking at the bus generation as simpler and more general. 931 */ 932 smp_rmb(); /* get current card generation */ 933 if (generation == device->card->generation || 934 lu->retries++ >= 5) { 935 dev_err(tgt_dev(tgt), "failed to reconnect\n"); 936 lu->retries = 0; 937 lu->workfn = sbp2_login; 938 } 939 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 940 941 return; 942 } 943 944 tgt->node_id = node_id; 945 tgt->address_high = local_node_id << 16; 946 smp_wmb(); /* node IDs must not be older than generation */ 947 lu->generation = generation; 948 949 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n", 950 lu->lun, lu->retries); 951 952 sbp2_agent_reset(lu); 953 sbp2_cancel_orbs(lu); 954 sbp2_conditionally_unblock(lu); 955 } 956 957 static void sbp2_lu_workfn(struct work_struct *work) 958 { 959 struct sbp2_logical_unit *lu = container_of(to_delayed_work(work), 960 struct sbp2_logical_unit, work); 961 lu->workfn(work); 962 } 963 964 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 965 { 966 struct sbp2_logical_unit *lu; 967 968 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 969 if (!lu) 970 return -ENOMEM; 971 972 lu->address_handler.length = 0x100; 973 lu->address_handler.address_callback = sbp2_status_write; 974 lu->address_handler.callback_data = lu; 975 976 if (fw_core_add_address_handler(&lu->address_handler, 977 &fw_high_memory_region) < 0) { 978 kfree(lu); 979 return -ENOMEM; 980 } 981 982 lu->tgt = tgt; 983 lu->lun = lun_entry & 0xffff; 984 lu->login_id = INVALID_LOGIN_ID; 985 lu->retries = 0; 986 lu->has_sdev = false; 987 lu->blocked = false; 988 ++tgt->dont_block; 989 INIT_LIST_HEAD(&lu->orb_list); 990 lu->workfn = sbp2_login; 991 INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn); 992 993 list_add_tail(&lu->link, &tgt->lu_list); 994 return 0; 995 } 996 997 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt, 998 const u32 *leaf) 999 { 1000 if ((leaf[0] & 0xffff0000) == 0x00020000) 1001 tgt->guid = (u64)leaf[1] << 32 | leaf[2]; 1002 } 1003 1004 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, 1005 const u32 *directory) 1006 { 1007 struct fw_csr_iterator ci; 1008 int key, value; 1009 1010 fw_csr_iterator_init(&ci, directory); 1011 while (fw_csr_iterator_next(&ci, &key, &value)) 1012 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1013 sbp2_add_logical_unit(tgt, value) < 0) 1014 return -ENOMEM; 1015 return 0; 1016 } 1017 1018 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory, 1019 u32 *model, u32 *firmware_revision) 1020 { 1021 struct fw_csr_iterator ci; 1022 int key, value; 1023 1024 fw_csr_iterator_init(&ci, directory); 1025 while (fw_csr_iterator_next(&ci, &key, &value)) { 1026 switch (key) { 1027 1028 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1029 tgt->management_agent_address = 1030 CSR_REGISTER_BASE + 4 * value; 1031 break; 1032 1033 case CSR_DIRECTORY_ID: 1034 tgt->directory_id = value; 1035 break; 1036 1037 case CSR_MODEL: 1038 *model = value; 1039 break; 1040 1041 case SBP2_CSR_FIRMWARE_REVISION: 1042 *firmware_revision = value; 1043 break; 1044 1045 case SBP2_CSR_UNIT_CHARACTERISTICS: 1046 /* the timeout value is stored in 500ms units */ 1047 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; 1048 break; 1049 1050 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1051 if (sbp2_add_logical_unit(tgt, value) < 0) 1052 return -ENOMEM; 1053 break; 1054 1055 case SBP2_CSR_UNIT_UNIQUE_ID: 1056 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value); 1057 break; 1058 1059 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1060 /* Adjust for the increment in the iterator */ 1061 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1062 return -ENOMEM; 1063 break; 1064 } 1065 } 1066 return 0; 1067 } 1068 1069 /* 1070 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 1071 * provided in the config rom. Most devices do provide a value, which 1072 * we'll use for login management orbs, but with some sane limits. 1073 */ 1074 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) 1075 { 1076 unsigned int timeout = tgt->mgt_orb_timeout; 1077 1078 if (timeout > 40000) 1079 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n", 1080 timeout / 1000); 1081 1082 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); 1083 } 1084 1085 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1086 u32 firmware_revision) 1087 { 1088 int i; 1089 unsigned int w = sbp2_param_workarounds; 1090 1091 if (w) 1092 dev_notice(tgt_dev(tgt), 1093 "Please notify linux1394-devel@lists.sf.net " 1094 "if you need the workarounds parameter\n"); 1095 1096 if (w & SBP2_WORKAROUND_OVERRIDE) 1097 goto out; 1098 1099 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1100 1101 if (sbp2_workarounds_table[i].firmware_revision != 1102 (firmware_revision & 0xffffff00)) 1103 continue; 1104 1105 if (sbp2_workarounds_table[i].model != model && 1106 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1107 continue; 1108 1109 w |= sbp2_workarounds_table[i].workarounds; 1110 break; 1111 } 1112 out: 1113 if (w) 1114 dev_notice(tgt_dev(tgt), "workarounds 0x%x " 1115 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1116 w, firmware_revision, model); 1117 tgt->workarounds = w; 1118 } 1119 1120 static struct scsi_host_template scsi_driver_template; 1121 static void sbp2_remove(struct fw_unit *unit); 1122 1123 static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id) 1124 { 1125 struct fw_device *device = fw_parent_device(unit); 1126 struct sbp2_target *tgt; 1127 struct sbp2_logical_unit *lu; 1128 struct Scsi_Host *shost; 1129 u32 model, firmware_revision; 1130 1131 /* cannot (or should not) handle targets on the local node */ 1132 if (device->is_local) 1133 return -ENODEV; 1134 1135 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1136 if (shost == NULL) 1137 return -ENOMEM; 1138 1139 tgt = (struct sbp2_target *)shost->hostdata; 1140 dev_set_drvdata(&unit->device, tgt); 1141 tgt->unit = unit; 1142 INIT_LIST_HEAD(&tgt->lu_list); 1143 spin_lock_init(&tgt->lock); 1144 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1145 1146 if (fw_device_enable_phys_dma(device) < 0) 1147 goto fail_shost_put; 1148 1149 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1150 1151 if (scsi_add_host_with_dma(shost, &unit->device, 1152 device->card->device) < 0) 1153 goto fail_shost_put; 1154 1155 /* implicit directory ID */ 1156 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1157 + CSR_CONFIG_ROM) & 0xffffff; 1158 1159 firmware_revision = SBP2_ROM_VALUE_MISSING; 1160 model = SBP2_ROM_VALUE_MISSING; 1161 1162 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1163 &firmware_revision) < 0) 1164 goto fail_remove; 1165 1166 sbp2_clamp_management_orb_timeout(tgt); 1167 sbp2_init_workarounds(tgt, model, firmware_revision); 1168 1169 /* 1170 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1171 * and so on up to 4096 bytes. The SBP-2 max_payload field 1172 * specifies the max payload size as 2 ^ (max_payload + 2), so 1173 * if we set this to max_speed + 7, we get the right value. 1174 */ 1175 tgt->max_payload = min3(device->max_speed + 7, 10U, 1176 device->card->max_receive - 1); 1177 1178 /* Do the login in a workqueue so we can easily reschedule retries. */ 1179 list_for_each_entry(lu, &tgt->lu_list, link) 1180 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1181 1182 return 0; 1183 1184 fail_remove: 1185 sbp2_remove(unit); 1186 return -ENOMEM; 1187 1188 fail_shost_put: 1189 scsi_host_put(shost); 1190 return -ENOMEM; 1191 } 1192 1193 static void sbp2_update(struct fw_unit *unit) 1194 { 1195 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1196 struct sbp2_logical_unit *lu; 1197 1198 fw_device_enable_phys_dma(fw_parent_device(unit)); 1199 1200 /* 1201 * Fw-core serializes sbp2_update() against sbp2_remove(). 1202 * Iteration over tgt->lu_list is therefore safe here. 1203 */ 1204 list_for_each_entry(lu, &tgt->lu_list, link) { 1205 sbp2_conditionally_block(lu); 1206 lu->retries = 0; 1207 sbp2_queue_work(lu, 0); 1208 } 1209 } 1210 1211 static void sbp2_remove(struct fw_unit *unit) 1212 { 1213 struct fw_device *device = fw_parent_device(unit); 1214 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1215 struct sbp2_logical_unit *lu, *next; 1216 struct Scsi_Host *shost = 1217 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 1218 struct scsi_device *sdev; 1219 1220 /* prevent deadlocks */ 1221 sbp2_unblock(tgt); 1222 1223 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 1224 cancel_delayed_work_sync(&lu->work); 1225 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 1226 if (sdev) { 1227 scsi_remove_device(sdev); 1228 scsi_device_put(sdev); 1229 } 1230 if (lu->login_id != INVALID_LOGIN_ID) { 1231 int generation, node_id; 1232 /* 1233 * tgt->node_id may be obsolete here if we failed 1234 * during initial login or after a bus reset where 1235 * the topology changed. 1236 */ 1237 generation = device->generation; 1238 smp_rmb(); /* node_id vs. generation */ 1239 node_id = device->node_id; 1240 sbp2_send_management_orb(lu, node_id, generation, 1241 SBP2_LOGOUT_REQUEST, 1242 lu->login_id, NULL); 1243 } 1244 fw_core_remove_address_handler(&lu->address_handler); 1245 list_del(&lu->link); 1246 kfree(lu); 1247 } 1248 scsi_remove_host(shost); 1249 dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no); 1250 1251 scsi_host_put(shost); 1252 } 1253 1254 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1255 #define SBP2_SW_VERSION_ENTRY 0x00010483 1256 1257 static const struct ieee1394_device_id sbp2_id_table[] = { 1258 { 1259 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1260 IEEE1394_MATCH_VERSION, 1261 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1262 .version = SBP2_SW_VERSION_ENTRY, 1263 }, 1264 { } 1265 }; 1266 1267 static struct fw_driver sbp2_driver = { 1268 .driver = { 1269 .owner = THIS_MODULE, 1270 .name = KBUILD_MODNAME, 1271 .bus = &fw_bus_type, 1272 }, 1273 .probe = sbp2_probe, 1274 .update = sbp2_update, 1275 .remove = sbp2_remove, 1276 .id_table = sbp2_id_table, 1277 }; 1278 1279 static void sbp2_unmap_scatterlist(struct device *card_device, 1280 struct sbp2_command_orb *orb) 1281 { 1282 scsi_dma_unmap(orb->cmd); 1283 1284 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1285 dma_unmap_single(card_device, orb->page_table_bus, 1286 sizeof(orb->page_table), DMA_TO_DEVICE); 1287 } 1288 1289 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1290 { 1291 int sam_status; 1292 int sfmt = (sbp2_status[0] >> 6) & 0x03; 1293 1294 if (sfmt == 2 || sfmt == 3) { 1295 /* 1296 * Reserved for future standardization (2) or 1297 * Status block format vendor-dependent (3) 1298 */ 1299 return DID_ERROR << 16; 1300 } 1301 1302 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80); 1303 sense_data[1] = 0x0; 1304 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f); 1305 sense_data[3] = sbp2_status[4]; 1306 sense_data[4] = sbp2_status[5]; 1307 sense_data[5] = sbp2_status[6]; 1308 sense_data[6] = sbp2_status[7]; 1309 sense_data[7] = 10; 1310 sense_data[8] = sbp2_status[8]; 1311 sense_data[9] = sbp2_status[9]; 1312 sense_data[10] = sbp2_status[10]; 1313 sense_data[11] = sbp2_status[11]; 1314 sense_data[12] = sbp2_status[2]; 1315 sense_data[13] = sbp2_status[3]; 1316 sense_data[14] = sbp2_status[12]; 1317 sense_data[15] = sbp2_status[13]; 1318 1319 sam_status = sbp2_status[0] & 0x3f; 1320 1321 switch (sam_status) { 1322 case SAM_STAT_GOOD: 1323 case SAM_STAT_CHECK_CONDITION: 1324 case SAM_STAT_CONDITION_MET: 1325 case SAM_STAT_BUSY: 1326 case SAM_STAT_RESERVATION_CONFLICT: 1327 case SAM_STAT_COMMAND_TERMINATED: 1328 return DID_OK << 16 | sam_status; 1329 1330 default: 1331 return DID_ERROR << 16; 1332 } 1333 } 1334 1335 static void complete_command_orb(struct sbp2_orb *base_orb, 1336 struct sbp2_status *status) 1337 { 1338 struct sbp2_command_orb *orb = 1339 container_of(base_orb, struct sbp2_command_orb, base); 1340 struct fw_device *device = target_parent_device(base_orb->lu->tgt); 1341 int result; 1342 1343 if (status != NULL) { 1344 if (STATUS_GET_DEAD(*status)) 1345 sbp2_agent_reset_no_wait(base_orb->lu); 1346 1347 switch (STATUS_GET_RESPONSE(*status)) { 1348 case SBP2_STATUS_REQUEST_COMPLETE: 1349 result = DID_OK << 16; 1350 break; 1351 case SBP2_STATUS_TRANSPORT_FAILURE: 1352 result = DID_BUS_BUSY << 16; 1353 break; 1354 case SBP2_STATUS_ILLEGAL_REQUEST: 1355 case SBP2_STATUS_VENDOR_DEPENDENT: 1356 default: 1357 result = DID_ERROR << 16; 1358 break; 1359 } 1360 1361 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1362 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1363 orb->cmd->sense_buffer); 1364 } else { 1365 /* 1366 * If the orb completes with status == NULL, something 1367 * went wrong, typically a bus reset happened mid-orb 1368 * or when sending the write (less likely). 1369 */ 1370 result = DID_BUS_BUSY << 16; 1371 sbp2_conditionally_block(base_orb->lu); 1372 } 1373 1374 dma_unmap_single(device->card->device, orb->base.request_bus, 1375 sizeof(orb->request), DMA_TO_DEVICE); 1376 sbp2_unmap_scatterlist(device->card->device, orb); 1377 1378 orb->cmd->result = result; 1379 scsi_done(orb->cmd); 1380 } 1381 1382 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1383 struct fw_device *device, struct sbp2_logical_unit *lu) 1384 { 1385 struct scatterlist *sg = scsi_sglist(orb->cmd); 1386 int i, n; 1387 1388 n = scsi_dma_map(orb->cmd); 1389 if (n <= 0) 1390 goto fail; 1391 1392 /* 1393 * Handle the special case where there is only one element in 1394 * the scatter list by converting it to an immediate block 1395 * request. This is also a workaround for broken devices such 1396 * as the second generation iPod which doesn't support page 1397 * tables. 1398 */ 1399 if (n == 1) { 1400 orb->request.data_descriptor.high = 1401 cpu_to_be32(lu->tgt->address_high); 1402 orb->request.data_descriptor.low = 1403 cpu_to_be32(sg_dma_address(sg)); 1404 orb->request.misc |= 1405 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1406 return 0; 1407 } 1408 1409 for_each_sg(sg, sg, n, i) { 1410 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1411 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1412 } 1413 1414 orb->page_table_bus = 1415 dma_map_single(device->card->device, orb->page_table, 1416 sizeof(orb->page_table), DMA_TO_DEVICE); 1417 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1418 goto fail_page_table; 1419 1420 /* 1421 * The data_descriptor pointer is the one case where we need 1422 * to fill in the node ID part of the address. All other 1423 * pointers assume that the data referenced reside on the 1424 * initiator (i.e. us), but data_descriptor can refer to data 1425 * on other nodes so we need to put our ID in descriptor.high. 1426 */ 1427 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1428 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1429 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1430 COMMAND_ORB_DATA_SIZE(n)); 1431 1432 return 0; 1433 1434 fail_page_table: 1435 scsi_dma_unmap(orb->cmd); 1436 fail: 1437 return -ENOMEM; 1438 } 1439 1440 /* SCSI stack integration */ 1441 1442 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost, 1443 struct scsi_cmnd *cmd) 1444 { 1445 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1446 struct fw_device *device = target_parent_device(lu->tgt); 1447 struct sbp2_command_orb *orb; 1448 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1449 1450 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1451 if (orb == NULL) 1452 return SCSI_MLQUEUE_HOST_BUSY; 1453 1454 /* Initialize rcode to something not RCODE_COMPLETE. */ 1455 orb->base.rcode = -1; 1456 kref_init(&orb->base.kref); 1457 orb->cmd = cmd; 1458 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1459 orb->request.misc = cpu_to_be32( 1460 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1461 COMMAND_ORB_SPEED(device->max_speed) | 1462 COMMAND_ORB_NOTIFY); 1463 1464 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1465 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1466 1467 generation = device->generation; 1468 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1469 1470 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1471 goto out; 1472 1473 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1474 1475 orb->base.callback = complete_command_orb; 1476 orb->base.request_bus = 1477 dma_map_single(device->card->device, &orb->request, 1478 sizeof(orb->request), DMA_TO_DEVICE); 1479 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1480 sbp2_unmap_scatterlist(device->card->device, orb); 1481 goto out; 1482 } 1483 1484 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1485 lu->command_block_agent_address + SBP2_ORB_POINTER); 1486 retval = 0; 1487 out: 1488 kref_put(&orb->base.kref, free_orb); 1489 return retval; 1490 } 1491 1492 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1493 { 1494 struct sbp2_logical_unit *lu = sdev->hostdata; 1495 1496 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1497 if (!lu) 1498 return -ENOSYS; 1499 1500 sdev->allow_restart = 1; 1501 1502 /* 1503 * SBP-2 does not require any alignment, but we set it anyway 1504 * for compatibility with earlier versions of this driver. 1505 */ 1506 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1507 1508 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1509 sdev->inquiry_len = 36; 1510 1511 return 0; 1512 } 1513 1514 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1515 { 1516 struct sbp2_logical_unit *lu = sdev->hostdata; 1517 1518 sdev->use_10_for_rw = 1; 1519 1520 if (sbp2_param_exclusive_login) 1521 sdev->manage_start_stop = 1; 1522 1523 if (sdev->type == TYPE_ROM) 1524 sdev->use_10_for_ms = 1; 1525 1526 if (sdev->type == TYPE_DISK && 1527 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1528 sdev->skip_ms_page_8 = 1; 1529 1530 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1531 sdev->fix_capacity = 1; 1532 1533 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1534 sdev->start_stop_pwr_cond = 1; 1535 1536 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1537 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); 1538 1539 return 0; 1540 } 1541 1542 /* 1543 * Called by scsi stack when something has really gone wrong. Usually 1544 * called when a command has timed-out for some reason. 1545 */ 1546 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1547 { 1548 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1549 1550 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n"); 1551 sbp2_agent_reset(lu); 1552 sbp2_cancel_orbs(lu); 1553 1554 return SUCCESS; 1555 } 1556 1557 /* 1558 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1559 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1560 * 1561 * This is the concatenation of target port identifier and logical unit 1562 * identifier as per SAM-2...SAM-4 annex A. 1563 */ 1564 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1565 struct device_attribute *attr, char *buf) 1566 { 1567 struct scsi_device *sdev = to_scsi_device(dev); 1568 struct sbp2_logical_unit *lu; 1569 1570 if (!sdev) 1571 return 0; 1572 1573 lu = sdev->hostdata; 1574 1575 return sprintf(buf, "%016llx:%06x:%04x\n", 1576 (unsigned long long)lu->tgt->guid, 1577 lu->tgt->directory_id, lu->lun); 1578 } 1579 1580 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1581 1582 static struct attribute *sbp2_scsi_sysfs_attrs[] = { 1583 &dev_attr_ieee1394_id.attr, 1584 NULL 1585 }; 1586 1587 ATTRIBUTE_GROUPS(sbp2_scsi_sysfs); 1588 1589 static struct scsi_host_template scsi_driver_template = { 1590 .module = THIS_MODULE, 1591 .name = "SBP-2 IEEE-1394", 1592 .proc_name = "sbp2", 1593 .queuecommand = sbp2_scsi_queuecommand, 1594 .slave_alloc = sbp2_scsi_slave_alloc, 1595 .slave_configure = sbp2_scsi_slave_configure, 1596 .eh_abort_handler = sbp2_scsi_abort, 1597 .this_id = -1, 1598 .sg_tablesize = SG_ALL, 1599 .max_segment_size = SBP2_MAX_SEG_SIZE, 1600 .can_queue = 1, 1601 .sdev_groups = sbp2_scsi_sysfs_groups, 1602 }; 1603 1604 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1605 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1606 MODULE_LICENSE("GPL"); 1607 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1608 1609 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1610 MODULE_ALIAS("sbp2"); 1611 1612 static int __init sbp2_init(void) 1613 { 1614 return driver_register(&sbp2_driver.driver); 1615 } 1616 1617 static void __exit sbp2_cleanup(void) 1618 { 1619 driver_unregister(&sbp2_driver.driver); 1620 } 1621 1622 module_init(sbp2_init); 1623 module_exit(sbp2_cleanup); 1624