1 /* 2 * IPv4 over IEEE 1394, per RFC 2734 3 * 4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com> 5 * 6 * based on eth1394 by Ben Collins et al 7 */ 8 9 #include <linux/bug.h> 10 #include <linux/device.h> 11 #include <linux/ethtool.h> 12 #include <linux/firewire.h> 13 #include <linux/firewire-constants.h> 14 #include <linux/highmem.h> 15 #include <linux/in.h> 16 #include <linux/ip.h> 17 #include <linux/jiffies.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/module.h> 20 #include <linux/moduleparam.h> 21 #include <linux/mutex.h> 22 #include <linux/netdevice.h> 23 #include <linux/skbuff.h> 24 #include <linux/spinlock.h> 25 26 #include <asm/unaligned.h> 27 #include <net/arp.h> 28 29 #define FWNET_MAX_FRAGMENTS 25 /* arbitrary limit */ 30 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16 * 1024 ? 4 : 2) 31 32 #define IEEE1394_BROADCAST_CHANNEL 31 33 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f) 34 #define IEEE1394_MAX_PAYLOAD_S100 512 35 #define FWNET_NO_FIFO_ADDR (~0ULL) 36 37 #define IANA_SPECIFIER_ID 0x00005eU 38 #define RFC2734_SW_VERSION 0x000001U 39 40 #define IEEE1394_GASP_HDR_SIZE 8 41 42 #define RFC2374_UNFRAG_HDR_SIZE 4 43 #define RFC2374_FRAG_HDR_SIZE 8 44 #define RFC2374_FRAG_OVERHEAD 4 45 46 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */ 47 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */ 48 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */ 49 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */ 50 51 #define RFC2734_HW_ADDR_LEN 16 52 53 struct rfc2734_arp { 54 __be16 hw_type; /* 0x0018 */ 55 __be16 proto_type; /* 0x0806 */ 56 u8 hw_addr_len; /* 16 */ 57 u8 ip_addr_len; /* 4 */ 58 __be16 opcode; /* ARP Opcode */ 59 /* Above is exactly the same format as struct arphdr */ 60 61 __be64 s_uniq_id; /* Sender's 64bit EUI */ 62 u8 max_rec; /* Sender's max packet size */ 63 u8 sspd; /* Sender's max speed */ 64 __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */ 65 __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */ 66 __be32 sip; /* Sender's IP Address */ 67 __be32 tip; /* IP Address of requested hw addr */ 68 } __attribute__((packed)); 69 70 /* This header format is specific to this driver implementation. */ 71 #define FWNET_ALEN 8 72 #define FWNET_HLEN 10 73 struct fwnet_header { 74 u8 h_dest[FWNET_ALEN]; /* destination address */ 75 __be16 h_proto; /* packet type ID field */ 76 } __attribute__((packed)); 77 78 /* IPv4 and IPv6 encapsulation header */ 79 struct rfc2734_header { 80 u32 w0; 81 u32 w1; 82 }; 83 84 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30) 85 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff)) 86 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16) 87 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff)) 88 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16) 89 90 #define fwnet_set_hdr_lf(lf) ((lf) << 30) 91 #define fwnet_set_hdr_ether_type(et) (et) 92 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16) 93 #define fwnet_set_hdr_fg_off(fgo) (fgo) 94 95 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16) 96 97 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr, 98 unsigned ether_type) 99 { 100 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG) 101 | fwnet_set_hdr_ether_type(ether_type); 102 } 103 104 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr, 105 unsigned ether_type, unsigned dg_size, unsigned dgl) 106 { 107 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG) 108 | fwnet_set_hdr_dg_size(dg_size) 109 | fwnet_set_hdr_ether_type(ether_type); 110 hdr->w1 = fwnet_set_hdr_dgl(dgl); 111 } 112 113 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr, 114 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) 115 { 116 hdr->w0 = fwnet_set_hdr_lf(lf) 117 | fwnet_set_hdr_dg_size(dg_size) 118 | fwnet_set_hdr_fg_off(fg_off); 119 hdr->w1 = fwnet_set_hdr_dgl(dgl); 120 } 121 122 /* This list keeps track of what parts of the datagram have been filled in */ 123 struct fwnet_fragment_info { 124 struct list_head fi_link; 125 u16 offset; 126 u16 len; 127 }; 128 129 struct fwnet_partial_datagram { 130 struct list_head pd_link; 131 struct list_head fi_list; 132 struct sk_buff *skb; 133 /* FIXME Why not use skb->data? */ 134 char *pbuf; 135 u16 datagram_label; 136 u16 ether_type; 137 u16 datagram_size; 138 }; 139 140 static DEFINE_MUTEX(fwnet_device_mutex); 141 static LIST_HEAD(fwnet_device_list); 142 143 struct fwnet_device { 144 struct list_head dev_link; 145 spinlock_t lock; 146 enum { 147 FWNET_BROADCAST_ERROR, 148 FWNET_BROADCAST_RUNNING, 149 FWNET_BROADCAST_STOPPED, 150 } broadcast_state; 151 struct fw_iso_context *broadcast_rcv_context; 152 struct fw_iso_buffer broadcast_rcv_buffer; 153 void **broadcast_rcv_buffer_ptrs; 154 unsigned broadcast_rcv_next_ptr; 155 unsigned num_broadcast_rcv_ptrs; 156 unsigned rcv_buffer_size; 157 /* 158 * This value is the maximum unfragmented datagram size that can be 159 * sent by the hardware. It already has the GASP overhead and the 160 * unfragmented datagram header overhead calculated into it. 161 */ 162 unsigned broadcast_xmt_max_payload; 163 u16 broadcast_xmt_datagramlabel; 164 165 /* 166 * The CSR address that remote nodes must send datagrams to for us to 167 * receive them. 168 */ 169 struct fw_address_handler handler; 170 u64 local_fifo; 171 172 /* List of packets to be sent */ 173 struct list_head packet_list; 174 /* 175 * List of packets that were broadcasted. When we get an ISO interrupt 176 * one of them has been sent 177 */ 178 struct list_head broadcasted_list; 179 /* List of packets that have been sent but not yet acked */ 180 struct list_head sent_list; 181 182 struct list_head peer_list; 183 struct fw_card *card; 184 struct net_device *netdev; 185 }; 186 187 struct fwnet_peer { 188 struct list_head peer_link; 189 struct fwnet_device *dev; 190 u64 guid; 191 u64 fifo; 192 193 /* guarded by dev->lock */ 194 struct list_head pd_list; /* received partial datagrams */ 195 unsigned pdg_size; /* pd_list size */ 196 197 u16 datagram_label; /* outgoing datagram label */ 198 unsigned max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */ 199 int node_id; 200 int generation; 201 unsigned speed; 202 }; 203 204 /* This is our task struct. It's used for the packet complete callback. */ 205 struct fwnet_packet_task { 206 /* 207 * ptask can actually be on dev->packet_list, dev->broadcasted_list, 208 * or dev->sent_list depending on its current state. 209 */ 210 struct list_head pt_link; 211 struct fw_transaction transaction; 212 struct rfc2734_header hdr; 213 struct sk_buff *skb; 214 struct fwnet_device *dev; 215 216 int outstanding_pkts; 217 unsigned max_payload; 218 u64 fifo_addr; 219 u16 dest_node; 220 u8 generation; 221 u8 speed; 222 }; 223 224 /* 225 * saddr == NULL means use device source address. 226 * daddr == NULL means leave destination address (eg unresolved arp). 227 */ 228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net, 229 unsigned short type, const void *daddr, 230 const void *saddr, unsigned len) 231 { 232 struct fwnet_header *h; 233 234 h = (struct fwnet_header *)skb_push(skb, sizeof(*h)); 235 put_unaligned_be16(type, &h->h_proto); 236 237 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) { 238 memset(h->h_dest, 0, net->addr_len); 239 240 return net->hard_header_len; 241 } 242 243 if (daddr) { 244 memcpy(h->h_dest, daddr, net->addr_len); 245 246 return net->hard_header_len; 247 } 248 249 return -net->hard_header_len; 250 } 251 252 static int fwnet_header_rebuild(struct sk_buff *skb) 253 { 254 struct fwnet_header *h = (struct fwnet_header *)skb->data; 255 256 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP) 257 return arp_find((unsigned char *)&h->h_dest, skb); 258 259 fw_notify("%s: unable to resolve type %04x addresses\n", 260 skb->dev->name, be16_to_cpu(h->h_proto)); 261 return 0; 262 } 263 264 static int fwnet_header_cache(const struct neighbour *neigh, 265 struct hh_cache *hh) 266 { 267 struct net_device *net; 268 struct fwnet_header *h; 269 270 if (hh->hh_type == cpu_to_be16(ETH_P_802_3)) 271 return -1; 272 net = neigh->dev; 273 h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h)); 274 h->h_proto = hh->hh_type; 275 memcpy(h->h_dest, neigh->ha, net->addr_len); 276 hh->hh_len = FWNET_HLEN; 277 278 return 0; 279 } 280 281 /* Called by Address Resolution module to notify changes in address. */ 282 static void fwnet_header_cache_update(struct hh_cache *hh, 283 const struct net_device *net, const unsigned char *haddr) 284 { 285 memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len); 286 } 287 288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr) 289 { 290 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN); 291 292 return FWNET_ALEN; 293 } 294 295 static const struct header_ops fwnet_header_ops = { 296 .create = fwnet_header_create, 297 .rebuild = fwnet_header_rebuild, 298 .cache = fwnet_header_cache, 299 .cache_update = fwnet_header_cache_update, 300 .parse = fwnet_header_parse, 301 }; 302 303 /* FIXME: is this correct for all cases? */ 304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd, 305 unsigned offset, unsigned len) 306 { 307 struct fwnet_fragment_info *fi; 308 unsigned end = offset + len; 309 310 list_for_each_entry(fi, &pd->fi_list, fi_link) 311 if (offset < fi->offset + fi->len && end > fi->offset) 312 return true; 313 314 return false; 315 } 316 317 /* Assumes that new fragment does not overlap any existing fragments */ 318 static struct fwnet_fragment_info *fwnet_frag_new( 319 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) 320 { 321 struct fwnet_fragment_info *fi, *fi2, *new; 322 struct list_head *list; 323 324 list = &pd->fi_list; 325 list_for_each_entry(fi, &pd->fi_list, fi_link) { 326 if (fi->offset + fi->len == offset) { 327 /* The new fragment can be tacked on to the end */ 328 /* Did the new fragment plug a hole? */ 329 fi2 = list_entry(fi->fi_link.next, 330 struct fwnet_fragment_info, fi_link); 331 if (fi->offset + fi->len == fi2->offset) { 332 /* glue fragments together */ 333 fi->len += len + fi2->len; 334 list_del(&fi2->fi_link); 335 kfree(fi2); 336 } else { 337 fi->len += len; 338 } 339 340 return fi; 341 } 342 if (offset + len == fi->offset) { 343 /* The new fragment can be tacked on to the beginning */ 344 /* Did the new fragment plug a hole? */ 345 fi2 = list_entry(fi->fi_link.prev, 346 struct fwnet_fragment_info, fi_link); 347 if (fi2->offset + fi2->len == fi->offset) { 348 /* glue fragments together */ 349 fi2->len += fi->len + len; 350 list_del(&fi->fi_link); 351 kfree(fi); 352 353 return fi2; 354 } 355 fi->offset = offset; 356 fi->len += len; 357 358 return fi; 359 } 360 if (offset > fi->offset + fi->len) { 361 list = &fi->fi_link; 362 break; 363 } 364 if (offset + len < fi->offset) { 365 list = fi->fi_link.prev; 366 break; 367 } 368 } 369 370 new = kmalloc(sizeof(*new), GFP_ATOMIC); 371 if (!new) { 372 fw_error("out of memory\n"); 373 return NULL; 374 } 375 376 new->offset = offset; 377 new->len = len; 378 list_add(&new->fi_link, list); 379 380 return new; 381 } 382 383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net, 384 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size, 385 void *frag_buf, unsigned frag_off, unsigned frag_len) 386 { 387 struct fwnet_partial_datagram *new; 388 struct fwnet_fragment_info *fi; 389 390 new = kmalloc(sizeof(*new), GFP_ATOMIC); 391 if (!new) 392 goto fail; 393 394 INIT_LIST_HEAD(&new->fi_list); 395 fi = fwnet_frag_new(new, frag_off, frag_len); 396 if (fi == NULL) 397 goto fail_w_new; 398 399 new->datagram_label = datagram_label; 400 new->datagram_size = dg_size; 401 new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15); 402 if (new->skb == NULL) 403 goto fail_w_fi; 404 405 skb_reserve(new->skb, (net->hard_header_len + 15) & ~15); 406 new->pbuf = skb_put(new->skb, dg_size); 407 memcpy(new->pbuf + frag_off, frag_buf, frag_len); 408 list_add_tail(&new->pd_link, &peer->pd_list); 409 410 return new; 411 412 fail_w_fi: 413 kfree(fi); 414 fail_w_new: 415 kfree(new); 416 fail: 417 fw_error("out of memory\n"); 418 419 return NULL; 420 } 421 422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer, 423 u16 datagram_label) 424 { 425 struct fwnet_partial_datagram *pd; 426 427 list_for_each_entry(pd, &peer->pd_list, pd_link) 428 if (pd->datagram_label == datagram_label) 429 return pd; 430 431 return NULL; 432 } 433 434 435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old) 436 { 437 struct fwnet_fragment_info *fi, *n; 438 439 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link) 440 kfree(fi); 441 442 list_del(&old->pd_link); 443 dev_kfree_skb_any(old->skb); 444 kfree(old); 445 } 446 447 static bool fwnet_pd_update(struct fwnet_peer *peer, 448 struct fwnet_partial_datagram *pd, void *frag_buf, 449 unsigned frag_off, unsigned frag_len) 450 { 451 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL) 452 return false; 453 454 memcpy(pd->pbuf + frag_off, frag_buf, frag_len); 455 456 /* 457 * Move list entry to beginnig of list so that oldest partial 458 * datagrams percolate to the end of the list 459 */ 460 list_move_tail(&pd->pd_link, &peer->pd_list); 461 462 return true; 463 } 464 465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd) 466 { 467 struct fwnet_fragment_info *fi; 468 469 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link); 470 471 return fi->len == pd->datagram_size; 472 } 473 474 /* caller must hold dev->lock */ 475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev, 476 u64 guid) 477 { 478 struct fwnet_peer *peer; 479 480 list_for_each_entry(peer, &dev->peer_list, peer_link) 481 if (peer->guid == guid) 482 return peer; 483 484 return NULL; 485 } 486 487 /* caller must hold dev->lock */ 488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev, 489 int node_id, int generation) 490 { 491 struct fwnet_peer *peer; 492 493 list_for_each_entry(peer, &dev->peer_list, peer_link) 494 if (peer->node_id == node_id && 495 peer->generation == generation) 496 return peer; 497 498 return NULL; 499 } 500 501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */ 502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed) 503 { 504 max_rec = min(max_rec, speed + 8); 505 max_rec = min(max_rec, 0xbU); /* <= 4096 */ 506 if (max_rec < 8) { 507 fw_notify("max_rec %x out of range\n", max_rec); 508 max_rec = 8; 509 } 510 511 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE; 512 } 513 514 515 static int fwnet_finish_incoming_packet(struct net_device *net, 516 struct sk_buff *skb, u16 source_node_id, 517 bool is_broadcast, u16 ether_type) 518 { 519 struct fwnet_device *dev; 520 static const __be64 broadcast_hw = cpu_to_be64(~0ULL); 521 int status; 522 __be64 guid; 523 524 dev = netdev_priv(net); 525 /* Write metadata, and then pass to the receive level */ 526 skb->dev = net; 527 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */ 528 529 /* 530 * Parse the encapsulation header. This actually does the job of 531 * converting to an ethernet frame header, as well as arp 532 * conversion if needed. ARP conversion is easier in this 533 * direction, since we are using ethernet as our backend. 534 */ 535 /* 536 * If this is an ARP packet, convert it. First, we want to make 537 * use of some of the fields, since they tell us a little bit 538 * about the sending machine. 539 */ 540 if (ether_type == ETH_P_ARP) { 541 struct rfc2734_arp *arp1394; 542 struct arphdr *arp; 543 unsigned char *arp_ptr; 544 u64 fifo_addr; 545 u64 peer_guid; 546 unsigned sspd; 547 u16 max_payload; 548 struct fwnet_peer *peer; 549 unsigned long flags; 550 551 arp1394 = (struct rfc2734_arp *)skb->data; 552 arp = (struct arphdr *)skb->data; 553 arp_ptr = (unsigned char *)(arp + 1); 554 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id); 555 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32 556 | get_unaligned_be32(&arp1394->fifo_lo); 557 558 sspd = arp1394->sspd; 559 /* Sanity check. OS X 10.3 PPC reportedly sends 131. */ 560 if (sspd > SCODE_3200) { 561 fw_notify("sspd %x out of range\n", sspd); 562 sspd = SCODE_3200; 563 } 564 max_payload = fwnet_max_payload(arp1394->max_rec, sspd); 565 566 spin_lock_irqsave(&dev->lock, flags); 567 peer = fwnet_peer_find_by_guid(dev, peer_guid); 568 if (peer) { 569 peer->fifo = fifo_addr; 570 571 if (peer->speed > sspd) 572 peer->speed = sspd; 573 if (peer->max_payload > max_payload) 574 peer->max_payload = max_payload; 575 } 576 spin_unlock_irqrestore(&dev->lock, flags); 577 578 if (!peer) { 579 fw_notify("No peer for ARP packet from %016llx\n", 580 (unsigned long long)peer_guid); 581 goto failed_proto; 582 } 583 584 /* 585 * Now that we're done with the 1394 specific stuff, we'll 586 * need to alter some of the data. Believe it or not, all 587 * that needs to be done is sender_IP_address needs to be 588 * moved, the destination hardware address get stuffed 589 * in and the hardware address length set to 8. 590 * 591 * IMPORTANT: The code below overwrites 1394 specific data 592 * needed above so keep the munging of the data for the 593 * higher level IP stack last. 594 */ 595 596 arp->ar_hln = 8; 597 /* skip over sender unique id */ 598 arp_ptr += arp->ar_hln; 599 /* move sender IP addr */ 600 put_unaligned(arp1394->sip, (u32 *)arp_ptr); 601 /* skip over sender IP addr */ 602 arp_ptr += arp->ar_pln; 603 604 if (arp->ar_op == htons(ARPOP_REQUEST)) 605 memset(arp_ptr, 0, sizeof(u64)); 606 else 607 memcpy(arp_ptr, net->dev_addr, sizeof(u64)); 608 } 609 610 /* Now add the ethernet header. */ 611 guid = cpu_to_be64(dev->card->guid); 612 if (dev_hard_header(skb, net, ether_type, 613 is_broadcast ? &broadcast_hw : &guid, 614 NULL, skb->len) >= 0) { 615 struct fwnet_header *eth; 616 u16 *rawp; 617 __be16 protocol; 618 619 skb_reset_mac_header(skb); 620 skb_pull(skb, sizeof(*eth)); 621 eth = (struct fwnet_header *)skb_mac_header(skb); 622 if (*eth->h_dest & 1) { 623 if (memcmp(eth->h_dest, net->broadcast, 624 net->addr_len) == 0) 625 skb->pkt_type = PACKET_BROADCAST; 626 #if 0 627 else 628 skb->pkt_type = PACKET_MULTICAST; 629 #endif 630 } else { 631 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len)) 632 skb->pkt_type = PACKET_OTHERHOST; 633 } 634 if (ntohs(eth->h_proto) >= 1536) { 635 protocol = eth->h_proto; 636 } else { 637 rawp = (u16 *)skb->data; 638 if (*rawp == 0xffff) 639 protocol = htons(ETH_P_802_3); 640 else 641 protocol = htons(ETH_P_802_2); 642 } 643 skb->protocol = protocol; 644 } 645 status = netif_rx(skb); 646 if (status == NET_RX_DROP) { 647 net->stats.rx_errors++; 648 net->stats.rx_dropped++; 649 } else { 650 net->stats.rx_packets++; 651 net->stats.rx_bytes += skb->len; 652 } 653 if (netif_queue_stopped(net)) 654 netif_wake_queue(net); 655 656 return 0; 657 658 failed_proto: 659 net->stats.rx_errors++; 660 net->stats.rx_dropped++; 661 662 dev_kfree_skb_any(skb); 663 if (netif_queue_stopped(net)) 664 netif_wake_queue(net); 665 666 net->last_rx = jiffies; 667 668 return 0; 669 } 670 671 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len, 672 int source_node_id, int generation, 673 bool is_broadcast) 674 { 675 struct sk_buff *skb; 676 struct net_device *net = dev->netdev; 677 struct rfc2734_header hdr; 678 unsigned lf; 679 unsigned long flags; 680 struct fwnet_peer *peer; 681 struct fwnet_partial_datagram *pd; 682 int fg_off; 683 int dg_size; 684 u16 datagram_label; 685 int retval; 686 u16 ether_type; 687 688 hdr.w0 = be32_to_cpu(buf[0]); 689 lf = fwnet_get_hdr_lf(&hdr); 690 if (lf == RFC2374_HDR_UNFRAG) { 691 /* 692 * An unfragmented datagram has been received by the ieee1394 693 * bus. Build an skbuff around it so we can pass it to the 694 * high level network layer. 695 */ 696 ether_type = fwnet_get_hdr_ether_type(&hdr); 697 buf++; 698 len -= RFC2374_UNFRAG_HDR_SIZE; 699 700 skb = dev_alloc_skb(len + net->hard_header_len + 15); 701 if (unlikely(!skb)) { 702 fw_error("out of memory\n"); 703 net->stats.rx_dropped++; 704 705 return -1; 706 } 707 skb_reserve(skb, (net->hard_header_len + 15) & ~15); 708 memcpy(skb_put(skb, len), buf, len); 709 710 return fwnet_finish_incoming_packet(net, skb, source_node_id, 711 is_broadcast, ether_type); 712 } 713 /* A datagram fragment has been received, now the fun begins. */ 714 hdr.w1 = ntohl(buf[1]); 715 buf += 2; 716 len -= RFC2374_FRAG_HDR_SIZE; 717 if (lf == RFC2374_HDR_FIRSTFRAG) { 718 ether_type = fwnet_get_hdr_ether_type(&hdr); 719 fg_off = 0; 720 } else { 721 ether_type = 0; 722 fg_off = fwnet_get_hdr_fg_off(&hdr); 723 } 724 datagram_label = fwnet_get_hdr_dgl(&hdr); 725 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */ 726 727 spin_lock_irqsave(&dev->lock, flags); 728 729 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation); 730 if (!peer) 731 goto bad_proto; 732 733 pd = fwnet_pd_find(peer, datagram_label); 734 if (pd == NULL) { 735 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) { 736 /* remove the oldest */ 737 fwnet_pd_delete(list_first_entry(&peer->pd_list, 738 struct fwnet_partial_datagram, pd_link)); 739 peer->pdg_size--; 740 } 741 pd = fwnet_pd_new(net, peer, datagram_label, 742 dg_size, buf, fg_off, len); 743 if (pd == NULL) { 744 retval = -ENOMEM; 745 goto bad_proto; 746 } 747 peer->pdg_size++; 748 } else { 749 if (fwnet_frag_overlap(pd, fg_off, len) || 750 pd->datagram_size != dg_size) { 751 /* 752 * Differing datagram sizes or overlapping fragments, 753 * discard old datagram and start a new one. 754 */ 755 fwnet_pd_delete(pd); 756 pd = fwnet_pd_new(net, peer, datagram_label, 757 dg_size, buf, fg_off, len); 758 if (pd == NULL) { 759 retval = -ENOMEM; 760 peer->pdg_size--; 761 goto bad_proto; 762 } 763 } else { 764 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) { 765 /* 766 * Couldn't save off fragment anyway 767 * so might as well obliterate the 768 * datagram now. 769 */ 770 fwnet_pd_delete(pd); 771 peer->pdg_size--; 772 goto bad_proto; 773 } 774 } 775 } /* new datagram or add to existing one */ 776 777 if (lf == RFC2374_HDR_FIRSTFRAG) 778 pd->ether_type = ether_type; 779 780 if (fwnet_pd_is_complete(pd)) { 781 ether_type = pd->ether_type; 782 peer->pdg_size--; 783 skb = skb_get(pd->skb); 784 fwnet_pd_delete(pd); 785 786 spin_unlock_irqrestore(&dev->lock, flags); 787 788 return fwnet_finish_incoming_packet(net, skb, source_node_id, 789 false, ether_type); 790 } 791 /* 792 * Datagram is not complete, we're done for the 793 * moment. 794 */ 795 spin_unlock_irqrestore(&dev->lock, flags); 796 797 return 0; 798 799 bad_proto: 800 spin_unlock_irqrestore(&dev->lock, flags); 801 802 if (netif_queue_stopped(net)) 803 netif_wake_queue(net); 804 805 return 0; 806 } 807 808 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r, 809 int tcode, int destination, int source, int generation, 810 int speed, unsigned long long offset, void *payload, 811 size_t length, void *callback_data) 812 { 813 struct fwnet_device *dev = callback_data; 814 int rcode; 815 816 if (destination == IEEE1394_ALL_NODES) { 817 kfree(r); 818 819 return; 820 } 821 822 if (offset != dev->handler.offset) 823 rcode = RCODE_ADDRESS_ERROR; 824 else if (tcode != TCODE_WRITE_BLOCK_REQUEST) 825 rcode = RCODE_TYPE_ERROR; 826 else if (fwnet_incoming_packet(dev, payload, length, 827 source, generation, false) != 0) { 828 fw_error("Incoming packet failure\n"); 829 rcode = RCODE_CONFLICT_ERROR; 830 } else 831 rcode = RCODE_COMPLETE; 832 833 fw_send_response(card, r, rcode); 834 } 835 836 static void fwnet_receive_broadcast(struct fw_iso_context *context, 837 u32 cycle, size_t header_length, void *header, void *data) 838 { 839 struct fwnet_device *dev; 840 struct fw_iso_packet packet; 841 struct fw_card *card; 842 __be16 *hdr_ptr; 843 __be32 *buf_ptr; 844 int retval; 845 u32 length; 846 u16 source_node_id; 847 u32 specifier_id; 848 u32 ver; 849 unsigned long offset; 850 unsigned long flags; 851 852 dev = data; 853 card = dev->card; 854 hdr_ptr = header; 855 length = be16_to_cpup(hdr_ptr); 856 857 spin_lock_irqsave(&dev->lock, flags); 858 859 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr; 860 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++]; 861 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs) 862 dev->broadcast_rcv_next_ptr = 0; 863 864 spin_unlock_irqrestore(&dev->lock, flags); 865 866 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8 867 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24; 868 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff; 869 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16; 870 871 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) { 872 buf_ptr += 2; 873 length -= IEEE1394_GASP_HDR_SIZE; 874 fwnet_incoming_packet(dev, buf_ptr, length, 875 source_node_id, -1, true); 876 } 877 878 packet.payload_length = dev->rcv_buffer_size; 879 packet.interrupt = 1; 880 packet.skip = 0; 881 packet.tag = 3; 882 packet.sy = 0; 883 packet.header_length = IEEE1394_GASP_HDR_SIZE; 884 885 spin_lock_irqsave(&dev->lock, flags); 886 887 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet, 888 &dev->broadcast_rcv_buffer, offset); 889 890 spin_unlock_irqrestore(&dev->lock, flags); 891 892 if (retval < 0) 893 fw_error("requeue failed\n"); 894 } 895 896 static struct kmem_cache *fwnet_packet_task_cache; 897 898 static int fwnet_send_packet(struct fwnet_packet_task *ptask); 899 900 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask) 901 { 902 struct fwnet_device *dev; 903 unsigned long flags; 904 905 dev = ptask->dev; 906 907 spin_lock_irqsave(&dev->lock, flags); 908 list_del(&ptask->pt_link); 909 spin_unlock_irqrestore(&dev->lock, flags); 910 911 ptask->outstanding_pkts--; /* FIXME access inside lock */ 912 913 if (ptask->outstanding_pkts > 0) { 914 u16 dg_size; 915 u16 fg_off; 916 u16 datagram_label; 917 u16 lf; 918 struct sk_buff *skb; 919 920 /* Update the ptask to point to the next fragment and send it */ 921 lf = fwnet_get_hdr_lf(&ptask->hdr); 922 switch (lf) { 923 case RFC2374_HDR_LASTFRAG: 924 case RFC2374_HDR_UNFRAG: 925 default: 926 fw_error("Outstanding packet %x lf %x, header %x,%x\n", 927 ptask->outstanding_pkts, lf, ptask->hdr.w0, 928 ptask->hdr.w1); 929 BUG(); 930 931 case RFC2374_HDR_FIRSTFRAG: 932 /* Set frag type here for future interior fragments */ 933 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 934 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 935 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 936 break; 937 938 case RFC2374_HDR_INTFRAG: 939 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 940 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr) 941 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 942 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 943 break; 944 } 945 skb = ptask->skb; 946 skb_pull(skb, ptask->max_payload); 947 if (ptask->outstanding_pkts > 1) { 948 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG, 949 dg_size, fg_off, datagram_label); 950 } else { 951 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG, 952 dg_size, fg_off, datagram_label); 953 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE; 954 } 955 fwnet_send_packet(ptask); 956 } else { 957 dev_kfree_skb_any(ptask->skb); 958 kmem_cache_free(fwnet_packet_task_cache, ptask); 959 } 960 } 961 962 static void fwnet_write_complete(struct fw_card *card, int rcode, 963 void *payload, size_t length, void *data) 964 { 965 struct fwnet_packet_task *ptask; 966 967 ptask = data; 968 969 if (rcode == RCODE_COMPLETE) 970 fwnet_transmit_packet_done(ptask); 971 else 972 fw_error("fwnet_write_complete: failed: %x\n", rcode); 973 /* ??? error recovery */ 974 } 975 976 static int fwnet_send_packet(struct fwnet_packet_task *ptask) 977 { 978 struct fwnet_device *dev; 979 unsigned tx_len; 980 struct rfc2734_header *bufhdr; 981 unsigned long flags; 982 983 dev = ptask->dev; 984 tx_len = ptask->max_payload; 985 switch (fwnet_get_hdr_lf(&ptask->hdr)) { 986 case RFC2374_HDR_UNFRAG: 987 bufhdr = (struct rfc2734_header *) 988 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE); 989 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 990 break; 991 992 case RFC2374_HDR_FIRSTFRAG: 993 case RFC2374_HDR_INTFRAG: 994 case RFC2374_HDR_LASTFRAG: 995 bufhdr = (struct rfc2734_header *) 996 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE); 997 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 998 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1); 999 break; 1000 1001 default: 1002 BUG(); 1003 } 1004 if (ptask->dest_node == IEEE1394_ALL_NODES) { 1005 u8 *p; 1006 int generation; 1007 int node_id; 1008 1009 /* ptask->generation may not have been set yet */ 1010 generation = dev->card->generation; 1011 smp_rmb(); 1012 node_id = dev->card->node_id; 1013 1014 p = skb_push(ptask->skb, 8); 1015 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p); 1016 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24 1017 | RFC2734_SW_VERSION, &p[4]); 1018 1019 /* We should not transmit if broadcast_channel.valid == 0. */ 1020 fw_send_request(dev->card, &ptask->transaction, 1021 TCODE_STREAM_DATA, 1022 fw_stream_packet_destination_id(3, 1023 IEEE1394_BROADCAST_CHANNEL, 0), 1024 generation, SCODE_100, 0ULL, ptask->skb->data, 1025 tx_len + 8, fwnet_write_complete, ptask); 1026 1027 /* FIXME race? */ 1028 spin_lock_irqsave(&dev->lock, flags); 1029 list_add_tail(&ptask->pt_link, &dev->broadcasted_list); 1030 spin_unlock_irqrestore(&dev->lock, flags); 1031 1032 return 0; 1033 } 1034 1035 fw_send_request(dev->card, &ptask->transaction, 1036 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, 1037 ptask->generation, ptask->speed, ptask->fifo_addr, 1038 ptask->skb->data, tx_len, fwnet_write_complete, ptask); 1039 1040 /* FIXME race? */ 1041 spin_lock_irqsave(&dev->lock, flags); 1042 list_add_tail(&ptask->pt_link, &dev->sent_list); 1043 spin_unlock_irqrestore(&dev->lock, flags); 1044 1045 dev->netdev->trans_start = jiffies; 1046 1047 return 0; 1048 } 1049 1050 static int fwnet_broadcast_start(struct fwnet_device *dev) 1051 { 1052 struct fw_iso_context *context; 1053 int retval; 1054 unsigned num_packets; 1055 unsigned max_receive; 1056 struct fw_iso_packet packet; 1057 unsigned long offset; 1058 unsigned u; 1059 1060 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) { 1061 /* outside OHCI posted write area? */ 1062 static const struct fw_address_region region = { 1063 .start = 0xffff00000000ULL, 1064 .end = CSR_REGISTER_BASE, 1065 }; 1066 1067 dev->handler.length = 4096; 1068 dev->handler.address_callback = fwnet_receive_packet; 1069 dev->handler.callback_data = dev; 1070 1071 retval = fw_core_add_address_handler(&dev->handler, ®ion); 1072 if (retval < 0) 1073 goto failed_initial; 1074 1075 dev->local_fifo = dev->handler.offset; 1076 } 1077 1078 max_receive = 1U << (dev->card->max_receive + 1); 1079 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive; 1080 1081 if (!dev->broadcast_rcv_context) { 1082 void **ptrptr; 1083 1084 context = fw_iso_context_create(dev->card, 1085 FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL, 1086 dev->card->link_speed, 8, fwnet_receive_broadcast, dev); 1087 if (IS_ERR(context)) { 1088 retval = PTR_ERR(context); 1089 goto failed_context_create; 1090 } 1091 1092 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, 1093 dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE); 1094 if (retval < 0) 1095 goto failed_buffer_init; 1096 1097 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL); 1098 if (!ptrptr) { 1099 retval = -ENOMEM; 1100 goto failed_ptrs_alloc; 1101 } 1102 1103 dev->broadcast_rcv_buffer_ptrs = ptrptr; 1104 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) { 1105 void *ptr; 1106 unsigned v; 1107 1108 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]); 1109 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++) 1110 *ptrptr++ = (void *) 1111 ((char *)ptr + v * max_receive); 1112 } 1113 dev->broadcast_rcv_context = context; 1114 } else { 1115 context = dev->broadcast_rcv_context; 1116 } 1117 1118 packet.payload_length = max_receive; 1119 packet.interrupt = 1; 1120 packet.skip = 0; 1121 packet.tag = 3; 1122 packet.sy = 0; 1123 packet.header_length = IEEE1394_GASP_HDR_SIZE; 1124 offset = 0; 1125 1126 for (u = 0; u < num_packets; u++) { 1127 retval = fw_iso_context_queue(context, &packet, 1128 &dev->broadcast_rcv_buffer, offset); 1129 if (retval < 0) 1130 goto failed_rcv_queue; 1131 1132 offset += max_receive; 1133 } 1134 dev->num_broadcast_rcv_ptrs = num_packets; 1135 dev->rcv_buffer_size = max_receive; 1136 dev->broadcast_rcv_next_ptr = 0U; 1137 retval = fw_iso_context_start(context, -1, 0, 1138 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */ 1139 if (retval < 0) 1140 goto failed_rcv_queue; 1141 1142 /* FIXME: adjust it according to the min. speed of all known peers? */ 1143 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100 1144 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE; 1145 dev->broadcast_state = FWNET_BROADCAST_RUNNING; 1146 1147 return 0; 1148 1149 failed_rcv_queue: 1150 kfree(dev->broadcast_rcv_buffer_ptrs); 1151 dev->broadcast_rcv_buffer_ptrs = NULL; 1152 failed_ptrs_alloc: 1153 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card); 1154 failed_buffer_init: 1155 fw_iso_context_destroy(context); 1156 dev->broadcast_rcv_context = NULL; 1157 failed_context_create: 1158 fw_core_remove_address_handler(&dev->handler); 1159 failed_initial: 1160 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1161 1162 return retval; 1163 } 1164 1165 /* ifup */ 1166 static int fwnet_open(struct net_device *net) 1167 { 1168 struct fwnet_device *dev = netdev_priv(net); 1169 int ret; 1170 1171 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) { 1172 ret = fwnet_broadcast_start(dev); 1173 if (ret) 1174 return ret; 1175 } 1176 netif_start_queue(net); 1177 1178 return 0; 1179 } 1180 1181 /* ifdown */ 1182 static int fwnet_stop(struct net_device *net) 1183 { 1184 netif_stop_queue(net); 1185 1186 /* Deallocate iso context for use by other applications? */ 1187 1188 return 0; 1189 } 1190 1191 static int fwnet_tx(struct sk_buff *skb, struct net_device *net) 1192 { 1193 struct fwnet_header hdr_buf; 1194 struct fwnet_device *dev = netdev_priv(net); 1195 __be16 proto; 1196 u16 dest_node; 1197 unsigned max_payload; 1198 u16 dg_size; 1199 u16 *datagram_label_ptr; 1200 struct fwnet_packet_task *ptask; 1201 struct fwnet_peer *peer; 1202 unsigned long flags; 1203 1204 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC); 1205 if (ptask == NULL) 1206 goto fail; 1207 1208 skb = skb_share_check(skb, GFP_ATOMIC); 1209 if (!skb) 1210 goto fail; 1211 1212 /* 1213 * Make a copy of the driver-specific header. 1214 * We might need to rebuild the header on tx failure. 1215 */ 1216 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); 1217 skb_pull(skb, sizeof(hdr_buf)); 1218 1219 proto = hdr_buf.h_proto; 1220 dg_size = skb->len; 1221 1222 /* serialize access to peer, including peer->datagram_label */ 1223 spin_lock_irqsave(&dev->lock, flags); 1224 1225 /* 1226 * Set the transmission type for the packet. ARP packets and IP 1227 * broadcast packets are sent via GASP. 1228 */ 1229 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0 1230 || proto == htons(ETH_P_ARP) 1231 || (proto == htons(ETH_P_IP) 1232 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) { 1233 max_payload = dev->broadcast_xmt_max_payload; 1234 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel; 1235 1236 ptask->fifo_addr = FWNET_NO_FIFO_ADDR; 1237 ptask->generation = 0; 1238 ptask->dest_node = IEEE1394_ALL_NODES; 1239 ptask->speed = SCODE_100; 1240 } else { 1241 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest); 1242 u8 generation; 1243 1244 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid)); 1245 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR) 1246 goto fail_unlock; 1247 1248 generation = peer->generation; 1249 dest_node = peer->node_id; 1250 max_payload = peer->max_payload; 1251 datagram_label_ptr = &peer->datagram_label; 1252 1253 ptask->fifo_addr = peer->fifo; 1254 ptask->generation = generation; 1255 ptask->dest_node = dest_node; 1256 ptask->speed = peer->speed; 1257 } 1258 1259 /* If this is an ARP packet, convert it */ 1260 if (proto == htons(ETH_P_ARP)) { 1261 struct arphdr *arp = (struct arphdr *)skb->data; 1262 unsigned char *arp_ptr = (unsigned char *)(arp + 1); 1263 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data; 1264 __be32 ipaddr; 1265 1266 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN)); 1267 1268 arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN; 1269 arp1394->max_rec = dev->card->max_receive; 1270 arp1394->sspd = dev->card->link_speed; 1271 1272 put_unaligned_be16(dev->local_fifo >> 32, 1273 &arp1394->fifo_hi); 1274 put_unaligned_be32(dev->local_fifo & 0xffffffff, 1275 &arp1394->fifo_lo); 1276 put_unaligned(ipaddr, &arp1394->sip); 1277 } 1278 1279 ptask->hdr.w0 = 0; 1280 ptask->hdr.w1 = 0; 1281 ptask->skb = skb; 1282 ptask->dev = dev; 1283 1284 /* Does it all fit in one packet? */ 1285 if (dg_size <= max_payload) { 1286 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto)); 1287 ptask->outstanding_pkts = 1; 1288 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE; 1289 } else { 1290 u16 datagram_label; 1291 1292 max_payload -= RFC2374_FRAG_OVERHEAD; 1293 datagram_label = (*datagram_label_ptr)++; 1294 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size, 1295 datagram_label); 1296 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); 1297 max_payload += RFC2374_FRAG_HDR_SIZE; 1298 } 1299 1300 spin_unlock_irqrestore(&dev->lock, flags); 1301 1302 ptask->max_payload = max_payload; 1303 fwnet_send_packet(ptask); 1304 1305 return NETDEV_TX_OK; 1306 1307 fail_unlock: 1308 spin_unlock_irqrestore(&dev->lock, flags); 1309 fail: 1310 if (ptask) 1311 kmem_cache_free(fwnet_packet_task_cache, ptask); 1312 1313 if (skb != NULL) 1314 dev_kfree_skb(skb); 1315 1316 net->stats.tx_dropped++; 1317 net->stats.tx_errors++; 1318 1319 /* 1320 * FIXME: According to a patch from 2003-02-26, "returning non-zero 1321 * causes serious problems" here, allegedly. Before that patch, 1322 * -ERRNO was returned which is not appropriate under Linux 2.6. 1323 * Perhaps more needs to be done? Stop the queue in serious 1324 * conditions and restart it elsewhere? 1325 */ 1326 return NETDEV_TX_OK; 1327 } 1328 1329 static int fwnet_change_mtu(struct net_device *net, int new_mtu) 1330 { 1331 if (new_mtu < 68) 1332 return -EINVAL; 1333 1334 net->mtu = new_mtu; 1335 return 0; 1336 } 1337 1338 static void fwnet_get_drvinfo(struct net_device *net, 1339 struct ethtool_drvinfo *info) 1340 { 1341 strcpy(info->driver, KBUILD_MODNAME); 1342 strcpy(info->bus_info, "ieee1394"); 1343 } 1344 1345 static struct ethtool_ops fwnet_ethtool_ops = { 1346 .get_drvinfo = fwnet_get_drvinfo, 1347 }; 1348 1349 static const struct net_device_ops fwnet_netdev_ops = { 1350 .ndo_open = fwnet_open, 1351 .ndo_stop = fwnet_stop, 1352 .ndo_start_xmit = fwnet_tx, 1353 .ndo_change_mtu = fwnet_change_mtu, 1354 }; 1355 1356 static void fwnet_init_dev(struct net_device *net) 1357 { 1358 net->header_ops = &fwnet_header_ops; 1359 net->netdev_ops = &fwnet_netdev_ops; 1360 net->watchdog_timeo = 2 * HZ; 1361 net->flags = IFF_BROADCAST | IFF_MULTICAST; 1362 net->features = NETIF_F_HIGHDMA; 1363 net->addr_len = FWNET_ALEN; 1364 net->hard_header_len = FWNET_HLEN; 1365 net->type = ARPHRD_IEEE1394; 1366 net->tx_queue_len = 10; 1367 SET_ETHTOOL_OPS(net, &fwnet_ethtool_ops); 1368 } 1369 1370 /* caller must hold fwnet_device_mutex */ 1371 static struct fwnet_device *fwnet_dev_find(struct fw_card *card) 1372 { 1373 struct fwnet_device *dev; 1374 1375 list_for_each_entry(dev, &fwnet_device_list, dev_link) 1376 if (dev->card == card) 1377 return dev; 1378 1379 return NULL; 1380 } 1381 1382 static int fwnet_add_peer(struct fwnet_device *dev, 1383 struct fw_unit *unit, struct fw_device *device) 1384 { 1385 struct fwnet_peer *peer; 1386 1387 peer = kmalloc(sizeof(*peer), GFP_KERNEL); 1388 if (!peer) 1389 return -ENOMEM; 1390 1391 dev_set_drvdata(&unit->device, peer); 1392 1393 peer->dev = dev; 1394 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1395 peer->fifo = FWNET_NO_FIFO_ADDR; 1396 INIT_LIST_HEAD(&peer->pd_list); 1397 peer->pdg_size = 0; 1398 peer->datagram_label = 0; 1399 peer->speed = device->max_speed; 1400 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed); 1401 1402 peer->generation = device->generation; 1403 smp_rmb(); 1404 peer->node_id = device->node_id; 1405 1406 spin_lock_irq(&dev->lock); 1407 list_add_tail(&peer->peer_link, &dev->peer_list); 1408 spin_unlock_irq(&dev->lock); 1409 1410 return 0; 1411 } 1412 1413 static int fwnet_probe(struct device *_dev) 1414 { 1415 struct fw_unit *unit = fw_unit(_dev); 1416 struct fw_device *device = fw_parent_device(unit); 1417 struct fw_card *card = device->card; 1418 struct net_device *net; 1419 bool allocated_netdev = false; 1420 struct fwnet_device *dev; 1421 unsigned max_mtu; 1422 int ret; 1423 1424 mutex_lock(&fwnet_device_mutex); 1425 1426 dev = fwnet_dev_find(card); 1427 if (dev) { 1428 net = dev->netdev; 1429 goto have_dev; 1430 } 1431 1432 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev); 1433 if (net == NULL) { 1434 ret = -ENOMEM; 1435 goto out; 1436 } 1437 1438 allocated_netdev = true; 1439 SET_NETDEV_DEV(net, card->device); 1440 dev = netdev_priv(net); 1441 1442 spin_lock_init(&dev->lock); 1443 dev->broadcast_state = FWNET_BROADCAST_ERROR; 1444 dev->broadcast_rcv_context = NULL; 1445 dev->broadcast_xmt_max_payload = 0; 1446 dev->broadcast_xmt_datagramlabel = 0; 1447 1448 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1449 1450 INIT_LIST_HEAD(&dev->packet_list); 1451 INIT_LIST_HEAD(&dev->broadcasted_list); 1452 INIT_LIST_HEAD(&dev->sent_list); 1453 INIT_LIST_HEAD(&dev->peer_list); 1454 1455 dev->card = card; 1456 dev->netdev = net; 1457 1458 /* 1459 * Use the RFC 2734 default 1500 octets or the maximum payload 1460 * as initial MTU 1461 */ 1462 max_mtu = (1 << (card->max_receive + 1)) 1463 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE; 1464 net->mtu = min(1500U, max_mtu); 1465 1466 /* Set our hardware address while we're at it */ 1467 put_unaligned_be64(card->guid, net->dev_addr); 1468 put_unaligned_be64(~0ULL, net->broadcast); 1469 ret = register_netdev(net); 1470 if (ret) { 1471 fw_error("Cannot register the driver\n"); 1472 goto out; 1473 } 1474 1475 list_add_tail(&dev->dev_link, &fwnet_device_list); 1476 fw_notify("%s: IPv4 over FireWire on device %016llx\n", 1477 net->name, (unsigned long long)card->guid); 1478 have_dev: 1479 ret = fwnet_add_peer(dev, unit, device); 1480 if (ret && allocated_netdev) { 1481 unregister_netdev(net); 1482 list_del(&dev->dev_link); 1483 } 1484 out: 1485 if (ret && allocated_netdev) 1486 free_netdev(net); 1487 1488 mutex_unlock(&fwnet_device_mutex); 1489 1490 return ret; 1491 } 1492 1493 static void fwnet_remove_peer(struct fwnet_peer *peer) 1494 { 1495 struct fwnet_partial_datagram *pd, *pd_next; 1496 1497 spin_lock_irq(&peer->dev->lock); 1498 list_del(&peer->peer_link); 1499 spin_unlock_irq(&peer->dev->lock); 1500 1501 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link) 1502 fwnet_pd_delete(pd); 1503 1504 kfree(peer); 1505 } 1506 1507 static int fwnet_remove(struct device *_dev) 1508 { 1509 struct fwnet_peer *peer = dev_get_drvdata(_dev); 1510 struct fwnet_device *dev = peer->dev; 1511 struct net_device *net; 1512 struct fwnet_packet_task *ptask, *pt_next; 1513 1514 mutex_lock(&fwnet_device_mutex); 1515 1516 fwnet_remove_peer(peer); 1517 1518 if (list_empty(&dev->peer_list)) { 1519 net = dev->netdev; 1520 unregister_netdev(net); 1521 1522 if (dev->local_fifo != FWNET_NO_FIFO_ADDR) 1523 fw_core_remove_address_handler(&dev->handler); 1524 if (dev->broadcast_rcv_context) { 1525 fw_iso_context_stop(dev->broadcast_rcv_context); 1526 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, 1527 dev->card); 1528 fw_iso_context_destroy(dev->broadcast_rcv_context); 1529 } 1530 list_for_each_entry_safe(ptask, pt_next, 1531 &dev->packet_list, pt_link) { 1532 dev_kfree_skb_any(ptask->skb); 1533 kmem_cache_free(fwnet_packet_task_cache, ptask); 1534 } 1535 list_for_each_entry_safe(ptask, pt_next, 1536 &dev->broadcasted_list, pt_link) { 1537 dev_kfree_skb_any(ptask->skb); 1538 kmem_cache_free(fwnet_packet_task_cache, ptask); 1539 } 1540 list_for_each_entry_safe(ptask, pt_next, 1541 &dev->sent_list, pt_link) { 1542 dev_kfree_skb_any(ptask->skb); 1543 kmem_cache_free(fwnet_packet_task_cache, ptask); 1544 } 1545 list_del(&dev->dev_link); 1546 1547 free_netdev(net); 1548 } 1549 1550 mutex_unlock(&fwnet_device_mutex); 1551 1552 return 0; 1553 } 1554 1555 /* 1556 * FIXME abort partially sent fragmented datagrams, 1557 * discard partially received fragmented datagrams 1558 */ 1559 static void fwnet_update(struct fw_unit *unit) 1560 { 1561 struct fw_device *device = fw_parent_device(unit); 1562 struct fwnet_peer *peer = dev_get_drvdata(&unit->device); 1563 int generation; 1564 1565 generation = device->generation; 1566 1567 spin_lock_irq(&peer->dev->lock); 1568 peer->node_id = device->node_id; 1569 peer->generation = generation; 1570 spin_unlock_irq(&peer->dev->lock); 1571 } 1572 1573 static const struct ieee1394_device_id fwnet_id_table[] = { 1574 { 1575 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1576 IEEE1394_MATCH_VERSION, 1577 .specifier_id = IANA_SPECIFIER_ID, 1578 .version = RFC2734_SW_VERSION, 1579 }, 1580 { } 1581 }; 1582 1583 static struct fw_driver fwnet_driver = { 1584 .driver = { 1585 .owner = THIS_MODULE, 1586 .name = "net", 1587 .bus = &fw_bus_type, 1588 .probe = fwnet_probe, 1589 .remove = fwnet_remove, 1590 }, 1591 .update = fwnet_update, 1592 .id_table = fwnet_id_table, 1593 }; 1594 1595 static const u32 rfc2374_unit_directory_data[] = { 1596 0x00040000, /* directory_length */ 1597 0x1200005e, /* unit_specifier_id: IANA */ 1598 0x81000003, /* textual descriptor offset */ 1599 0x13000001, /* unit_sw_version: RFC 2734 */ 1600 0x81000005, /* textual descriptor offset */ 1601 0x00030000, /* descriptor_length */ 1602 0x00000000, /* text */ 1603 0x00000000, /* minimal ASCII, en */ 1604 0x49414e41, /* I A N A */ 1605 0x00030000, /* descriptor_length */ 1606 0x00000000, /* text */ 1607 0x00000000, /* minimal ASCII, en */ 1608 0x49507634, /* I P v 4 */ 1609 }; 1610 1611 static struct fw_descriptor rfc2374_unit_directory = { 1612 .length = ARRAY_SIZE(rfc2374_unit_directory_data), 1613 .key = (CSR_DIRECTORY | CSR_UNIT) << 24, 1614 .data = rfc2374_unit_directory_data 1615 }; 1616 1617 static int __init fwnet_init(void) 1618 { 1619 int err; 1620 1621 err = fw_core_add_descriptor(&rfc2374_unit_directory); 1622 if (err) 1623 return err; 1624 1625 fwnet_packet_task_cache = kmem_cache_create("packet_task", 1626 sizeof(struct fwnet_packet_task), 0, 0, NULL); 1627 if (!fwnet_packet_task_cache) { 1628 err = -ENOMEM; 1629 goto out; 1630 } 1631 1632 err = driver_register(&fwnet_driver.driver); 1633 if (!err) 1634 return 0; 1635 1636 kmem_cache_destroy(fwnet_packet_task_cache); 1637 out: 1638 fw_core_remove_descriptor(&rfc2374_unit_directory); 1639 1640 return err; 1641 } 1642 module_init(fwnet_init); 1643 1644 static void __exit fwnet_cleanup(void) 1645 { 1646 driver_unregister(&fwnet_driver.driver); 1647 kmem_cache_destroy(fwnet_packet_task_cache); 1648 fw_core_remove_descriptor(&rfc2374_unit_directory); 1649 } 1650 module_exit(fwnet_cleanup); 1651 1652 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>"); 1653 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734"); 1654 MODULE_LICENSE("GPL"); 1655 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table); 1656