1 /* 2 * SBP2 driver (SCSI over IEEE1394) 3 * 4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 /* 22 * The basic structure of this driver is based on the old storage driver, 23 * drivers/ieee1394/sbp2.c, originally written by 24 * James Goodwin <jamesg@filanet.com> 25 * with later contributions and ongoing maintenance from 26 * Ben Collins <bcollins@debian.org>, 27 * Stefan Richter <stefanr@s5r6.in-berlin.de> 28 * and many others. 29 */ 30 31 #include <linux/blkdev.h> 32 #include <linux/bug.h> 33 #include <linux/completion.h> 34 #include <linux/delay.h> 35 #include <linux/device.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/firewire.h> 38 #include <linux/firewire-constants.h> 39 #include <linux/init.h> 40 #include <linux/jiffies.h> 41 #include <linux/kernel.h> 42 #include <linux/kref.h> 43 #include <linux/list.h> 44 #include <linux/mod_devicetable.h> 45 #include <linux/module.h> 46 #include <linux/moduleparam.h> 47 #include <linux/scatterlist.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/string.h> 51 #include <linux/stringify.h> 52 #include <linux/workqueue.h> 53 54 #include <asm/byteorder.h> 55 56 #include <scsi/scsi.h> 57 #include <scsi/scsi_cmnd.h> 58 #include <scsi/scsi_device.h> 59 #include <scsi/scsi_host.h> 60 61 /* 62 * So far only bridges from Oxford Semiconductor are known to support 63 * concurrent logins. Depending on firmware, four or two concurrent logins 64 * are possible on OXFW911 and newer Oxsemi bridges. 65 * 66 * Concurrent logins are useful together with cluster filesystems. 67 */ 68 static bool sbp2_param_exclusive_login = 1; 69 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 70 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 71 "(default = Y, use N for concurrent initiators)"); 72 73 /* 74 * Flags for firmware oddities 75 * 76 * - 128kB max transfer 77 * Limit transfer size. Necessary for some old bridges. 78 * 79 * - 36 byte inquiry 80 * When scsi_mod probes the device, let the inquiry command look like that 81 * from MS Windows. 82 * 83 * - skip mode page 8 84 * Suppress sending of mode_sense for mode page 8 if the device pretends to 85 * support the SCSI Primary Block commands instead of Reduced Block Commands. 86 * 87 * - fix capacity 88 * Tell sd_mod to correct the last sector number reported by read_capacity. 89 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 90 * Don't use this with devices which don't have this bug. 91 * 92 * - delay inquiry 93 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 94 * 95 * - power condition 96 * Set the power condition field in the START STOP UNIT commands sent by 97 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). 98 * Some disks need this to spin down or to resume properly. 99 * 100 * - override internal blacklist 101 * Instead of adding to the built-in blacklist, use only the workarounds 102 * specified in the module load parameter. 103 * Useful if a blacklist entry interfered with a non-broken device. 104 */ 105 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 106 #define SBP2_WORKAROUND_INQUIRY_36 0x2 107 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 108 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 109 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 110 #define SBP2_INQUIRY_DELAY 12 111 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 112 #define SBP2_WORKAROUND_OVERRIDE 0x100 113 114 static int sbp2_param_workarounds; 115 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 116 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 117 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 118 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 119 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 120 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 121 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 122 ", set power condition in start stop unit = " 123 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 124 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 125 ", or a combination)"); 126 127 /* 128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 129 * and one struct scsi_device per sbp2_logical_unit. 130 */ 131 struct sbp2_logical_unit { 132 struct sbp2_target *tgt; 133 struct list_head link; 134 struct fw_address_handler address_handler; 135 struct list_head orb_list; 136 137 u64 command_block_agent_address; 138 u16 lun; 139 int login_id; 140 141 /* 142 * The generation is updated once we've logged in or reconnected 143 * to the logical unit. Thus, I/O to the device will automatically 144 * fail and get retried if it happens in a window where the device 145 * is not ready, e.g. after a bus reset but before we reconnect. 146 */ 147 int generation; 148 int retries; 149 work_func_t workfn; 150 struct delayed_work work; 151 bool has_sdev; 152 bool blocked; 153 }; 154 155 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 156 { 157 queue_delayed_work(fw_workqueue, &lu->work, delay); 158 } 159 160 /* 161 * We create one struct sbp2_target per IEEE 1212 Unit Directory 162 * and one struct Scsi_Host per sbp2_target. 163 */ 164 struct sbp2_target { 165 struct fw_unit *unit; 166 struct list_head lu_list; 167 168 u64 management_agent_address; 169 u64 guid; 170 int directory_id; 171 int node_id; 172 int address_high; 173 unsigned int workarounds; 174 unsigned int mgt_orb_timeout; 175 unsigned int max_payload; 176 177 spinlock_t lock; 178 int dont_block; /* counter for each logical unit */ 179 int blocked; /* ditto */ 180 }; 181 182 static struct fw_device *target_parent_device(struct sbp2_target *tgt) 183 { 184 return fw_parent_device(tgt->unit); 185 } 186 187 static const struct device *tgt_dev(const struct sbp2_target *tgt) 188 { 189 return &tgt->unit->device; 190 } 191 192 static const struct device *lu_dev(const struct sbp2_logical_unit *lu) 193 { 194 return &lu->tgt->unit->device; 195 } 196 197 /* Impossible login_id, to detect logout attempt before successful login */ 198 #define INVALID_LOGIN_ID 0x10000 199 200 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 201 #define SBP2_ORB_NULL 0x80000000 202 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 203 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 204 205 /* 206 * There is no transport protocol limit to the CDB length, but we implement 207 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 208 */ 209 #define SBP2_MAX_CDB_SIZE 16 210 211 /* 212 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this 213 * for compatibility with earlier versions of this driver. 214 */ 215 #define SBP2_MAX_SEG_SIZE 0xfffc 216 217 /* Unit directory keys */ 218 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 219 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 220 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 221 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d 222 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 223 224 /* Management orb opcodes */ 225 #define SBP2_LOGIN_REQUEST 0x0 226 #define SBP2_QUERY_LOGINS_REQUEST 0x1 227 #define SBP2_RECONNECT_REQUEST 0x3 228 #define SBP2_SET_PASSWORD_REQUEST 0x4 229 #define SBP2_LOGOUT_REQUEST 0x7 230 #define SBP2_ABORT_TASK_REQUEST 0xb 231 #define SBP2_ABORT_TASK_SET 0xc 232 #define SBP2_LOGICAL_UNIT_RESET 0xe 233 #define SBP2_TARGET_RESET_REQUEST 0xf 234 235 /* Offsets for command block agent registers */ 236 #define SBP2_AGENT_STATE 0x00 237 #define SBP2_AGENT_RESET 0x04 238 #define SBP2_ORB_POINTER 0x08 239 #define SBP2_DOORBELL 0x10 240 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 241 242 /* Status write response codes */ 243 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 244 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 245 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 246 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 247 248 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 249 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 250 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 251 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 252 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 253 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 254 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 255 #define STATUS_GET_DATA(v) ((v).data) 256 257 struct sbp2_status { 258 u32 status; 259 u32 orb_low; 260 u8 data[24]; 261 }; 262 263 struct sbp2_pointer { 264 __be32 high; 265 __be32 low; 266 }; 267 268 struct sbp2_orb { 269 struct fw_transaction t; 270 struct kref kref; 271 dma_addr_t request_bus; 272 int rcode; 273 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 274 struct sbp2_logical_unit *lu; 275 struct list_head link; 276 }; 277 278 #define MANAGEMENT_ORB_LUN(v) ((v)) 279 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 280 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 281 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 282 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 283 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 284 285 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 286 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 287 288 struct sbp2_management_orb { 289 struct sbp2_orb base; 290 struct { 291 struct sbp2_pointer password; 292 struct sbp2_pointer response; 293 __be32 misc; 294 __be32 length; 295 struct sbp2_pointer status_fifo; 296 } request; 297 __be32 response[4]; 298 dma_addr_t response_bus; 299 struct completion done; 300 struct sbp2_status status; 301 }; 302 303 struct sbp2_login_response { 304 __be32 misc; 305 struct sbp2_pointer command_block_agent; 306 __be32 reconnect_hold; 307 }; 308 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 309 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 310 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 311 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 312 #define COMMAND_ORB_SPEED(v) ((v) << 24) 313 #define COMMAND_ORB_DIRECTION ((1) << 27) 314 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 315 #define COMMAND_ORB_NOTIFY ((1) << 31) 316 317 struct sbp2_command_orb { 318 struct sbp2_orb base; 319 struct { 320 struct sbp2_pointer next; 321 struct sbp2_pointer data_descriptor; 322 __be32 misc; 323 u8 command_block[SBP2_MAX_CDB_SIZE]; 324 } request; 325 struct scsi_cmnd *cmd; 326 327 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 328 dma_addr_t page_table_bus; 329 }; 330 331 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 332 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 333 334 /* 335 * List of devices with known bugs. 336 * 337 * The firmware_revision field, masked with 0xffff00, is the best 338 * indicator for the type of bridge chip of a device. It yields a few 339 * false positives but this did not break correctly behaving devices 340 * so far. 341 */ 342 static const struct { 343 u32 firmware_revision; 344 u32 model; 345 unsigned int workarounds; 346 } sbp2_workarounds_table[] = { 347 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 348 .firmware_revision = 0x002800, 349 .model = 0x001010, 350 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 351 SBP2_WORKAROUND_MODE_SENSE_8 | 352 SBP2_WORKAROUND_POWER_CONDITION, 353 }, 354 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 355 .firmware_revision = 0x002800, 356 .model = 0x000000, 357 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 358 }, 359 /* Initio bridges, actually only needed for some older ones */ { 360 .firmware_revision = 0x000200, 361 .model = SBP2_ROM_VALUE_WILDCARD, 362 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 363 }, 364 /* PL-3507 bridge with Prolific firmware */ { 365 .firmware_revision = 0x012800, 366 .model = SBP2_ROM_VALUE_WILDCARD, 367 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 368 }, 369 /* Symbios bridge */ { 370 .firmware_revision = 0xa0b800, 371 .model = SBP2_ROM_VALUE_WILDCARD, 372 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 373 }, 374 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 375 .firmware_revision = 0x002600, 376 .model = SBP2_ROM_VALUE_WILDCARD, 377 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 378 }, 379 /* 380 * iPod 2nd generation: needs 128k max transfer size workaround 381 * iPod 3rd generation: needs fix capacity workaround 382 */ 383 { 384 .firmware_revision = 0x0a2700, 385 .model = 0x000000, 386 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 387 SBP2_WORKAROUND_FIX_CAPACITY, 388 }, 389 /* iPod 4th generation */ { 390 .firmware_revision = 0x0a2700, 391 .model = 0x000021, 392 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 393 }, 394 /* iPod mini */ { 395 .firmware_revision = 0x0a2700, 396 .model = 0x000022, 397 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 398 }, 399 /* iPod mini */ { 400 .firmware_revision = 0x0a2700, 401 .model = 0x000023, 402 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 403 }, 404 /* iPod Photo */ { 405 .firmware_revision = 0x0a2700, 406 .model = 0x00007e, 407 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 408 } 409 }; 410 411 static void free_orb(struct kref *kref) 412 { 413 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 414 415 kfree(orb); 416 } 417 418 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 419 int tcode, int destination, int source, 420 int generation, unsigned long long offset, 421 void *payload, size_t length, void *callback_data) 422 { 423 struct sbp2_logical_unit *lu = callback_data; 424 struct sbp2_orb *orb; 425 struct sbp2_status status; 426 unsigned long flags; 427 428 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 429 length < 8 || length > sizeof(status)) { 430 fw_send_response(card, request, RCODE_TYPE_ERROR); 431 return; 432 } 433 434 status.status = be32_to_cpup(payload); 435 status.orb_low = be32_to_cpup(payload + 4); 436 memset(status.data, 0, sizeof(status.data)); 437 if (length > 8) 438 memcpy(status.data, payload + 8, length - 8); 439 440 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 441 dev_notice(lu_dev(lu), 442 "non-ORB related status write, not handled\n"); 443 fw_send_response(card, request, RCODE_COMPLETE); 444 return; 445 } 446 447 /* Lookup the orb corresponding to this status write. */ 448 spin_lock_irqsave(&lu->tgt->lock, flags); 449 list_for_each_entry(orb, &lu->orb_list, link) { 450 if (STATUS_GET_ORB_HIGH(status) == 0 && 451 STATUS_GET_ORB_LOW(status) == orb->request_bus) { 452 orb->rcode = RCODE_COMPLETE; 453 list_del(&orb->link); 454 break; 455 } 456 } 457 spin_unlock_irqrestore(&lu->tgt->lock, flags); 458 459 if (&orb->link != &lu->orb_list) { 460 orb->callback(orb, &status); 461 kref_put(&orb->kref, free_orb); /* orb callback reference */ 462 } else { 463 dev_err(lu_dev(lu), "status write for unknown ORB\n"); 464 } 465 466 fw_send_response(card, request, RCODE_COMPLETE); 467 } 468 469 static void complete_transaction(struct fw_card *card, int rcode, 470 void *payload, size_t length, void *data) 471 { 472 struct sbp2_orb *orb = data; 473 unsigned long flags; 474 475 /* 476 * This is a little tricky. We can get the status write for 477 * the orb before we get this callback. The status write 478 * handler above will assume the orb pointer transaction was 479 * successful and set the rcode to RCODE_COMPLETE for the orb. 480 * So this callback only sets the rcode if it hasn't already 481 * been set and only does the cleanup if the transaction 482 * failed and we didn't already get a status write. 483 */ 484 spin_lock_irqsave(&orb->lu->tgt->lock, flags); 485 486 if (orb->rcode == -1) 487 orb->rcode = rcode; 488 if (orb->rcode != RCODE_COMPLETE) { 489 list_del(&orb->link); 490 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags); 491 492 orb->callback(orb, NULL); 493 kref_put(&orb->kref, free_orb); /* orb callback reference */ 494 } else { 495 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags); 496 } 497 498 kref_put(&orb->kref, free_orb); /* transaction callback reference */ 499 } 500 501 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 502 int node_id, int generation, u64 offset) 503 { 504 struct fw_device *device = target_parent_device(lu->tgt); 505 struct sbp2_pointer orb_pointer; 506 unsigned long flags; 507 508 orb_pointer.high = 0; 509 orb_pointer.low = cpu_to_be32(orb->request_bus); 510 511 orb->lu = lu; 512 spin_lock_irqsave(&lu->tgt->lock, flags); 513 list_add_tail(&orb->link, &lu->orb_list); 514 spin_unlock_irqrestore(&lu->tgt->lock, flags); 515 516 kref_get(&orb->kref); /* transaction callback reference */ 517 kref_get(&orb->kref); /* orb callback reference */ 518 519 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 520 node_id, generation, device->max_speed, offset, 521 &orb_pointer, 8, complete_transaction, orb); 522 } 523 524 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 525 { 526 struct fw_device *device = target_parent_device(lu->tgt); 527 struct sbp2_orb *orb, *next; 528 struct list_head list; 529 int retval = -ENOENT; 530 531 INIT_LIST_HEAD(&list); 532 spin_lock_irq(&lu->tgt->lock); 533 list_splice_init(&lu->orb_list, &list); 534 spin_unlock_irq(&lu->tgt->lock); 535 536 list_for_each_entry_safe(orb, next, &list, link) { 537 retval = 0; 538 if (fw_cancel_transaction(device->card, &orb->t) == 0) 539 continue; 540 541 orb->rcode = RCODE_CANCELLED; 542 orb->callback(orb, NULL); 543 kref_put(&orb->kref, free_orb); /* orb callback reference */ 544 } 545 546 return retval; 547 } 548 549 static void complete_management_orb(struct sbp2_orb *base_orb, 550 struct sbp2_status *status) 551 { 552 struct sbp2_management_orb *orb = 553 container_of(base_orb, struct sbp2_management_orb, base); 554 555 if (status) 556 memcpy(&orb->status, status, sizeof(*status)); 557 complete(&orb->done); 558 } 559 560 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 561 int generation, int function, 562 int lun_or_login_id, void *response) 563 { 564 struct fw_device *device = target_parent_device(lu->tgt); 565 struct sbp2_management_orb *orb; 566 unsigned int timeout; 567 int retval = -ENOMEM; 568 569 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 570 return 0; 571 572 orb = kzalloc(sizeof(*orb), GFP_NOIO); 573 if (orb == NULL) 574 return -ENOMEM; 575 576 kref_init(&orb->base.kref); 577 orb->response_bus = 578 dma_map_single(device->card->device, &orb->response, 579 sizeof(orb->response), DMA_FROM_DEVICE); 580 if (dma_mapping_error(device->card->device, orb->response_bus)) 581 goto fail_mapping_response; 582 583 orb->request.response.high = 0; 584 orb->request.response.low = cpu_to_be32(orb->response_bus); 585 586 orb->request.misc = cpu_to_be32( 587 MANAGEMENT_ORB_NOTIFY | 588 MANAGEMENT_ORB_FUNCTION(function) | 589 MANAGEMENT_ORB_LUN(lun_or_login_id)); 590 orb->request.length = cpu_to_be32( 591 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 592 593 orb->request.status_fifo.high = 594 cpu_to_be32(lu->address_handler.offset >> 32); 595 orb->request.status_fifo.low = 596 cpu_to_be32(lu->address_handler.offset); 597 598 if (function == SBP2_LOGIN_REQUEST) { 599 /* Ask for 2^2 == 4 seconds reconnect grace period */ 600 orb->request.misc |= cpu_to_be32( 601 MANAGEMENT_ORB_RECONNECT(2) | 602 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 603 timeout = lu->tgt->mgt_orb_timeout; 604 } else { 605 timeout = SBP2_ORB_TIMEOUT; 606 } 607 608 init_completion(&orb->done); 609 orb->base.callback = complete_management_orb; 610 611 orb->base.request_bus = 612 dma_map_single(device->card->device, &orb->request, 613 sizeof(orb->request), DMA_TO_DEVICE); 614 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 615 goto fail_mapping_request; 616 617 sbp2_send_orb(&orb->base, lu, node_id, generation, 618 lu->tgt->management_agent_address); 619 620 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 621 622 retval = -EIO; 623 if (sbp2_cancel_orbs(lu) == 0) { 624 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n", 625 orb->base.rcode); 626 goto out; 627 } 628 629 if (orb->base.rcode != RCODE_COMPLETE) { 630 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n", 631 orb->base.rcode); 632 goto out; 633 } 634 635 if (STATUS_GET_RESPONSE(orb->status) != 0 || 636 STATUS_GET_SBP_STATUS(orb->status) != 0) { 637 dev_err(lu_dev(lu), "error status: %d:%d\n", 638 STATUS_GET_RESPONSE(orb->status), 639 STATUS_GET_SBP_STATUS(orb->status)); 640 goto out; 641 } 642 643 retval = 0; 644 out: 645 dma_unmap_single(device->card->device, orb->base.request_bus, 646 sizeof(orb->request), DMA_TO_DEVICE); 647 fail_mapping_request: 648 dma_unmap_single(device->card->device, orb->response_bus, 649 sizeof(orb->response), DMA_FROM_DEVICE); 650 fail_mapping_response: 651 if (response) 652 memcpy(response, orb->response, sizeof(orb->response)); 653 kref_put(&orb->base.kref, free_orb); 654 655 return retval; 656 } 657 658 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 659 { 660 struct fw_device *device = target_parent_device(lu->tgt); 661 __be32 d = 0; 662 663 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 664 lu->tgt->node_id, lu->generation, device->max_speed, 665 lu->command_block_agent_address + SBP2_AGENT_RESET, 666 &d, 4); 667 } 668 669 static void complete_agent_reset_write_no_wait(struct fw_card *card, 670 int rcode, void *payload, size_t length, void *data) 671 { 672 kfree(data); 673 } 674 675 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 676 { 677 struct fw_device *device = target_parent_device(lu->tgt); 678 struct fw_transaction *t; 679 static __be32 d; 680 681 t = kmalloc(sizeof(*t), GFP_ATOMIC); 682 if (t == NULL) 683 return; 684 685 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 686 lu->tgt->node_id, lu->generation, device->max_speed, 687 lu->command_block_agent_address + SBP2_AGENT_RESET, 688 &d, 4, complete_agent_reset_write_no_wait, t); 689 } 690 691 static inline void sbp2_allow_block(struct sbp2_target *tgt) 692 { 693 spin_lock_irq(&tgt->lock); 694 --tgt->dont_block; 695 spin_unlock_irq(&tgt->lock); 696 } 697 698 /* 699 * Blocks lu->tgt if all of the following conditions are met: 700 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 701 * logical units have been finished (indicated by dont_block == 0). 702 * - lu->generation is stale. 703 * 704 * Note, scsi_block_requests() must be called while holding tgt->lock, 705 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 706 * unblock the target. 707 */ 708 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 709 { 710 struct sbp2_target *tgt = lu->tgt; 711 struct fw_card *card = target_parent_device(tgt)->card; 712 struct Scsi_Host *shost = 713 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 714 unsigned long flags; 715 716 spin_lock_irqsave(&tgt->lock, flags); 717 if (!tgt->dont_block && !lu->blocked && 718 lu->generation != card->generation) { 719 lu->blocked = true; 720 if (++tgt->blocked == 1) 721 scsi_block_requests(shost); 722 } 723 spin_unlock_irqrestore(&tgt->lock, flags); 724 } 725 726 /* 727 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 728 * Note, it is harmless to run scsi_unblock_requests() outside the 729 * tgt->lock protected section. On the other hand, running it inside 730 * the section might clash with shost->host_lock. 731 */ 732 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 733 { 734 struct sbp2_target *tgt = lu->tgt; 735 struct fw_card *card = target_parent_device(tgt)->card; 736 struct Scsi_Host *shost = 737 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 738 bool unblock = false; 739 740 spin_lock_irq(&tgt->lock); 741 if (lu->blocked && lu->generation == card->generation) { 742 lu->blocked = false; 743 unblock = --tgt->blocked == 0; 744 } 745 spin_unlock_irq(&tgt->lock); 746 747 if (unblock) 748 scsi_unblock_requests(shost); 749 } 750 751 /* 752 * Prevents future blocking of tgt and unblocks it. 753 * Note, it is harmless to run scsi_unblock_requests() outside the 754 * tgt->lock protected section. On the other hand, running it inside 755 * the section might clash with shost->host_lock. 756 */ 757 static void sbp2_unblock(struct sbp2_target *tgt) 758 { 759 struct Scsi_Host *shost = 760 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 761 762 spin_lock_irq(&tgt->lock); 763 ++tgt->dont_block; 764 spin_unlock_irq(&tgt->lock); 765 766 scsi_unblock_requests(shost); 767 } 768 769 static int sbp2_lun2int(u16 lun) 770 { 771 struct scsi_lun eight_bytes_lun; 772 773 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 774 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 775 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 776 777 return scsilun_to_int(&eight_bytes_lun); 778 } 779 780 /* 781 * Write retransmit retry values into the BUSY_TIMEOUT register. 782 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 783 * default retry_limit value is 0 (i.e. never retry transmission). We write a 784 * saner value after logging into the device. 785 * - The dual-phase retry protocol is optional to implement, and if not 786 * supported, writes to the dual-phase portion of the register will be 787 * ignored. We try to write the original 1394-1995 default here. 788 * - In the case of devices that are also SBP-3-compliant, all writes are 789 * ignored, as the register is read-only, but contains single-phase retry of 790 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 791 * write attempt is safe and yields more consistent behavior for all devices. 792 * 793 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 794 * and section 6.4 of the SBP-3 spec for further details. 795 */ 796 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 797 { 798 struct fw_device *device = target_parent_device(lu->tgt); 799 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 800 801 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 802 lu->tgt->node_id, lu->generation, device->max_speed, 803 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4); 804 } 805 806 static void sbp2_reconnect(struct work_struct *work); 807 808 static void sbp2_login(struct work_struct *work) 809 { 810 struct sbp2_logical_unit *lu = 811 container_of(work, struct sbp2_logical_unit, work.work); 812 struct sbp2_target *tgt = lu->tgt; 813 struct fw_device *device = target_parent_device(tgt); 814 struct Scsi_Host *shost; 815 struct scsi_device *sdev; 816 struct sbp2_login_response response; 817 int generation, node_id, local_node_id; 818 819 if (fw_device_is_shutdown(device)) 820 return; 821 822 generation = device->generation; 823 smp_rmb(); /* node IDs must not be older than generation */ 824 node_id = device->node_id; 825 local_node_id = device->card->node_id; 826 827 /* If this is a re-login attempt, log out, or we might be rejected. */ 828 if (lu->has_sdev) 829 sbp2_send_management_orb(lu, device->node_id, generation, 830 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 831 832 if (sbp2_send_management_orb(lu, node_id, generation, 833 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 834 if (lu->retries++ < 5) { 835 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 836 } else { 837 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n", 838 lu->lun); 839 /* Let any waiting I/O fail from now on. */ 840 sbp2_unblock(lu->tgt); 841 } 842 return; 843 } 844 845 tgt->node_id = node_id; 846 tgt->address_high = local_node_id << 16; 847 smp_wmb(); /* node IDs must not be older than generation */ 848 lu->generation = generation; 849 850 lu->command_block_agent_address = 851 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 852 << 32) | be32_to_cpu(response.command_block_agent.low); 853 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 854 855 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n", 856 lu->lun, lu->retries); 857 858 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 859 sbp2_set_busy_timeout(lu); 860 861 lu->workfn = sbp2_reconnect; 862 sbp2_agent_reset(lu); 863 864 /* This was a re-login. */ 865 if (lu->has_sdev) { 866 sbp2_cancel_orbs(lu); 867 sbp2_conditionally_unblock(lu); 868 869 return; 870 } 871 872 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 873 ssleep(SBP2_INQUIRY_DELAY); 874 875 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 876 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 877 /* 878 * FIXME: We are unable to perform reconnects while in sbp2_login(). 879 * Therefore __scsi_add_device() will get into trouble if a bus reset 880 * happens in parallel. It will either fail or leave us with an 881 * unusable sdev. As a workaround we check for this and retry the 882 * whole login and SCSI probing. 883 */ 884 885 /* Reported error during __scsi_add_device() */ 886 if (IS_ERR(sdev)) 887 goto out_logout_login; 888 889 /* Unreported error during __scsi_add_device() */ 890 smp_rmb(); /* get current card generation */ 891 if (generation != device->card->generation) { 892 scsi_remove_device(sdev); 893 scsi_device_put(sdev); 894 goto out_logout_login; 895 } 896 897 /* No error during __scsi_add_device() */ 898 lu->has_sdev = true; 899 scsi_device_put(sdev); 900 sbp2_allow_block(tgt); 901 902 return; 903 904 out_logout_login: 905 smp_rmb(); /* generation may have changed */ 906 generation = device->generation; 907 smp_rmb(); /* node_id must not be older than generation */ 908 909 sbp2_send_management_orb(lu, device->node_id, generation, 910 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 911 /* 912 * If a bus reset happened, sbp2_update will have requeued 913 * lu->work already. Reset the work from reconnect to login. 914 */ 915 lu->workfn = sbp2_login; 916 } 917 918 static void sbp2_reconnect(struct work_struct *work) 919 { 920 struct sbp2_logical_unit *lu = 921 container_of(work, struct sbp2_logical_unit, work.work); 922 struct sbp2_target *tgt = lu->tgt; 923 struct fw_device *device = target_parent_device(tgt); 924 int generation, node_id, local_node_id; 925 926 if (fw_device_is_shutdown(device)) 927 return; 928 929 generation = device->generation; 930 smp_rmb(); /* node IDs must not be older than generation */ 931 node_id = device->node_id; 932 local_node_id = device->card->node_id; 933 934 if (sbp2_send_management_orb(lu, node_id, generation, 935 SBP2_RECONNECT_REQUEST, 936 lu->login_id, NULL) < 0) { 937 /* 938 * If reconnect was impossible even though we are in the 939 * current generation, fall back and try to log in again. 940 * 941 * We could check for "Function rejected" status, but 942 * looking at the bus generation as simpler and more general. 943 */ 944 smp_rmb(); /* get current card generation */ 945 if (generation == device->card->generation || 946 lu->retries++ >= 5) { 947 dev_err(tgt_dev(tgt), "failed to reconnect\n"); 948 lu->retries = 0; 949 lu->workfn = sbp2_login; 950 } 951 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 952 953 return; 954 } 955 956 tgt->node_id = node_id; 957 tgt->address_high = local_node_id << 16; 958 smp_wmb(); /* node IDs must not be older than generation */ 959 lu->generation = generation; 960 961 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n", 962 lu->lun, lu->retries); 963 964 sbp2_agent_reset(lu); 965 sbp2_cancel_orbs(lu); 966 sbp2_conditionally_unblock(lu); 967 } 968 969 static void sbp2_lu_workfn(struct work_struct *work) 970 { 971 struct sbp2_logical_unit *lu = container_of(to_delayed_work(work), 972 struct sbp2_logical_unit, work); 973 lu->workfn(work); 974 } 975 976 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 977 { 978 struct sbp2_logical_unit *lu; 979 980 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 981 if (!lu) 982 return -ENOMEM; 983 984 lu->address_handler.length = 0x100; 985 lu->address_handler.address_callback = sbp2_status_write; 986 lu->address_handler.callback_data = lu; 987 988 if (fw_core_add_address_handler(&lu->address_handler, 989 &fw_high_memory_region) < 0) { 990 kfree(lu); 991 return -ENOMEM; 992 } 993 994 lu->tgt = tgt; 995 lu->lun = lun_entry & 0xffff; 996 lu->login_id = INVALID_LOGIN_ID; 997 lu->retries = 0; 998 lu->has_sdev = false; 999 lu->blocked = false; 1000 ++tgt->dont_block; 1001 INIT_LIST_HEAD(&lu->orb_list); 1002 lu->workfn = sbp2_login; 1003 INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn); 1004 1005 list_add_tail(&lu->link, &tgt->lu_list); 1006 return 0; 1007 } 1008 1009 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt, 1010 const u32 *leaf) 1011 { 1012 if ((leaf[0] & 0xffff0000) == 0x00020000) 1013 tgt->guid = (u64)leaf[1] << 32 | leaf[2]; 1014 } 1015 1016 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, 1017 const u32 *directory) 1018 { 1019 struct fw_csr_iterator ci; 1020 int key, value; 1021 1022 fw_csr_iterator_init(&ci, directory); 1023 while (fw_csr_iterator_next(&ci, &key, &value)) 1024 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1025 sbp2_add_logical_unit(tgt, value) < 0) 1026 return -ENOMEM; 1027 return 0; 1028 } 1029 1030 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory, 1031 u32 *model, u32 *firmware_revision) 1032 { 1033 struct fw_csr_iterator ci; 1034 int key, value; 1035 1036 fw_csr_iterator_init(&ci, directory); 1037 while (fw_csr_iterator_next(&ci, &key, &value)) { 1038 switch (key) { 1039 1040 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1041 tgt->management_agent_address = 1042 CSR_REGISTER_BASE + 4 * value; 1043 break; 1044 1045 case CSR_DIRECTORY_ID: 1046 tgt->directory_id = value; 1047 break; 1048 1049 case CSR_MODEL: 1050 *model = value; 1051 break; 1052 1053 case SBP2_CSR_FIRMWARE_REVISION: 1054 *firmware_revision = value; 1055 break; 1056 1057 case SBP2_CSR_UNIT_CHARACTERISTICS: 1058 /* the timeout value is stored in 500ms units */ 1059 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; 1060 break; 1061 1062 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1063 if (sbp2_add_logical_unit(tgt, value) < 0) 1064 return -ENOMEM; 1065 break; 1066 1067 case SBP2_CSR_UNIT_UNIQUE_ID: 1068 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value); 1069 break; 1070 1071 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1072 /* Adjust for the increment in the iterator */ 1073 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1074 return -ENOMEM; 1075 break; 1076 } 1077 } 1078 return 0; 1079 } 1080 1081 /* 1082 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 1083 * provided in the config rom. Most devices do provide a value, which 1084 * we'll use for login management orbs, but with some sane limits. 1085 */ 1086 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) 1087 { 1088 unsigned int timeout = tgt->mgt_orb_timeout; 1089 1090 if (timeout > 40000) 1091 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n", 1092 timeout / 1000); 1093 1094 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); 1095 } 1096 1097 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1098 u32 firmware_revision) 1099 { 1100 int i; 1101 unsigned int w = sbp2_param_workarounds; 1102 1103 if (w) 1104 dev_notice(tgt_dev(tgt), 1105 "Please notify linux1394-devel@lists.sf.net " 1106 "if you need the workarounds parameter\n"); 1107 1108 if (w & SBP2_WORKAROUND_OVERRIDE) 1109 goto out; 1110 1111 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1112 1113 if (sbp2_workarounds_table[i].firmware_revision != 1114 (firmware_revision & 0xffffff00)) 1115 continue; 1116 1117 if (sbp2_workarounds_table[i].model != model && 1118 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1119 continue; 1120 1121 w |= sbp2_workarounds_table[i].workarounds; 1122 break; 1123 } 1124 out: 1125 if (w) 1126 dev_notice(tgt_dev(tgt), "workarounds 0x%x " 1127 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1128 w, firmware_revision, model); 1129 tgt->workarounds = w; 1130 } 1131 1132 static struct scsi_host_template scsi_driver_template; 1133 static void sbp2_remove(struct fw_unit *unit); 1134 1135 static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id) 1136 { 1137 struct fw_device *device = fw_parent_device(unit); 1138 struct sbp2_target *tgt; 1139 struct sbp2_logical_unit *lu; 1140 struct Scsi_Host *shost; 1141 u32 model, firmware_revision; 1142 1143 /* cannot (or should not) handle targets on the local node */ 1144 if (device->is_local) 1145 return -ENODEV; 1146 1147 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE) 1148 WARN_ON(dma_set_max_seg_size(device->card->device, 1149 SBP2_MAX_SEG_SIZE)); 1150 1151 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1152 if (shost == NULL) 1153 return -ENOMEM; 1154 1155 tgt = (struct sbp2_target *)shost->hostdata; 1156 dev_set_drvdata(&unit->device, tgt); 1157 tgt->unit = unit; 1158 INIT_LIST_HEAD(&tgt->lu_list); 1159 spin_lock_init(&tgt->lock); 1160 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1161 1162 if (fw_device_enable_phys_dma(device) < 0) 1163 goto fail_shost_put; 1164 1165 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1166 1167 if (scsi_add_host_with_dma(shost, &unit->device, 1168 device->card->device) < 0) 1169 goto fail_shost_put; 1170 1171 /* implicit directory ID */ 1172 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1173 + CSR_CONFIG_ROM) & 0xffffff; 1174 1175 firmware_revision = SBP2_ROM_VALUE_MISSING; 1176 model = SBP2_ROM_VALUE_MISSING; 1177 1178 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1179 &firmware_revision) < 0) 1180 goto fail_remove; 1181 1182 sbp2_clamp_management_orb_timeout(tgt); 1183 sbp2_init_workarounds(tgt, model, firmware_revision); 1184 1185 /* 1186 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1187 * and so on up to 4096 bytes. The SBP-2 max_payload field 1188 * specifies the max payload size as 2 ^ (max_payload + 2), so 1189 * if we set this to max_speed + 7, we get the right value. 1190 */ 1191 tgt->max_payload = min3(device->max_speed + 7, 10U, 1192 device->card->max_receive - 1); 1193 1194 /* Do the login in a workqueue so we can easily reschedule retries. */ 1195 list_for_each_entry(lu, &tgt->lu_list, link) 1196 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1197 1198 return 0; 1199 1200 fail_remove: 1201 sbp2_remove(unit); 1202 return -ENOMEM; 1203 1204 fail_shost_put: 1205 scsi_host_put(shost); 1206 return -ENOMEM; 1207 } 1208 1209 static void sbp2_update(struct fw_unit *unit) 1210 { 1211 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1212 struct sbp2_logical_unit *lu; 1213 1214 fw_device_enable_phys_dma(fw_parent_device(unit)); 1215 1216 /* 1217 * Fw-core serializes sbp2_update() against sbp2_remove(). 1218 * Iteration over tgt->lu_list is therefore safe here. 1219 */ 1220 list_for_each_entry(lu, &tgt->lu_list, link) { 1221 sbp2_conditionally_block(lu); 1222 lu->retries = 0; 1223 sbp2_queue_work(lu, 0); 1224 } 1225 } 1226 1227 static void sbp2_remove(struct fw_unit *unit) 1228 { 1229 struct fw_device *device = fw_parent_device(unit); 1230 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1231 struct sbp2_logical_unit *lu, *next; 1232 struct Scsi_Host *shost = 1233 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 1234 struct scsi_device *sdev; 1235 1236 /* prevent deadlocks */ 1237 sbp2_unblock(tgt); 1238 1239 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 1240 cancel_delayed_work_sync(&lu->work); 1241 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 1242 if (sdev) { 1243 scsi_remove_device(sdev); 1244 scsi_device_put(sdev); 1245 } 1246 if (lu->login_id != INVALID_LOGIN_ID) { 1247 int generation, node_id; 1248 /* 1249 * tgt->node_id may be obsolete here if we failed 1250 * during initial login or after a bus reset where 1251 * the topology changed. 1252 */ 1253 generation = device->generation; 1254 smp_rmb(); /* node_id vs. generation */ 1255 node_id = device->node_id; 1256 sbp2_send_management_orb(lu, node_id, generation, 1257 SBP2_LOGOUT_REQUEST, 1258 lu->login_id, NULL); 1259 } 1260 fw_core_remove_address_handler(&lu->address_handler); 1261 list_del(&lu->link); 1262 kfree(lu); 1263 } 1264 scsi_remove_host(shost); 1265 dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no); 1266 1267 scsi_host_put(shost); 1268 } 1269 1270 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1271 #define SBP2_SW_VERSION_ENTRY 0x00010483 1272 1273 static const struct ieee1394_device_id sbp2_id_table[] = { 1274 { 1275 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1276 IEEE1394_MATCH_VERSION, 1277 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1278 .version = SBP2_SW_VERSION_ENTRY, 1279 }, 1280 { } 1281 }; 1282 1283 static struct fw_driver sbp2_driver = { 1284 .driver = { 1285 .owner = THIS_MODULE, 1286 .name = KBUILD_MODNAME, 1287 .bus = &fw_bus_type, 1288 }, 1289 .probe = sbp2_probe, 1290 .update = sbp2_update, 1291 .remove = sbp2_remove, 1292 .id_table = sbp2_id_table, 1293 }; 1294 1295 static void sbp2_unmap_scatterlist(struct device *card_device, 1296 struct sbp2_command_orb *orb) 1297 { 1298 scsi_dma_unmap(orb->cmd); 1299 1300 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1301 dma_unmap_single(card_device, orb->page_table_bus, 1302 sizeof(orb->page_table), DMA_TO_DEVICE); 1303 } 1304 1305 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1306 { 1307 int sam_status; 1308 int sfmt = (sbp2_status[0] >> 6) & 0x03; 1309 1310 if (sfmt == 2 || sfmt == 3) { 1311 /* 1312 * Reserved for future standardization (2) or 1313 * Status block format vendor-dependent (3) 1314 */ 1315 return DID_ERROR << 16; 1316 } 1317 1318 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80); 1319 sense_data[1] = 0x0; 1320 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f); 1321 sense_data[3] = sbp2_status[4]; 1322 sense_data[4] = sbp2_status[5]; 1323 sense_data[5] = sbp2_status[6]; 1324 sense_data[6] = sbp2_status[7]; 1325 sense_data[7] = 10; 1326 sense_data[8] = sbp2_status[8]; 1327 sense_data[9] = sbp2_status[9]; 1328 sense_data[10] = sbp2_status[10]; 1329 sense_data[11] = sbp2_status[11]; 1330 sense_data[12] = sbp2_status[2]; 1331 sense_data[13] = sbp2_status[3]; 1332 sense_data[14] = sbp2_status[12]; 1333 sense_data[15] = sbp2_status[13]; 1334 1335 sam_status = sbp2_status[0] & 0x3f; 1336 1337 switch (sam_status) { 1338 case SAM_STAT_GOOD: 1339 case SAM_STAT_CHECK_CONDITION: 1340 case SAM_STAT_CONDITION_MET: 1341 case SAM_STAT_BUSY: 1342 case SAM_STAT_RESERVATION_CONFLICT: 1343 case SAM_STAT_COMMAND_TERMINATED: 1344 return DID_OK << 16 | sam_status; 1345 1346 default: 1347 return DID_ERROR << 16; 1348 } 1349 } 1350 1351 static void complete_command_orb(struct sbp2_orb *base_orb, 1352 struct sbp2_status *status) 1353 { 1354 struct sbp2_command_orb *orb = 1355 container_of(base_orb, struct sbp2_command_orb, base); 1356 struct fw_device *device = target_parent_device(base_orb->lu->tgt); 1357 int result; 1358 1359 if (status != NULL) { 1360 if (STATUS_GET_DEAD(*status)) 1361 sbp2_agent_reset_no_wait(base_orb->lu); 1362 1363 switch (STATUS_GET_RESPONSE(*status)) { 1364 case SBP2_STATUS_REQUEST_COMPLETE: 1365 result = DID_OK << 16; 1366 break; 1367 case SBP2_STATUS_TRANSPORT_FAILURE: 1368 result = DID_BUS_BUSY << 16; 1369 break; 1370 case SBP2_STATUS_ILLEGAL_REQUEST: 1371 case SBP2_STATUS_VENDOR_DEPENDENT: 1372 default: 1373 result = DID_ERROR << 16; 1374 break; 1375 } 1376 1377 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1378 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1379 orb->cmd->sense_buffer); 1380 } else { 1381 /* 1382 * If the orb completes with status == NULL, something 1383 * went wrong, typically a bus reset happened mid-orb 1384 * or when sending the write (less likely). 1385 */ 1386 result = DID_BUS_BUSY << 16; 1387 sbp2_conditionally_block(base_orb->lu); 1388 } 1389 1390 dma_unmap_single(device->card->device, orb->base.request_bus, 1391 sizeof(orb->request), DMA_TO_DEVICE); 1392 sbp2_unmap_scatterlist(device->card->device, orb); 1393 1394 orb->cmd->result = result; 1395 orb->cmd->scsi_done(orb->cmd); 1396 } 1397 1398 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1399 struct fw_device *device, struct sbp2_logical_unit *lu) 1400 { 1401 struct scatterlist *sg = scsi_sglist(orb->cmd); 1402 int i, n; 1403 1404 n = scsi_dma_map(orb->cmd); 1405 if (n <= 0) 1406 goto fail; 1407 1408 /* 1409 * Handle the special case where there is only one element in 1410 * the scatter list by converting it to an immediate block 1411 * request. This is also a workaround for broken devices such 1412 * as the second generation iPod which doesn't support page 1413 * tables. 1414 */ 1415 if (n == 1) { 1416 orb->request.data_descriptor.high = 1417 cpu_to_be32(lu->tgt->address_high); 1418 orb->request.data_descriptor.low = 1419 cpu_to_be32(sg_dma_address(sg)); 1420 orb->request.misc |= 1421 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1422 return 0; 1423 } 1424 1425 for_each_sg(sg, sg, n, i) { 1426 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1427 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1428 } 1429 1430 orb->page_table_bus = 1431 dma_map_single(device->card->device, orb->page_table, 1432 sizeof(orb->page_table), DMA_TO_DEVICE); 1433 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1434 goto fail_page_table; 1435 1436 /* 1437 * The data_descriptor pointer is the one case where we need 1438 * to fill in the node ID part of the address. All other 1439 * pointers assume that the data referenced reside on the 1440 * initiator (i.e. us), but data_descriptor can refer to data 1441 * on other nodes so we need to put our ID in descriptor.high. 1442 */ 1443 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1444 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1445 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1446 COMMAND_ORB_DATA_SIZE(n)); 1447 1448 return 0; 1449 1450 fail_page_table: 1451 scsi_dma_unmap(orb->cmd); 1452 fail: 1453 return -ENOMEM; 1454 } 1455 1456 /* SCSI stack integration */ 1457 1458 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost, 1459 struct scsi_cmnd *cmd) 1460 { 1461 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1462 struct fw_device *device = target_parent_device(lu->tgt); 1463 struct sbp2_command_orb *orb; 1464 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1465 1466 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1467 if (orb == NULL) 1468 return SCSI_MLQUEUE_HOST_BUSY; 1469 1470 /* Initialize rcode to something not RCODE_COMPLETE. */ 1471 orb->base.rcode = -1; 1472 kref_init(&orb->base.kref); 1473 orb->cmd = cmd; 1474 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1475 orb->request.misc = cpu_to_be32( 1476 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1477 COMMAND_ORB_SPEED(device->max_speed) | 1478 COMMAND_ORB_NOTIFY); 1479 1480 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1481 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1482 1483 generation = device->generation; 1484 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1485 1486 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1487 goto out; 1488 1489 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1490 1491 orb->base.callback = complete_command_orb; 1492 orb->base.request_bus = 1493 dma_map_single(device->card->device, &orb->request, 1494 sizeof(orb->request), DMA_TO_DEVICE); 1495 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1496 sbp2_unmap_scatterlist(device->card->device, orb); 1497 goto out; 1498 } 1499 1500 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1501 lu->command_block_agent_address + SBP2_ORB_POINTER); 1502 retval = 0; 1503 out: 1504 kref_put(&orb->base.kref, free_orb); 1505 return retval; 1506 } 1507 1508 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1509 { 1510 struct sbp2_logical_unit *lu = sdev->hostdata; 1511 1512 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1513 if (!lu) 1514 return -ENOSYS; 1515 1516 sdev->allow_restart = 1; 1517 1518 /* 1519 * SBP-2 does not require any alignment, but we set it anyway 1520 * for compatibility with earlier versions of this driver. 1521 */ 1522 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1523 1524 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1525 sdev->inquiry_len = 36; 1526 1527 return 0; 1528 } 1529 1530 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1531 { 1532 struct sbp2_logical_unit *lu = sdev->hostdata; 1533 1534 sdev->use_10_for_rw = 1; 1535 1536 if (sbp2_param_exclusive_login) 1537 sdev->manage_start_stop = 1; 1538 1539 if (sdev->type == TYPE_ROM) 1540 sdev->use_10_for_ms = 1; 1541 1542 if (sdev->type == TYPE_DISK && 1543 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1544 sdev->skip_ms_page_8 = 1; 1545 1546 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1547 sdev->fix_capacity = 1; 1548 1549 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1550 sdev->start_stop_pwr_cond = 1; 1551 1552 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1553 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); 1554 1555 return 0; 1556 } 1557 1558 /* 1559 * Called by scsi stack when something has really gone wrong. Usually 1560 * called when a command has timed-out for some reason. 1561 */ 1562 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1563 { 1564 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1565 1566 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n"); 1567 sbp2_agent_reset(lu); 1568 sbp2_cancel_orbs(lu); 1569 1570 return SUCCESS; 1571 } 1572 1573 /* 1574 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1575 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1576 * 1577 * This is the concatenation of target port identifier and logical unit 1578 * identifier as per SAM-2...SAM-4 annex A. 1579 */ 1580 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1581 struct device_attribute *attr, char *buf) 1582 { 1583 struct scsi_device *sdev = to_scsi_device(dev); 1584 struct sbp2_logical_unit *lu; 1585 1586 if (!sdev) 1587 return 0; 1588 1589 lu = sdev->hostdata; 1590 1591 return sprintf(buf, "%016llx:%06x:%04x\n", 1592 (unsigned long long)lu->tgt->guid, 1593 lu->tgt->directory_id, lu->lun); 1594 } 1595 1596 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1597 1598 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { 1599 &dev_attr_ieee1394_id, 1600 NULL 1601 }; 1602 1603 static struct scsi_host_template scsi_driver_template = { 1604 .module = THIS_MODULE, 1605 .name = "SBP-2 IEEE-1394", 1606 .proc_name = "sbp2", 1607 .queuecommand = sbp2_scsi_queuecommand, 1608 .slave_alloc = sbp2_scsi_slave_alloc, 1609 .slave_configure = sbp2_scsi_slave_configure, 1610 .eh_abort_handler = sbp2_scsi_abort, 1611 .this_id = -1, 1612 .sg_tablesize = SG_ALL, 1613 .use_clustering = ENABLE_CLUSTERING, 1614 .cmd_per_lun = 1, 1615 .can_queue = 1, 1616 .sdev_attrs = sbp2_scsi_sysfs_attrs, 1617 }; 1618 1619 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1620 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1621 MODULE_LICENSE("GPL"); 1622 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1623 1624 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1625 MODULE_ALIAS("sbp2"); 1626 1627 static int __init sbp2_init(void) 1628 { 1629 return driver_register(&sbp2_driver.driver); 1630 } 1631 1632 static void __exit sbp2_cleanup(void) 1633 { 1634 driver_unregister(&sbp2_driver.driver); 1635 } 1636 1637 module_init(sbp2_init); 1638 module_exit(sbp2_cleanup); 1639