xref: /linux/drivers/firewire/net.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/ethtool.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/highmem.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/jiffies.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 
29 #include <asm/unaligned.h>
30 #include <net/arp.h>
31 
32 /* rx limits */
33 #define FWNET_MAX_FRAGMENTS		30 /* arbitrary, > TX queue depth */
34 #define FWNET_ISO_PAGE_COUNT		(PAGE_SIZE < 16*1024 ? 4 : 2)
35 
36 /* tx limits */
37 #define FWNET_MAX_QUEUED_DATAGRAMS	20 /* < 64 = number of tlabels */
38 #define FWNET_MIN_QUEUED_DATAGRAMS	10 /* should keep AT DMA busy enough */
39 #define FWNET_TX_QUEUE_LEN		FWNET_MAX_QUEUED_DATAGRAMS /* ? */
40 
41 #define IEEE1394_BROADCAST_CHANNEL	31
42 #define IEEE1394_ALL_NODES		(0xffc0 | 0x003f)
43 #define IEEE1394_MAX_PAYLOAD_S100	512
44 #define FWNET_NO_FIFO_ADDR		(~0ULL)
45 
46 #define IANA_SPECIFIER_ID		0x00005eU
47 #define RFC2734_SW_VERSION		0x000001U
48 
49 #define IEEE1394_GASP_HDR_SIZE	8
50 
51 #define RFC2374_UNFRAG_HDR_SIZE	4
52 #define RFC2374_FRAG_HDR_SIZE	8
53 #define RFC2374_FRAG_OVERHEAD	4
54 
55 #define RFC2374_HDR_UNFRAG	0	/* unfragmented		*/
56 #define RFC2374_HDR_FIRSTFRAG	1	/* first fragment	*/
57 #define RFC2374_HDR_LASTFRAG	2	/* last fragment	*/
58 #define RFC2374_HDR_INTFRAG	3	/* interior fragment	*/
59 
60 #define RFC2734_HW_ADDR_LEN	16
61 
62 struct rfc2734_arp {
63 	__be16 hw_type;		/* 0x0018	*/
64 	__be16 proto_type;	/* 0x0806       */
65 	u8 hw_addr_len;		/* 16		*/
66 	u8 ip_addr_len;		/* 4		*/
67 	__be16 opcode;		/* ARP Opcode	*/
68 	/* Above is exactly the same format as struct arphdr */
69 
70 	__be64 s_uniq_id;	/* Sender's 64bit EUI			*/
71 	u8 max_rec;		/* Sender's max packet size		*/
72 	u8 sspd;		/* Sender's max speed			*/
73 	__be16 fifo_hi;		/* hi 16bits of sender's FIFO addr	*/
74 	__be32 fifo_lo;		/* lo 32bits of sender's FIFO addr	*/
75 	__be32 sip;		/* Sender's IP Address			*/
76 	__be32 tip;		/* IP Address of requested hw addr	*/
77 } __packed;
78 
79 /* This header format is specific to this driver implementation. */
80 #define FWNET_ALEN	8
81 #define FWNET_HLEN	10
82 struct fwnet_header {
83 	u8 h_dest[FWNET_ALEN];	/* destination address */
84 	__be16 h_proto;		/* packet type ID field */
85 } __packed;
86 
87 /* IPv4 and IPv6 encapsulation header */
88 struct rfc2734_header {
89 	u32 w0;
90 	u32 w1;
91 };
92 
93 #define fwnet_get_hdr_lf(h)		(((h)->w0 & 0xc0000000) >> 30)
94 #define fwnet_get_hdr_ether_type(h)	(((h)->w0 & 0x0000ffff))
95 #define fwnet_get_hdr_dg_size(h)	(((h)->w0 & 0x0fff0000) >> 16)
96 #define fwnet_get_hdr_fg_off(h)		(((h)->w0 & 0x00000fff))
97 #define fwnet_get_hdr_dgl(h)		(((h)->w1 & 0xffff0000) >> 16)
98 
99 #define fwnet_set_hdr_lf(lf)		((lf)  << 30)
100 #define fwnet_set_hdr_ether_type(et)	(et)
101 #define fwnet_set_hdr_dg_size(dgs)	((dgs) << 16)
102 #define fwnet_set_hdr_fg_off(fgo)	(fgo)
103 
104 #define fwnet_set_hdr_dgl(dgl)		((dgl) << 16)
105 
106 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
107 		unsigned ether_type)
108 {
109 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
110 		  | fwnet_set_hdr_ether_type(ether_type);
111 }
112 
113 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
114 		unsigned ether_type, unsigned dg_size, unsigned dgl)
115 {
116 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
117 		  | fwnet_set_hdr_dg_size(dg_size)
118 		  | fwnet_set_hdr_ether_type(ether_type);
119 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 }
121 
122 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
123 		unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
124 {
125 	hdr->w0 = fwnet_set_hdr_lf(lf)
126 		  | fwnet_set_hdr_dg_size(dg_size)
127 		  | fwnet_set_hdr_fg_off(fg_off);
128 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
129 }
130 
131 /* This list keeps track of what parts of the datagram have been filled in */
132 struct fwnet_fragment_info {
133 	struct list_head fi_link;
134 	u16 offset;
135 	u16 len;
136 };
137 
138 struct fwnet_partial_datagram {
139 	struct list_head pd_link;
140 	struct list_head fi_list;
141 	struct sk_buff *skb;
142 	/* FIXME Why not use skb->data? */
143 	char *pbuf;
144 	u16 datagram_label;
145 	u16 ether_type;
146 	u16 datagram_size;
147 };
148 
149 static DEFINE_MUTEX(fwnet_device_mutex);
150 static LIST_HEAD(fwnet_device_list);
151 
152 struct fwnet_device {
153 	struct list_head dev_link;
154 	spinlock_t lock;
155 	enum {
156 		FWNET_BROADCAST_ERROR,
157 		FWNET_BROADCAST_RUNNING,
158 		FWNET_BROADCAST_STOPPED,
159 	} broadcast_state;
160 	struct fw_iso_context *broadcast_rcv_context;
161 	struct fw_iso_buffer broadcast_rcv_buffer;
162 	void **broadcast_rcv_buffer_ptrs;
163 	unsigned broadcast_rcv_next_ptr;
164 	unsigned num_broadcast_rcv_ptrs;
165 	unsigned rcv_buffer_size;
166 	/*
167 	 * This value is the maximum unfragmented datagram size that can be
168 	 * sent by the hardware.  It already has the GASP overhead and the
169 	 * unfragmented datagram header overhead calculated into it.
170 	 */
171 	unsigned broadcast_xmt_max_payload;
172 	u16 broadcast_xmt_datagramlabel;
173 
174 	/*
175 	 * The CSR address that remote nodes must send datagrams to for us to
176 	 * receive them.
177 	 */
178 	struct fw_address_handler handler;
179 	u64 local_fifo;
180 
181 	/* Number of tx datagrams that have been queued but not yet acked */
182 	int queued_datagrams;
183 
184 	int peer_count;
185 	struct list_head peer_list;
186 	struct fw_card *card;
187 	struct net_device *netdev;
188 };
189 
190 struct fwnet_peer {
191 	struct list_head peer_link;
192 	struct fwnet_device *dev;
193 	u64 guid;
194 	u64 fifo;
195 	__be32 ip;
196 
197 	/* guarded by dev->lock */
198 	struct list_head pd_list; /* received partial datagrams */
199 	unsigned pdg_size;        /* pd_list size */
200 
201 	u16 datagram_label;       /* outgoing datagram label */
202 	u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
203 	int node_id;
204 	int generation;
205 	unsigned speed;
206 };
207 
208 /* This is our task struct. It's used for the packet complete callback.  */
209 struct fwnet_packet_task {
210 	struct fw_transaction transaction;
211 	struct rfc2734_header hdr;
212 	struct sk_buff *skb;
213 	struct fwnet_device *dev;
214 
215 	int outstanding_pkts;
216 	u64 fifo_addr;
217 	u16 dest_node;
218 	u16 max_payload;
219 	u8 generation;
220 	u8 speed;
221 	u8 enqueued;
222 };
223 
224 /*
225  * saddr == NULL means use device source address.
226  * daddr == NULL means leave destination address (eg unresolved arp).
227  */
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229 			unsigned short type, const void *daddr,
230 			const void *saddr, unsigned len)
231 {
232 	struct fwnet_header *h;
233 
234 	h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235 	put_unaligned_be16(type, &h->h_proto);
236 
237 	if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238 		memset(h->h_dest, 0, net->addr_len);
239 
240 		return net->hard_header_len;
241 	}
242 
243 	if (daddr) {
244 		memcpy(h->h_dest, daddr, net->addr_len);
245 
246 		return net->hard_header_len;
247 	}
248 
249 	return -net->hard_header_len;
250 }
251 
252 static int fwnet_header_rebuild(struct sk_buff *skb)
253 {
254 	struct fwnet_header *h = (struct fwnet_header *)skb->data;
255 
256 	if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257 		return arp_find((unsigned char *)&h->h_dest, skb);
258 
259 	fw_notify("%s: unable to resolve type %04x addresses\n",
260 		  skb->dev->name, be16_to_cpu(h->h_proto));
261 	return 0;
262 }
263 
264 static int fwnet_header_cache(const struct neighbour *neigh,
265 			      struct hh_cache *hh, __be16 type)
266 {
267 	struct net_device *net;
268 	struct fwnet_header *h;
269 
270 	if (type == cpu_to_be16(ETH_P_802_3))
271 		return -1;
272 	net = neigh->dev;
273 	h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274 	h->h_proto = type;
275 	memcpy(h->h_dest, neigh->ha, net->addr_len);
276 	hh->hh_len = FWNET_HLEN;
277 
278 	return 0;
279 }
280 
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283 		const struct net_device *net, const unsigned char *haddr)
284 {
285 	memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
286 }
287 
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 {
290 	memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291 
292 	return FWNET_ALEN;
293 }
294 
295 static const struct header_ops fwnet_header_ops = {
296 	.create         = fwnet_header_create,
297 	.rebuild        = fwnet_header_rebuild,
298 	.cache		= fwnet_header_cache,
299 	.cache_update	= fwnet_header_cache_update,
300 	.parse          = fwnet_header_parse,
301 };
302 
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305 			       unsigned offset, unsigned len)
306 {
307 	struct fwnet_fragment_info *fi;
308 	unsigned end = offset + len;
309 
310 	list_for_each_entry(fi, &pd->fi_list, fi_link)
311 		if (offset < fi->offset + fi->len && end > fi->offset)
312 			return true;
313 
314 	return false;
315 }
316 
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319 	struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 {
321 	struct fwnet_fragment_info *fi, *fi2, *new;
322 	struct list_head *list;
323 
324 	list = &pd->fi_list;
325 	list_for_each_entry(fi, &pd->fi_list, fi_link) {
326 		if (fi->offset + fi->len == offset) {
327 			/* The new fragment can be tacked on to the end */
328 			/* Did the new fragment plug a hole? */
329 			fi2 = list_entry(fi->fi_link.next,
330 					 struct fwnet_fragment_info, fi_link);
331 			if (fi->offset + fi->len == fi2->offset) {
332 				/* glue fragments together */
333 				fi->len += len + fi2->len;
334 				list_del(&fi2->fi_link);
335 				kfree(fi2);
336 			} else {
337 				fi->len += len;
338 			}
339 
340 			return fi;
341 		}
342 		if (offset + len == fi->offset) {
343 			/* The new fragment can be tacked on to the beginning */
344 			/* Did the new fragment plug a hole? */
345 			fi2 = list_entry(fi->fi_link.prev,
346 					 struct fwnet_fragment_info, fi_link);
347 			if (fi2->offset + fi2->len == fi->offset) {
348 				/* glue fragments together */
349 				fi2->len += fi->len + len;
350 				list_del(&fi->fi_link);
351 				kfree(fi);
352 
353 				return fi2;
354 			}
355 			fi->offset = offset;
356 			fi->len += len;
357 
358 			return fi;
359 		}
360 		if (offset > fi->offset + fi->len) {
361 			list = &fi->fi_link;
362 			break;
363 		}
364 		if (offset + len < fi->offset) {
365 			list = fi->fi_link.prev;
366 			break;
367 		}
368 	}
369 
370 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
371 	if (!new) {
372 		fw_error("out of memory\n");
373 		return NULL;
374 	}
375 
376 	new->offset = offset;
377 	new->len = len;
378 	list_add(&new->fi_link, list);
379 
380 	return new;
381 }
382 
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384 		struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385 		void *frag_buf, unsigned frag_off, unsigned frag_len)
386 {
387 	struct fwnet_partial_datagram *new;
388 	struct fwnet_fragment_info *fi;
389 
390 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
391 	if (!new)
392 		goto fail;
393 
394 	INIT_LIST_HEAD(&new->fi_list);
395 	fi = fwnet_frag_new(new, frag_off, frag_len);
396 	if (fi == NULL)
397 		goto fail_w_new;
398 
399 	new->datagram_label = datagram_label;
400 	new->datagram_size = dg_size;
401 	new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402 	if (new->skb == NULL)
403 		goto fail_w_fi;
404 
405 	skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406 	new->pbuf = skb_put(new->skb, dg_size);
407 	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408 	list_add_tail(&new->pd_link, &peer->pd_list);
409 
410 	return new;
411 
412 fail_w_fi:
413 	kfree(fi);
414 fail_w_new:
415 	kfree(new);
416 fail:
417 	fw_error("out of memory\n");
418 
419 	return NULL;
420 }
421 
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423 						    u16 datagram_label)
424 {
425 	struct fwnet_partial_datagram *pd;
426 
427 	list_for_each_entry(pd, &peer->pd_list, pd_link)
428 		if (pd->datagram_label == datagram_label)
429 			return pd;
430 
431 	return NULL;
432 }
433 
434 
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 {
437 	struct fwnet_fragment_info *fi, *n;
438 
439 	list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440 		kfree(fi);
441 
442 	list_del(&old->pd_link);
443 	dev_kfree_skb_any(old->skb);
444 	kfree(old);
445 }
446 
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448 		struct fwnet_partial_datagram *pd, void *frag_buf,
449 		unsigned frag_off, unsigned frag_len)
450 {
451 	if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452 		return false;
453 
454 	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
455 
456 	/*
457 	 * Move list entry to beginning of list so that oldest partial
458 	 * datagrams percolate to the end of the list
459 	 */
460 	list_move_tail(&pd->pd_link, &peer->pd_list);
461 
462 	return true;
463 }
464 
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 {
467 	struct fwnet_fragment_info *fi;
468 
469 	fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470 
471 	return fi->len == pd->datagram_size;
472 }
473 
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476 						  u64 guid)
477 {
478 	struct fwnet_peer *peer;
479 
480 	list_for_each_entry(peer, &dev->peer_list, peer_link)
481 		if (peer->guid == guid)
482 			return peer;
483 
484 	return NULL;
485 }
486 
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489 						int node_id, int generation)
490 {
491 	struct fwnet_peer *peer;
492 
493 	list_for_each_entry(peer, &dev->peer_list, peer_link)
494 		if (peer->node_id    == node_id &&
495 		    peer->generation == generation)
496 			return peer;
497 
498 	return NULL;
499 }
500 
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 {
504 	max_rec = min(max_rec, speed + 8);
505 	max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
506 
507 	return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
508 }
509 
510 
511 static int fwnet_finish_incoming_packet(struct net_device *net,
512 					struct sk_buff *skb, u16 source_node_id,
513 					bool is_broadcast, u16 ether_type)
514 {
515 	struct fwnet_device *dev;
516 	static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
517 	int status;
518 	__be64 guid;
519 
520 	dev = netdev_priv(net);
521 	/* Write metadata, and then pass to the receive level */
522 	skb->dev = net;
523 	skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
524 
525 	/*
526 	 * Parse the encapsulation header. This actually does the job of
527 	 * converting to an ethernet frame header, as well as arp
528 	 * conversion if needed. ARP conversion is easier in this
529 	 * direction, since we are using ethernet as our backend.
530 	 */
531 	/*
532 	 * If this is an ARP packet, convert it. First, we want to make
533 	 * use of some of the fields, since they tell us a little bit
534 	 * about the sending machine.
535 	 */
536 	if (ether_type == ETH_P_ARP) {
537 		struct rfc2734_arp *arp1394;
538 		struct arphdr *arp;
539 		unsigned char *arp_ptr;
540 		u64 fifo_addr;
541 		u64 peer_guid;
542 		unsigned sspd;
543 		u16 max_payload;
544 		struct fwnet_peer *peer;
545 		unsigned long flags;
546 
547 		arp1394   = (struct rfc2734_arp *)skb->data;
548 		arp       = (struct arphdr *)skb->data;
549 		arp_ptr   = (unsigned char *)(arp + 1);
550 		peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
551 		fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
552 				| get_unaligned_be32(&arp1394->fifo_lo);
553 
554 		sspd = arp1394->sspd;
555 		/* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
556 		if (sspd > SCODE_3200) {
557 			fw_notify("sspd %x out of range\n", sspd);
558 			sspd = SCODE_3200;
559 		}
560 		max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
561 
562 		spin_lock_irqsave(&dev->lock, flags);
563 		peer = fwnet_peer_find_by_guid(dev, peer_guid);
564 		if (peer) {
565 			peer->fifo = fifo_addr;
566 
567 			if (peer->speed > sspd)
568 				peer->speed = sspd;
569 			if (peer->max_payload > max_payload)
570 				peer->max_payload = max_payload;
571 
572 			peer->ip = arp1394->sip;
573 		}
574 		spin_unlock_irqrestore(&dev->lock, flags);
575 
576 		if (!peer) {
577 			fw_notify("No peer for ARP packet from %016llx\n",
578 				  (unsigned long long)peer_guid);
579 			goto no_peer;
580 		}
581 
582 		/*
583 		 * Now that we're done with the 1394 specific stuff, we'll
584 		 * need to alter some of the data.  Believe it or not, all
585 		 * that needs to be done is sender_IP_address needs to be
586 		 * moved, the destination hardware address get stuffed
587 		 * in and the hardware address length set to 8.
588 		 *
589 		 * IMPORTANT: The code below overwrites 1394 specific data
590 		 * needed above so keep the munging of the data for the
591 		 * higher level IP stack last.
592 		 */
593 
594 		arp->ar_hln = 8;
595 		/* skip over sender unique id */
596 		arp_ptr += arp->ar_hln;
597 		/* move sender IP addr */
598 		put_unaligned(arp1394->sip, (u32 *)arp_ptr);
599 		/* skip over sender IP addr */
600 		arp_ptr += arp->ar_pln;
601 
602 		if (arp->ar_op == htons(ARPOP_REQUEST))
603 			memset(arp_ptr, 0, sizeof(u64));
604 		else
605 			memcpy(arp_ptr, net->dev_addr, sizeof(u64));
606 	}
607 
608 	/* Now add the ethernet header. */
609 	guid = cpu_to_be64(dev->card->guid);
610 	if (dev_hard_header(skb, net, ether_type,
611 			   is_broadcast ? &broadcast_hw : &guid,
612 			   NULL, skb->len) >= 0) {
613 		struct fwnet_header *eth;
614 		u16 *rawp;
615 		__be16 protocol;
616 
617 		skb_reset_mac_header(skb);
618 		skb_pull(skb, sizeof(*eth));
619 		eth = (struct fwnet_header *)skb_mac_header(skb);
620 		if (*eth->h_dest & 1) {
621 			if (memcmp(eth->h_dest, net->broadcast,
622 				   net->addr_len) == 0)
623 				skb->pkt_type = PACKET_BROADCAST;
624 #if 0
625 			else
626 				skb->pkt_type = PACKET_MULTICAST;
627 #endif
628 		} else {
629 			if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
630 				skb->pkt_type = PACKET_OTHERHOST;
631 		}
632 		if (ntohs(eth->h_proto) >= 1536) {
633 			protocol = eth->h_proto;
634 		} else {
635 			rawp = (u16 *)skb->data;
636 			if (*rawp == 0xffff)
637 				protocol = htons(ETH_P_802_3);
638 			else
639 				protocol = htons(ETH_P_802_2);
640 		}
641 		skb->protocol = protocol;
642 	}
643 	status = netif_rx(skb);
644 	if (status == NET_RX_DROP) {
645 		net->stats.rx_errors++;
646 		net->stats.rx_dropped++;
647 	} else {
648 		net->stats.rx_packets++;
649 		net->stats.rx_bytes += skb->len;
650 	}
651 
652 	return 0;
653 
654  no_peer:
655 	net->stats.rx_errors++;
656 	net->stats.rx_dropped++;
657 
658 	dev_kfree_skb_any(skb);
659 
660 	return -ENOENT;
661 }
662 
663 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
664 				 int source_node_id, int generation,
665 				 bool is_broadcast)
666 {
667 	struct sk_buff *skb;
668 	struct net_device *net = dev->netdev;
669 	struct rfc2734_header hdr;
670 	unsigned lf;
671 	unsigned long flags;
672 	struct fwnet_peer *peer;
673 	struct fwnet_partial_datagram *pd;
674 	int fg_off;
675 	int dg_size;
676 	u16 datagram_label;
677 	int retval;
678 	u16 ether_type;
679 
680 	hdr.w0 = be32_to_cpu(buf[0]);
681 	lf = fwnet_get_hdr_lf(&hdr);
682 	if (lf == RFC2374_HDR_UNFRAG) {
683 		/*
684 		 * An unfragmented datagram has been received by the ieee1394
685 		 * bus. Build an skbuff around it so we can pass it to the
686 		 * high level network layer.
687 		 */
688 		ether_type = fwnet_get_hdr_ether_type(&hdr);
689 		buf++;
690 		len -= RFC2374_UNFRAG_HDR_SIZE;
691 
692 		skb = dev_alloc_skb(len + net->hard_header_len + 15);
693 		if (unlikely(!skb)) {
694 			fw_error("out of memory\n");
695 			net->stats.rx_dropped++;
696 
697 			return -ENOMEM;
698 		}
699 		skb_reserve(skb, (net->hard_header_len + 15) & ~15);
700 		memcpy(skb_put(skb, len), buf, len);
701 
702 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
703 						    is_broadcast, ether_type);
704 	}
705 	/* A datagram fragment has been received, now the fun begins. */
706 	hdr.w1 = ntohl(buf[1]);
707 	buf += 2;
708 	len -= RFC2374_FRAG_HDR_SIZE;
709 	if (lf == RFC2374_HDR_FIRSTFRAG) {
710 		ether_type = fwnet_get_hdr_ether_type(&hdr);
711 		fg_off = 0;
712 	} else {
713 		ether_type = 0;
714 		fg_off = fwnet_get_hdr_fg_off(&hdr);
715 	}
716 	datagram_label = fwnet_get_hdr_dgl(&hdr);
717 	dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
718 
719 	spin_lock_irqsave(&dev->lock, flags);
720 
721 	peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
722 	if (!peer) {
723 		retval = -ENOENT;
724 		goto fail;
725 	}
726 
727 	pd = fwnet_pd_find(peer, datagram_label);
728 	if (pd == NULL) {
729 		while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
730 			/* remove the oldest */
731 			fwnet_pd_delete(list_first_entry(&peer->pd_list,
732 				struct fwnet_partial_datagram, pd_link));
733 			peer->pdg_size--;
734 		}
735 		pd = fwnet_pd_new(net, peer, datagram_label,
736 				  dg_size, buf, fg_off, len);
737 		if (pd == NULL) {
738 			retval = -ENOMEM;
739 			goto fail;
740 		}
741 		peer->pdg_size++;
742 	} else {
743 		if (fwnet_frag_overlap(pd, fg_off, len) ||
744 		    pd->datagram_size != dg_size) {
745 			/*
746 			 * Differing datagram sizes or overlapping fragments,
747 			 * discard old datagram and start a new one.
748 			 */
749 			fwnet_pd_delete(pd);
750 			pd = fwnet_pd_new(net, peer, datagram_label,
751 					  dg_size, buf, fg_off, len);
752 			if (pd == NULL) {
753 				peer->pdg_size--;
754 				retval = -ENOMEM;
755 				goto fail;
756 			}
757 		} else {
758 			if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
759 				/*
760 				 * Couldn't save off fragment anyway
761 				 * so might as well obliterate the
762 				 * datagram now.
763 				 */
764 				fwnet_pd_delete(pd);
765 				peer->pdg_size--;
766 				retval = -ENOMEM;
767 				goto fail;
768 			}
769 		}
770 	} /* new datagram or add to existing one */
771 
772 	if (lf == RFC2374_HDR_FIRSTFRAG)
773 		pd->ether_type = ether_type;
774 
775 	if (fwnet_pd_is_complete(pd)) {
776 		ether_type = pd->ether_type;
777 		peer->pdg_size--;
778 		skb = skb_get(pd->skb);
779 		fwnet_pd_delete(pd);
780 
781 		spin_unlock_irqrestore(&dev->lock, flags);
782 
783 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
784 						    false, ether_type);
785 	}
786 	/*
787 	 * Datagram is not complete, we're done for the
788 	 * moment.
789 	 */
790 	retval = 0;
791  fail:
792 	spin_unlock_irqrestore(&dev->lock, flags);
793 
794 	return retval;
795 }
796 
797 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
798 		int tcode, int destination, int source, int generation,
799 		unsigned long long offset, void *payload, size_t length,
800 		void *callback_data)
801 {
802 	struct fwnet_device *dev = callback_data;
803 	int rcode;
804 
805 	if (destination == IEEE1394_ALL_NODES) {
806 		kfree(r);
807 
808 		return;
809 	}
810 
811 	if (offset != dev->handler.offset)
812 		rcode = RCODE_ADDRESS_ERROR;
813 	else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
814 		rcode = RCODE_TYPE_ERROR;
815 	else if (fwnet_incoming_packet(dev, payload, length,
816 				       source, generation, false) != 0) {
817 		fw_error("Incoming packet failure\n");
818 		rcode = RCODE_CONFLICT_ERROR;
819 	} else
820 		rcode = RCODE_COMPLETE;
821 
822 	fw_send_response(card, r, rcode);
823 }
824 
825 static void fwnet_receive_broadcast(struct fw_iso_context *context,
826 		u32 cycle, size_t header_length, void *header, void *data)
827 {
828 	struct fwnet_device *dev;
829 	struct fw_iso_packet packet;
830 	struct fw_card *card;
831 	__be16 *hdr_ptr;
832 	__be32 *buf_ptr;
833 	int retval;
834 	u32 length;
835 	u16 source_node_id;
836 	u32 specifier_id;
837 	u32 ver;
838 	unsigned long offset;
839 	unsigned long flags;
840 
841 	dev = data;
842 	card = dev->card;
843 	hdr_ptr = header;
844 	length = be16_to_cpup(hdr_ptr);
845 
846 	spin_lock_irqsave(&dev->lock, flags);
847 
848 	offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
849 	buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
850 	if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
851 		dev->broadcast_rcv_next_ptr = 0;
852 
853 	spin_unlock_irqrestore(&dev->lock, flags);
854 
855 	specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
856 			| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
857 	ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
858 	source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
859 
860 	if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
861 		buf_ptr += 2;
862 		length -= IEEE1394_GASP_HDR_SIZE;
863 		fwnet_incoming_packet(dev, buf_ptr, length,
864 				      source_node_id, -1, true);
865 	}
866 
867 	packet.payload_length = dev->rcv_buffer_size;
868 	packet.interrupt = 1;
869 	packet.skip = 0;
870 	packet.tag = 3;
871 	packet.sy = 0;
872 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
873 
874 	spin_lock_irqsave(&dev->lock, flags);
875 
876 	retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
877 				      &dev->broadcast_rcv_buffer, offset);
878 
879 	spin_unlock_irqrestore(&dev->lock, flags);
880 
881 	if (retval >= 0)
882 		fw_iso_context_queue_flush(dev->broadcast_rcv_context);
883 	else
884 		fw_error("requeue failed\n");
885 }
886 
887 static struct kmem_cache *fwnet_packet_task_cache;
888 
889 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
890 {
891 	dev_kfree_skb_any(ptask->skb);
892 	kmem_cache_free(fwnet_packet_task_cache, ptask);
893 }
894 
895 /* Caller must hold dev->lock. */
896 static void dec_queued_datagrams(struct fwnet_device *dev)
897 {
898 	if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
899 		netif_wake_queue(dev->netdev);
900 }
901 
902 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
903 
904 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
905 {
906 	struct fwnet_device *dev = ptask->dev;
907 	struct sk_buff *skb = ptask->skb;
908 	unsigned long flags;
909 	bool free;
910 
911 	spin_lock_irqsave(&dev->lock, flags);
912 
913 	ptask->outstanding_pkts--;
914 
915 	/* Check whether we or the networking TX soft-IRQ is last user. */
916 	free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
917 	if (free)
918 		dec_queued_datagrams(dev);
919 
920 	if (ptask->outstanding_pkts == 0) {
921 		dev->netdev->stats.tx_packets++;
922 		dev->netdev->stats.tx_bytes += skb->len;
923 	}
924 
925 	spin_unlock_irqrestore(&dev->lock, flags);
926 
927 	if (ptask->outstanding_pkts > 0) {
928 		u16 dg_size;
929 		u16 fg_off;
930 		u16 datagram_label;
931 		u16 lf;
932 
933 		/* Update the ptask to point to the next fragment and send it */
934 		lf = fwnet_get_hdr_lf(&ptask->hdr);
935 		switch (lf) {
936 		case RFC2374_HDR_LASTFRAG:
937 		case RFC2374_HDR_UNFRAG:
938 		default:
939 			fw_error("Outstanding packet %x lf %x, header %x,%x\n",
940 				 ptask->outstanding_pkts, lf, ptask->hdr.w0,
941 				 ptask->hdr.w1);
942 			BUG();
943 
944 		case RFC2374_HDR_FIRSTFRAG:
945 			/* Set frag type here for future interior fragments */
946 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
947 			fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
948 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
949 			break;
950 
951 		case RFC2374_HDR_INTFRAG:
952 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
953 			fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
954 				  + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
955 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
956 			break;
957 		}
958 
959 		skb_pull(skb, ptask->max_payload);
960 		if (ptask->outstanding_pkts > 1) {
961 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
962 					  dg_size, fg_off, datagram_label);
963 		} else {
964 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
965 					  dg_size, fg_off, datagram_label);
966 			ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
967 		}
968 		fwnet_send_packet(ptask);
969 	}
970 
971 	if (free)
972 		fwnet_free_ptask(ptask);
973 }
974 
975 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
976 {
977 	struct fwnet_device *dev = ptask->dev;
978 	unsigned long flags;
979 	bool free;
980 
981 	spin_lock_irqsave(&dev->lock, flags);
982 
983 	/* One fragment failed; don't try to send remaining fragments. */
984 	ptask->outstanding_pkts = 0;
985 
986 	/* Check whether we or the networking TX soft-IRQ is last user. */
987 	free = ptask->enqueued;
988 	if (free)
989 		dec_queued_datagrams(dev);
990 
991 	dev->netdev->stats.tx_dropped++;
992 	dev->netdev->stats.tx_errors++;
993 
994 	spin_unlock_irqrestore(&dev->lock, flags);
995 
996 	if (free)
997 		fwnet_free_ptask(ptask);
998 }
999 
1000 static void fwnet_write_complete(struct fw_card *card, int rcode,
1001 				 void *payload, size_t length, void *data)
1002 {
1003 	struct fwnet_packet_task *ptask = data;
1004 	static unsigned long j;
1005 	static int last_rcode, errors_skipped;
1006 
1007 	if (rcode == RCODE_COMPLETE) {
1008 		fwnet_transmit_packet_done(ptask);
1009 	} else {
1010 		fwnet_transmit_packet_failed(ptask);
1011 
1012 		if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1013 			fw_error("fwnet_write_complete: "
1014 				"failed: %x (skipped %d)\n", rcode, errors_skipped);
1015 
1016 			errors_skipped = 0;
1017 			last_rcode = rcode;
1018 		} else
1019 			errors_skipped++;
1020 	}
1021 }
1022 
1023 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1024 {
1025 	struct fwnet_device *dev;
1026 	unsigned tx_len;
1027 	struct rfc2734_header *bufhdr;
1028 	unsigned long flags;
1029 	bool free;
1030 
1031 	dev = ptask->dev;
1032 	tx_len = ptask->max_payload;
1033 	switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1034 	case RFC2374_HDR_UNFRAG:
1035 		bufhdr = (struct rfc2734_header *)
1036 				skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1037 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1038 		break;
1039 
1040 	case RFC2374_HDR_FIRSTFRAG:
1041 	case RFC2374_HDR_INTFRAG:
1042 	case RFC2374_HDR_LASTFRAG:
1043 		bufhdr = (struct rfc2734_header *)
1044 				skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1045 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1046 		put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1047 		break;
1048 
1049 	default:
1050 		BUG();
1051 	}
1052 	if (ptask->dest_node == IEEE1394_ALL_NODES) {
1053 		u8 *p;
1054 		int generation;
1055 		int node_id;
1056 
1057 		/* ptask->generation may not have been set yet */
1058 		generation = dev->card->generation;
1059 		smp_rmb();
1060 		node_id = dev->card->node_id;
1061 
1062 		p = skb_push(ptask->skb, 8);
1063 		put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1064 		put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1065 						| RFC2734_SW_VERSION, &p[4]);
1066 
1067 		/* We should not transmit if broadcast_channel.valid == 0. */
1068 		fw_send_request(dev->card, &ptask->transaction,
1069 				TCODE_STREAM_DATA,
1070 				fw_stream_packet_destination_id(3,
1071 						IEEE1394_BROADCAST_CHANNEL, 0),
1072 				generation, SCODE_100, 0ULL, ptask->skb->data,
1073 				tx_len + 8, fwnet_write_complete, ptask);
1074 
1075 		spin_lock_irqsave(&dev->lock, flags);
1076 
1077 		/* If the AT tasklet already ran, we may be last user. */
1078 		free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1079 		if (!free)
1080 			ptask->enqueued = true;
1081 		else
1082 			dec_queued_datagrams(dev);
1083 
1084 		spin_unlock_irqrestore(&dev->lock, flags);
1085 
1086 		goto out;
1087 	}
1088 
1089 	fw_send_request(dev->card, &ptask->transaction,
1090 			TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1091 			ptask->generation, ptask->speed, ptask->fifo_addr,
1092 			ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1093 
1094 	spin_lock_irqsave(&dev->lock, flags);
1095 
1096 	/* If the AT tasklet already ran, we may be last user. */
1097 	free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1098 	if (!free)
1099 		ptask->enqueued = true;
1100 	else
1101 		dec_queued_datagrams(dev);
1102 
1103 	spin_unlock_irqrestore(&dev->lock, flags);
1104 
1105 	dev->netdev->trans_start = jiffies;
1106  out:
1107 	if (free)
1108 		fwnet_free_ptask(ptask);
1109 
1110 	return 0;
1111 }
1112 
1113 static int fwnet_broadcast_start(struct fwnet_device *dev)
1114 {
1115 	struct fw_iso_context *context;
1116 	int retval;
1117 	unsigned num_packets;
1118 	unsigned max_receive;
1119 	struct fw_iso_packet packet;
1120 	unsigned long offset;
1121 	unsigned u;
1122 
1123 	if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1124 		dev->handler.length = 4096;
1125 		dev->handler.address_callback = fwnet_receive_packet;
1126 		dev->handler.callback_data = dev;
1127 
1128 		retval = fw_core_add_address_handler(&dev->handler,
1129 					&fw_high_memory_region);
1130 		if (retval < 0)
1131 			goto failed_initial;
1132 
1133 		dev->local_fifo = dev->handler.offset;
1134 	}
1135 
1136 	max_receive = 1U << (dev->card->max_receive + 1);
1137 	num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1138 
1139 	if (!dev->broadcast_rcv_context) {
1140 		void **ptrptr;
1141 
1142 		context = fw_iso_context_create(dev->card,
1143 		    FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1144 		    dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1145 		if (IS_ERR(context)) {
1146 			retval = PTR_ERR(context);
1147 			goto failed_context_create;
1148 		}
1149 
1150 		retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1151 		    dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1152 		if (retval < 0)
1153 			goto failed_buffer_init;
1154 
1155 		ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1156 		if (!ptrptr) {
1157 			retval = -ENOMEM;
1158 			goto failed_ptrs_alloc;
1159 		}
1160 
1161 		dev->broadcast_rcv_buffer_ptrs = ptrptr;
1162 		for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1163 			void *ptr;
1164 			unsigned v;
1165 
1166 			ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1167 			for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1168 				*ptrptr++ = (void *)
1169 						((char *)ptr + v * max_receive);
1170 		}
1171 		dev->broadcast_rcv_context = context;
1172 	} else {
1173 		context = dev->broadcast_rcv_context;
1174 	}
1175 
1176 	packet.payload_length = max_receive;
1177 	packet.interrupt = 1;
1178 	packet.skip = 0;
1179 	packet.tag = 3;
1180 	packet.sy = 0;
1181 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
1182 	offset = 0;
1183 
1184 	for (u = 0; u < num_packets; u++) {
1185 		retval = fw_iso_context_queue(context, &packet,
1186 				&dev->broadcast_rcv_buffer, offset);
1187 		if (retval < 0)
1188 			goto failed_rcv_queue;
1189 
1190 		offset += max_receive;
1191 	}
1192 	dev->num_broadcast_rcv_ptrs = num_packets;
1193 	dev->rcv_buffer_size = max_receive;
1194 	dev->broadcast_rcv_next_ptr = 0U;
1195 	retval = fw_iso_context_start(context, -1, 0,
1196 			FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1197 	if (retval < 0)
1198 		goto failed_rcv_queue;
1199 
1200 	/* FIXME: adjust it according to the min. speed of all known peers? */
1201 	dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1202 			- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1203 	dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1204 
1205 	return 0;
1206 
1207  failed_rcv_queue:
1208 	kfree(dev->broadcast_rcv_buffer_ptrs);
1209 	dev->broadcast_rcv_buffer_ptrs = NULL;
1210  failed_ptrs_alloc:
1211 	fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1212  failed_buffer_init:
1213 	fw_iso_context_destroy(context);
1214 	dev->broadcast_rcv_context = NULL;
1215  failed_context_create:
1216 	fw_core_remove_address_handler(&dev->handler);
1217  failed_initial:
1218 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1219 
1220 	return retval;
1221 }
1222 
1223 static void set_carrier_state(struct fwnet_device *dev)
1224 {
1225 	if (dev->peer_count > 1)
1226 		netif_carrier_on(dev->netdev);
1227 	else
1228 		netif_carrier_off(dev->netdev);
1229 }
1230 
1231 /* ifup */
1232 static int fwnet_open(struct net_device *net)
1233 {
1234 	struct fwnet_device *dev = netdev_priv(net);
1235 	int ret;
1236 
1237 	if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1238 		ret = fwnet_broadcast_start(dev);
1239 		if (ret)
1240 			return ret;
1241 	}
1242 	netif_start_queue(net);
1243 
1244 	spin_lock_irq(&dev->lock);
1245 	set_carrier_state(dev);
1246 	spin_unlock_irq(&dev->lock);
1247 
1248 	return 0;
1249 }
1250 
1251 /* ifdown */
1252 static int fwnet_stop(struct net_device *net)
1253 {
1254 	netif_stop_queue(net);
1255 
1256 	/* Deallocate iso context for use by other applications? */
1257 
1258 	return 0;
1259 }
1260 
1261 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1262 {
1263 	struct fwnet_header hdr_buf;
1264 	struct fwnet_device *dev = netdev_priv(net);
1265 	__be16 proto;
1266 	u16 dest_node;
1267 	unsigned max_payload;
1268 	u16 dg_size;
1269 	u16 *datagram_label_ptr;
1270 	struct fwnet_packet_task *ptask;
1271 	struct fwnet_peer *peer;
1272 	unsigned long flags;
1273 
1274 	spin_lock_irqsave(&dev->lock, flags);
1275 
1276 	/* Can this happen? */
1277 	if (netif_queue_stopped(dev->netdev)) {
1278 		spin_unlock_irqrestore(&dev->lock, flags);
1279 
1280 		return NETDEV_TX_BUSY;
1281 	}
1282 
1283 	ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1284 	if (ptask == NULL)
1285 		goto fail;
1286 
1287 	skb = skb_share_check(skb, GFP_ATOMIC);
1288 	if (!skb)
1289 		goto fail;
1290 
1291 	/*
1292 	 * Make a copy of the driver-specific header.
1293 	 * We might need to rebuild the header on tx failure.
1294 	 */
1295 	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1296 	skb_pull(skb, sizeof(hdr_buf));
1297 
1298 	proto = hdr_buf.h_proto;
1299 	dg_size = skb->len;
1300 
1301 	/*
1302 	 * Set the transmission type for the packet.  ARP packets and IP
1303 	 * broadcast packets are sent via GASP.
1304 	 */
1305 	if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1306 	    || proto == htons(ETH_P_ARP)
1307 	    || (proto == htons(ETH_P_IP)
1308 		&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1309 		max_payload        = dev->broadcast_xmt_max_payload;
1310 		datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1311 
1312 		ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1313 		ptask->generation  = 0;
1314 		ptask->dest_node   = IEEE1394_ALL_NODES;
1315 		ptask->speed       = SCODE_100;
1316 	} else {
1317 		__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1318 		u8 generation;
1319 
1320 		peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1321 		if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1322 			goto fail;
1323 
1324 		generation         = peer->generation;
1325 		dest_node          = peer->node_id;
1326 		max_payload        = peer->max_payload;
1327 		datagram_label_ptr = &peer->datagram_label;
1328 
1329 		ptask->fifo_addr   = peer->fifo;
1330 		ptask->generation  = generation;
1331 		ptask->dest_node   = dest_node;
1332 		ptask->speed       = peer->speed;
1333 	}
1334 
1335 	/* If this is an ARP packet, convert it */
1336 	if (proto == htons(ETH_P_ARP)) {
1337 		struct arphdr *arp = (struct arphdr *)skb->data;
1338 		unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1339 		struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1340 		__be32 ipaddr;
1341 
1342 		ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1343 
1344 		arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1345 		arp1394->max_rec        = dev->card->max_receive;
1346 		arp1394->sspd		= dev->card->link_speed;
1347 
1348 		put_unaligned_be16(dev->local_fifo >> 32,
1349 				   &arp1394->fifo_hi);
1350 		put_unaligned_be32(dev->local_fifo & 0xffffffff,
1351 				   &arp1394->fifo_lo);
1352 		put_unaligned(ipaddr, &arp1394->sip);
1353 	}
1354 
1355 	ptask->hdr.w0 = 0;
1356 	ptask->hdr.w1 = 0;
1357 	ptask->skb = skb;
1358 	ptask->dev = dev;
1359 
1360 	/* Does it all fit in one packet? */
1361 	if (dg_size <= max_payload) {
1362 		fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1363 		ptask->outstanding_pkts = 1;
1364 		max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1365 	} else {
1366 		u16 datagram_label;
1367 
1368 		max_payload -= RFC2374_FRAG_OVERHEAD;
1369 		datagram_label = (*datagram_label_ptr)++;
1370 		fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1371 				  datagram_label);
1372 		ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1373 		max_payload += RFC2374_FRAG_HDR_SIZE;
1374 	}
1375 
1376 	if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1377 		netif_stop_queue(dev->netdev);
1378 
1379 	spin_unlock_irqrestore(&dev->lock, flags);
1380 
1381 	ptask->max_payload = max_payload;
1382 	ptask->enqueued    = 0;
1383 
1384 	fwnet_send_packet(ptask);
1385 
1386 	return NETDEV_TX_OK;
1387 
1388  fail:
1389 	spin_unlock_irqrestore(&dev->lock, flags);
1390 
1391 	if (ptask)
1392 		kmem_cache_free(fwnet_packet_task_cache, ptask);
1393 
1394 	if (skb != NULL)
1395 		dev_kfree_skb(skb);
1396 
1397 	net->stats.tx_dropped++;
1398 	net->stats.tx_errors++;
1399 
1400 	/*
1401 	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1402 	 * causes serious problems" here, allegedly.  Before that patch,
1403 	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1404 	 * Perhaps more needs to be done?  Stop the queue in serious
1405 	 * conditions and restart it elsewhere?
1406 	 */
1407 	return NETDEV_TX_OK;
1408 }
1409 
1410 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1411 {
1412 	if (new_mtu < 68)
1413 		return -EINVAL;
1414 
1415 	net->mtu = new_mtu;
1416 	return 0;
1417 }
1418 
1419 static const struct ethtool_ops fwnet_ethtool_ops = {
1420 	.get_link	= ethtool_op_get_link,
1421 };
1422 
1423 static const struct net_device_ops fwnet_netdev_ops = {
1424 	.ndo_open       = fwnet_open,
1425 	.ndo_stop	= fwnet_stop,
1426 	.ndo_start_xmit = fwnet_tx,
1427 	.ndo_change_mtu = fwnet_change_mtu,
1428 };
1429 
1430 static void fwnet_init_dev(struct net_device *net)
1431 {
1432 	net->header_ops		= &fwnet_header_ops;
1433 	net->netdev_ops		= &fwnet_netdev_ops;
1434 	net->watchdog_timeo	= 2 * HZ;
1435 	net->flags		= IFF_BROADCAST | IFF_MULTICAST;
1436 	net->features		= NETIF_F_HIGHDMA;
1437 	net->addr_len		= FWNET_ALEN;
1438 	net->hard_header_len	= FWNET_HLEN;
1439 	net->type		= ARPHRD_IEEE1394;
1440 	net->tx_queue_len	= FWNET_TX_QUEUE_LEN;
1441 	net->ethtool_ops	= &fwnet_ethtool_ops;
1442 }
1443 
1444 /* caller must hold fwnet_device_mutex */
1445 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1446 {
1447 	struct fwnet_device *dev;
1448 
1449 	list_for_each_entry(dev, &fwnet_device_list, dev_link)
1450 		if (dev->card == card)
1451 			return dev;
1452 
1453 	return NULL;
1454 }
1455 
1456 static int fwnet_add_peer(struct fwnet_device *dev,
1457 			  struct fw_unit *unit, struct fw_device *device)
1458 {
1459 	struct fwnet_peer *peer;
1460 
1461 	peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1462 	if (!peer)
1463 		return -ENOMEM;
1464 
1465 	dev_set_drvdata(&unit->device, peer);
1466 
1467 	peer->dev = dev;
1468 	peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1469 	peer->fifo = FWNET_NO_FIFO_ADDR;
1470 	peer->ip = 0;
1471 	INIT_LIST_HEAD(&peer->pd_list);
1472 	peer->pdg_size = 0;
1473 	peer->datagram_label = 0;
1474 	peer->speed = device->max_speed;
1475 	peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1476 
1477 	peer->generation = device->generation;
1478 	smp_rmb();
1479 	peer->node_id = device->node_id;
1480 
1481 	spin_lock_irq(&dev->lock);
1482 	list_add_tail(&peer->peer_link, &dev->peer_list);
1483 	dev->peer_count++;
1484 	set_carrier_state(dev);
1485 	spin_unlock_irq(&dev->lock);
1486 
1487 	return 0;
1488 }
1489 
1490 static int fwnet_probe(struct device *_dev)
1491 {
1492 	struct fw_unit *unit = fw_unit(_dev);
1493 	struct fw_device *device = fw_parent_device(unit);
1494 	struct fw_card *card = device->card;
1495 	struct net_device *net;
1496 	bool allocated_netdev = false;
1497 	struct fwnet_device *dev;
1498 	unsigned max_mtu;
1499 	int ret;
1500 
1501 	mutex_lock(&fwnet_device_mutex);
1502 
1503 	dev = fwnet_dev_find(card);
1504 	if (dev) {
1505 		net = dev->netdev;
1506 		goto have_dev;
1507 	}
1508 
1509 	net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1510 	if (net == NULL) {
1511 		ret = -ENOMEM;
1512 		goto out;
1513 	}
1514 
1515 	allocated_netdev = true;
1516 	SET_NETDEV_DEV(net, card->device);
1517 	dev = netdev_priv(net);
1518 
1519 	spin_lock_init(&dev->lock);
1520 	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1521 	dev->broadcast_rcv_context = NULL;
1522 	dev->broadcast_xmt_max_payload = 0;
1523 	dev->broadcast_xmt_datagramlabel = 0;
1524 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1525 	dev->queued_datagrams = 0;
1526 	INIT_LIST_HEAD(&dev->peer_list);
1527 	dev->card = card;
1528 	dev->netdev = net;
1529 
1530 	/*
1531 	 * Use the RFC 2734 default 1500 octets or the maximum payload
1532 	 * as initial MTU
1533 	 */
1534 	max_mtu = (1 << (card->max_receive + 1))
1535 		  - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1536 	net->mtu = min(1500U, max_mtu);
1537 
1538 	/* Set our hardware address while we're at it */
1539 	put_unaligned_be64(card->guid, net->dev_addr);
1540 	put_unaligned_be64(~0ULL, net->broadcast);
1541 	ret = register_netdev(net);
1542 	if (ret) {
1543 		fw_error("Cannot register the driver\n");
1544 		goto out;
1545 	}
1546 
1547 	list_add_tail(&dev->dev_link, &fwnet_device_list);
1548 	fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1549 		  net->name, (unsigned long long)card->guid);
1550  have_dev:
1551 	ret = fwnet_add_peer(dev, unit, device);
1552 	if (ret && allocated_netdev) {
1553 		unregister_netdev(net);
1554 		list_del(&dev->dev_link);
1555 	}
1556  out:
1557 	if (ret && allocated_netdev)
1558 		free_netdev(net);
1559 
1560 	mutex_unlock(&fwnet_device_mutex);
1561 
1562 	return ret;
1563 }
1564 
1565 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1566 {
1567 	struct fwnet_partial_datagram *pd, *pd_next;
1568 
1569 	spin_lock_irq(&dev->lock);
1570 	list_del(&peer->peer_link);
1571 	dev->peer_count--;
1572 	set_carrier_state(dev);
1573 	spin_unlock_irq(&dev->lock);
1574 
1575 	list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1576 		fwnet_pd_delete(pd);
1577 
1578 	kfree(peer);
1579 }
1580 
1581 static int fwnet_remove(struct device *_dev)
1582 {
1583 	struct fwnet_peer *peer = dev_get_drvdata(_dev);
1584 	struct fwnet_device *dev = peer->dev;
1585 	struct net_device *net;
1586 	int i;
1587 
1588 	mutex_lock(&fwnet_device_mutex);
1589 
1590 	net = dev->netdev;
1591 	if (net && peer->ip)
1592 		arp_invalidate(net, peer->ip);
1593 
1594 	fwnet_remove_peer(peer, dev);
1595 
1596 	if (list_empty(&dev->peer_list)) {
1597 		unregister_netdev(net);
1598 
1599 		if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1600 			fw_core_remove_address_handler(&dev->handler);
1601 		if (dev->broadcast_rcv_context) {
1602 			fw_iso_context_stop(dev->broadcast_rcv_context);
1603 			fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1604 					      dev->card);
1605 			fw_iso_context_destroy(dev->broadcast_rcv_context);
1606 		}
1607 		for (i = 0; dev->queued_datagrams && i < 5; i++)
1608 			ssleep(1);
1609 		WARN_ON(dev->queued_datagrams);
1610 		list_del(&dev->dev_link);
1611 
1612 		free_netdev(net);
1613 	}
1614 
1615 	mutex_unlock(&fwnet_device_mutex);
1616 
1617 	return 0;
1618 }
1619 
1620 /*
1621  * FIXME abort partially sent fragmented datagrams,
1622  * discard partially received fragmented datagrams
1623  */
1624 static void fwnet_update(struct fw_unit *unit)
1625 {
1626 	struct fw_device *device = fw_parent_device(unit);
1627 	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1628 	int generation;
1629 
1630 	generation = device->generation;
1631 
1632 	spin_lock_irq(&peer->dev->lock);
1633 	peer->node_id    = device->node_id;
1634 	peer->generation = generation;
1635 	spin_unlock_irq(&peer->dev->lock);
1636 }
1637 
1638 static const struct ieee1394_device_id fwnet_id_table[] = {
1639 	{
1640 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1641 				IEEE1394_MATCH_VERSION,
1642 		.specifier_id = IANA_SPECIFIER_ID,
1643 		.version      = RFC2734_SW_VERSION,
1644 	},
1645 	{ }
1646 };
1647 
1648 static struct fw_driver fwnet_driver = {
1649 	.driver = {
1650 		.owner  = THIS_MODULE,
1651 		.name   = "net",
1652 		.bus    = &fw_bus_type,
1653 		.probe  = fwnet_probe,
1654 		.remove = fwnet_remove,
1655 	},
1656 	.update   = fwnet_update,
1657 	.id_table = fwnet_id_table,
1658 };
1659 
1660 static const u32 rfc2374_unit_directory_data[] = {
1661 	0x00040000,	/* directory_length		*/
1662 	0x1200005e,	/* unit_specifier_id: IANA	*/
1663 	0x81000003,	/* textual descriptor offset	*/
1664 	0x13000001,	/* unit_sw_version: RFC 2734	*/
1665 	0x81000005,	/* textual descriptor offset	*/
1666 	0x00030000,	/* descriptor_length		*/
1667 	0x00000000,	/* text				*/
1668 	0x00000000,	/* minimal ASCII, en		*/
1669 	0x49414e41,	/* I A N A			*/
1670 	0x00030000,	/* descriptor_length		*/
1671 	0x00000000,	/* text				*/
1672 	0x00000000,	/* minimal ASCII, en		*/
1673 	0x49507634,	/* I P v 4			*/
1674 };
1675 
1676 static struct fw_descriptor rfc2374_unit_directory = {
1677 	.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1678 	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1679 	.data   = rfc2374_unit_directory_data
1680 };
1681 
1682 static int __init fwnet_init(void)
1683 {
1684 	int err;
1685 
1686 	err = fw_core_add_descriptor(&rfc2374_unit_directory);
1687 	if (err)
1688 		return err;
1689 
1690 	fwnet_packet_task_cache = kmem_cache_create("packet_task",
1691 			sizeof(struct fwnet_packet_task), 0, 0, NULL);
1692 	if (!fwnet_packet_task_cache) {
1693 		err = -ENOMEM;
1694 		goto out;
1695 	}
1696 
1697 	err = driver_register(&fwnet_driver.driver);
1698 	if (!err)
1699 		return 0;
1700 
1701 	kmem_cache_destroy(fwnet_packet_task_cache);
1702 out:
1703 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1704 
1705 	return err;
1706 }
1707 module_init(fwnet_init);
1708 
1709 static void __exit fwnet_cleanup(void)
1710 {
1711 	driver_unregister(&fwnet_driver.driver);
1712 	kmem_cache_destroy(fwnet_packet_task_cache);
1713 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1714 }
1715 module_exit(fwnet_cleanup);
1716 
1717 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1718 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1719 MODULE_LICENSE("GPL");
1720 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1721