1 /* 2 * IPv4 over IEEE 1394, per RFC 2734 3 * 4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com> 5 * 6 * based on eth1394 by Ben Collins et al 7 */ 8 9 #include <linux/bug.h> 10 #include <linux/device.h> 11 #include <linux/ethtool.h> 12 #include <linux/firewire.h> 13 #include <linux/firewire-constants.h> 14 #include <linux/highmem.h> 15 #include <linux/in.h> 16 #include <linux/ip.h> 17 #include <linux/jiffies.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/module.h> 20 #include <linux/moduleparam.h> 21 #include <linux/mutex.h> 22 #include <linux/netdevice.h> 23 #include <linux/skbuff.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 27 #include <asm/unaligned.h> 28 #include <net/arp.h> 29 30 #define FWNET_MAX_FRAGMENTS 25 /* arbitrary limit */ 31 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16 * 1024 ? 4 : 2) 32 33 #define IEEE1394_BROADCAST_CHANNEL 31 34 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f) 35 #define IEEE1394_MAX_PAYLOAD_S100 512 36 #define FWNET_NO_FIFO_ADDR (~0ULL) 37 38 #define IANA_SPECIFIER_ID 0x00005eU 39 #define RFC2734_SW_VERSION 0x000001U 40 41 #define IEEE1394_GASP_HDR_SIZE 8 42 43 #define RFC2374_UNFRAG_HDR_SIZE 4 44 #define RFC2374_FRAG_HDR_SIZE 8 45 #define RFC2374_FRAG_OVERHEAD 4 46 47 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */ 48 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */ 49 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */ 50 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */ 51 52 #define RFC2734_HW_ADDR_LEN 16 53 54 struct rfc2734_arp { 55 __be16 hw_type; /* 0x0018 */ 56 __be16 proto_type; /* 0x0806 */ 57 u8 hw_addr_len; /* 16 */ 58 u8 ip_addr_len; /* 4 */ 59 __be16 opcode; /* ARP Opcode */ 60 /* Above is exactly the same format as struct arphdr */ 61 62 __be64 s_uniq_id; /* Sender's 64bit EUI */ 63 u8 max_rec; /* Sender's max packet size */ 64 u8 sspd; /* Sender's max speed */ 65 __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */ 66 __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */ 67 __be32 sip; /* Sender's IP Address */ 68 __be32 tip; /* IP Address of requested hw addr */ 69 } __attribute__((packed)); 70 71 /* This header format is specific to this driver implementation. */ 72 #define FWNET_ALEN 8 73 #define FWNET_HLEN 10 74 struct fwnet_header { 75 u8 h_dest[FWNET_ALEN]; /* destination address */ 76 __be16 h_proto; /* packet type ID field */ 77 } __attribute__((packed)); 78 79 /* IPv4 and IPv6 encapsulation header */ 80 struct rfc2734_header { 81 u32 w0; 82 u32 w1; 83 }; 84 85 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30) 86 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff)) 87 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16) 88 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff)) 89 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16) 90 91 #define fwnet_set_hdr_lf(lf) ((lf) << 30) 92 #define fwnet_set_hdr_ether_type(et) (et) 93 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16) 94 #define fwnet_set_hdr_fg_off(fgo) (fgo) 95 96 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16) 97 98 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr, 99 unsigned ether_type) 100 { 101 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG) 102 | fwnet_set_hdr_ether_type(ether_type); 103 } 104 105 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr, 106 unsigned ether_type, unsigned dg_size, unsigned dgl) 107 { 108 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG) 109 | fwnet_set_hdr_dg_size(dg_size) 110 | fwnet_set_hdr_ether_type(ether_type); 111 hdr->w1 = fwnet_set_hdr_dgl(dgl); 112 } 113 114 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr, 115 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) 116 { 117 hdr->w0 = fwnet_set_hdr_lf(lf) 118 | fwnet_set_hdr_dg_size(dg_size) 119 | fwnet_set_hdr_fg_off(fg_off); 120 hdr->w1 = fwnet_set_hdr_dgl(dgl); 121 } 122 123 /* This list keeps track of what parts of the datagram have been filled in */ 124 struct fwnet_fragment_info { 125 struct list_head fi_link; 126 u16 offset; 127 u16 len; 128 }; 129 130 struct fwnet_partial_datagram { 131 struct list_head pd_link; 132 struct list_head fi_list; 133 struct sk_buff *skb; 134 /* FIXME Why not use skb->data? */ 135 char *pbuf; 136 u16 datagram_label; 137 u16 ether_type; 138 u16 datagram_size; 139 }; 140 141 static DEFINE_MUTEX(fwnet_device_mutex); 142 static LIST_HEAD(fwnet_device_list); 143 144 struct fwnet_device { 145 struct list_head dev_link; 146 spinlock_t lock; 147 enum { 148 FWNET_BROADCAST_ERROR, 149 FWNET_BROADCAST_RUNNING, 150 FWNET_BROADCAST_STOPPED, 151 } broadcast_state; 152 struct fw_iso_context *broadcast_rcv_context; 153 struct fw_iso_buffer broadcast_rcv_buffer; 154 void **broadcast_rcv_buffer_ptrs; 155 unsigned broadcast_rcv_next_ptr; 156 unsigned num_broadcast_rcv_ptrs; 157 unsigned rcv_buffer_size; 158 /* 159 * This value is the maximum unfragmented datagram size that can be 160 * sent by the hardware. It already has the GASP overhead and the 161 * unfragmented datagram header overhead calculated into it. 162 */ 163 unsigned broadcast_xmt_max_payload; 164 u16 broadcast_xmt_datagramlabel; 165 166 /* 167 * The CSR address that remote nodes must send datagrams to for us to 168 * receive them. 169 */ 170 struct fw_address_handler handler; 171 u64 local_fifo; 172 173 /* List of packets to be sent */ 174 struct list_head packet_list; 175 /* 176 * List of packets that were broadcasted. When we get an ISO interrupt 177 * one of them has been sent 178 */ 179 struct list_head broadcasted_list; 180 /* List of packets that have been sent but not yet acked */ 181 struct list_head sent_list; 182 183 struct list_head peer_list; 184 struct fw_card *card; 185 struct net_device *netdev; 186 }; 187 188 struct fwnet_peer { 189 struct list_head peer_link; 190 struct fwnet_device *dev; 191 u64 guid; 192 u64 fifo; 193 194 /* guarded by dev->lock */ 195 struct list_head pd_list; /* received partial datagrams */ 196 unsigned pdg_size; /* pd_list size */ 197 198 u16 datagram_label; /* outgoing datagram label */ 199 unsigned max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */ 200 int node_id; 201 int generation; 202 unsigned speed; 203 }; 204 205 /* This is our task struct. It's used for the packet complete callback. */ 206 struct fwnet_packet_task { 207 /* 208 * ptask can actually be on dev->packet_list, dev->broadcasted_list, 209 * or dev->sent_list depending on its current state. 210 */ 211 struct list_head pt_link; 212 struct fw_transaction transaction; 213 struct rfc2734_header hdr; 214 struct sk_buff *skb; 215 struct fwnet_device *dev; 216 217 int outstanding_pkts; 218 unsigned max_payload; 219 u64 fifo_addr; 220 u16 dest_node; 221 u8 generation; 222 u8 speed; 223 }; 224 225 /* 226 * saddr == NULL means use device source address. 227 * daddr == NULL means leave destination address (eg unresolved arp). 228 */ 229 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net, 230 unsigned short type, const void *daddr, 231 const void *saddr, unsigned len) 232 { 233 struct fwnet_header *h; 234 235 h = (struct fwnet_header *)skb_push(skb, sizeof(*h)); 236 put_unaligned_be16(type, &h->h_proto); 237 238 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) { 239 memset(h->h_dest, 0, net->addr_len); 240 241 return net->hard_header_len; 242 } 243 244 if (daddr) { 245 memcpy(h->h_dest, daddr, net->addr_len); 246 247 return net->hard_header_len; 248 } 249 250 return -net->hard_header_len; 251 } 252 253 static int fwnet_header_rebuild(struct sk_buff *skb) 254 { 255 struct fwnet_header *h = (struct fwnet_header *)skb->data; 256 257 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP) 258 return arp_find((unsigned char *)&h->h_dest, skb); 259 260 fw_notify("%s: unable to resolve type %04x addresses\n", 261 skb->dev->name, be16_to_cpu(h->h_proto)); 262 return 0; 263 } 264 265 static int fwnet_header_cache(const struct neighbour *neigh, 266 struct hh_cache *hh) 267 { 268 struct net_device *net; 269 struct fwnet_header *h; 270 271 if (hh->hh_type == cpu_to_be16(ETH_P_802_3)) 272 return -1; 273 net = neigh->dev; 274 h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h)); 275 h->h_proto = hh->hh_type; 276 memcpy(h->h_dest, neigh->ha, net->addr_len); 277 hh->hh_len = FWNET_HLEN; 278 279 return 0; 280 } 281 282 /* Called by Address Resolution module to notify changes in address. */ 283 static void fwnet_header_cache_update(struct hh_cache *hh, 284 const struct net_device *net, const unsigned char *haddr) 285 { 286 memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len); 287 } 288 289 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr) 290 { 291 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN); 292 293 return FWNET_ALEN; 294 } 295 296 static const struct header_ops fwnet_header_ops = { 297 .create = fwnet_header_create, 298 .rebuild = fwnet_header_rebuild, 299 .cache = fwnet_header_cache, 300 .cache_update = fwnet_header_cache_update, 301 .parse = fwnet_header_parse, 302 }; 303 304 /* FIXME: is this correct for all cases? */ 305 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd, 306 unsigned offset, unsigned len) 307 { 308 struct fwnet_fragment_info *fi; 309 unsigned end = offset + len; 310 311 list_for_each_entry(fi, &pd->fi_list, fi_link) 312 if (offset < fi->offset + fi->len && end > fi->offset) 313 return true; 314 315 return false; 316 } 317 318 /* Assumes that new fragment does not overlap any existing fragments */ 319 static struct fwnet_fragment_info *fwnet_frag_new( 320 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) 321 { 322 struct fwnet_fragment_info *fi, *fi2, *new; 323 struct list_head *list; 324 325 list = &pd->fi_list; 326 list_for_each_entry(fi, &pd->fi_list, fi_link) { 327 if (fi->offset + fi->len == offset) { 328 /* The new fragment can be tacked on to the end */ 329 /* Did the new fragment plug a hole? */ 330 fi2 = list_entry(fi->fi_link.next, 331 struct fwnet_fragment_info, fi_link); 332 if (fi->offset + fi->len == fi2->offset) { 333 /* glue fragments together */ 334 fi->len += len + fi2->len; 335 list_del(&fi2->fi_link); 336 kfree(fi2); 337 } else { 338 fi->len += len; 339 } 340 341 return fi; 342 } 343 if (offset + len == fi->offset) { 344 /* The new fragment can be tacked on to the beginning */ 345 /* Did the new fragment plug a hole? */ 346 fi2 = list_entry(fi->fi_link.prev, 347 struct fwnet_fragment_info, fi_link); 348 if (fi2->offset + fi2->len == fi->offset) { 349 /* glue fragments together */ 350 fi2->len += fi->len + len; 351 list_del(&fi->fi_link); 352 kfree(fi); 353 354 return fi2; 355 } 356 fi->offset = offset; 357 fi->len += len; 358 359 return fi; 360 } 361 if (offset > fi->offset + fi->len) { 362 list = &fi->fi_link; 363 break; 364 } 365 if (offset + len < fi->offset) { 366 list = fi->fi_link.prev; 367 break; 368 } 369 } 370 371 new = kmalloc(sizeof(*new), GFP_ATOMIC); 372 if (!new) { 373 fw_error("out of memory\n"); 374 return NULL; 375 } 376 377 new->offset = offset; 378 new->len = len; 379 list_add(&new->fi_link, list); 380 381 return new; 382 } 383 384 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net, 385 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size, 386 void *frag_buf, unsigned frag_off, unsigned frag_len) 387 { 388 struct fwnet_partial_datagram *new; 389 struct fwnet_fragment_info *fi; 390 391 new = kmalloc(sizeof(*new), GFP_ATOMIC); 392 if (!new) 393 goto fail; 394 395 INIT_LIST_HEAD(&new->fi_list); 396 fi = fwnet_frag_new(new, frag_off, frag_len); 397 if (fi == NULL) 398 goto fail_w_new; 399 400 new->datagram_label = datagram_label; 401 new->datagram_size = dg_size; 402 new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15); 403 if (new->skb == NULL) 404 goto fail_w_fi; 405 406 skb_reserve(new->skb, (net->hard_header_len + 15) & ~15); 407 new->pbuf = skb_put(new->skb, dg_size); 408 memcpy(new->pbuf + frag_off, frag_buf, frag_len); 409 list_add_tail(&new->pd_link, &peer->pd_list); 410 411 return new; 412 413 fail_w_fi: 414 kfree(fi); 415 fail_w_new: 416 kfree(new); 417 fail: 418 fw_error("out of memory\n"); 419 420 return NULL; 421 } 422 423 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer, 424 u16 datagram_label) 425 { 426 struct fwnet_partial_datagram *pd; 427 428 list_for_each_entry(pd, &peer->pd_list, pd_link) 429 if (pd->datagram_label == datagram_label) 430 return pd; 431 432 return NULL; 433 } 434 435 436 static void fwnet_pd_delete(struct fwnet_partial_datagram *old) 437 { 438 struct fwnet_fragment_info *fi, *n; 439 440 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link) 441 kfree(fi); 442 443 list_del(&old->pd_link); 444 dev_kfree_skb_any(old->skb); 445 kfree(old); 446 } 447 448 static bool fwnet_pd_update(struct fwnet_peer *peer, 449 struct fwnet_partial_datagram *pd, void *frag_buf, 450 unsigned frag_off, unsigned frag_len) 451 { 452 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL) 453 return false; 454 455 memcpy(pd->pbuf + frag_off, frag_buf, frag_len); 456 457 /* 458 * Move list entry to beginnig of list so that oldest partial 459 * datagrams percolate to the end of the list 460 */ 461 list_move_tail(&pd->pd_link, &peer->pd_list); 462 463 return true; 464 } 465 466 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd) 467 { 468 struct fwnet_fragment_info *fi; 469 470 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link); 471 472 return fi->len == pd->datagram_size; 473 } 474 475 /* caller must hold dev->lock */ 476 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev, 477 u64 guid) 478 { 479 struct fwnet_peer *peer; 480 481 list_for_each_entry(peer, &dev->peer_list, peer_link) 482 if (peer->guid == guid) 483 return peer; 484 485 return NULL; 486 } 487 488 /* caller must hold dev->lock */ 489 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev, 490 int node_id, int generation) 491 { 492 struct fwnet_peer *peer; 493 494 list_for_each_entry(peer, &dev->peer_list, peer_link) 495 if (peer->node_id == node_id && 496 peer->generation == generation) 497 return peer; 498 499 return NULL; 500 } 501 502 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */ 503 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed) 504 { 505 max_rec = min(max_rec, speed + 8); 506 max_rec = min(max_rec, 0xbU); /* <= 4096 */ 507 if (max_rec < 8) { 508 fw_notify("max_rec %x out of range\n", max_rec); 509 max_rec = 8; 510 } 511 512 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE; 513 } 514 515 516 static int fwnet_finish_incoming_packet(struct net_device *net, 517 struct sk_buff *skb, u16 source_node_id, 518 bool is_broadcast, u16 ether_type) 519 { 520 struct fwnet_device *dev; 521 static const __be64 broadcast_hw = cpu_to_be64(~0ULL); 522 int status; 523 __be64 guid; 524 525 dev = netdev_priv(net); 526 /* Write metadata, and then pass to the receive level */ 527 skb->dev = net; 528 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */ 529 530 /* 531 * Parse the encapsulation header. This actually does the job of 532 * converting to an ethernet frame header, as well as arp 533 * conversion if needed. ARP conversion is easier in this 534 * direction, since we are using ethernet as our backend. 535 */ 536 /* 537 * If this is an ARP packet, convert it. First, we want to make 538 * use of some of the fields, since they tell us a little bit 539 * about the sending machine. 540 */ 541 if (ether_type == ETH_P_ARP) { 542 struct rfc2734_arp *arp1394; 543 struct arphdr *arp; 544 unsigned char *arp_ptr; 545 u64 fifo_addr; 546 u64 peer_guid; 547 unsigned sspd; 548 u16 max_payload; 549 struct fwnet_peer *peer; 550 unsigned long flags; 551 552 arp1394 = (struct rfc2734_arp *)skb->data; 553 arp = (struct arphdr *)skb->data; 554 arp_ptr = (unsigned char *)(arp + 1); 555 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id); 556 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32 557 | get_unaligned_be32(&arp1394->fifo_lo); 558 559 sspd = arp1394->sspd; 560 /* Sanity check. OS X 10.3 PPC reportedly sends 131. */ 561 if (sspd > SCODE_3200) { 562 fw_notify("sspd %x out of range\n", sspd); 563 sspd = SCODE_3200; 564 } 565 max_payload = fwnet_max_payload(arp1394->max_rec, sspd); 566 567 spin_lock_irqsave(&dev->lock, flags); 568 peer = fwnet_peer_find_by_guid(dev, peer_guid); 569 if (peer) { 570 peer->fifo = fifo_addr; 571 572 if (peer->speed > sspd) 573 peer->speed = sspd; 574 if (peer->max_payload > max_payload) 575 peer->max_payload = max_payload; 576 } 577 spin_unlock_irqrestore(&dev->lock, flags); 578 579 if (!peer) { 580 fw_notify("No peer for ARP packet from %016llx\n", 581 (unsigned long long)peer_guid); 582 goto failed_proto; 583 } 584 585 /* 586 * Now that we're done with the 1394 specific stuff, we'll 587 * need to alter some of the data. Believe it or not, all 588 * that needs to be done is sender_IP_address needs to be 589 * moved, the destination hardware address get stuffed 590 * in and the hardware address length set to 8. 591 * 592 * IMPORTANT: The code below overwrites 1394 specific data 593 * needed above so keep the munging of the data for the 594 * higher level IP stack last. 595 */ 596 597 arp->ar_hln = 8; 598 /* skip over sender unique id */ 599 arp_ptr += arp->ar_hln; 600 /* move sender IP addr */ 601 put_unaligned(arp1394->sip, (u32 *)arp_ptr); 602 /* skip over sender IP addr */ 603 arp_ptr += arp->ar_pln; 604 605 if (arp->ar_op == htons(ARPOP_REQUEST)) 606 memset(arp_ptr, 0, sizeof(u64)); 607 else 608 memcpy(arp_ptr, net->dev_addr, sizeof(u64)); 609 } 610 611 /* Now add the ethernet header. */ 612 guid = cpu_to_be64(dev->card->guid); 613 if (dev_hard_header(skb, net, ether_type, 614 is_broadcast ? &broadcast_hw : &guid, 615 NULL, skb->len) >= 0) { 616 struct fwnet_header *eth; 617 u16 *rawp; 618 __be16 protocol; 619 620 skb_reset_mac_header(skb); 621 skb_pull(skb, sizeof(*eth)); 622 eth = (struct fwnet_header *)skb_mac_header(skb); 623 if (*eth->h_dest & 1) { 624 if (memcmp(eth->h_dest, net->broadcast, 625 net->addr_len) == 0) 626 skb->pkt_type = PACKET_BROADCAST; 627 #if 0 628 else 629 skb->pkt_type = PACKET_MULTICAST; 630 #endif 631 } else { 632 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len)) 633 skb->pkt_type = PACKET_OTHERHOST; 634 } 635 if (ntohs(eth->h_proto) >= 1536) { 636 protocol = eth->h_proto; 637 } else { 638 rawp = (u16 *)skb->data; 639 if (*rawp == 0xffff) 640 protocol = htons(ETH_P_802_3); 641 else 642 protocol = htons(ETH_P_802_2); 643 } 644 skb->protocol = protocol; 645 } 646 status = netif_rx(skb); 647 if (status == NET_RX_DROP) { 648 net->stats.rx_errors++; 649 net->stats.rx_dropped++; 650 } else { 651 net->stats.rx_packets++; 652 net->stats.rx_bytes += skb->len; 653 } 654 if (netif_queue_stopped(net)) 655 netif_wake_queue(net); 656 657 return 0; 658 659 failed_proto: 660 net->stats.rx_errors++; 661 net->stats.rx_dropped++; 662 663 dev_kfree_skb_any(skb); 664 if (netif_queue_stopped(net)) 665 netif_wake_queue(net); 666 667 return 0; 668 } 669 670 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len, 671 int source_node_id, int generation, 672 bool is_broadcast) 673 { 674 struct sk_buff *skb; 675 struct net_device *net = dev->netdev; 676 struct rfc2734_header hdr; 677 unsigned lf; 678 unsigned long flags; 679 struct fwnet_peer *peer; 680 struct fwnet_partial_datagram *pd; 681 int fg_off; 682 int dg_size; 683 u16 datagram_label; 684 int retval; 685 u16 ether_type; 686 687 hdr.w0 = be32_to_cpu(buf[0]); 688 lf = fwnet_get_hdr_lf(&hdr); 689 if (lf == RFC2374_HDR_UNFRAG) { 690 /* 691 * An unfragmented datagram has been received by the ieee1394 692 * bus. Build an skbuff around it so we can pass it to the 693 * high level network layer. 694 */ 695 ether_type = fwnet_get_hdr_ether_type(&hdr); 696 buf++; 697 len -= RFC2374_UNFRAG_HDR_SIZE; 698 699 skb = dev_alloc_skb(len + net->hard_header_len + 15); 700 if (unlikely(!skb)) { 701 fw_error("out of memory\n"); 702 net->stats.rx_dropped++; 703 704 return -1; 705 } 706 skb_reserve(skb, (net->hard_header_len + 15) & ~15); 707 memcpy(skb_put(skb, len), buf, len); 708 709 return fwnet_finish_incoming_packet(net, skb, source_node_id, 710 is_broadcast, ether_type); 711 } 712 /* A datagram fragment has been received, now the fun begins. */ 713 hdr.w1 = ntohl(buf[1]); 714 buf += 2; 715 len -= RFC2374_FRAG_HDR_SIZE; 716 if (lf == RFC2374_HDR_FIRSTFRAG) { 717 ether_type = fwnet_get_hdr_ether_type(&hdr); 718 fg_off = 0; 719 } else { 720 ether_type = 0; 721 fg_off = fwnet_get_hdr_fg_off(&hdr); 722 } 723 datagram_label = fwnet_get_hdr_dgl(&hdr); 724 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */ 725 726 spin_lock_irqsave(&dev->lock, flags); 727 728 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation); 729 if (!peer) 730 goto bad_proto; 731 732 pd = fwnet_pd_find(peer, datagram_label); 733 if (pd == NULL) { 734 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) { 735 /* remove the oldest */ 736 fwnet_pd_delete(list_first_entry(&peer->pd_list, 737 struct fwnet_partial_datagram, pd_link)); 738 peer->pdg_size--; 739 } 740 pd = fwnet_pd_new(net, peer, datagram_label, 741 dg_size, buf, fg_off, len); 742 if (pd == NULL) { 743 retval = -ENOMEM; 744 goto bad_proto; 745 } 746 peer->pdg_size++; 747 } else { 748 if (fwnet_frag_overlap(pd, fg_off, len) || 749 pd->datagram_size != dg_size) { 750 /* 751 * Differing datagram sizes or overlapping fragments, 752 * discard old datagram and start a new one. 753 */ 754 fwnet_pd_delete(pd); 755 pd = fwnet_pd_new(net, peer, datagram_label, 756 dg_size, buf, fg_off, len); 757 if (pd == NULL) { 758 retval = -ENOMEM; 759 peer->pdg_size--; 760 goto bad_proto; 761 } 762 } else { 763 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) { 764 /* 765 * Couldn't save off fragment anyway 766 * so might as well obliterate the 767 * datagram now. 768 */ 769 fwnet_pd_delete(pd); 770 peer->pdg_size--; 771 goto bad_proto; 772 } 773 } 774 } /* new datagram or add to existing one */ 775 776 if (lf == RFC2374_HDR_FIRSTFRAG) 777 pd->ether_type = ether_type; 778 779 if (fwnet_pd_is_complete(pd)) { 780 ether_type = pd->ether_type; 781 peer->pdg_size--; 782 skb = skb_get(pd->skb); 783 fwnet_pd_delete(pd); 784 785 spin_unlock_irqrestore(&dev->lock, flags); 786 787 return fwnet_finish_incoming_packet(net, skb, source_node_id, 788 false, ether_type); 789 } 790 /* 791 * Datagram is not complete, we're done for the 792 * moment. 793 */ 794 spin_unlock_irqrestore(&dev->lock, flags); 795 796 return 0; 797 798 bad_proto: 799 spin_unlock_irqrestore(&dev->lock, flags); 800 801 if (netif_queue_stopped(net)) 802 netif_wake_queue(net); 803 804 return 0; 805 } 806 807 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r, 808 int tcode, int destination, int source, int generation, 809 unsigned long long offset, void *payload, size_t length, 810 void *callback_data) 811 { 812 struct fwnet_device *dev = callback_data; 813 int rcode; 814 815 if (destination == IEEE1394_ALL_NODES) { 816 kfree(r); 817 818 return; 819 } 820 821 if (offset != dev->handler.offset) 822 rcode = RCODE_ADDRESS_ERROR; 823 else if (tcode != TCODE_WRITE_BLOCK_REQUEST) 824 rcode = RCODE_TYPE_ERROR; 825 else if (fwnet_incoming_packet(dev, payload, length, 826 source, generation, false) != 0) { 827 fw_error("Incoming packet failure\n"); 828 rcode = RCODE_CONFLICT_ERROR; 829 } else 830 rcode = RCODE_COMPLETE; 831 832 fw_send_response(card, r, rcode); 833 } 834 835 static void fwnet_receive_broadcast(struct fw_iso_context *context, 836 u32 cycle, size_t header_length, void *header, void *data) 837 { 838 struct fwnet_device *dev; 839 struct fw_iso_packet packet; 840 struct fw_card *card; 841 __be16 *hdr_ptr; 842 __be32 *buf_ptr; 843 int retval; 844 u32 length; 845 u16 source_node_id; 846 u32 specifier_id; 847 u32 ver; 848 unsigned long offset; 849 unsigned long flags; 850 851 dev = data; 852 card = dev->card; 853 hdr_ptr = header; 854 length = be16_to_cpup(hdr_ptr); 855 856 spin_lock_irqsave(&dev->lock, flags); 857 858 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr; 859 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++]; 860 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs) 861 dev->broadcast_rcv_next_ptr = 0; 862 863 spin_unlock_irqrestore(&dev->lock, flags); 864 865 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8 866 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24; 867 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff; 868 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16; 869 870 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) { 871 buf_ptr += 2; 872 length -= IEEE1394_GASP_HDR_SIZE; 873 fwnet_incoming_packet(dev, buf_ptr, length, 874 source_node_id, -1, true); 875 } 876 877 packet.payload_length = dev->rcv_buffer_size; 878 packet.interrupt = 1; 879 packet.skip = 0; 880 packet.tag = 3; 881 packet.sy = 0; 882 packet.header_length = IEEE1394_GASP_HDR_SIZE; 883 884 spin_lock_irqsave(&dev->lock, flags); 885 886 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet, 887 &dev->broadcast_rcv_buffer, offset); 888 889 spin_unlock_irqrestore(&dev->lock, flags); 890 891 if (retval < 0) 892 fw_error("requeue failed\n"); 893 } 894 895 static struct kmem_cache *fwnet_packet_task_cache; 896 897 static void fwnet_free_ptask(struct fwnet_packet_task *ptask) 898 { 899 dev_kfree_skb_any(ptask->skb); 900 kmem_cache_free(fwnet_packet_task_cache, ptask); 901 } 902 903 static int fwnet_send_packet(struct fwnet_packet_task *ptask); 904 905 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask) 906 { 907 struct fwnet_device *dev = ptask->dev; 908 unsigned long flags; 909 bool free; 910 911 spin_lock_irqsave(&dev->lock, flags); 912 913 ptask->outstanding_pkts--; 914 915 /* Check whether we or the networking TX soft-IRQ is last user. */ 916 free = (ptask->outstanding_pkts == 0 && !list_empty(&ptask->pt_link)); 917 918 if (ptask->outstanding_pkts == 0) 919 list_del(&ptask->pt_link); 920 921 spin_unlock_irqrestore(&dev->lock, flags); 922 923 if (ptask->outstanding_pkts > 0) { 924 u16 dg_size; 925 u16 fg_off; 926 u16 datagram_label; 927 u16 lf; 928 struct sk_buff *skb; 929 930 /* Update the ptask to point to the next fragment and send it */ 931 lf = fwnet_get_hdr_lf(&ptask->hdr); 932 switch (lf) { 933 case RFC2374_HDR_LASTFRAG: 934 case RFC2374_HDR_UNFRAG: 935 default: 936 fw_error("Outstanding packet %x lf %x, header %x,%x\n", 937 ptask->outstanding_pkts, lf, ptask->hdr.w0, 938 ptask->hdr.w1); 939 BUG(); 940 941 case RFC2374_HDR_FIRSTFRAG: 942 /* Set frag type here for future interior fragments */ 943 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 944 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 945 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 946 break; 947 948 case RFC2374_HDR_INTFRAG: 949 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 950 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr) 951 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 952 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 953 break; 954 } 955 skb = ptask->skb; 956 skb_pull(skb, ptask->max_payload); 957 if (ptask->outstanding_pkts > 1) { 958 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG, 959 dg_size, fg_off, datagram_label); 960 } else { 961 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG, 962 dg_size, fg_off, datagram_label); 963 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE; 964 } 965 fwnet_send_packet(ptask); 966 } 967 968 if (free) 969 fwnet_free_ptask(ptask); 970 } 971 972 static void fwnet_write_complete(struct fw_card *card, int rcode, 973 void *payload, size_t length, void *data) 974 { 975 struct fwnet_packet_task *ptask; 976 977 ptask = data; 978 979 if (rcode == RCODE_COMPLETE) 980 fwnet_transmit_packet_done(ptask); 981 else 982 fw_error("fwnet_write_complete: failed: %x\n", rcode); 983 /* ??? error recovery */ 984 } 985 986 static int fwnet_send_packet(struct fwnet_packet_task *ptask) 987 { 988 struct fwnet_device *dev; 989 unsigned tx_len; 990 struct rfc2734_header *bufhdr; 991 unsigned long flags; 992 bool free; 993 994 dev = ptask->dev; 995 tx_len = ptask->max_payload; 996 switch (fwnet_get_hdr_lf(&ptask->hdr)) { 997 case RFC2374_HDR_UNFRAG: 998 bufhdr = (struct rfc2734_header *) 999 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE); 1000 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 1001 break; 1002 1003 case RFC2374_HDR_FIRSTFRAG: 1004 case RFC2374_HDR_INTFRAG: 1005 case RFC2374_HDR_LASTFRAG: 1006 bufhdr = (struct rfc2734_header *) 1007 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE); 1008 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 1009 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1); 1010 break; 1011 1012 default: 1013 BUG(); 1014 } 1015 if (ptask->dest_node == IEEE1394_ALL_NODES) { 1016 u8 *p; 1017 int generation; 1018 int node_id; 1019 1020 /* ptask->generation may not have been set yet */ 1021 generation = dev->card->generation; 1022 smp_rmb(); 1023 node_id = dev->card->node_id; 1024 1025 p = skb_push(ptask->skb, 8); 1026 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p); 1027 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24 1028 | RFC2734_SW_VERSION, &p[4]); 1029 1030 /* We should not transmit if broadcast_channel.valid == 0. */ 1031 fw_send_request(dev->card, &ptask->transaction, 1032 TCODE_STREAM_DATA, 1033 fw_stream_packet_destination_id(3, 1034 IEEE1394_BROADCAST_CHANNEL, 0), 1035 generation, SCODE_100, 0ULL, ptask->skb->data, 1036 tx_len + 8, fwnet_write_complete, ptask); 1037 1038 spin_lock_irqsave(&dev->lock, flags); 1039 1040 /* If the AT tasklet already ran, we may be last user. */ 1041 free = (ptask->outstanding_pkts == 0 && list_empty(&ptask->pt_link)); 1042 if (!free) 1043 list_add_tail(&ptask->pt_link, &dev->broadcasted_list); 1044 1045 spin_unlock_irqrestore(&dev->lock, flags); 1046 1047 goto out; 1048 } 1049 1050 fw_send_request(dev->card, &ptask->transaction, 1051 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, 1052 ptask->generation, ptask->speed, ptask->fifo_addr, 1053 ptask->skb->data, tx_len, fwnet_write_complete, ptask); 1054 1055 spin_lock_irqsave(&dev->lock, flags); 1056 1057 /* If the AT tasklet already ran, we may be last user. */ 1058 free = (ptask->outstanding_pkts == 0 && list_empty(&ptask->pt_link)); 1059 if (!free) 1060 list_add_tail(&ptask->pt_link, &dev->sent_list); 1061 1062 spin_unlock_irqrestore(&dev->lock, flags); 1063 1064 dev->netdev->trans_start = jiffies; 1065 out: 1066 if (free) 1067 fwnet_free_ptask(ptask); 1068 1069 return 0; 1070 } 1071 1072 static int fwnet_broadcast_start(struct fwnet_device *dev) 1073 { 1074 struct fw_iso_context *context; 1075 int retval; 1076 unsigned num_packets; 1077 unsigned max_receive; 1078 struct fw_iso_packet packet; 1079 unsigned long offset; 1080 unsigned u; 1081 1082 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) { 1083 /* outside OHCI posted write area? */ 1084 static const struct fw_address_region region = { 1085 .start = 0xffff00000000ULL, 1086 .end = CSR_REGISTER_BASE, 1087 }; 1088 1089 dev->handler.length = 4096; 1090 dev->handler.address_callback = fwnet_receive_packet; 1091 dev->handler.callback_data = dev; 1092 1093 retval = fw_core_add_address_handler(&dev->handler, ®ion); 1094 if (retval < 0) 1095 goto failed_initial; 1096 1097 dev->local_fifo = dev->handler.offset; 1098 } 1099 1100 max_receive = 1U << (dev->card->max_receive + 1); 1101 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive; 1102 1103 if (!dev->broadcast_rcv_context) { 1104 void **ptrptr; 1105 1106 context = fw_iso_context_create(dev->card, 1107 FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL, 1108 dev->card->link_speed, 8, fwnet_receive_broadcast, dev); 1109 if (IS_ERR(context)) { 1110 retval = PTR_ERR(context); 1111 goto failed_context_create; 1112 } 1113 1114 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, 1115 dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE); 1116 if (retval < 0) 1117 goto failed_buffer_init; 1118 1119 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL); 1120 if (!ptrptr) { 1121 retval = -ENOMEM; 1122 goto failed_ptrs_alloc; 1123 } 1124 1125 dev->broadcast_rcv_buffer_ptrs = ptrptr; 1126 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) { 1127 void *ptr; 1128 unsigned v; 1129 1130 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]); 1131 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++) 1132 *ptrptr++ = (void *) 1133 ((char *)ptr + v * max_receive); 1134 } 1135 dev->broadcast_rcv_context = context; 1136 } else { 1137 context = dev->broadcast_rcv_context; 1138 } 1139 1140 packet.payload_length = max_receive; 1141 packet.interrupt = 1; 1142 packet.skip = 0; 1143 packet.tag = 3; 1144 packet.sy = 0; 1145 packet.header_length = IEEE1394_GASP_HDR_SIZE; 1146 offset = 0; 1147 1148 for (u = 0; u < num_packets; u++) { 1149 retval = fw_iso_context_queue(context, &packet, 1150 &dev->broadcast_rcv_buffer, offset); 1151 if (retval < 0) 1152 goto failed_rcv_queue; 1153 1154 offset += max_receive; 1155 } 1156 dev->num_broadcast_rcv_ptrs = num_packets; 1157 dev->rcv_buffer_size = max_receive; 1158 dev->broadcast_rcv_next_ptr = 0U; 1159 retval = fw_iso_context_start(context, -1, 0, 1160 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */ 1161 if (retval < 0) 1162 goto failed_rcv_queue; 1163 1164 /* FIXME: adjust it according to the min. speed of all known peers? */ 1165 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100 1166 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE; 1167 dev->broadcast_state = FWNET_BROADCAST_RUNNING; 1168 1169 return 0; 1170 1171 failed_rcv_queue: 1172 kfree(dev->broadcast_rcv_buffer_ptrs); 1173 dev->broadcast_rcv_buffer_ptrs = NULL; 1174 failed_ptrs_alloc: 1175 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card); 1176 failed_buffer_init: 1177 fw_iso_context_destroy(context); 1178 dev->broadcast_rcv_context = NULL; 1179 failed_context_create: 1180 fw_core_remove_address_handler(&dev->handler); 1181 failed_initial: 1182 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1183 1184 return retval; 1185 } 1186 1187 /* ifup */ 1188 static int fwnet_open(struct net_device *net) 1189 { 1190 struct fwnet_device *dev = netdev_priv(net); 1191 int ret; 1192 1193 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) { 1194 ret = fwnet_broadcast_start(dev); 1195 if (ret) 1196 return ret; 1197 } 1198 netif_start_queue(net); 1199 1200 return 0; 1201 } 1202 1203 /* ifdown */ 1204 static int fwnet_stop(struct net_device *net) 1205 { 1206 netif_stop_queue(net); 1207 1208 /* Deallocate iso context for use by other applications? */ 1209 1210 return 0; 1211 } 1212 1213 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net) 1214 { 1215 struct fwnet_header hdr_buf; 1216 struct fwnet_device *dev = netdev_priv(net); 1217 __be16 proto; 1218 u16 dest_node; 1219 unsigned max_payload; 1220 u16 dg_size; 1221 u16 *datagram_label_ptr; 1222 struct fwnet_packet_task *ptask; 1223 struct fwnet_peer *peer; 1224 unsigned long flags; 1225 1226 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC); 1227 if (ptask == NULL) 1228 goto fail; 1229 1230 skb = skb_share_check(skb, GFP_ATOMIC); 1231 if (!skb) 1232 goto fail; 1233 1234 /* 1235 * Make a copy of the driver-specific header. 1236 * We might need to rebuild the header on tx failure. 1237 */ 1238 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); 1239 skb_pull(skb, sizeof(hdr_buf)); 1240 1241 proto = hdr_buf.h_proto; 1242 dg_size = skb->len; 1243 1244 /* serialize access to peer, including peer->datagram_label */ 1245 spin_lock_irqsave(&dev->lock, flags); 1246 1247 /* 1248 * Set the transmission type for the packet. ARP packets and IP 1249 * broadcast packets are sent via GASP. 1250 */ 1251 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0 1252 || proto == htons(ETH_P_ARP) 1253 || (proto == htons(ETH_P_IP) 1254 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) { 1255 max_payload = dev->broadcast_xmt_max_payload; 1256 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel; 1257 1258 ptask->fifo_addr = FWNET_NO_FIFO_ADDR; 1259 ptask->generation = 0; 1260 ptask->dest_node = IEEE1394_ALL_NODES; 1261 ptask->speed = SCODE_100; 1262 } else { 1263 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest); 1264 u8 generation; 1265 1266 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid)); 1267 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR) 1268 goto fail_unlock; 1269 1270 generation = peer->generation; 1271 dest_node = peer->node_id; 1272 max_payload = peer->max_payload; 1273 datagram_label_ptr = &peer->datagram_label; 1274 1275 ptask->fifo_addr = peer->fifo; 1276 ptask->generation = generation; 1277 ptask->dest_node = dest_node; 1278 ptask->speed = peer->speed; 1279 } 1280 1281 /* If this is an ARP packet, convert it */ 1282 if (proto == htons(ETH_P_ARP)) { 1283 struct arphdr *arp = (struct arphdr *)skb->data; 1284 unsigned char *arp_ptr = (unsigned char *)(arp + 1); 1285 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data; 1286 __be32 ipaddr; 1287 1288 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN)); 1289 1290 arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN; 1291 arp1394->max_rec = dev->card->max_receive; 1292 arp1394->sspd = dev->card->link_speed; 1293 1294 put_unaligned_be16(dev->local_fifo >> 32, 1295 &arp1394->fifo_hi); 1296 put_unaligned_be32(dev->local_fifo & 0xffffffff, 1297 &arp1394->fifo_lo); 1298 put_unaligned(ipaddr, &arp1394->sip); 1299 } 1300 1301 ptask->hdr.w0 = 0; 1302 ptask->hdr.w1 = 0; 1303 ptask->skb = skb; 1304 ptask->dev = dev; 1305 1306 /* Does it all fit in one packet? */ 1307 if (dg_size <= max_payload) { 1308 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto)); 1309 ptask->outstanding_pkts = 1; 1310 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE; 1311 } else { 1312 u16 datagram_label; 1313 1314 max_payload -= RFC2374_FRAG_OVERHEAD; 1315 datagram_label = (*datagram_label_ptr)++; 1316 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size, 1317 datagram_label); 1318 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); 1319 max_payload += RFC2374_FRAG_HDR_SIZE; 1320 } 1321 1322 spin_unlock_irqrestore(&dev->lock, flags); 1323 1324 ptask->max_payload = max_payload; 1325 INIT_LIST_HEAD(&ptask->pt_link); 1326 1327 fwnet_send_packet(ptask); 1328 1329 return NETDEV_TX_OK; 1330 1331 fail_unlock: 1332 spin_unlock_irqrestore(&dev->lock, flags); 1333 fail: 1334 if (ptask) 1335 kmem_cache_free(fwnet_packet_task_cache, ptask); 1336 1337 if (skb != NULL) 1338 dev_kfree_skb(skb); 1339 1340 net->stats.tx_dropped++; 1341 net->stats.tx_errors++; 1342 1343 /* 1344 * FIXME: According to a patch from 2003-02-26, "returning non-zero 1345 * causes serious problems" here, allegedly. Before that patch, 1346 * -ERRNO was returned which is not appropriate under Linux 2.6. 1347 * Perhaps more needs to be done? Stop the queue in serious 1348 * conditions and restart it elsewhere? 1349 */ 1350 return NETDEV_TX_OK; 1351 } 1352 1353 static int fwnet_change_mtu(struct net_device *net, int new_mtu) 1354 { 1355 if (new_mtu < 68) 1356 return -EINVAL; 1357 1358 net->mtu = new_mtu; 1359 return 0; 1360 } 1361 1362 static void fwnet_get_drvinfo(struct net_device *net, 1363 struct ethtool_drvinfo *info) 1364 { 1365 strcpy(info->driver, KBUILD_MODNAME); 1366 strcpy(info->bus_info, "ieee1394"); 1367 } 1368 1369 static const struct ethtool_ops fwnet_ethtool_ops = { 1370 .get_drvinfo = fwnet_get_drvinfo, 1371 }; 1372 1373 static const struct net_device_ops fwnet_netdev_ops = { 1374 .ndo_open = fwnet_open, 1375 .ndo_stop = fwnet_stop, 1376 .ndo_start_xmit = fwnet_tx, 1377 .ndo_change_mtu = fwnet_change_mtu, 1378 }; 1379 1380 static void fwnet_init_dev(struct net_device *net) 1381 { 1382 net->header_ops = &fwnet_header_ops; 1383 net->netdev_ops = &fwnet_netdev_ops; 1384 net->watchdog_timeo = 2 * HZ; 1385 net->flags = IFF_BROADCAST | IFF_MULTICAST; 1386 net->features = NETIF_F_HIGHDMA; 1387 net->addr_len = FWNET_ALEN; 1388 net->hard_header_len = FWNET_HLEN; 1389 net->type = ARPHRD_IEEE1394; 1390 net->tx_queue_len = 10; 1391 SET_ETHTOOL_OPS(net, &fwnet_ethtool_ops); 1392 } 1393 1394 /* caller must hold fwnet_device_mutex */ 1395 static struct fwnet_device *fwnet_dev_find(struct fw_card *card) 1396 { 1397 struct fwnet_device *dev; 1398 1399 list_for_each_entry(dev, &fwnet_device_list, dev_link) 1400 if (dev->card == card) 1401 return dev; 1402 1403 return NULL; 1404 } 1405 1406 static int fwnet_add_peer(struct fwnet_device *dev, 1407 struct fw_unit *unit, struct fw_device *device) 1408 { 1409 struct fwnet_peer *peer; 1410 1411 peer = kmalloc(sizeof(*peer), GFP_KERNEL); 1412 if (!peer) 1413 return -ENOMEM; 1414 1415 dev_set_drvdata(&unit->device, peer); 1416 1417 peer->dev = dev; 1418 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1419 peer->fifo = FWNET_NO_FIFO_ADDR; 1420 INIT_LIST_HEAD(&peer->pd_list); 1421 peer->pdg_size = 0; 1422 peer->datagram_label = 0; 1423 peer->speed = device->max_speed; 1424 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed); 1425 1426 peer->generation = device->generation; 1427 smp_rmb(); 1428 peer->node_id = device->node_id; 1429 1430 spin_lock_irq(&dev->lock); 1431 list_add_tail(&peer->peer_link, &dev->peer_list); 1432 spin_unlock_irq(&dev->lock); 1433 1434 return 0; 1435 } 1436 1437 static int fwnet_probe(struct device *_dev) 1438 { 1439 struct fw_unit *unit = fw_unit(_dev); 1440 struct fw_device *device = fw_parent_device(unit); 1441 struct fw_card *card = device->card; 1442 struct net_device *net; 1443 bool allocated_netdev = false; 1444 struct fwnet_device *dev; 1445 unsigned max_mtu; 1446 int ret; 1447 1448 mutex_lock(&fwnet_device_mutex); 1449 1450 dev = fwnet_dev_find(card); 1451 if (dev) { 1452 net = dev->netdev; 1453 goto have_dev; 1454 } 1455 1456 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev); 1457 if (net == NULL) { 1458 ret = -ENOMEM; 1459 goto out; 1460 } 1461 1462 allocated_netdev = true; 1463 SET_NETDEV_DEV(net, card->device); 1464 dev = netdev_priv(net); 1465 1466 spin_lock_init(&dev->lock); 1467 dev->broadcast_state = FWNET_BROADCAST_ERROR; 1468 dev->broadcast_rcv_context = NULL; 1469 dev->broadcast_xmt_max_payload = 0; 1470 dev->broadcast_xmt_datagramlabel = 0; 1471 1472 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1473 1474 INIT_LIST_HEAD(&dev->packet_list); 1475 INIT_LIST_HEAD(&dev->broadcasted_list); 1476 INIT_LIST_HEAD(&dev->sent_list); 1477 INIT_LIST_HEAD(&dev->peer_list); 1478 1479 dev->card = card; 1480 dev->netdev = net; 1481 1482 /* 1483 * Use the RFC 2734 default 1500 octets or the maximum payload 1484 * as initial MTU 1485 */ 1486 max_mtu = (1 << (card->max_receive + 1)) 1487 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE; 1488 net->mtu = min(1500U, max_mtu); 1489 1490 /* Set our hardware address while we're at it */ 1491 put_unaligned_be64(card->guid, net->dev_addr); 1492 put_unaligned_be64(~0ULL, net->broadcast); 1493 ret = register_netdev(net); 1494 if (ret) { 1495 fw_error("Cannot register the driver\n"); 1496 goto out; 1497 } 1498 1499 list_add_tail(&dev->dev_link, &fwnet_device_list); 1500 fw_notify("%s: IPv4 over FireWire on device %016llx\n", 1501 net->name, (unsigned long long)card->guid); 1502 have_dev: 1503 ret = fwnet_add_peer(dev, unit, device); 1504 if (ret && allocated_netdev) { 1505 unregister_netdev(net); 1506 list_del(&dev->dev_link); 1507 } 1508 out: 1509 if (ret && allocated_netdev) 1510 free_netdev(net); 1511 1512 mutex_unlock(&fwnet_device_mutex); 1513 1514 return ret; 1515 } 1516 1517 static void fwnet_remove_peer(struct fwnet_peer *peer) 1518 { 1519 struct fwnet_partial_datagram *pd, *pd_next; 1520 1521 spin_lock_irq(&peer->dev->lock); 1522 list_del(&peer->peer_link); 1523 spin_unlock_irq(&peer->dev->lock); 1524 1525 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link) 1526 fwnet_pd_delete(pd); 1527 1528 kfree(peer); 1529 } 1530 1531 static int fwnet_remove(struct device *_dev) 1532 { 1533 struct fwnet_peer *peer = dev_get_drvdata(_dev); 1534 struct fwnet_device *dev = peer->dev; 1535 struct net_device *net; 1536 struct fwnet_packet_task *ptask, *pt_next; 1537 1538 mutex_lock(&fwnet_device_mutex); 1539 1540 fwnet_remove_peer(peer); 1541 1542 if (list_empty(&dev->peer_list)) { 1543 net = dev->netdev; 1544 unregister_netdev(net); 1545 1546 if (dev->local_fifo != FWNET_NO_FIFO_ADDR) 1547 fw_core_remove_address_handler(&dev->handler); 1548 if (dev->broadcast_rcv_context) { 1549 fw_iso_context_stop(dev->broadcast_rcv_context); 1550 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, 1551 dev->card); 1552 fw_iso_context_destroy(dev->broadcast_rcv_context); 1553 } 1554 list_for_each_entry_safe(ptask, pt_next, 1555 &dev->packet_list, pt_link) { 1556 dev_kfree_skb_any(ptask->skb); 1557 kmem_cache_free(fwnet_packet_task_cache, ptask); 1558 } 1559 list_for_each_entry_safe(ptask, pt_next, 1560 &dev->broadcasted_list, pt_link) { 1561 dev_kfree_skb_any(ptask->skb); 1562 kmem_cache_free(fwnet_packet_task_cache, ptask); 1563 } 1564 list_for_each_entry_safe(ptask, pt_next, 1565 &dev->sent_list, pt_link) { 1566 dev_kfree_skb_any(ptask->skb); 1567 kmem_cache_free(fwnet_packet_task_cache, ptask); 1568 } 1569 list_del(&dev->dev_link); 1570 1571 free_netdev(net); 1572 } 1573 1574 mutex_unlock(&fwnet_device_mutex); 1575 1576 return 0; 1577 } 1578 1579 /* 1580 * FIXME abort partially sent fragmented datagrams, 1581 * discard partially received fragmented datagrams 1582 */ 1583 static void fwnet_update(struct fw_unit *unit) 1584 { 1585 struct fw_device *device = fw_parent_device(unit); 1586 struct fwnet_peer *peer = dev_get_drvdata(&unit->device); 1587 int generation; 1588 1589 generation = device->generation; 1590 1591 spin_lock_irq(&peer->dev->lock); 1592 peer->node_id = device->node_id; 1593 peer->generation = generation; 1594 spin_unlock_irq(&peer->dev->lock); 1595 } 1596 1597 static const struct ieee1394_device_id fwnet_id_table[] = { 1598 { 1599 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1600 IEEE1394_MATCH_VERSION, 1601 .specifier_id = IANA_SPECIFIER_ID, 1602 .version = RFC2734_SW_VERSION, 1603 }, 1604 { } 1605 }; 1606 1607 static struct fw_driver fwnet_driver = { 1608 .driver = { 1609 .owner = THIS_MODULE, 1610 .name = "net", 1611 .bus = &fw_bus_type, 1612 .probe = fwnet_probe, 1613 .remove = fwnet_remove, 1614 }, 1615 .update = fwnet_update, 1616 .id_table = fwnet_id_table, 1617 }; 1618 1619 static const u32 rfc2374_unit_directory_data[] = { 1620 0x00040000, /* directory_length */ 1621 0x1200005e, /* unit_specifier_id: IANA */ 1622 0x81000003, /* textual descriptor offset */ 1623 0x13000001, /* unit_sw_version: RFC 2734 */ 1624 0x81000005, /* textual descriptor offset */ 1625 0x00030000, /* descriptor_length */ 1626 0x00000000, /* text */ 1627 0x00000000, /* minimal ASCII, en */ 1628 0x49414e41, /* I A N A */ 1629 0x00030000, /* descriptor_length */ 1630 0x00000000, /* text */ 1631 0x00000000, /* minimal ASCII, en */ 1632 0x49507634, /* I P v 4 */ 1633 }; 1634 1635 static struct fw_descriptor rfc2374_unit_directory = { 1636 .length = ARRAY_SIZE(rfc2374_unit_directory_data), 1637 .key = (CSR_DIRECTORY | CSR_UNIT) << 24, 1638 .data = rfc2374_unit_directory_data 1639 }; 1640 1641 static int __init fwnet_init(void) 1642 { 1643 int err; 1644 1645 err = fw_core_add_descriptor(&rfc2374_unit_directory); 1646 if (err) 1647 return err; 1648 1649 fwnet_packet_task_cache = kmem_cache_create("packet_task", 1650 sizeof(struct fwnet_packet_task), 0, 0, NULL); 1651 if (!fwnet_packet_task_cache) { 1652 err = -ENOMEM; 1653 goto out; 1654 } 1655 1656 err = driver_register(&fwnet_driver.driver); 1657 if (!err) 1658 return 0; 1659 1660 kmem_cache_destroy(fwnet_packet_task_cache); 1661 out: 1662 fw_core_remove_descriptor(&rfc2374_unit_directory); 1663 1664 return err; 1665 } 1666 module_init(fwnet_init); 1667 1668 static void __exit fwnet_cleanup(void) 1669 { 1670 driver_unregister(&fwnet_driver.driver); 1671 kmem_cache_destroy(fwnet_packet_task_cache); 1672 fw_core_remove_descriptor(&rfc2374_unit_directory); 1673 } 1674 module_exit(fwnet_cleanup); 1675 1676 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>"); 1677 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734"); 1678 MODULE_LICENSE("GPL"); 1679 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table); 1680