xref: /linux/drivers/firewire/net.c (revision c39b9fd728d8173ecda993524089fbc38211a17f)
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  * IPv6 over IEEE 1394, per RFC 3146
4  *
5  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
6  *
7  * based on eth1394 by Ben Collins et al
8  */
9 
10 #include <linux/bug.h>
11 #include <linux/compiler.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/ethtool.h>
15 #include <linux/firewire.h>
16 #include <linux/firewire-constants.h>
17 #include <linux/highmem.h>
18 #include <linux/in.h>
19 #include <linux/ip.h>
20 #include <linux/jiffies.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/netdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 
30 #include <asm/unaligned.h>
31 #include <net/arp.h>
32 #include <net/firewire.h>
33 
34 /* rx limits */
35 #define FWNET_MAX_FRAGMENTS		30 /* arbitrary, > TX queue depth */
36 #define FWNET_ISO_PAGE_COUNT		(PAGE_SIZE < 16*1024 ? 4 : 2)
37 
38 /* tx limits */
39 #define FWNET_MAX_QUEUED_DATAGRAMS	20 /* < 64 = number of tlabels */
40 #define FWNET_MIN_QUEUED_DATAGRAMS	10 /* should keep AT DMA busy enough */
41 #define FWNET_TX_QUEUE_LEN		FWNET_MAX_QUEUED_DATAGRAMS /* ? */
42 
43 #define IEEE1394_BROADCAST_CHANNEL	31
44 #define IEEE1394_ALL_NODES		(0xffc0 | 0x003f)
45 #define IEEE1394_MAX_PAYLOAD_S100	512
46 #define FWNET_NO_FIFO_ADDR		(~0ULL)
47 
48 #define IANA_SPECIFIER_ID		0x00005eU
49 #define RFC2734_SW_VERSION		0x000001U
50 #define RFC3146_SW_VERSION		0x000002U
51 
52 #define IEEE1394_GASP_HDR_SIZE	8
53 
54 #define RFC2374_UNFRAG_HDR_SIZE	4
55 #define RFC2374_FRAG_HDR_SIZE	8
56 #define RFC2374_FRAG_OVERHEAD	4
57 
58 #define RFC2374_HDR_UNFRAG	0	/* unfragmented		*/
59 #define RFC2374_HDR_FIRSTFRAG	1	/* first fragment	*/
60 #define RFC2374_HDR_LASTFRAG	2	/* last fragment	*/
61 #define RFC2374_HDR_INTFRAG	3	/* interior fragment	*/
62 
63 static bool fwnet_hwaddr_is_multicast(u8 *ha)
64 {
65 	return !!(*ha & 1);
66 }
67 
68 /* IPv4 and IPv6 encapsulation header */
69 struct rfc2734_header {
70 	u32 w0;
71 	u32 w1;
72 };
73 
74 #define fwnet_get_hdr_lf(h)		(((h)->w0 & 0xc0000000) >> 30)
75 #define fwnet_get_hdr_ether_type(h)	(((h)->w0 & 0x0000ffff))
76 #define fwnet_get_hdr_dg_size(h)	(((h)->w0 & 0x0fff0000) >> 16)
77 #define fwnet_get_hdr_fg_off(h)		(((h)->w0 & 0x00000fff))
78 #define fwnet_get_hdr_dgl(h)		(((h)->w1 & 0xffff0000) >> 16)
79 
80 #define fwnet_set_hdr_lf(lf)		((lf)  << 30)
81 #define fwnet_set_hdr_ether_type(et)	(et)
82 #define fwnet_set_hdr_dg_size(dgs)	((dgs) << 16)
83 #define fwnet_set_hdr_fg_off(fgo)	(fgo)
84 
85 #define fwnet_set_hdr_dgl(dgl)		((dgl) << 16)
86 
87 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
88 		unsigned ether_type)
89 {
90 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
91 		  | fwnet_set_hdr_ether_type(ether_type);
92 }
93 
94 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
95 		unsigned ether_type, unsigned dg_size, unsigned dgl)
96 {
97 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
98 		  | fwnet_set_hdr_dg_size(dg_size)
99 		  | fwnet_set_hdr_ether_type(ether_type);
100 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
101 }
102 
103 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
104 		unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
105 {
106 	hdr->w0 = fwnet_set_hdr_lf(lf)
107 		  | fwnet_set_hdr_dg_size(dg_size)
108 		  | fwnet_set_hdr_fg_off(fg_off);
109 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
110 }
111 
112 /* This list keeps track of what parts of the datagram have been filled in */
113 struct fwnet_fragment_info {
114 	struct list_head fi_link;
115 	u16 offset;
116 	u16 len;
117 };
118 
119 struct fwnet_partial_datagram {
120 	struct list_head pd_link;
121 	struct list_head fi_list;
122 	struct sk_buff *skb;
123 	/* FIXME Why not use skb->data? */
124 	char *pbuf;
125 	u16 datagram_label;
126 	u16 ether_type;
127 	u16 datagram_size;
128 };
129 
130 static DEFINE_MUTEX(fwnet_device_mutex);
131 static LIST_HEAD(fwnet_device_list);
132 
133 struct fwnet_device {
134 	struct list_head dev_link;
135 	spinlock_t lock;
136 	enum {
137 		FWNET_BROADCAST_ERROR,
138 		FWNET_BROADCAST_RUNNING,
139 		FWNET_BROADCAST_STOPPED,
140 	} broadcast_state;
141 	struct fw_iso_context *broadcast_rcv_context;
142 	struct fw_iso_buffer broadcast_rcv_buffer;
143 	void **broadcast_rcv_buffer_ptrs;
144 	unsigned broadcast_rcv_next_ptr;
145 	unsigned num_broadcast_rcv_ptrs;
146 	unsigned rcv_buffer_size;
147 	/*
148 	 * This value is the maximum unfragmented datagram size that can be
149 	 * sent by the hardware.  It already has the GASP overhead and the
150 	 * unfragmented datagram header overhead calculated into it.
151 	 */
152 	unsigned broadcast_xmt_max_payload;
153 	u16 broadcast_xmt_datagramlabel;
154 
155 	/*
156 	 * The CSR address that remote nodes must send datagrams to for us to
157 	 * receive them.
158 	 */
159 	struct fw_address_handler handler;
160 	u64 local_fifo;
161 
162 	/* Number of tx datagrams that have been queued but not yet acked */
163 	int queued_datagrams;
164 
165 	int peer_count;
166 	struct list_head peer_list;
167 	struct fw_card *card;
168 	struct net_device *netdev;
169 };
170 
171 struct fwnet_peer {
172 	struct list_head peer_link;
173 	struct fwnet_device *dev;
174 	u64 guid;
175 
176 	/* guarded by dev->lock */
177 	struct list_head pd_list; /* received partial datagrams */
178 	unsigned pdg_size;        /* pd_list size */
179 
180 	u16 datagram_label;       /* outgoing datagram label */
181 	u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
182 	int node_id;
183 	int generation;
184 	unsigned speed;
185 };
186 
187 /* This is our task struct. It's used for the packet complete callback.  */
188 struct fwnet_packet_task {
189 	struct fw_transaction transaction;
190 	struct rfc2734_header hdr;
191 	struct sk_buff *skb;
192 	struct fwnet_device *dev;
193 
194 	int outstanding_pkts;
195 	u64 fifo_addr;
196 	u16 dest_node;
197 	u16 max_payload;
198 	u8 generation;
199 	u8 speed;
200 	u8 enqueued;
201 };
202 
203 /*
204  * Get fifo address embedded in hwaddr
205  */
206 static __u64 fwnet_hwaddr_fifo(union fwnet_hwaddr *ha)
207 {
208 	return (u64)get_unaligned_be16(&ha->uc.fifo_hi) << 32
209 	       | get_unaligned_be32(&ha->uc.fifo_lo);
210 }
211 
212 /*
213  * saddr == NULL means use device source address.
214  * daddr == NULL means leave destination address (eg unresolved arp).
215  */
216 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
217 			unsigned short type, const void *daddr,
218 			const void *saddr, unsigned len)
219 {
220 	struct fwnet_header *h;
221 
222 	h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
223 	put_unaligned_be16(type, &h->h_proto);
224 
225 	if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
226 		memset(h->h_dest, 0, net->addr_len);
227 
228 		return net->hard_header_len;
229 	}
230 
231 	if (daddr) {
232 		memcpy(h->h_dest, daddr, net->addr_len);
233 
234 		return net->hard_header_len;
235 	}
236 
237 	return -net->hard_header_len;
238 }
239 
240 static int fwnet_header_rebuild(struct sk_buff *skb)
241 {
242 	struct fwnet_header *h = (struct fwnet_header *)skb->data;
243 
244 	if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
245 		return arp_find((unsigned char *)&h->h_dest, skb);
246 
247 	dev_notice(&skb->dev->dev, "unable to resolve type %04x addresses\n",
248 		   be16_to_cpu(h->h_proto));
249 	return 0;
250 }
251 
252 static int fwnet_header_cache(const struct neighbour *neigh,
253 			      struct hh_cache *hh, __be16 type)
254 {
255 	struct net_device *net;
256 	struct fwnet_header *h;
257 
258 	if (type == cpu_to_be16(ETH_P_802_3))
259 		return -1;
260 	net = neigh->dev;
261 	h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
262 	h->h_proto = type;
263 	memcpy(h->h_dest, neigh->ha, net->addr_len);
264 	hh->hh_len = FWNET_HLEN;
265 
266 	return 0;
267 }
268 
269 /* Called by Address Resolution module to notify changes in address. */
270 static void fwnet_header_cache_update(struct hh_cache *hh,
271 		const struct net_device *net, const unsigned char *haddr)
272 {
273 	memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
274 }
275 
276 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
277 {
278 	memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
279 
280 	return FWNET_ALEN;
281 }
282 
283 static const struct header_ops fwnet_header_ops = {
284 	.create         = fwnet_header_create,
285 	.rebuild        = fwnet_header_rebuild,
286 	.cache		= fwnet_header_cache,
287 	.cache_update	= fwnet_header_cache_update,
288 	.parse          = fwnet_header_parse,
289 };
290 
291 /* FIXME: is this correct for all cases? */
292 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
293 			       unsigned offset, unsigned len)
294 {
295 	struct fwnet_fragment_info *fi;
296 	unsigned end = offset + len;
297 
298 	list_for_each_entry(fi, &pd->fi_list, fi_link)
299 		if (offset < fi->offset + fi->len && end > fi->offset)
300 			return true;
301 
302 	return false;
303 }
304 
305 /* Assumes that new fragment does not overlap any existing fragments */
306 static struct fwnet_fragment_info *fwnet_frag_new(
307 	struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
308 {
309 	struct fwnet_fragment_info *fi, *fi2, *new;
310 	struct list_head *list;
311 
312 	list = &pd->fi_list;
313 	list_for_each_entry(fi, &pd->fi_list, fi_link) {
314 		if (fi->offset + fi->len == offset) {
315 			/* The new fragment can be tacked on to the end */
316 			/* Did the new fragment plug a hole? */
317 			fi2 = list_entry(fi->fi_link.next,
318 					 struct fwnet_fragment_info, fi_link);
319 			if (fi->offset + fi->len == fi2->offset) {
320 				/* glue fragments together */
321 				fi->len += len + fi2->len;
322 				list_del(&fi2->fi_link);
323 				kfree(fi2);
324 			} else {
325 				fi->len += len;
326 			}
327 
328 			return fi;
329 		}
330 		if (offset + len == fi->offset) {
331 			/* The new fragment can be tacked on to the beginning */
332 			/* Did the new fragment plug a hole? */
333 			fi2 = list_entry(fi->fi_link.prev,
334 					 struct fwnet_fragment_info, fi_link);
335 			if (fi2->offset + fi2->len == fi->offset) {
336 				/* glue fragments together */
337 				fi2->len += fi->len + len;
338 				list_del(&fi->fi_link);
339 				kfree(fi);
340 
341 				return fi2;
342 			}
343 			fi->offset = offset;
344 			fi->len += len;
345 
346 			return fi;
347 		}
348 		if (offset > fi->offset + fi->len) {
349 			list = &fi->fi_link;
350 			break;
351 		}
352 		if (offset + len < fi->offset) {
353 			list = fi->fi_link.prev;
354 			break;
355 		}
356 	}
357 
358 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
359 	if (!new) {
360 		dev_err(&pd->skb->dev->dev, "out of memory\n");
361 		return NULL;
362 	}
363 
364 	new->offset = offset;
365 	new->len = len;
366 	list_add(&new->fi_link, list);
367 
368 	return new;
369 }
370 
371 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
372 		struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
373 		void *frag_buf, unsigned frag_off, unsigned frag_len)
374 {
375 	struct fwnet_partial_datagram *new;
376 	struct fwnet_fragment_info *fi;
377 
378 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
379 	if (!new)
380 		goto fail;
381 
382 	INIT_LIST_HEAD(&new->fi_list);
383 	fi = fwnet_frag_new(new, frag_off, frag_len);
384 	if (fi == NULL)
385 		goto fail_w_new;
386 
387 	new->datagram_label = datagram_label;
388 	new->datagram_size = dg_size;
389 	new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
390 	if (new->skb == NULL)
391 		goto fail_w_fi;
392 
393 	skb_reserve(new->skb, LL_RESERVED_SPACE(net));
394 	new->pbuf = skb_put(new->skb, dg_size);
395 	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
396 	list_add_tail(&new->pd_link, &peer->pd_list);
397 
398 	return new;
399 
400 fail_w_fi:
401 	kfree(fi);
402 fail_w_new:
403 	kfree(new);
404 fail:
405 	dev_err(&net->dev, "out of memory\n");
406 
407 	return NULL;
408 }
409 
410 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
411 						    u16 datagram_label)
412 {
413 	struct fwnet_partial_datagram *pd;
414 
415 	list_for_each_entry(pd, &peer->pd_list, pd_link)
416 		if (pd->datagram_label == datagram_label)
417 			return pd;
418 
419 	return NULL;
420 }
421 
422 
423 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
424 {
425 	struct fwnet_fragment_info *fi, *n;
426 
427 	list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
428 		kfree(fi);
429 
430 	list_del(&old->pd_link);
431 	dev_kfree_skb_any(old->skb);
432 	kfree(old);
433 }
434 
435 static bool fwnet_pd_update(struct fwnet_peer *peer,
436 		struct fwnet_partial_datagram *pd, void *frag_buf,
437 		unsigned frag_off, unsigned frag_len)
438 {
439 	if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
440 		return false;
441 
442 	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
443 
444 	/*
445 	 * Move list entry to beginning of list so that oldest partial
446 	 * datagrams percolate to the end of the list
447 	 */
448 	list_move_tail(&pd->pd_link, &peer->pd_list);
449 
450 	return true;
451 }
452 
453 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
454 {
455 	struct fwnet_fragment_info *fi;
456 
457 	fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
458 
459 	return fi->len == pd->datagram_size;
460 }
461 
462 /* caller must hold dev->lock */
463 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
464 						  u64 guid)
465 {
466 	struct fwnet_peer *peer;
467 
468 	list_for_each_entry(peer, &dev->peer_list, peer_link)
469 		if (peer->guid == guid)
470 			return peer;
471 
472 	return NULL;
473 }
474 
475 /* caller must hold dev->lock */
476 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
477 						int node_id, int generation)
478 {
479 	struct fwnet_peer *peer;
480 
481 	list_for_each_entry(peer, &dev->peer_list, peer_link)
482 		if (peer->node_id    == node_id &&
483 		    peer->generation == generation)
484 			return peer;
485 
486 	return NULL;
487 }
488 
489 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
490 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
491 {
492 	max_rec = min(max_rec, speed + 8);
493 	max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
494 
495 	return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
496 }
497 
498 
499 static int fwnet_finish_incoming_packet(struct net_device *net,
500 					struct sk_buff *skb, u16 source_node_id,
501 					bool is_broadcast, u16 ether_type)
502 {
503 	struct fwnet_device *dev;
504 	int status;
505 	__be64 guid;
506 
507 	switch (ether_type) {
508 	case ETH_P_ARP:
509 	case ETH_P_IP:
510 #if IS_ENABLED(CONFIG_IPV6)
511 	case ETH_P_IPV6:
512 #endif
513 		break;
514 	default:
515 		goto err;
516 	}
517 
518 	dev = netdev_priv(net);
519 	/* Write metadata, and then pass to the receive level */
520 	skb->dev = net;
521 	skb->ip_summed = CHECKSUM_NONE;
522 
523 	/*
524 	 * Parse the encapsulation header. This actually does the job of
525 	 * converting to an ethernet-like pseudo frame header.
526 	 */
527 	guid = cpu_to_be64(dev->card->guid);
528 	if (dev_hard_header(skb, net, ether_type,
529 			   is_broadcast ? net->broadcast : net->dev_addr,
530 			   NULL, skb->len) >= 0) {
531 		struct fwnet_header *eth;
532 		u16 *rawp;
533 		__be16 protocol;
534 
535 		skb_reset_mac_header(skb);
536 		skb_pull(skb, sizeof(*eth));
537 		eth = (struct fwnet_header *)skb_mac_header(skb);
538 		if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
539 			if (memcmp(eth->h_dest, net->broadcast,
540 				   net->addr_len) == 0)
541 				skb->pkt_type = PACKET_BROADCAST;
542 #if 0
543 			else
544 				skb->pkt_type = PACKET_MULTICAST;
545 #endif
546 		} else {
547 			if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
548 				skb->pkt_type = PACKET_OTHERHOST;
549 		}
550 		if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) {
551 			protocol = eth->h_proto;
552 		} else {
553 			rawp = (u16 *)skb->data;
554 			if (*rawp == 0xffff)
555 				protocol = htons(ETH_P_802_3);
556 			else
557 				protocol = htons(ETH_P_802_2);
558 		}
559 		skb->protocol = protocol;
560 	}
561 	status = netif_rx(skb);
562 	if (status == NET_RX_DROP) {
563 		net->stats.rx_errors++;
564 		net->stats.rx_dropped++;
565 	} else {
566 		net->stats.rx_packets++;
567 		net->stats.rx_bytes += skb->len;
568 	}
569 
570 	return 0;
571 
572  err:
573 	net->stats.rx_errors++;
574 	net->stats.rx_dropped++;
575 
576 	dev_kfree_skb_any(skb);
577 
578 	return -ENOENT;
579 }
580 
581 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
582 				 int source_node_id, int generation,
583 				 bool is_broadcast)
584 {
585 	struct sk_buff *skb;
586 	struct net_device *net = dev->netdev;
587 	struct rfc2734_header hdr;
588 	unsigned lf;
589 	unsigned long flags;
590 	struct fwnet_peer *peer;
591 	struct fwnet_partial_datagram *pd;
592 	int fg_off;
593 	int dg_size;
594 	u16 datagram_label;
595 	int retval;
596 	u16 ether_type;
597 
598 	hdr.w0 = be32_to_cpu(buf[0]);
599 	lf = fwnet_get_hdr_lf(&hdr);
600 	if (lf == RFC2374_HDR_UNFRAG) {
601 		/*
602 		 * An unfragmented datagram has been received by the ieee1394
603 		 * bus. Build an skbuff around it so we can pass it to the
604 		 * high level network layer.
605 		 */
606 		ether_type = fwnet_get_hdr_ether_type(&hdr);
607 		buf++;
608 		len -= RFC2374_UNFRAG_HDR_SIZE;
609 
610 		skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
611 		if (unlikely(!skb)) {
612 			dev_err(&net->dev, "out of memory\n");
613 			net->stats.rx_dropped++;
614 
615 			return -ENOMEM;
616 		}
617 		skb_reserve(skb, LL_RESERVED_SPACE(net));
618 		memcpy(skb_put(skb, len), buf, len);
619 
620 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
621 						    is_broadcast, ether_type);
622 	}
623 	/* A datagram fragment has been received, now the fun begins. */
624 	hdr.w1 = ntohl(buf[1]);
625 	buf += 2;
626 	len -= RFC2374_FRAG_HDR_SIZE;
627 	if (lf == RFC2374_HDR_FIRSTFRAG) {
628 		ether_type = fwnet_get_hdr_ether_type(&hdr);
629 		fg_off = 0;
630 	} else {
631 		ether_type = 0;
632 		fg_off = fwnet_get_hdr_fg_off(&hdr);
633 	}
634 	datagram_label = fwnet_get_hdr_dgl(&hdr);
635 	dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
636 
637 	spin_lock_irqsave(&dev->lock, flags);
638 
639 	peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
640 	if (!peer) {
641 		retval = -ENOENT;
642 		goto fail;
643 	}
644 
645 	pd = fwnet_pd_find(peer, datagram_label);
646 	if (pd == NULL) {
647 		while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
648 			/* remove the oldest */
649 			fwnet_pd_delete(list_first_entry(&peer->pd_list,
650 				struct fwnet_partial_datagram, pd_link));
651 			peer->pdg_size--;
652 		}
653 		pd = fwnet_pd_new(net, peer, datagram_label,
654 				  dg_size, buf, fg_off, len);
655 		if (pd == NULL) {
656 			retval = -ENOMEM;
657 			goto fail;
658 		}
659 		peer->pdg_size++;
660 	} else {
661 		if (fwnet_frag_overlap(pd, fg_off, len) ||
662 		    pd->datagram_size != dg_size) {
663 			/*
664 			 * Differing datagram sizes or overlapping fragments,
665 			 * discard old datagram and start a new one.
666 			 */
667 			fwnet_pd_delete(pd);
668 			pd = fwnet_pd_new(net, peer, datagram_label,
669 					  dg_size, buf, fg_off, len);
670 			if (pd == NULL) {
671 				peer->pdg_size--;
672 				retval = -ENOMEM;
673 				goto fail;
674 			}
675 		} else {
676 			if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
677 				/*
678 				 * Couldn't save off fragment anyway
679 				 * so might as well obliterate the
680 				 * datagram now.
681 				 */
682 				fwnet_pd_delete(pd);
683 				peer->pdg_size--;
684 				retval = -ENOMEM;
685 				goto fail;
686 			}
687 		}
688 	} /* new datagram or add to existing one */
689 
690 	if (lf == RFC2374_HDR_FIRSTFRAG)
691 		pd->ether_type = ether_type;
692 
693 	if (fwnet_pd_is_complete(pd)) {
694 		ether_type = pd->ether_type;
695 		peer->pdg_size--;
696 		skb = skb_get(pd->skb);
697 		fwnet_pd_delete(pd);
698 
699 		spin_unlock_irqrestore(&dev->lock, flags);
700 
701 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
702 						    false, ether_type);
703 	}
704 	/*
705 	 * Datagram is not complete, we're done for the
706 	 * moment.
707 	 */
708 	retval = 0;
709  fail:
710 	spin_unlock_irqrestore(&dev->lock, flags);
711 
712 	return retval;
713 }
714 
715 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
716 		int tcode, int destination, int source, int generation,
717 		unsigned long long offset, void *payload, size_t length,
718 		void *callback_data)
719 {
720 	struct fwnet_device *dev = callback_data;
721 	int rcode;
722 
723 	if (destination == IEEE1394_ALL_NODES) {
724 		kfree(r);
725 
726 		return;
727 	}
728 
729 	if (offset != dev->handler.offset)
730 		rcode = RCODE_ADDRESS_ERROR;
731 	else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
732 		rcode = RCODE_TYPE_ERROR;
733 	else if (fwnet_incoming_packet(dev, payload, length,
734 				       source, generation, false) != 0) {
735 		dev_err(&dev->netdev->dev, "incoming packet failure\n");
736 		rcode = RCODE_CONFLICT_ERROR;
737 	} else
738 		rcode = RCODE_COMPLETE;
739 
740 	fw_send_response(card, r, rcode);
741 }
742 
743 static void fwnet_receive_broadcast(struct fw_iso_context *context,
744 		u32 cycle, size_t header_length, void *header, void *data)
745 {
746 	struct fwnet_device *dev;
747 	struct fw_iso_packet packet;
748 	__be16 *hdr_ptr;
749 	__be32 *buf_ptr;
750 	int retval;
751 	u32 length;
752 	u16 source_node_id;
753 	u32 specifier_id;
754 	u32 ver;
755 	unsigned long offset;
756 	unsigned long flags;
757 
758 	dev = data;
759 	hdr_ptr = header;
760 	length = be16_to_cpup(hdr_ptr);
761 
762 	spin_lock_irqsave(&dev->lock, flags);
763 
764 	offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
765 	buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
766 	if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
767 		dev->broadcast_rcv_next_ptr = 0;
768 
769 	spin_unlock_irqrestore(&dev->lock, flags);
770 
771 	specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
772 			| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
773 	ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
774 	source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
775 
776 	if (specifier_id == IANA_SPECIFIER_ID &&
777 	    (ver == RFC2734_SW_VERSION
778 #if IS_ENABLED(CONFIG_IPV6)
779 	     || ver == RFC3146_SW_VERSION
780 #endif
781 	    )) {
782 		buf_ptr += 2;
783 		length -= IEEE1394_GASP_HDR_SIZE;
784 		fwnet_incoming_packet(dev, buf_ptr, length, source_node_id,
785 				      context->card->generation, true);
786 	}
787 
788 	packet.payload_length = dev->rcv_buffer_size;
789 	packet.interrupt = 1;
790 	packet.skip = 0;
791 	packet.tag = 3;
792 	packet.sy = 0;
793 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
794 
795 	spin_lock_irqsave(&dev->lock, flags);
796 
797 	retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
798 				      &dev->broadcast_rcv_buffer, offset);
799 
800 	spin_unlock_irqrestore(&dev->lock, flags);
801 
802 	if (retval >= 0)
803 		fw_iso_context_queue_flush(dev->broadcast_rcv_context);
804 	else
805 		dev_err(&dev->netdev->dev, "requeue failed\n");
806 }
807 
808 static struct kmem_cache *fwnet_packet_task_cache;
809 
810 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
811 {
812 	dev_kfree_skb_any(ptask->skb);
813 	kmem_cache_free(fwnet_packet_task_cache, ptask);
814 }
815 
816 /* Caller must hold dev->lock. */
817 static void dec_queued_datagrams(struct fwnet_device *dev)
818 {
819 	if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
820 		netif_wake_queue(dev->netdev);
821 }
822 
823 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
824 
825 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
826 {
827 	struct fwnet_device *dev = ptask->dev;
828 	struct sk_buff *skb = ptask->skb;
829 	unsigned long flags;
830 	bool free;
831 
832 	spin_lock_irqsave(&dev->lock, flags);
833 
834 	ptask->outstanding_pkts--;
835 
836 	/* Check whether we or the networking TX soft-IRQ is last user. */
837 	free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
838 	if (free)
839 		dec_queued_datagrams(dev);
840 
841 	if (ptask->outstanding_pkts == 0) {
842 		dev->netdev->stats.tx_packets++;
843 		dev->netdev->stats.tx_bytes += skb->len;
844 	}
845 
846 	spin_unlock_irqrestore(&dev->lock, flags);
847 
848 	if (ptask->outstanding_pkts > 0) {
849 		u16 dg_size;
850 		u16 fg_off;
851 		u16 datagram_label;
852 		u16 lf;
853 
854 		/* Update the ptask to point to the next fragment and send it */
855 		lf = fwnet_get_hdr_lf(&ptask->hdr);
856 		switch (lf) {
857 		case RFC2374_HDR_LASTFRAG:
858 		case RFC2374_HDR_UNFRAG:
859 		default:
860 			dev_err(&dev->netdev->dev,
861 				"outstanding packet %x lf %x, header %x,%x\n",
862 				ptask->outstanding_pkts, lf, ptask->hdr.w0,
863 				ptask->hdr.w1);
864 			BUG();
865 
866 		case RFC2374_HDR_FIRSTFRAG:
867 			/* Set frag type here for future interior fragments */
868 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
869 			fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
870 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
871 			break;
872 
873 		case RFC2374_HDR_INTFRAG:
874 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
875 			fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
876 				  + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
877 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
878 			break;
879 		}
880 
881 		if (ptask->dest_node == IEEE1394_ALL_NODES) {
882 			skb_pull(skb,
883 				 ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
884 		} else {
885 			skb_pull(skb, ptask->max_payload);
886 		}
887 		if (ptask->outstanding_pkts > 1) {
888 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
889 					  dg_size, fg_off, datagram_label);
890 		} else {
891 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
892 					  dg_size, fg_off, datagram_label);
893 			ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
894 		}
895 		fwnet_send_packet(ptask);
896 	}
897 
898 	if (free)
899 		fwnet_free_ptask(ptask);
900 }
901 
902 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
903 {
904 	struct fwnet_device *dev = ptask->dev;
905 	unsigned long flags;
906 	bool free;
907 
908 	spin_lock_irqsave(&dev->lock, flags);
909 
910 	/* One fragment failed; don't try to send remaining fragments. */
911 	ptask->outstanding_pkts = 0;
912 
913 	/* Check whether we or the networking TX soft-IRQ is last user. */
914 	free = ptask->enqueued;
915 	if (free)
916 		dec_queued_datagrams(dev);
917 
918 	dev->netdev->stats.tx_dropped++;
919 	dev->netdev->stats.tx_errors++;
920 
921 	spin_unlock_irqrestore(&dev->lock, flags);
922 
923 	if (free)
924 		fwnet_free_ptask(ptask);
925 }
926 
927 static void fwnet_write_complete(struct fw_card *card, int rcode,
928 				 void *payload, size_t length, void *data)
929 {
930 	struct fwnet_packet_task *ptask = data;
931 	static unsigned long j;
932 	static int last_rcode, errors_skipped;
933 
934 	if (rcode == RCODE_COMPLETE) {
935 		fwnet_transmit_packet_done(ptask);
936 	} else {
937 		fwnet_transmit_packet_failed(ptask);
938 
939 		if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
940 			dev_err(&ptask->dev->netdev->dev,
941 				"fwnet_write_complete failed: %x (skipped %d)\n",
942 				rcode, errors_skipped);
943 
944 			errors_skipped = 0;
945 			last_rcode = rcode;
946 		} else
947 			errors_skipped++;
948 	}
949 }
950 
951 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
952 {
953 	struct fwnet_device *dev;
954 	unsigned tx_len;
955 	struct rfc2734_header *bufhdr;
956 	unsigned long flags;
957 	bool free;
958 
959 	dev = ptask->dev;
960 	tx_len = ptask->max_payload;
961 	switch (fwnet_get_hdr_lf(&ptask->hdr)) {
962 	case RFC2374_HDR_UNFRAG:
963 		bufhdr = (struct rfc2734_header *)
964 				skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
965 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
966 		break;
967 
968 	case RFC2374_HDR_FIRSTFRAG:
969 	case RFC2374_HDR_INTFRAG:
970 	case RFC2374_HDR_LASTFRAG:
971 		bufhdr = (struct rfc2734_header *)
972 				skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
973 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
974 		put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
975 		break;
976 
977 	default:
978 		BUG();
979 	}
980 	if (ptask->dest_node == IEEE1394_ALL_NODES) {
981 		u8 *p;
982 		int generation;
983 		int node_id;
984 		unsigned int sw_version;
985 
986 		/* ptask->generation may not have been set yet */
987 		generation = dev->card->generation;
988 		smp_rmb();
989 		node_id = dev->card->node_id;
990 
991 		switch (ptask->skb->protocol) {
992 		default:
993 			sw_version = RFC2734_SW_VERSION;
994 			break;
995 #if IS_ENABLED(CONFIG_IPV6)
996 		case htons(ETH_P_IPV6):
997 			sw_version = RFC3146_SW_VERSION;
998 #endif
999 		}
1000 
1001 		p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
1002 		put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1003 		put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1004 						| sw_version, &p[4]);
1005 
1006 		/* We should not transmit if broadcast_channel.valid == 0. */
1007 		fw_send_request(dev->card, &ptask->transaction,
1008 				TCODE_STREAM_DATA,
1009 				fw_stream_packet_destination_id(3,
1010 						IEEE1394_BROADCAST_CHANNEL, 0),
1011 				generation, SCODE_100, 0ULL, ptask->skb->data,
1012 				tx_len + 8, fwnet_write_complete, ptask);
1013 
1014 		spin_lock_irqsave(&dev->lock, flags);
1015 
1016 		/* If the AT tasklet already ran, we may be last user. */
1017 		free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1018 		if (!free)
1019 			ptask->enqueued = true;
1020 		else
1021 			dec_queued_datagrams(dev);
1022 
1023 		spin_unlock_irqrestore(&dev->lock, flags);
1024 
1025 		goto out;
1026 	}
1027 
1028 	fw_send_request(dev->card, &ptask->transaction,
1029 			TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1030 			ptask->generation, ptask->speed, ptask->fifo_addr,
1031 			ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1032 
1033 	spin_lock_irqsave(&dev->lock, flags);
1034 
1035 	/* If the AT tasklet already ran, we may be last user. */
1036 	free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1037 	if (!free)
1038 		ptask->enqueued = true;
1039 	else
1040 		dec_queued_datagrams(dev);
1041 
1042 	spin_unlock_irqrestore(&dev->lock, flags);
1043 
1044 	dev->netdev->trans_start = jiffies;
1045  out:
1046 	if (free)
1047 		fwnet_free_ptask(ptask);
1048 
1049 	return 0;
1050 }
1051 
1052 static void fwnet_fifo_stop(struct fwnet_device *dev)
1053 {
1054 	if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1055 		return;
1056 
1057 	fw_core_remove_address_handler(&dev->handler);
1058 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1059 }
1060 
1061 static int fwnet_fifo_start(struct fwnet_device *dev)
1062 {
1063 	int retval;
1064 
1065 	if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1066 		return 0;
1067 
1068 	dev->handler.length = 4096;
1069 	dev->handler.address_callback = fwnet_receive_packet;
1070 	dev->handler.callback_data = dev;
1071 
1072 	retval = fw_core_add_address_handler(&dev->handler,
1073 					     &fw_high_memory_region);
1074 	if (retval < 0)
1075 		return retval;
1076 
1077 	dev->local_fifo = dev->handler.offset;
1078 
1079 	return 0;
1080 }
1081 
1082 static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1083 {
1084 	unsigned u;
1085 
1086 	if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1087 		for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1088 			kunmap(dev->broadcast_rcv_buffer.pages[u]);
1089 		fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1090 	}
1091 	if (dev->broadcast_rcv_context) {
1092 		fw_iso_context_destroy(dev->broadcast_rcv_context);
1093 		dev->broadcast_rcv_context = NULL;
1094 	}
1095 	kfree(dev->broadcast_rcv_buffer_ptrs);
1096 	dev->broadcast_rcv_buffer_ptrs = NULL;
1097 	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1098 }
1099 
1100 static void fwnet_broadcast_stop(struct fwnet_device *dev)
1101 {
1102 	if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1103 		return;
1104 	fw_iso_context_stop(dev->broadcast_rcv_context);
1105 	__fwnet_broadcast_stop(dev);
1106 }
1107 
1108 static int fwnet_broadcast_start(struct fwnet_device *dev)
1109 {
1110 	struct fw_iso_context *context;
1111 	int retval;
1112 	unsigned num_packets;
1113 	unsigned max_receive;
1114 	struct fw_iso_packet packet;
1115 	unsigned long offset;
1116 	void **ptrptr;
1117 	unsigned u;
1118 
1119 	if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1120 		return 0;
1121 
1122 	max_receive = 1U << (dev->card->max_receive + 1);
1123 	num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1124 
1125 	ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1126 	if (!ptrptr) {
1127 		retval = -ENOMEM;
1128 		goto failed;
1129 	}
1130 	dev->broadcast_rcv_buffer_ptrs = ptrptr;
1131 
1132 	context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1133 					IEEE1394_BROADCAST_CHANNEL,
1134 					dev->card->link_speed, 8,
1135 					fwnet_receive_broadcast, dev);
1136 	if (IS_ERR(context)) {
1137 		retval = PTR_ERR(context);
1138 		goto failed;
1139 	}
1140 
1141 	retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1142 				    FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1143 	if (retval < 0)
1144 		goto failed;
1145 
1146 	dev->broadcast_state = FWNET_BROADCAST_STOPPED;
1147 
1148 	for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1149 		void *ptr;
1150 		unsigned v;
1151 
1152 		ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1153 		for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1154 			*ptrptr++ = (void *) ((char *)ptr + v * max_receive);
1155 	}
1156 	dev->broadcast_rcv_context = context;
1157 
1158 	packet.payload_length = max_receive;
1159 	packet.interrupt = 1;
1160 	packet.skip = 0;
1161 	packet.tag = 3;
1162 	packet.sy = 0;
1163 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
1164 	offset = 0;
1165 
1166 	for (u = 0; u < num_packets; u++) {
1167 		retval = fw_iso_context_queue(context, &packet,
1168 				&dev->broadcast_rcv_buffer, offset);
1169 		if (retval < 0)
1170 			goto failed;
1171 
1172 		offset += max_receive;
1173 	}
1174 	dev->num_broadcast_rcv_ptrs = num_packets;
1175 	dev->rcv_buffer_size = max_receive;
1176 	dev->broadcast_rcv_next_ptr = 0U;
1177 	retval = fw_iso_context_start(context, -1, 0,
1178 			FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1179 	if (retval < 0)
1180 		goto failed;
1181 
1182 	/* FIXME: adjust it according to the min. speed of all known peers? */
1183 	dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1184 			- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1185 	dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1186 
1187 	return 0;
1188 
1189  failed:
1190 	__fwnet_broadcast_stop(dev);
1191 	return retval;
1192 }
1193 
1194 static void set_carrier_state(struct fwnet_device *dev)
1195 {
1196 	if (dev->peer_count > 1)
1197 		netif_carrier_on(dev->netdev);
1198 	else
1199 		netif_carrier_off(dev->netdev);
1200 }
1201 
1202 /* ifup */
1203 static int fwnet_open(struct net_device *net)
1204 {
1205 	struct fwnet_device *dev = netdev_priv(net);
1206 	int ret;
1207 
1208 	ret = fwnet_broadcast_start(dev);
1209 	if (ret)
1210 		return ret;
1211 
1212 	netif_start_queue(net);
1213 
1214 	spin_lock_irq(&dev->lock);
1215 	set_carrier_state(dev);
1216 	spin_unlock_irq(&dev->lock);
1217 
1218 	return 0;
1219 }
1220 
1221 /* ifdown */
1222 static int fwnet_stop(struct net_device *net)
1223 {
1224 	struct fwnet_device *dev = netdev_priv(net);
1225 
1226 	netif_stop_queue(net);
1227 	fwnet_broadcast_stop(dev);
1228 
1229 	return 0;
1230 }
1231 
1232 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1233 {
1234 	struct fwnet_header hdr_buf;
1235 	struct fwnet_device *dev = netdev_priv(net);
1236 	__be16 proto;
1237 	u16 dest_node;
1238 	unsigned max_payload;
1239 	u16 dg_size;
1240 	u16 *datagram_label_ptr;
1241 	struct fwnet_packet_task *ptask;
1242 	struct fwnet_peer *peer;
1243 	unsigned long flags;
1244 
1245 	spin_lock_irqsave(&dev->lock, flags);
1246 
1247 	/* Can this happen? */
1248 	if (netif_queue_stopped(dev->netdev)) {
1249 		spin_unlock_irqrestore(&dev->lock, flags);
1250 
1251 		return NETDEV_TX_BUSY;
1252 	}
1253 
1254 	ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1255 	if (ptask == NULL)
1256 		goto fail;
1257 
1258 	skb = skb_share_check(skb, GFP_ATOMIC);
1259 	if (!skb)
1260 		goto fail;
1261 
1262 	/*
1263 	 * Make a copy of the driver-specific header.
1264 	 * We might need to rebuild the header on tx failure.
1265 	 */
1266 	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1267 	proto = hdr_buf.h_proto;
1268 
1269 	switch (proto) {
1270 	case htons(ETH_P_ARP):
1271 	case htons(ETH_P_IP):
1272 #if IS_ENABLED(CONFIG_IPV6)
1273 	case htons(ETH_P_IPV6):
1274 #endif
1275 		break;
1276 	default:
1277 		goto fail;
1278 	}
1279 
1280 	skb_pull(skb, sizeof(hdr_buf));
1281 	dg_size = skb->len;
1282 
1283 	/*
1284 	 * Set the transmission type for the packet.  ARP packets and IP
1285 	 * broadcast packets are sent via GASP.
1286 	 */
1287 	if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
1288 		max_payload        = dev->broadcast_xmt_max_payload;
1289 		datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1290 
1291 		ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1292 		ptask->generation  = 0;
1293 		ptask->dest_node   = IEEE1394_ALL_NODES;
1294 		ptask->speed       = SCODE_100;
1295 	} else {
1296 		union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest;
1297 		__be64 guid = get_unaligned(&ha->uc.uniq_id);
1298 		u8 generation;
1299 
1300 		peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1301 		if (!peer)
1302 			goto fail;
1303 
1304 		generation         = peer->generation;
1305 		dest_node          = peer->node_id;
1306 		max_payload        = peer->max_payload;
1307 		datagram_label_ptr = &peer->datagram_label;
1308 
1309 		ptask->fifo_addr   = fwnet_hwaddr_fifo(ha);
1310 		ptask->generation  = generation;
1311 		ptask->dest_node   = dest_node;
1312 		ptask->speed       = peer->speed;
1313 	}
1314 
1315 	ptask->hdr.w0 = 0;
1316 	ptask->hdr.w1 = 0;
1317 	ptask->skb = skb;
1318 	ptask->dev = dev;
1319 
1320 	/* Does it all fit in one packet? */
1321 	if (dg_size <= max_payload) {
1322 		fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1323 		ptask->outstanding_pkts = 1;
1324 		max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1325 	} else {
1326 		u16 datagram_label;
1327 
1328 		max_payload -= RFC2374_FRAG_OVERHEAD;
1329 		datagram_label = (*datagram_label_ptr)++;
1330 		fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1331 				  datagram_label);
1332 		ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1333 		max_payload += RFC2374_FRAG_HDR_SIZE;
1334 	}
1335 
1336 	if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1337 		netif_stop_queue(dev->netdev);
1338 
1339 	spin_unlock_irqrestore(&dev->lock, flags);
1340 
1341 	ptask->max_payload = max_payload;
1342 	ptask->enqueued    = 0;
1343 
1344 	fwnet_send_packet(ptask);
1345 
1346 	return NETDEV_TX_OK;
1347 
1348  fail:
1349 	spin_unlock_irqrestore(&dev->lock, flags);
1350 
1351 	if (ptask)
1352 		kmem_cache_free(fwnet_packet_task_cache, ptask);
1353 
1354 	if (skb != NULL)
1355 		dev_kfree_skb(skb);
1356 
1357 	net->stats.tx_dropped++;
1358 	net->stats.tx_errors++;
1359 
1360 	/*
1361 	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1362 	 * causes serious problems" here, allegedly.  Before that patch,
1363 	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1364 	 * Perhaps more needs to be done?  Stop the queue in serious
1365 	 * conditions and restart it elsewhere?
1366 	 */
1367 	return NETDEV_TX_OK;
1368 }
1369 
1370 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1371 {
1372 	if (new_mtu < 68)
1373 		return -EINVAL;
1374 
1375 	net->mtu = new_mtu;
1376 	return 0;
1377 }
1378 
1379 static const struct ethtool_ops fwnet_ethtool_ops = {
1380 	.get_link	= ethtool_op_get_link,
1381 };
1382 
1383 static const struct net_device_ops fwnet_netdev_ops = {
1384 	.ndo_open       = fwnet_open,
1385 	.ndo_stop	= fwnet_stop,
1386 	.ndo_start_xmit = fwnet_tx,
1387 	.ndo_change_mtu = fwnet_change_mtu,
1388 };
1389 
1390 static void fwnet_init_dev(struct net_device *net)
1391 {
1392 	net->header_ops		= &fwnet_header_ops;
1393 	net->netdev_ops		= &fwnet_netdev_ops;
1394 	net->watchdog_timeo	= 2 * HZ;
1395 	net->flags		= IFF_BROADCAST | IFF_MULTICAST;
1396 	net->features		= NETIF_F_HIGHDMA;
1397 	net->addr_len		= FWNET_ALEN;
1398 	net->hard_header_len	= FWNET_HLEN;
1399 	net->type		= ARPHRD_IEEE1394;
1400 	net->tx_queue_len	= FWNET_TX_QUEUE_LEN;
1401 	net->ethtool_ops	= &fwnet_ethtool_ops;
1402 }
1403 
1404 /* caller must hold fwnet_device_mutex */
1405 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1406 {
1407 	struct fwnet_device *dev;
1408 
1409 	list_for_each_entry(dev, &fwnet_device_list, dev_link)
1410 		if (dev->card == card)
1411 			return dev;
1412 
1413 	return NULL;
1414 }
1415 
1416 static int fwnet_add_peer(struct fwnet_device *dev,
1417 			  struct fw_unit *unit, struct fw_device *device)
1418 {
1419 	struct fwnet_peer *peer;
1420 
1421 	peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1422 	if (!peer)
1423 		return -ENOMEM;
1424 
1425 	dev_set_drvdata(&unit->device, peer);
1426 
1427 	peer->dev = dev;
1428 	peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1429 	INIT_LIST_HEAD(&peer->pd_list);
1430 	peer->pdg_size = 0;
1431 	peer->datagram_label = 0;
1432 	peer->speed = device->max_speed;
1433 	peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1434 
1435 	peer->generation = device->generation;
1436 	smp_rmb();
1437 	peer->node_id = device->node_id;
1438 
1439 	spin_lock_irq(&dev->lock);
1440 	list_add_tail(&peer->peer_link, &dev->peer_list);
1441 	dev->peer_count++;
1442 	set_carrier_state(dev);
1443 	spin_unlock_irq(&dev->lock);
1444 
1445 	return 0;
1446 }
1447 
1448 static int fwnet_probe(struct device *_dev)
1449 {
1450 	struct fw_unit *unit = fw_unit(_dev);
1451 	struct fw_device *device = fw_parent_device(unit);
1452 	struct fw_card *card = device->card;
1453 	struct net_device *net;
1454 	bool allocated_netdev = false;
1455 	struct fwnet_device *dev;
1456 	unsigned max_mtu;
1457 	int ret;
1458 	union fwnet_hwaddr *ha;
1459 
1460 	mutex_lock(&fwnet_device_mutex);
1461 
1462 	dev = fwnet_dev_find(card);
1463 	if (dev) {
1464 		net = dev->netdev;
1465 		goto have_dev;
1466 	}
1467 
1468 	net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1469 	if (net == NULL) {
1470 		ret = -ENOMEM;
1471 		goto out;
1472 	}
1473 
1474 	allocated_netdev = true;
1475 	SET_NETDEV_DEV(net, card->device);
1476 	dev = netdev_priv(net);
1477 
1478 	spin_lock_init(&dev->lock);
1479 	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1480 	dev->broadcast_rcv_context = NULL;
1481 	dev->broadcast_xmt_max_payload = 0;
1482 	dev->broadcast_xmt_datagramlabel = 0;
1483 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1484 	dev->queued_datagrams = 0;
1485 	INIT_LIST_HEAD(&dev->peer_list);
1486 	dev->card = card;
1487 	dev->netdev = net;
1488 
1489 	ret = fwnet_fifo_start(dev);
1490 	if (ret < 0)
1491 		goto out;
1492 	dev->local_fifo = dev->handler.offset;
1493 
1494 	/*
1495 	 * Use the RFC 2734 default 1500 octets or the maximum payload
1496 	 * as initial MTU
1497 	 */
1498 	max_mtu = (1 << (card->max_receive + 1))
1499 		  - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1500 	net->mtu = min(1500U, max_mtu);
1501 
1502 	/* Set our hardware address while we're at it */
1503 	ha = (union fwnet_hwaddr *)net->dev_addr;
1504 	put_unaligned_be64(card->guid, &ha->uc.uniq_id);
1505 	ha->uc.max_rec = dev->card->max_receive;
1506 	ha->uc.sspd = dev->card->link_speed;
1507 	put_unaligned_be16(dev->local_fifo >> 32, &ha->uc.fifo_hi);
1508 	put_unaligned_be32(dev->local_fifo & 0xffffffff, &ha->uc.fifo_lo);
1509 
1510 	memset(net->broadcast, -1, net->addr_len);
1511 
1512 	ret = register_netdev(net);
1513 	if (ret)
1514 		goto out;
1515 
1516 	list_add_tail(&dev->dev_link, &fwnet_device_list);
1517 	dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n",
1518 		   dev_name(card->device));
1519  have_dev:
1520 	ret = fwnet_add_peer(dev, unit, device);
1521 	if (ret && allocated_netdev) {
1522 		unregister_netdev(net);
1523 		list_del(&dev->dev_link);
1524  out:
1525 		fwnet_fifo_stop(dev);
1526 		free_netdev(net);
1527 	}
1528 
1529 	mutex_unlock(&fwnet_device_mutex);
1530 
1531 	return ret;
1532 }
1533 
1534 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1535 {
1536 	struct fwnet_partial_datagram *pd, *pd_next;
1537 
1538 	spin_lock_irq(&dev->lock);
1539 	list_del(&peer->peer_link);
1540 	dev->peer_count--;
1541 	set_carrier_state(dev);
1542 	spin_unlock_irq(&dev->lock);
1543 
1544 	list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1545 		fwnet_pd_delete(pd);
1546 
1547 	kfree(peer);
1548 }
1549 
1550 static int fwnet_remove(struct device *_dev)
1551 {
1552 	struct fwnet_peer *peer = dev_get_drvdata(_dev);
1553 	struct fwnet_device *dev = peer->dev;
1554 	struct net_device *net;
1555 	int i;
1556 
1557 	mutex_lock(&fwnet_device_mutex);
1558 
1559 	net = dev->netdev;
1560 
1561 	fwnet_remove_peer(peer, dev);
1562 
1563 	if (list_empty(&dev->peer_list)) {
1564 		unregister_netdev(net);
1565 
1566 		fwnet_fifo_stop(dev);
1567 
1568 		for (i = 0; dev->queued_datagrams && i < 5; i++)
1569 			ssleep(1);
1570 		WARN_ON(dev->queued_datagrams);
1571 		list_del(&dev->dev_link);
1572 
1573 		free_netdev(net);
1574 	}
1575 
1576 	mutex_unlock(&fwnet_device_mutex);
1577 
1578 	return 0;
1579 }
1580 
1581 /*
1582  * FIXME abort partially sent fragmented datagrams,
1583  * discard partially received fragmented datagrams
1584  */
1585 static void fwnet_update(struct fw_unit *unit)
1586 {
1587 	struct fw_device *device = fw_parent_device(unit);
1588 	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1589 	int generation;
1590 
1591 	generation = device->generation;
1592 
1593 	spin_lock_irq(&peer->dev->lock);
1594 	peer->node_id    = device->node_id;
1595 	peer->generation = generation;
1596 	spin_unlock_irq(&peer->dev->lock);
1597 }
1598 
1599 static const struct ieee1394_device_id fwnet_id_table[] = {
1600 	{
1601 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1602 				IEEE1394_MATCH_VERSION,
1603 		.specifier_id = IANA_SPECIFIER_ID,
1604 		.version      = RFC2734_SW_VERSION,
1605 	},
1606 #if IS_ENABLED(CONFIG_IPV6)
1607 	{
1608 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1609 				IEEE1394_MATCH_VERSION,
1610 		.specifier_id = IANA_SPECIFIER_ID,
1611 		.version      = RFC3146_SW_VERSION,
1612 	},
1613 #endif
1614 	{ }
1615 };
1616 
1617 static struct fw_driver fwnet_driver = {
1618 	.driver = {
1619 		.owner  = THIS_MODULE,
1620 		.name   = KBUILD_MODNAME,
1621 		.bus    = &fw_bus_type,
1622 		.probe  = fwnet_probe,
1623 		.remove = fwnet_remove,
1624 	},
1625 	.update   = fwnet_update,
1626 	.id_table = fwnet_id_table,
1627 };
1628 
1629 static const u32 rfc2374_unit_directory_data[] = {
1630 	0x00040000,	/* directory_length		*/
1631 	0x1200005e,	/* unit_specifier_id: IANA	*/
1632 	0x81000003,	/* textual descriptor offset	*/
1633 	0x13000001,	/* unit_sw_version: RFC 2734	*/
1634 	0x81000005,	/* textual descriptor offset	*/
1635 	0x00030000,	/* descriptor_length		*/
1636 	0x00000000,	/* text				*/
1637 	0x00000000,	/* minimal ASCII, en		*/
1638 	0x49414e41,	/* I A N A			*/
1639 	0x00030000,	/* descriptor_length		*/
1640 	0x00000000,	/* text				*/
1641 	0x00000000,	/* minimal ASCII, en		*/
1642 	0x49507634,	/* I P v 4			*/
1643 };
1644 
1645 static struct fw_descriptor rfc2374_unit_directory = {
1646 	.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1647 	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1648 	.data   = rfc2374_unit_directory_data
1649 };
1650 
1651 #if IS_ENABLED(CONFIG_IPV6)
1652 static const u32 rfc3146_unit_directory_data[] = {
1653 	0x00040000,	/* directory_length		*/
1654 	0x1200005e,	/* unit_specifier_id: IANA	*/
1655 	0x81000003,	/* textual descriptor offset	*/
1656 	0x13000002,	/* unit_sw_version: RFC 3146	*/
1657 	0x81000005,	/* textual descriptor offset	*/
1658 	0x00030000,	/* descriptor_length		*/
1659 	0x00000000,	/* text				*/
1660 	0x00000000,	/* minimal ASCII, en		*/
1661 	0x49414e41,	/* I A N A			*/
1662 	0x00030000,	/* descriptor_length		*/
1663 	0x00000000,	/* text				*/
1664 	0x00000000,	/* minimal ASCII, en		*/
1665 	0x49507636,	/* I P v 6			*/
1666 };
1667 
1668 static struct fw_descriptor rfc3146_unit_directory = {
1669 	.length = ARRAY_SIZE(rfc3146_unit_directory_data),
1670 	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1671 	.data   = rfc3146_unit_directory_data
1672 };
1673 #endif
1674 
1675 static int __init fwnet_init(void)
1676 {
1677 	int err;
1678 
1679 	err = fw_core_add_descriptor(&rfc2374_unit_directory);
1680 	if (err)
1681 		return err;
1682 
1683 #if IS_ENABLED(CONFIG_IPV6)
1684 	err = fw_core_add_descriptor(&rfc3146_unit_directory);
1685 	if (err)
1686 		goto out;
1687 #endif
1688 
1689 	fwnet_packet_task_cache = kmem_cache_create("packet_task",
1690 			sizeof(struct fwnet_packet_task), 0, 0, NULL);
1691 	if (!fwnet_packet_task_cache) {
1692 		err = -ENOMEM;
1693 		goto out2;
1694 	}
1695 
1696 	err = driver_register(&fwnet_driver.driver);
1697 	if (!err)
1698 		return 0;
1699 
1700 	kmem_cache_destroy(fwnet_packet_task_cache);
1701 out2:
1702 #if IS_ENABLED(CONFIG_IPV6)
1703 	fw_core_remove_descriptor(&rfc3146_unit_directory);
1704 out:
1705 #endif
1706 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1707 
1708 	return err;
1709 }
1710 module_init(fwnet_init);
1711 
1712 static void __exit fwnet_cleanup(void)
1713 {
1714 	driver_unregister(&fwnet_driver.driver);
1715 	kmem_cache_destroy(fwnet_packet_task_cache);
1716 #if IS_ENABLED(CONFIG_IPV6)
1717 	fw_core_remove_descriptor(&rfc3146_unit_directory);
1718 #endif
1719 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1720 }
1721 module_exit(fwnet_cleanup);
1722 
1723 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1724 MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146");
1725 MODULE_LICENSE("GPL");
1726 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1727