1 /* 2 * IPv4 over IEEE 1394, per RFC 2734 3 * 4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com> 5 * 6 * based on eth1394 by Ben Collins et al 7 */ 8 9 #include <linux/bug.h> 10 #include <linux/compiler.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/ethtool.h> 14 #include <linux/firewire.h> 15 #include <linux/firewire-constants.h> 16 #include <linux/highmem.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/jiffies.h> 20 #include <linux/mod_devicetable.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mutex.h> 24 #include <linux/netdevice.h> 25 #include <linux/skbuff.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 29 #include <asm/unaligned.h> 30 #include <net/arp.h> 31 32 /* rx limits */ 33 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */ 34 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2) 35 36 /* tx limits */ 37 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */ 38 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */ 39 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */ 40 41 #define IEEE1394_BROADCAST_CHANNEL 31 42 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f) 43 #define IEEE1394_MAX_PAYLOAD_S100 512 44 #define FWNET_NO_FIFO_ADDR (~0ULL) 45 46 #define IANA_SPECIFIER_ID 0x00005eU 47 #define RFC2734_SW_VERSION 0x000001U 48 49 #define IEEE1394_GASP_HDR_SIZE 8 50 51 #define RFC2374_UNFRAG_HDR_SIZE 4 52 #define RFC2374_FRAG_HDR_SIZE 8 53 #define RFC2374_FRAG_OVERHEAD 4 54 55 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */ 56 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */ 57 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */ 58 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */ 59 60 #define RFC2734_HW_ADDR_LEN 16 61 62 struct rfc2734_arp { 63 __be16 hw_type; /* 0x0018 */ 64 __be16 proto_type; /* 0x0806 */ 65 u8 hw_addr_len; /* 16 */ 66 u8 ip_addr_len; /* 4 */ 67 __be16 opcode; /* ARP Opcode */ 68 /* Above is exactly the same format as struct arphdr */ 69 70 __be64 s_uniq_id; /* Sender's 64bit EUI */ 71 u8 max_rec; /* Sender's max packet size */ 72 u8 sspd; /* Sender's max speed */ 73 __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */ 74 __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */ 75 __be32 sip; /* Sender's IP Address */ 76 __be32 tip; /* IP Address of requested hw addr */ 77 } __packed; 78 79 /* This header format is specific to this driver implementation. */ 80 #define FWNET_ALEN 8 81 #define FWNET_HLEN 10 82 struct fwnet_header { 83 u8 h_dest[FWNET_ALEN]; /* destination address */ 84 __be16 h_proto; /* packet type ID field */ 85 } __packed; 86 87 /* IPv4 and IPv6 encapsulation header */ 88 struct rfc2734_header { 89 u32 w0; 90 u32 w1; 91 }; 92 93 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30) 94 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff)) 95 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16) 96 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff)) 97 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16) 98 99 #define fwnet_set_hdr_lf(lf) ((lf) << 30) 100 #define fwnet_set_hdr_ether_type(et) (et) 101 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16) 102 #define fwnet_set_hdr_fg_off(fgo) (fgo) 103 104 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16) 105 106 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr, 107 unsigned ether_type) 108 { 109 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG) 110 | fwnet_set_hdr_ether_type(ether_type); 111 } 112 113 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr, 114 unsigned ether_type, unsigned dg_size, unsigned dgl) 115 { 116 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG) 117 | fwnet_set_hdr_dg_size(dg_size) 118 | fwnet_set_hdr_ether_type(ether_type); 119 hdr->w1 = fwnet_set_hdr_dgl(dgl); 120 } 121 122 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr, 123 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) 124 { 125 hdr->w0 = fwnet_set_hdr_lf(lf) 126 | fwnet_set_hdr_dg_size(dg_size) 127 | fwnet_set_hdr_fg_off(fg_off); 128 hdr->w1 = fwnet_set_hdr_dgl(dgl); 129 } 130 131 /* This list keeps track of what parts of the datagram have been filled in */ 132 struct fwnet_fragment_info { 133 struct list_head fi_link; 134 u16 offset; 135 u16 len; 136 }; 137 138 struct fwnet_partial_datagram { 139 struct list_head pd_link; 140 struct list_head fi_list; 141 struct sk_buff *skb; 142 /* FIXME Why not use skb->data? */ 143 char *pbuf; 144 u16 datagram_label; 145 u16 ether_type; 146 u16 datagram_size; 147 }; 148 149 static DEFINE_MUTEX(fwnet_device_mutex); 150 static LIST_HEAD(fwnet_device_list); 151 152 struct fwnet_device { 153 struct list_head dev_link; 154 spinlock_t lock; 155 enum { 156 FWNET_BROADCAST_ERROR, 157 FWNET_BROADCAST_RUNNING, 158 FWNET_BROADCAST_STOPPED, 159 } broadcast_state; 160 struct fw_iso_context *broadcast_rcv_context; 161 struct fw_iso_buffer broadcast_rcv_buffer; 162 void **broadcast_rcv_buffer_ptrs; 163 unsigned broadcast_rcv_next_ptr; 164 unsigned num_broadcast_rcv_ptrs; 165 unsigned rcv_buffer_size; 166 /* 167 * This value is the maximum unfragmented datagram size that can be 168 * sent by the hardware. It already has the GASP overhead and the 169 * unfragmented datagram header overhead calculated into it. 170 */ 171 unsigned broadcast_xmt_max_payload; 172 u16 broadcast_xmt_datagramlabel; 173 174 /* 175 * The CSR address that remote nodes must send datagrams to for us to 176 * receive them. 177 */ 178 struct fw_address_handler handler; 179 u64 local_fifo; 180 181 /* Number of tx datagrams that have been queued but not yet acked */ 182 int queued_datagrams; 183 184 int peer_count; 185 struct list_head peer_list; 186 struct fw_card *card; 187 struct net_device *netdev; 188 }; 189 190 struct fwnet_peer { 191 struct list_head peer_link; 192 struct fwnet_device *dev; 193 u64 guid; 194 u64 fifo; 195 __be32 ip; 196 197 /* guarded by dev->lock */ 198 struct list_head pd_list; /* received partial datagrams */ 199 unsigned pdg_size; /* pd_list size */ 200 201 u16 datagram_label; /* outgoing datagram label */ 202 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */ 203 int node_id; 204 int generation; 205 unsigned speed; 206 }; 207 208 /* This is our task struct. It's used for the packet complete callback. */ 209 struct fwnet_packet_task { 210 struct fw_transaction transaction; 211 struct rfc2734_header hdr; 212 struct sk_buff *skb; 213 struct fwnet_device *dev; 214 215 int outstanding_pkts; 216 u64 fifo_addr; 217 u16 dest_node; 218 u16 max_payload; 219 u8 generation; 220 u8 speed; 221 u8 enqueued; 222 }; 223 224 /* 225 * saddr == NULL means use device source address. 226 * daddr == NULL means leave destination address (eg unresolved arp). 227 */ 228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net, 229 unsigned short type, const void *daddr, 230 const void *saddr, unsigned len) 231 { 232 struct fwnet_header *h; 233 234 h = (struct fwnet_header *)skb_push(skb, sizeof(*h)); 235 put_unaligned_be16(type, &h->h_proto); 236 237 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) { 238 memset(h->h_dest, 0, net->addr_len); 239 240 return net->hard_header_len; 241 } 242 243 if (daddr) { 244 memcpy(h->h_dest, daddr, net->addr_len); 245 246 return net->hard_header_len; 247 } 248 249 return -net->hard_header_len; 250 } 251 252 static int fwnet_header_rebuild(struct sk_buff *skb) 253 { 254 struct fwnet_header *h = (struct fwnet_header *)skb->data; 255 256 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP) 257 return arp_find((unsigned char *)&h->h_dest, skb); 258 259 fw_notify("%s: unable to resolve type %04x addresses\n", 260 skb->dev->name, be16_to_cpu(h->h_proto)); 261 return 0; 262 } 263 264 static int fwnet_header_cache(const struct neighbour *neigh, 265 struct hh_cache *hh, __be16 type) 266 { 267 struct net_device *net; 268 struct fwnet_header *h; 269 270 if (type == cpu_to_be16(ETH_P_802_3)) 271 return -1; 272 net = neigh->dev; 273 h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h)); 274 h->h_proto = type; 275 memcpy(h->h_dest, neigh->ha, net->addr_len); 276 hh->hh_len = FWNET_HLEN; 277 278 return 0; 279 } 280 281 /* Called by Address Resolution module to notify changes in address. */ 282 static void fwnet_header_cache_update(struct hh_cache *hh, 283 const struct net_device *net, const unsigned char *haddr) 284 { 285 memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len); 286 } 287 288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr) 289 { 290 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN); 291 292 return FWNET_ALEN; 293 } 294 295 static const struct header_ops fwnet_header_ops = { 296 .create = fwnet_header_create, 297 .rebuild = fwnet_header_rebuild, 298 .cache = fwnet_header_cache, 299 .cache_update = fwnet_header_cache_update, 300 .parse = fwnet_header_parse, 301 }; 302 303 /* FIXME: is this correct for all cases? */ 304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd, 305 unsigned offset, unsigned len) 306 { 307 struct fwnet_fragment_info *fi; 308 unsigned end = offset + len; 309 310 list_for_each_entry(fi, &pd->fi_list, fi_link) 311 if (offset < fi->offset + fi->len && end > fi->offset) 312 return true; 313 314 return false; 315 } 316 317 /* Assumes that new fragment does not overlap any existing fragments */ 318 static struct fwnet_fragment_info *fwnet_frag_new( 319 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) 320 { 321 struct fwnet_fragment_info *fi, *fi2, *new; 322 struct list_head *list; 323 324 list = &pd->fi_list; 325 list_for_each_entry(fi, &pd->fi_list, fi_link) { 326 if (fi->offset + fi->len == offset) { 327 /* The new fragment can be tacked on to the end */ 328 /* Did the new fragment plug a hole? */ 329 fi2 = list_entry(fi->fi_link.next, 330 struct fwnet_fragment_info, fi_link); 331 if (fi->offset + fi->len == fi2->offset) { 332 /* glue fragments together */ 333 fi->len += len + fi2->len; 334 list_del(&fi2->fi_link); 335 kfree(fi2); 336 } else { 337 fi->len += len; 338 } 339 340 return fi; 341 } 342 if (offset + len == fi->offset) { 343 /* The new fragment can be tacked on to the beginning */ 344 /* Did the new fragment plug a hole? */ 345 fi2 = list_entry(fi->fi_link.prev, 346 struct fwnet_fragment_info, fi_link); 347 if (fi2->offset + fi2->len == fi->offset) { 348 /* glue fragments together */ 349 fi2->len += fi->len + len; 350 list_del(&fi->fi_link); 351 kfree(fi); 352 353 return fi2; 354 } 355 fi->offset = offset; 356 fi->len += len; 357 358 return fi; 359 } 360 if (offset > fi->offset + fi->len) { 361 list = &fi->fi_link; 362 break; 363 } 364 if (offset + len < fi->offset) { 365 list = fi->fi_link.prev; 366 break; 367 } 368 } 369 370 new = kmalloc(sizeof(*new), GFP_ATOMIC); 371 if (!new) { 372 fw_error("out of memory\n"); 373 return NULL; 374 } 375 376 new->offset = offset; 377 new->len = len; 378 list_add(&new->fi_link, list); 379 380 return new; 381 } 382 383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net, 384 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size, 385 void *frag_buf, unsigned frag_off, unsigned frag_len) 386 { 387 struct fwnet_partial_datagram *new; 388 struct fwnet_fragment_info *fi; 389 390 new = kmalloc(sizeof(*new), GFP_ATOMIC); 391 if (!new) 392 goto fail; 393 394 INIT_LIST_HEAD(&new->fi_list); 395 fi = fwnet_frag_new(new, frag_off, frag_len); 396 if (fi == NULL) 397 goto fail_w_new; 398 399 new->datagram_label = datagram_label; 400 new->datagram_size = dg_size; 401 new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15); 402 if (new->skb == NULL) 403 goto fail_w_fi; 404 405 skb_reserve(new->skb, (net->hard_header_len + 15) & ~15); 406 new->pbuf = skb_put(new->skb, dg_size); 407 memcpy(new->pbuf + frag_off, frag_buf, frag_len); 408 list_add_tail(&new->pd_link, &peer->pd_list); 409 410 return new; 411 412 fail_w_fi: 413 kfree(fi); 414 fail_w_new: 415 kfree(new); 416 fail: 417 fw_error("out of memory\n"); 418 419 return NULL; 420 } 421 422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer, 423 u16 datagram_label) 424 { 425 struct fwnet_partial_datagram *pd; 426 427 list_for_each_entry(pd, &peer->pd_list, pd_link) 428 if (pd->datagram_label == datagram_label) 429 return pd; 430 431 return NULL; 432 } 433 434 435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old) 436 { 437 struct fwnet_fragment_info *fi, *n; 438 439 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link) 440 kfree(fi); 441 442 list_del(&old->pd_link); 443 dev_kfree_skb_any(old->skb); 444 kfree(old); 445 } 446 447 static bool fwnet_pd_update(struct fwnet_peer *peer, 448 struct fwnet_partial_datagram *pd, void *frag_buf, 449 unsigned frag_off, unsigned frag_len) 450 { 451 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL) 452 return false; 453 454 memcpy(pd->pbuf + frag_off, frag_buf, frag_len); 455 456 /* 457 * Move list entry to beginning of list so that oldest partial 458 * datagrams percolate to the end of the list 459 */ 460 list_move_tail(&pd->pd_link, &peer->pd_list); 461 462 return true; 463 } 464 465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd) 466 { 467 struct fwnet_fragment_info *fi; 468 469 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link); 470 471 return fi->len == pd->datagram_size; 472 } 473 474 /* caller must hold dev->lock */ 475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev, 476 u64 guid) 477 { 478 struct fwnet_peer *peer; 479 480 list_for_each_entry(peer, &dev->peer_list, peer_link) 481 if (peer->guid == guid) 482 return peer; 483 484 return NULL; 485 } 486 487 /* caller must hold dev->lock */ 488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev, 489 int node_id, int generation) 490 { 491 struct fwnet_peer *peer; 492 493 list_for_each_entry(peer, &dev->peer_list, peer_link) 494 if (peer->node_id == node_id && 495 peer->generation == generation) 496 return peer; 497 498 return NULL; 499 } 500 501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */ 502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed) 503 { 504 max_rec = min(max_rec, speed + 8); 505 max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */ 506 507 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE; 508 } 509 510 511 static int fwnet_finish_incoming_packet(struct net_device *net, 512 struct sk_buff *skb, u16 source_node_id, 513 bool is_broadcast, u16 ether_type) 514 { 515 struct fwnet_device *dev; 516 static const __be64 broadcast_hw = cpu_to_be64(~0ULL); 517 int status; 518 __be64 guid; 519 520 dev = netdev_priv(net); 521 /* Write metadata, and then pass to the receive level */ 522 skb->dev = net; 523 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */ 524 525 /* 526 * Parse the encapsulation header. This actually does the job of 527 * converting to an ethernet frame header, as well as arp 528 * conversion if needed. ARP conversion is easier in this 529 * direction, since we are using ethernet as our backend. 530 */ 531 /* 532 * If this is an ARP packet, convert it. First, we want to make 533 * use of some of the fields, since they tell us a little bit 534 * about the sending machine. 535 */ 536 if (ether_type == ETH_P_ARP) { 537 struct rfc2734_arp *arp1394; 538 struct arphdr *arp; 539 unsigned char *arp_ptr; 540 u64 fifo_addr; 541 u64 peer_guid; 542 unsigned sspd; 543 u16 max_payload; 544 struct fwnet_peer *peer; 545 unsigned long flags; 546 547 arp1394 = (struct rfc2734_arp *)skb->data; 548 arp = (struct arphdr *)skb->data; 549 arp_ptr = (unsigned char *)(arp + 1); 550 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id); 551 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32 552 | get_unaligned_be32(&arp1394->fifo_lo); 553 554 sspd = arp1394->sspd; 555 /* Sanity check. OS X 10.3 PPC reportedly sends 131. */ 556 if (sspd > SCODE_3200) { 557 fw_notify("sspd %x out of range\n", sspd); 558 sspd = SCODE_3200; 559 } 560 max_payload = fwnet_max_payload(arp1394->max_rec, sspd); 561 562 spin_lock_irqsave(&dev->lock, flags); 563 peer = fwnet_peer_find_by_guid(dev, peer_guid); 564 if (peer) { 565 peer->fifo = fifo_addr; 566 567 if (peer->speed > sspd) 568 peer->speed = sspd; 569 if (peer->max_payload > max_payload) 570 peer->max_payload = max_payload; 571 572 peer->ip = arp1394->sip; 573 } 574 spin_unlock_irqrestore(&dev->lock, flags); 575 576 if (!peer) { 577 fw_notify("No peer for ARP packet from %016llx\n", 578 (unsigned long long)peer_guid); 579 goto no_peer; 580 } 581 582 /* 583 * Now that we're done with the 1394 specific stuff, we'll 584 * need to alter some of the data. Believe it or not, all 585 * that needs to be done is sender_IP_address needs to be 586 * moved, the destination hardware address get stuffed 587 * in and the hardware address length set to 8. 588 * 589 * IMPORTANT: The code below overwrites 1394 specific data 590 * needed above so keep the munging of the data for the 591 * higher level IP stack last. 592 */ 593 594 arp->ar_hln = 8; 595 /* skip over sender unique id */ 596 arp_ptr += arp->ar_hln; 597 /* move sender IP addr */ 598 put_unaligned(arp1394->sip, (u32 *)arp_ptr); 599 /* skip over sender IP addr */ 600 arp_ptr += arp->ar_pln; 601 602 if (arp->ar_op == htons(ARPOP_REQUEST)) 603 memset(arp_ptr, 0, sizeof(u64)); 604 else 605 memcpy(arp_ptr, net->dev_addr, sizeof(u64)); 606 } 607 608 /* Now add the ethernet header. */ 609 guid = cpu_to_be64(dev->card->guid); 610 if (dev_hard_header(skb, net, ether_type, 611 is_broadcast ? &broadcast_hw : &guid, 612 NULL, skb->len) >= 0) { 613 struct fwnet_header *eth; 614 u16 *rawp; 615 __be16 protocol; 616 617 skb_reset_mac_header(skb); 618 skb_pull(skb, sizeof(*eth)); 619 eth = (struct fwnet_header *)skb_mac_header(skb); 620 if (*eth->h_dest & 1) { 621 if (memcmp(eth->h_dest, net->broadcast, 622 net->addr_len) == 0) 623 skb->pkt_type = PACKET_BROADCAST; 624 #if 0 625 else 626 skb->pkt_type = PACKET_MULTICAST; 627 #endif 628 } else { 629 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len)) 630 skb->pkt_type = PACKET_OTHERHOST; 631 } 632 if (ntohs(eth->h_proto) >= 1536) { 633 protocol = eth->h_proto; 634 } else { 635 rawp = (u16 *)skb->data; 636 if (*rawp == 0xffff) 637 protocol = htons(ETH_P_802_3); 638 else 639 protocol = htons(ETH_P_802_2); 640 } 641 skb->protocol = protocol; 642 } 643 status = netif_rx(skb); 644 if (status == NET_RX_DROP) { 645 net->stats.rx_errors++; 646 net->stats.rx_dropped++; 647 } else { 648 net->stats.rx_packets++; 649 net->stats.rx_bytes += skb->len; 650 } 651 652 return 0; 653 654 no_peer: 655 net->stats.rx_errors++; 656 net->stats.rx_dropped++; 657 658 dev_kfree_skb_any(skb); 659 660 return -ENOENT; 661 } 662 663 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len, 664 int source_node_id, int generation, 665 bool is_broadcast) 666 { 667 struct sk_buff *skb; 668 struct net_device *net = dev->netdev; 669 struct rfc2734_header hdr; 670 unsigned lf; 671 unsigned long flags; 672 struct fwnet_peer *peer; 673 struct fwnet_partial_datagram *pd; 674 int fg_off; 675 int dg_size; 676 u16 datagram_label; 677 int retval; 678 u16 ether_type; 679 680 hdr.w0 = be32_to_cpu(buf[0]); 681 lf = fwnet_get_hdr_lf(&hdr); 682 if (lf == RFC2374_HDR_UNFRAG) { 683 /* 684 * An unfragmented datagram has been received by the ieee1394 685 * bus. Build an skbuff around it so we can pass it to the 686 * high level network layer. 687 */ 688 ether_type = fwnet_get_hdr_ether_type(&hdr); 689 buf++; 690 len -= RFC2374_UNFRAG_HDR_SIZE; 691 692 skb = dev_alloc_skb(len + net->hard_header_len + 15); 693 if (unlikely(!skb)) { 694 fw_error("out of memory\n"); 695 net->stats.rx_dropped++; 696 697 return -ENOMEM; 698 } 699 skb_reserve(skb, (net->hard_header_len + 15) & ~15); 700 memcpy(skb_put(skb, len), buf, len); 701 702 return fwnet_finish_incoming_packet(net, skb, source_node_id, 703 is_broadcast, ether_type); 704 } 705 /* A datagram fragment has been received, now the fun begins. */ 706 hdr.w1 = ntohl(buf[1]); 707 buf += 2; 708 len -= RFC2374_FRAG_HDR_SIZE; 709 if (lf == RFC2374_HDR_FIRSTFRAG) { 710 ether_type = fwnet_get_hdr_ether_type(&hdr); 711 fg_off = 0; 712 } else { 713 ether_type = 0; 714 fg_off = fwnet_get_hdr_fg_off(&hdr); 715 } 716 datagram_label = fwnet_get_hdr_dgl(&hdr); 717 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */ 718 719 spin_lock_irqsave(&dev->lock, flags); 720 721 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation); 722 if (!peer) { 723 retval = -ENOENT; 724 goto fail; 725 } 726 727 pd = fwnet_pd_find(peer, datagram_label); 728 if (pd == NULL) { 729 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) { 730 /* remove the oldest */ 731 fwnet_pd_delete(list_first_entry(&peer->pd_list, 732 struct fwnet_partial_datagram, pd_link)); 733 peer->pdg_size--; 734 } 735 pd = fwnet_pd_new(net, peer, datagram_label, 736 dg_size, buf, fg_off, len); 737 if (pd == NULL) { 738 retval = -ENOMEM; 739 goto fail; 740 } 741 peer->pdg_size++; 742 } else { 743 if (fwnet_frag_overlap(pd, fg_off, len) || 744 pd->datagram_size != dg_size) { 745 /* 746 * Differing datagram sizes or overlapping fragments, 747 * discard old datagram and start a new one. 748 */ 749 fwnet_pd_delete(pd); 750 pd = fwnet_pd_new(net, peer, datagram_label, 751 dg_size, buf, fg_off, len); 752 if (pd == NULL) { 753 peer->pdg_size--; 754 retval = -ENOMEM; 755 goto fail; 756 } 757 } else { 758 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) { 759 /* 760 * Couldn't save off fragment anyway 761 * so might as well obliterate the 762 * datagram now. 763 */ 764 fwnet_pd_delete(pd); 765 peer->pdg_size--; 766 retval = -ENOMEM; 767 goto fail; 768 } 769 } 770 } /* new datagram or add to existing one */ 771 772 if (lf == RFC2374_HDR_FIRSTFRAG) 773 pd->ether_type = ether_type; 774 775 if (fwnet_pd_is_complete(pd)) { 776 ether_type = pd->ether_type; 777 peer->pdg_size--; 778 skb = skb_get(pd->skb); 779 fwnet_pd_delete(pd); 780 781 spin_unlock_irqrestore(&dev->lock, flags); 782 783 return fwnet_finish_incoming_packet(net, skb, source_node_id, 784 false, ether_type); 785 } 786 /* 787 * Datagram is not complete, we're done for the 788 * moment. 789 */ 790 retval = 0; 791 fail: 792 spin_unlock_irqrestore(&dev->lock, flags); 793 794 return retval; 795 } 796 797 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r, 798 int tcode, int destination, int source, int generation, 799 unsigned long long offset, void *payload, size_t length, 800 void *callback_data) 801 { 802 struct fwnet_device *dev = callback_data; 803 int rcode; 804 805 if (destination == IEEE1394_ALL_NODES) { 806 kfree(r); 807 808 return; 809 } 810 811 if (offset != dev->handler.offset) 812 rcode = RCODE_ADDRESS_ERROR; 813 else if (tcode != TCODE_WRITE_BLOCK_REQUEST) 814 rcode = RCODE_TYPE_ERROR; 815 else if (fwnet_incoming_packet(dev, payload, length, 816 source, generation, false) != 0) { 817 fw_error("Incoming packet failure\n"); 818 rcode = RCODE_CONFLICT_ERROR; 819 } else 820 rcode = RCODE_COMPLETE; 821 822 fw_send_response(card, r, rcode); 823 } 824 825 static void fwnet_receive_broadcast(struct fw_iso_context *context, 826 u32 cycle, size_t header_length, void *header, void *data) 827 { 828 struct fwnet_device *dev; 829 struct fw_iso_packet packet; 830 struct fw_card *card; 831 __be16 *hdr_ptr; 832 __be32 *buf_ptr; 833 int retval; 834 u32 length; 835 u16 source_node_id; 836 u32 specifier_id; 837 u32 ver; 838 unsigned long offset; 839 unsigned long flags; 840 841 dev = data; 842 card = dev->card; 843 hdr_ptr = header; 844 length = be16_to_cpup(hdr_ptr); 845 846 spin_lock_irqsave(&dev->lock, flags); 847 848 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr; 849 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++]; 850 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs) 851 dev->broadcast_rcv_next_ptr = 0; 852 853 spin_unlock_irqrestore(&dev->lock, flags); 854 855 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8 856 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24; 857 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff; 858 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16; 859 860 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) { 861 buf_ptr += 2; 862 length -= IEEE1394_GASP_HDR_SIZE; 863 fwnet_incoming_packet(dev, buf_ptr, length, 864 source_node_id, -1, true); 865 } 866 867 packet.payload_length = dev->rcv_buffer_size; 868 packet.interrupt = 1; 869 packet.skip = 0; 870 packet.tag = 3; 871 packet.sy = 0; 872 packet.header_length = IEEE1394_GASP_HDR_SIZE; 873 874 spin_lock_irqsave(&dev->lock, flags); 875 876 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet, 877 &dev->broadcast_rcv_buffer, offset); 878 879 spin_unlock_irqrestore(&dev->lock, flags); 880 881 if (retval >= 0) 882 fw_iso_context_queue_flush(dev->broadcast_rcv_context); 883 else 884 fw_error("requeue failed\n"); 885 } 886 887 static struct kmem_cache *fwnet_packet_task_cache; 888 889 static void fwnet_free_ptask(struct fwnet_packet_task *ptask) 890 { 891 dev_kfree_skb_any(ptask->skb); 892 kmem_cache_free(fwnet_packet_task_cache, ptask); 893 } 894 895 /* Caller must hold dev->lock. */ 896 static void dec_queued_datagrams(struct fwnet_device *dev) 897 { 898 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS) 899 netif_wake_queue(dev->netdev); 900 } 901 902 static int fwnet_send_packet(struct fwnet_packet_task *ptask); 903 904 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask) 905 { 906 struct fwnet_device *dev = ptask->dev; 907 struct sk_buff *skb = ptask->skb; 908 unsigned long flags; 909 bool free; 910 911 spin_lock_irqsave(&dev->lock, flags); 912 913 ptask->outstanding_pkts--; 914 915 /* Check whether we or the networking TX soft-IRQ is last user. */ 916 free = (ptask->outstanding_pkts == 0 && ptask->enqueued); 917 if (free) 918 dec_queued_datagrams(dev); 919 920 if (ptask->outstanding_pkts == 0) { 921 dev->netdev->stats.tx_packets++; 922 dev->netdev->stats.tx_bytes += skb->len; 923 } 924 925 spin_unlock_irqrestore(&dev->lock, flags); 926 927 if (ptask->outstanding_pkts > 0) { 928 u16 dg_size; 929 u16 fg_off; 930 u16 datagram_label; 931 u16 lf; 932 933 /* Update the ptask to point to the next fragment and send it */ 934 lf = fwnet_get_hdr_lf(&ptask->hdr); 935 switch (lf) { 936 case RFC2374_HDR_LASTFRAG: 937 case RFC2374_HDR_UNFRAG: 938 default: 939 fw_error("Outstanding packet %x lf %x, header %x,%x\n", 940 ptask->outstanding_pkts, lf, ptask->hdr.w0, 941 ptask->hdr.w1); 942 BUG(); 943 944 case RFC2374_HDR_FIRSTFRAG: 945 /* Set frag type here for future interior fragments */ 946 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 947 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 948 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 949 break; 950 951 case RFC2374_HDR_INTFRAG: 952 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 953 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr) 954 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 955 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 956 break; 957 } 958 959 skb_pull(skb, ptask->max_payload); 960 if (ptask->outstanding_pkts > 1) { 961 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG, 962 dg_size, fg_off, datagram_label); 963 } else { 964 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG, 965 dg_size, fg_off, datagram_label); 966 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE; 967 } 968 fwnet_send_packet(ptask); 969 } 970 971 if (free) 972 fwnet_free_ptask(ptask); 973 } 974 975 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask) 976 { 977 struct fwnet_device *dev = ptask->dev; 978 unsigned long flags; 979 bool free; 980 981 spin_lock_irqsave(&dev->lock, flags); 982 983 /* One fragment failed; don't try to send remaining fragments. */ 984 ptask->outstanding_pkts = 0; 985 986 /* Check whether we or the networking TX soft-IRQ is last user. */ 987 free = ptask->enqueued; 988 if (free) 989 dec_queued_datagrams(dev); 990 991 dev->netdev->stats.tx_dropped++; 992 dev->netdev->stats.tx_errors++; 993 994 spin_unlock_irqrestore(&dev->lock, flags); 995 996 if (free) 997 fwnet_free_ptask(ptask); 998 } 999 1000 static void fwnet_write_complete(struct fw_card *card, int rcode, 1001 void *payload, size_t length, void *data) 1002 { 1003 struct fwnet_packet_task *ptask = data; 1004 static unsigned long j; 1005 static int last_rcode, errors_skipped; 1006 1007 if (rcode == RCODE_COMPLETE) { 1008 fwnet_transmit_packet_done(ptask); 1009 } else { 1010 fwnet_transmit_packet_failed(ptask); 1011 1012 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) { 1013 fw_error("fwnet_write_complete: " 1014 "failed: %x (skipped %d)\n", rcode, errors_skipped); 1015 1016 errors_skipped = 0; 1017 last_rcode = rcode; 1018 } else 1019 errors_skipped++; 1020 } 1021 } 1022 1023 static int fwnet_send_packet(struct fwnet_packet_task *ptask) 1024 { 1025 struct fwnet_device *dev; 1026 unsigned tx_len; 1027 struct rfc2734_header *bufhdr; 1028 unsigned long flags; 1029 bool free; 1030 1031 dev = ptask->dev; 1032 tx_len = ptask->max_payload; 1033 switch (fwnet_get_hdr_lf(&ptask->hdr)) { 1034 case RFC2374_HDR_UNFRAG: 1035 bufhdr = (struct rfc2734_header *) 1036 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE); 1037 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 1038 break; 1039 1040 case RFC2374_HDR_FIRSTFRAG: 1041 case RFC2374_HDR_INTFRAG: 1042 case RFC2374_HDR_LASTFRAG: 1043 bufhdr = (struct rfc2734_header *) 1044 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE); 1045 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 1046 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1); 1047 break; 1048 1049 default: 1050 BUG(); 1051 } 1052 if (ptask->dest_node == IEEE1394_ALL_NODES) { 1053 u8 *p; 1054 int generation; 1055 int node_id; 1056 1057 /* ptask->generation may not have been set yet */ 1058 generation = dev->card->generation; 1059 smp_rmb(); 1060 node_id = dev->card->node_id; 1061 1062 p = skb_push(ptask->skb, 8); 1063 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p); 1064 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24 1065 | RFC2734_SW_VERSION, &p[4]); 1066 1067 /* We should not transmit if broadcast_channel.valid == 0. */ 1068 fw_send_request(dev->card, &ptask->transaction, 1069 TCODE_STREAM_DATA, 1070 fw_stream_packet_destination_id(3, 1071 IEEE1394_BROADCAST_CHANNEL, 0), 1072 generation, SCODE_100, 0ULL, ptask->skb->data, 1073 tx_len + 8, fwnet_write_complete, ptask); 1074 1075 spin_lock_irqsave(&dev->lock, flags); 1076 1077 /* If the AT tasklet already ran, we may be last user. */ 1078 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); 1079 if (!free) 1080 ptask->enqueued = true; 1081 else 1082 dec_queued_datagrams(dev); 1083 1084 spin_unlock_irqrestore(&dev->lock, flags); 1085 1086 goto out; 1087 } 1088 1089 fw_send_request(dev->card, &ptask->transaction, 1090 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, 1091 ptask->generation, ptask->speed, ptask->fifo_addr, 1092 ptask->skb->data, tx_len, fwnet_write_complete, ptask); 1093 1094 spin_lock_irqsave(&dev->lock, flags); 1095 1096 /* If the AT tasklet already ran, we may be last user. */ 1097 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); 1098 if (!free) 1099 ptask->enqueued = true; 1100 else 1101 dec_queued_datagrams(dev); 1102 1103 spin_unlock_irqrestore(&dev->lock, flags); 1104 1105 dev->netdev->trans_start = jiffies; 1106 out: 1107 if (free) 1108 fwnet_free_ptask(ptask); 1109 1110 return 0; 1111 } 1112 1113 static int fwnet_broadcast_start(struct fwnet_device *dev) 1114 { 1115 struct fw_iso_context *context; 1116 int retval; 1117 unsigned num_packets; 1118 unsigned max_receive; 1119 struct fw_iso_packet packet; 1120 unsigned long offset; 1121 unsigned u; 1122 1123 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) { 1124 dev->handler.length = 4096; 1125 dev->handler.address_callback = fwnet_receive_packet; 1126 dev->handler.callback_data = dev; 1127 1128 retval = fw_core_add_address_handler(&dev->handler, 1129 &fw_high_memory_region); 1130 if (retval < 0) 1131 goto failed_initial; 1132 1133 dev->local_fifo = dev->handler.offset; 1134 } 1135 1136 max_receive = 1U << (dev->card->max_receive + 1); 1137 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive; 1138 1139 if (!dev->broadcast_rcv_context) { 1140 void **ptrptr; 1141 1142 context = fw_iso_context_create(dev->card, 1143 FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL, 1144 dev->card->link_speed, 8, fwnet_receive_broadcast, dev); 1145 if (IS_ERR(context)) { 1146 retval = PTR_ERR(context); 1147 goto failed_context_create; 1148 } 1149 1150 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, 1151 dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE); 1152 if (retval < 0) 1153 goto failed_buffer_init; 1154 1155 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL); 1156 if (!ptrptr) { 1157 retval = -ENOMEM; 1158 goto failed_ptrs_alloc; 1159 } 1160 1161 dev->broadcast_rcv_buffer_ptrs = ptrptr; 1162 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) { 1163 void *ptr; 1164 unsigned v; 1165 1166 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]); 1167 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++) 1168 *ptrptr++ = (void *) 1169 ((char *)ptr + v * max_receive); 1170 } 1171 dev->broadcast_rcv_context = context; 1172 } else { 1173 context = dev->broadcast_rcv_context; 1174 } 1175 1176 packet.payload_length = max_receive; 1177 packet.interrupt = 1; 1178 packet.skip = 0; 1179 packet.tag = 3; 1180 packet.sy = 0; 1181 packet.header_length = IEEE1394_GASP_HDR_SIZE; 1182 offset = 0; 1183 1184 for (u = 0; u < num_packets; u++) { 1185 retval = fw_iso_context_queue(context, &packet, 1186 &dev->broadcast_rcv_buffer, offset); 1187 if (retval < 0) 1188 goto failed_rcv_queue; 1189 1190 offset += max_receive; 1191 } 1192 dev->num_broadcast_rcv_ptrs = num_packets; 1193 dev->rcv_buffer_size = max_receive; 1194 dev->broadcast_rcv_next_ptr = 0U; 1195 retval = fw_iso_context_start(context, -1, 0, 1196 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */ 1197 if (retval < 0) 1198 goto failed_rcv_queue; 1199 1200 /* FIXME: adjust it according to the min. speed of all known peers? */ 1201 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100 1202 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE; 1203 dev->broadcast_state = FWNET_BROADCAST_RUNNING; 1204 1205 return 0; 1206 1207 failed_rcv_queue: 1208 kfree(dev->broadcast_rcv_buffer_ptrs); 1209 dev->broadcast_rcv_buffer_ptrs = NULL; 1210 failed_ptrs_alloc: 1211 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card); 1212 failed_buffer_init: 1213 fw_iso_context_destroy(context); 1214 dev->broadcast_rcv_context = NULL; 1215 failed_context_create: 1216 fw_core_remove_address_handler(&dev->handler); 1217 failed_initial: 1218 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1219 1220 return retval; 1221 } 1222 1223 static void set_carrier_state(struct fwnet_device *dev) 1224 { 1225 if (dev->peer_count > 1) 1226 netif_carrier_on(dev->netdev); 1227 else 1228 netif_carrier_off(dev->netdev); 1229 } 1230 1231 /* ifup */ 1232 static int fwnet_open(struct net_device *net) 1233 { 1234 struct fwnet_device *dev = netdev_priv(net); 1235 int ret; 1236 1237 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) { 1238 ret = fwnet_broadcast_start(dev); 1239 if (ret) 1240 return ret; 1241 } 1242 netif_start_queue(net); 1243 1244 spin_lock_irq(&dev->lock); 1245 set_carrier_state(dev); 1246 spin_unlock_irq(&dev->lock); 1247 1248 return 0; 1249 } 1250 1251 /* ifdown */ 1252 static int fwnet_stop(struct net_device *net) 1253 { 1254 netif_stop_queue(net); 1255 1256 /* Deallocate iso context for use by other applications? */ 1257 1258 return 0; 1259 } 1260 1261 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net) 1262 { 1263 struct fwnet_header hdr_buf; 1264 struct fwnet_device *dev = netdev_priv(net); 1265 __be16 proto; 1266 u16 dest_node; 1267 unsigned max_payload; 1268 u16 dg_size; 1269 u16 *datagram_label_ptr; 1270 struct fwnet_packet_task *ptask; 1271 struct fwnet_peer *peer; 1272 unsigned long flags; 1273 1274 spin_lock_irqsave(&dev->lock, flags); 1275 1276 /* Can this happen? */ 1277 if (netif_queue_stopped(dev->netdev)) { 1278 spin_unlock_irqrestore(&dev->lock, flags); 1279 1280 return NETDEV_TX_BUSY; 1281 } 1282 1283 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC); 1284 if (ptask == NULL) 1285 goto fail; 1286 1287 skb = skb_share_check(skb, GFP_ATOMIC); 1288 if (!skb) 1289 goto fail; 1290 1291 /* 1292 * Make a copy of the driver-specific header. 1293 * We might need to rebuild the header on tx failure. 1294 */ 1295 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); 1296 skb_pull(skb, sizeof(hdr_buf)); 1297 1298 proto = hdr_buf.h_proto; 1299 dg_size = skb->len; 1300 1301 /* 1302 * Set the transmission type for the packet. ARP packets and IP 1303 * broadcast packets are sent via GASP. 1304 */ 1305 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0 1306 || proto == htons(ETH_P_ARP) 1307 || (proto == htons(ETH_P_IP) 1308 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) { 1309 max_payload = dev->broadcast_xmt_max_payload; 1310 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel; 1311 1312 ptask->fifo_addr = FWNET_NO_FIFO_ADDR; 1313 ptask->generation = 0; 1314 ptask->dest_node = IEEE1394_ALL_NODES; 1315 ptask->speed = SCODE_100; 1316 } else { 1317 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest); 1318 u8 generation; 1319 1320 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid)); 1321 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR) 1322 goto fail; 1323 1324 generation = peer->generation; 1325 dest_node = peer->node_id; 1326 max_payload = peer->max_payload; 1327 datagram_label_ptr = &peer->datagram_label; 1328 1329 ptask->fifo_addr = peer->fifo; 1330 ptask->generation = generation; 1331 ptask->dest_node = dest_node; 1332 ptask->speed = peer->speed; 1333 } 1334 1335 /* If this is an ARP packet, convert it */ 1336 if (proto == htons(ETH_P_ARP)) { 1337 struct arphdr *arp = (struct arphdr *)skb->data; 1338 unsigned char *arp_ptr = (unsigned char *)(arp + 1); 1339 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data; 1340 __be32 ipaddr; 1341 1342 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN)); 1343 1344 arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN; 1345 arp1394->max_rec = dev->card->max_receive; 1346 arp1394->sspd = dev->card->link_speed; 1347 1348 put_unaligned_be16(dev->local_fifo >> 32, 1349 &arp1394->fifo_hi); 1350 put_unaligned_be32(dev->local_fifo & 0xffffffff, 1351 &arp1394->fifo_lo); 1352 put_unaligned(ipaddr, &arp1394->sip); 1353 } 1354 1355 ptask->hdr.w0 = 0; 1356 ptask->hdr.w1 = 0; 1357 ptask->skb = skb; 1358 ptask->dev = dev; 1359 1360 /* Does it all fit in one packet? */ 1361 if (dg_size <= max_payload) { 1362 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto)); 1363 ptask->outstanding_pkts = 1; 1364 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE; 1365 } else { 1366 u16 datagram_label; 1367 1368 max_payload -= RFC2374_FRAG_OVERHEAD; 1369 datagram_label = (*datagram_label_ptr)++; 1370 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size, 1371 datagram_label); 1372 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); 1373 max_payload += RFC2374_FRAG_HDR_SIZE; 1374 } 1375 1376 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS) 1377 netif_stop_queue(dev->netdev); 1378 1379 spin_unlock_irqrestore(&dev->lock, flags); 1380 1381 ptask->max_payload = max_payload; 1382 ptask->enqueued = 0; 1383 1384 fwnet_send_packet(ptask); 1385 1386 return NETDEV_TX_OK; 1387 1388 fail: 1389 spin_unlock_irqrestore(&dev->lock, flags); 1390 1391 if (ptask) 1392 kmem_cache_free(fwnet_packet_task_cache, ptask); 1393 1394 if (skb != NULL) 1395 dev_kfree_skb(skb); 1396 1397 net->stats.tx_dropped++; 1398 net->stats.tx_errors++; 1399 1400 /* 1401 * FIXME: According to a patch from 2003-02-26, "returning non-zero 1402 * causes serious problems" here, allegedly. Before that patch, 1403 * -ERRNO was returned which is not appropriate under Linux 2.6. 1404 * Perhaps more needs to be done? Stop the queue in serious 1405 * conditions and restart it elsewhere? 1406 */ 1407 return NETDEV_TX_OK; 1408 } 1409 1410 static int fwnet_change_mtu(struct net_device *net, int new_mtu) 1411 { 1412 if (new_mtu < 68) 1413 return -EINVAL; 1414 1415 net->mtu = new_mtu; 1416 return 0; 1417 } 1418 1419 static const struct ethtool_ops fwnet_ethtool_ops = { 1420 .get_link = ethtool_op_get_link, 1421 }; 1422 1423 static const struct net_device_ops fwnet_netdev_ops = { 1424 .ndo_open = fwnet_open, 1425 .ndo_stop = fwnet_stop, 1426 .ndo_start_xmit = fwnet_tx, 1427 .ndo_change_mtu = fwnet_change_mtu, 1428 }; 1429 1430 static void fwnet_init_dev(struct net_device *net) 1431 { 1432 net->header_ops = &fwnet_header_ops; 1433 net->netdev_ops = &fwnet_netdev_ops; 1434 net->watchdog_timeo = 2 * HZ; 1435 net->flags = IFF_BROADCAST | IFF_MULTICAST; 1436 net->features = NETIF_F_HIGHDMA; 1437 net->addr_len = FWNET_ALEN; 1438 net->hard_header_len = FWNET_HLEN; 1439 net->type = ARPHRD_IEEE1394; 1440 net->tx_queue_len = FWNET_TX_QUEUE_LEN; 1441 net->ethtool_ops = &fwnet_ethtool_ops; 1442 } 1443 1444 /* caller must hold fwnet_device_mutex */ 1445 static struct fwnet_device *fwnet_dev_find(struct fw_card *card) 1446 { 1447 struct fwnet_device *dev; 1448 1449 list_for_each_entry(dev, &fwnet_device_list, dev_link) 1450 if (dev->card == card) 1451 return dev; 1452 1453 return NULL; 1454 } 1455 1456 static int fwnet_add_peer(struct fwnet_device *dev, 1457 struct fw_unit *unit, struct fw_device *device) 1458 { 1459 struct fwnet_peer *peer; 1460 1461 peer = kmalloc(sizeof(*peer), GFP_KERNEL); 1462 if (!peer) 1463 return -ENOMEM; 1464 1465 dev_set_drvdata(&unit->device, peer); 1466 1467 peer->dev = dev; 1468 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1469 peer->fifo = FWNET_NO_FIFO_ADDR; 1470 peer->ip = 0; 1471 INIT_LIST_HEAD(&peer->pd_list); 1472 peer->pdg_size = 0; 1473 peer->datagram_label = 0; 1474 peer->speed = device->max_speed; 1475 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed); 1476 1477 peer->generation = device->generation; 1478 smp_rmb(); 1479 peer->node_id = device->node_id; 1480 1481 spin_lock_irq(&dev->lock); 1482 list_add_tail(&peer->peer_link, &dev->peer_list); 1483 dev->peer_count++; 1484 set_carrier_state(dev); 1485 spin_unlock_irq(&dev->lock); 1486 1487 return 0; 1488 } 1489 1490 static int fwnet_probe(struct device *_dev) 1491 { 1492 struct fw_unit *unit = fw_unit(_dev); 1493 struct fw_device *device = fw_parent_device(unit); 1494 struct fw_card *card = device->card; 1495 struct net_device *net; 1496 bool allocated_netdev = false; 1497 struct fwnet_device *dev; 1498 unsigned max_mtu; 1499 int ret; 1500 1501 mutex_lock(&fwnet_device_mutex); 1502 1503 dev = fwnet_dev_find(card); 1504 if (dev) { 1505 net = dev->netdev; 1506 goto have_dev; 1507 } 1508 1509 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev); 1510 if (net == NULL) { 1511 ret = -ENOMEM; 1512 goto out; 1513 } 1514 1515 allocated_netdev = true; 1516 SET_NETDEV_DEV(net, card->device); 1517 dev = netdev_priv(net); 1518 1519 spin_lock_init(&dev->lock); 1520 dev->broadcast_state = FWNET_BROADCAST_ERROR; 1521 dev->broadcast_rcv_context = NULL; 1522 dev->broadcast_xmt_max_payload = 0; 1523 dev->broadcast_xmt_datagramlabel = 0; 1524 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1525 dev->queued_datagrams = 0; 1526 INIT_LIST_HEAD(&dev->peer_list); 1527 dev->card = card; 1528 dev->netdev = net; 1529 1530 /* 1531 * Use the RFC 2734 default 1500 octets or the maximum payload 1532 * as initial MTU 1533 */ 1534 max_mtu = (1 << (card->max_receive + 1)) 1535 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE; 1536 net->mtu = min(1500U, max_mtu); 1537 1538 /* Set our hardware address while we're at it */ 1539 put_unaligned_be64(card->guid, net->dev_addr); 1540 put_unaligned_be64(~0ULL, net->broadcast); 1541 ret = register_netdev(net); 1542 if (ret) { 1543 fw_error("Cannot register the driver\n"); 1544 goto out; 1545 } 1546 1547 list_add_tail(&dev->dev_link, &fwnet_device_list); 1548 fw_notify("%s: IPv4 over FireWire on device %016llx\n", 1549 net->name, (unsigned long long)card->guid); 1550 have_dev: 1551 ret = fwnet_add_peer(dev, unit, device); 1552 if (ret && allocated_netdev) { 1553 unregister_netdev(net); 1554 list_del(&dev->dev_link); 1555 } 1556 out: 1557 if (ret && allocated_netdev) 1558 free_netdev(net); 1559 1560 mutex_unlock(&fwnet_device_mutex); 1561 1562 return ret; 1563 } 1564 1565 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev) 1566 { 1567 struct fwnet_partial_datagram *pd, *pd_next; 1568 1569 spin_lock_irq(&dev->lock); 1570 list_del(&peer->peer_link); 1571 dev->peer_count--; 1572 set_carrier_state(dev); 1573 spin_unlock_irq(&dev->lock); 1574 1575 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link) 1576 fwnet_pd_delete(pd); 1577 1578 kfree(peer); 1579 } 1580 1581 static int fwnet_remove(struct device *_dev) 1582 { 1583 struct fwnet_peer *peer = dev_get_drvdata(_dev); 1584 struct fwnet_device *dev = peer->dev; 1585 struct net_device *net; 1586 int i; 1587 1588 mutex_lock(&fwnet_device_mutex); 1589 1590 net = dev->netdev; 1591 if (net && peer->ip) 1592 arp_invalidate(net, peer->ip); 1593 1594 fwnet_remove_peer(peer, dev); 1595 1596 if (list_empty(&dev->peer_list)) { 1597 unregister_netdev(net); 1598 1599 if (dev->local_fifo != FWNET_NO_FIFO_ADDR) 1600 fw_core_remove_address_handler(&dev->handler); 1601 if (dev->broadcast_rcv_context) { 1602 fw_iso_context_stop(dev->broadcast_rcv_context); 1603 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, 1604 dev->card); 1605 fw_iso_context_destroy(dev->broadcast_rcv_context); 1606 } 1607 for (i = 0; dev->queued_datagrams && i < 5; i++) 1608 ssleep(1); 1609 WARN_ON(dev->queued_datagrams); 1610 list_del(&dev->dev_link); 1611 1612 free_netdev(net); 1613 } 1614 1615 mutex_unlock(&fwnet_device_mutex); 1616 1617 return 0; 1618 } 1619 1620 /* 1621 * FIXME abort partially sent fragmented datagrams, 1622 * discard partially received fragmented datagrams 1623 */ 1624 static void fwnet_update(struct fw_unit *unit) 1625 { 1626 struct fw_device *device = fw_parent_device(unit); 1627 struct fwnet_peer *peer = dev_get_drvdata(&unit->device); 1628 int generation; 1629 1630 generation = device->generation; 1631 1632 spin_lock_irq(&peer->dev->lock); 1633 peer->node_id = device->node_id; 1634 peer->generation = generation; 1635 spin_unlock_irq(&peer->dev->lock); 1636 } 1637 1638 static const struct ieee1394_device_id fwnet_id_table[] = { 1639 { 1640 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1641 IEEE1394_MATCH_VERSION, 1642 .specifier_id = IANA_SPECIFIER_ID, 1643 .version = RFC2734_SW_VERSION, 1644 }, 1645 { } 1646 }; 1647 1648 static struct fw_driver fwnet_driver = { 1649 .driver = { 1650 .owner = THIS_MODULE, 1651 .name = "net", 1652 .bus = &fw_bus_type, 1653 .probe = fwnet_probe, 1654 .remove = fwnet_remove, 1655 }, 1656 .update = fwnet_update, 1657 .id_table = fwnet_id_table, 1658 }; 1659 1660 static const u32 rfc2374_unit_directory_data[] = { 1661 0x00040000, /* directory_length */ 1662 0x1200005e, /* unit_specifier_id: IANA */ 1663 0x81000003, /* textual descriptor offset */ 1664 0x13000001, /* unit_sw_version: RFC 2734 */ 1665 0x81000005, /* textual descriptor offset */ 1666 0x00030000, /* descriptor_length */ 1667 0x00000000, /* text */ 1668 0x00000000, /* minimal ASCII, en */ 1669 0x49414e41, /* I A N A */ 1670 0x00030000, /* descriptor_length */ 1671 0x00000000, /* text */ 1672 0x00000000, /* minimal ASCII, en */ 1673 0x49507634, /* I P v 4 */ 1674 }; 1675 1676 static struct fw_descriptor rfc2374_unit_directory = { 1677 .length = ARRAY_SIZE(rfc2374_unit_directory_data), 1678 .key = (CSR_DIRECTORY | CSR_UNIT) << 24, 1679 .data = rfc2374_unit_directory_data 1680 }; 1681 1682 static int __init fwnet_init(void) 1683 { 1684 int err; 1685 1686 err = fw_core_add_descriptor(&rfc2374_unit_directory); 1687 if (err) 1688 return err; 1689 1690 fwnet_packet_task_cache = kmem_cache_create("packet_task", 1691 sizeof(struct fwnet_packet_task), 0, 0, NULL); 1692 if (!fwnet_packet_task_cache) { 1693 err = -ENOMEM; 1694 goto out; 1695 } 1696 1697 err = driver_register(&fwnet_driver.driver); 1698 if (!err) 1699 return 0; 1700 1701 kmem_cache_destroy(fwnet_packet_task_cache); 1702 out: 1703 fw_core_remove_descriptor(&rfc2374_unit_directory); 1704 1705 return err; 1706 } 1707 module_init(fwnet_init); 1708 1709 static void __exit fwnet_cleanup(void) 1710 { 1711 driver_unregister(&fwnet_driver.driver); 1712 kmem_cache_destroy(fwnet_packet_task_cache); 1713 fw_core_remove_descriptor(&rfc2374_unit_directory); 1714 } 1715 module_exit(fwnet_cleanup); 1716 1717 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>"); 1718 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734"); 1719 MODULE_LICENSE("GPL"); 1720 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table); 1721