xref: /linux/drivers/firewire/net.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/device.h>
11 #include <linux/ethtool.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/highmem.h>
15 #include <linux/in.h>
16 #include <linux/ip.h>
17 #include <linux/jiffies.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/mutex.h>
22 #include <linux/netdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25 
26 #include <asm/unaligned.h>
27 #include <net/arp.h>
28 
29 #define FWNET_MAX_FRAGMENTS	25	/* arbitrary limit */
30 #define FWNET_ISO_PAGE_COUNT	(PAGE_SIZE < 16 * 1024 ? 4 : 2)
31 
32 #define IEEE1394_BROADCAST_CHANNEL	31
33 #define IEEE1394_ALL_NODES		(0xffc0 | 0x003f)
34 #define IEEE1394_MAX_PAYLOAD_S100	512
35 #define FWNET_NO_FIFO_ADDR		(~0ULL)
36 
37 #define IANA_SPECIFIER_ID		0x00005eU
38 #define RFC2734_SW_VERSION		0x000001U
39 
40 #define IEEE1394_GASP_HDR_SIZE	8
41 
42 #define RFC2374_UNFRAG_HDR_SIZE	4
43 #define RFC2374_FRAG_HDR_SIZE	8
44 #define RFC2374_FRAG_OVERHEAD	4
45 
46 #define RFC2374_HDR_UNFRAG	0	/* unfragmented		*/
47 #define RFC2374_HDR_FIRSTFRAG	1	/* first fragment	*/
48 #define RFC2374_HDR_LASTFRAG	2	/* last fragment	*/
49 #define RFC2374_HDR_INTFRAG	3	/* interior fragment	*/
50 
51 #define RFC2734_HW_ADDR_LEN	16
52 
53 struct rfc2734_arp {
54 	__be16 hw_type;		/* 0x0018	*/
55 	__be16 proto_type;	/* 0x0806       */
56 	u8 hw_addr_len;		/* 16		*/
57 	u8 ip_addr_len;		/* 4		*/
58 	__be16 opcode;		/* ARP Opcode	*/
59 	/* Above is exactly the same format as struct arphdr */
60 
61 	__be64 s_uniq_id;	/* Sender's 64bit EUI			*/
62 	u8 max_rec;		/* Sender's max packet size		*/
63 	u8 sspd;		/* Sender's max speed			*/
64 	__be16 fifo_hi;		/* hi 16bits of sender's FIFO addr	*/
65 	__be32 fifo_lo;		/* lo 32bits of sender's FIFO addr	*/
66 	__be32 sip;		/* Sender's IP Address			*/
67 	__be32 tip;		/* IP Address of requested hw addr	*/
68 } __attribute__((packed));
69 
70 /* This header format is specific to this driver implementation. */
71 #define FWNET_ALEN	8
72 #define FWNET_HLEN	10
73 struct fwnet_header {
74 	u8 h_dest[FWNET_ALEN];	/* destination address */
75 	__be16 h_proto;		/* packet type ID field */
76 } __attribute__((packed));
77 
78 /* IPv4 and IPv6 encapsulation header */
79 struct rfc2734_header {
80 	u32 w0;
81 	u32 w1;
82 };
83 
84 #define fwnet_get_hdr_lf(h)		(((h)->w0 & 0xc0000000) >> 30)
85 #define fwnet_get_hdr_ether_type(h)	(((h)->w0 & 0x0000ffff))
86 #define fwnet_get_hdr_dg_size(h)	(((h)->w0 & 0x0fff0000) >> 16)
87 #define fwnet_get_hdr_fg_off(h)		(((h)->w0 & 0x00000fff))
88 #define fwnet_get_hdr_dgl(h)		(((h)->w1 & 0xffff0000) >> 16)
89 
90 #define fwnet_set_hdr_lf(lf)		((lf)  << 30)
91 #define fwnet_set_hdr_ether_type(et)	(et)
92 #define fwnet_set_hdr_dg_size(dgs)	((dgs) << 16)
93 #define fwnet_set_hdr_fg_off(fgo)	(fgo)
94 
95 #define fwnet_set_hdr_dgl(dgl)		((dgl) << 16)
96 
97 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
98 		unsigned ether_type)
99 {
100 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
101 		  | fwnet_set_hdr_ether_type(ether_type);
102 }
103 
104 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
105 		unsigned ether_type, unsigned dg_size, unsigned dgl)
106 {
107 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
108 		  | fwnet_set_hdr_dg_size(dg_size)
109 		  | fwnet_set_hdr_ether_type(ether_type);
110 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
111 }
112 
113 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
114 		unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
115 {
116 	hdr->w0 = fwnet_set_hdr_lf(lf)
117 		  | fwnet_set_hdr_dg_size(dg_size)
118 		  | fwnet_set_hdr_fg_off(fg_off);
119 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 }
121 
122 /* This list keeps track of what parts of the datagram have been filled in */
123 struct fwnet_fragment_info {
124 	struct list_head fi_link;
125 	u16 offset;
126 	u16 len;
127 };
128 
129 struct fwnet_partial_datagram {
130 	struct list_head pd_link;
131 	struct list_head fi_list;
132 	struct sk_buff *skb;
133 	/* FIXME Why not use skb->data? */
134 	char *pbuf;
135 	u16 datagram_label;
136 	u16 ether_type;
137 	u16 datagram_size;
138 };
139 
140 static DEFINE_MUTEX(fwnet_device_mutex);
141 static LIST_HEAD(fwnet_device_list);
142 
143 struct fwnet_device {
144 	struct list_head dev_link;
145 	spinlock_t lock;
146 	enum {
147 		FWNET_BROADCAST_ERROR,
148 		FWNET_BROADCAST_RUNNING,
149 		FWNET_BROADCAST_STOPPED,
150 	} broadcast_state;
151 	struct fw_iso_context *broadcast_rcv_context;
152 	struct fw_iso_buffer broadcast_rcv_buffer;
153 	void **broadcast_rcv_buffer_ptrs;
154 	unsigned broadcast_rcv_next_ptr;
155 	unsigned num_broadcast_rcv_ptrs;
156 	unsigned rcv_buffer_size;
157 	/*
158 	 * This value is the maximum unfragmented datagram size that can be
159 	 * sent by the hardware.  It already has the GASP overhead and the
160 	 * unfragmented datagram header overhead calculated into it.
161 	 */
162 	unsigned broadcast_xmt_max_payload;
163 	u16 broadcast_xmt_datagramlabel;
164 
165 	/*
166 	 * The CSR address that remote nodes must send datagrams to for us to
167 	 * receive them.
168 	 */
169 	struct fw_address_handler handler;
170 	u64 local_fifo;
171 
172 	/* List of packets to be sent */
173 	struct list_head packet_list;
174 	/*
175 	 * List of packets that were broadcasted.  When we get an ISO interrupt
176 	 * one of them has been sent
177 	 */
178 	struct list_head broadcasted_list;
179 	/* List of packets that have been sent but not yet acked */
180 	struct list_head sent_list;
181 
182 	struct list_head peer_list;
183 	struct fw_card *card;
184 	struct net_device *netdev;
185 };
186 
187 struct fwnet_peer {
188 	struct list_head peer_link;
189 	struct fwnet_device *dev;
190 	u64 guid;
191 	u64 fifo;
192 
193 	/* guarded by dev->lock */
194 	struct list_head pd_list; /* received partial datagrams */
195 	unsigned pdg_size;        /* pd_list size */
196 
197 	u16 datagram_label;       /* outgoing datagram label */
198 	unsigned max_payload;     /* includes RFC2374_FRAG_HDR_SIZE overhead */
199 	int node_id;
200 	int generation;
201 	unsigned speed;
202 };
203 
204 /* This is our task struct. It's used for the packet complete callback.  */
205 struct fwnet_packet_task {
206 	/*
207 	 * ptask can actually be on dev->packet_list, dev->broadcasted_list,
208 	 * or dev->sent_list depending on its current state.
209 	 */
210 	struct list_head pt_link;
211 	struct fw_transaction transaction;
212 	struct rfc2734_header hdr;
213 	struct sk_buff *skb;
214 	struct fwnet_device *dev;
215 
216 	int outstanding_pkts;
217 	unsigned max_payload;
218 	u64 fifo_addr;
219 	u16 dest_node;
220 	u8 generation;
221 	u8 speed;
222 };
223 
224 /*
225  * saddr == NULL means use device source address.
226  * daddr == NULL means leave destination address (eg unresolved arp).
227  */
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229 			unsigned short type, const void *daddr,
230 			const void *saddr, unsigned len)
231 {
232 	struct fwnet_header *h;
233 
234 	h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235 	put_unaligned_be16(type, &h->h_proto);
236 
237 	if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238 		memset(h->h_dest, 0, net->addr_len);
239 
240 		return net->hard_header_len;
241 	}
242 
243 	if (daddr) {
244 		memcpy(h->h_dest, daddr, net->addr_len);
245 
246 		return net->hard_header_len;
247 	}
248 
249 	return -net->hard_header_len;
250 }
251 
252 static int fwnet_header_rebuild(struct sk_buff *skb)
253 {
254 	struct fwnet_header *h = (struct fwnet_header *)skb->data;
255 
256 	if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257 		return arp_find((unsigned char *)&h->h_dest, skb);
258 
259 	fw_notify("%s: unable to resolve type %04x addresses\n",
260 		  skb->dev->name, be16_to_cpu(h->h_proto));
261 	return 0;
262 }
263 
264 static int fwnet_header_cache(const struct neighbour *neigh,
265 			      struct hh_cache *hh)
266 {
267 	struct net_device *net;
268 	struct fwnet_header *h;
269 
270 	if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
271 		return -1;
272 	net = neigh->dev;
273 	h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274 	h->h_proto = hh->hh_type;
275 	memcpy(h->h_dest, neigh->ha, net->addr_len);
276 	hh->hh_len = FWNET_HLEN;
277 
278 	return 0;
279 }
280 
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283 		const struct net_device *net, const unsigned char *haddr)
284 {
285 	memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
286 }
287 
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 {
290 	memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291 
292 	return FWNET_ALEN;
293 }
294 
295 static const struct header_ops fwnet_header_ops = {
296 	.create         = fwnet_header_create,
297 	.rebuild        = fwnet_header_rebuild,
298 	.cache		= fwnet_header_cache,
299 	.cache_update	= fwnet_header_cache_update,
300 	.parse          = fwnet_header_parse,
301 };
302 
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305 			       unsigned offset, unsigned len)
306 {
307 	struct fwnet_fragment_info *fi;
308 	unsigned end = offset + len;
309 
310 	list_for_each_entry(fi, &pd->fi_list, fi_link)
311 		if (offset < fi->offset + fi->len && end > fi->offset)
312 			return true;
313 
314 	return false;
315 }
316 
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319 	struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 {
321 	struct fwnet_fragment_info *fi, *fi2, *new;
322 	struct list_head *list;
323 
324 	list = &pd->fi_list;
325 	list_for_each_entry(fi, &pd->fi_list, fi_link) {
326 		if (fi->offset + fi->len == offset) {
327 			/* The new fragment can be tacked on to the end */
328 			/* Did the new fragment plug a hole? */
329 			fi2 = list_entry(fi->fi_link.next,
330 					 struct fwnet_fragment_info, fi_link);
331 			if (fi->offset + fi->len == fi2->offset) {
332 				/* glue fragments together */
333 				fi->len += len + fi2->len;
334 				list_del(&fi2->fi_link);
335 				kfree(fi2);
336 			} else {
337 				fi->len += len;
338 			}
339 
340 			return fi;
341 		}
342 		if (offset + len == fi->offset) {
343 			/* The new fragment can be tacked on to the beginning */
344 			/* Did the new fragment plug a hole? */
345 			fi2 = list_entry(fi->fi_link.prev,
346 					 struct fwnet_fragment_info, fi_link);
347 			if (fi2->offset + fi2->len == fi->offset) {
348 				/* glue fragments together */
349 				fi2->len += fi->len + len;
350 				list_del(&fi->fi_link);
351 				kfree(fi);
352 
353 				return fi2;
354 			}
355 			fi->offset = offset;
356 			fi->len += len;
357 
358 			return fi;
359 		}
360 		if (offset > fi->offset + fi->len) {
361 			list = &fi->fi_link;
362 			break;
363 		}
364 		if (offset + len < fi->offset) {
365 			list = fi->fi_link.prev;
366 			break;
367 		}
368 	}
369 
370 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
371 	if (!new) {
372 		fw_error("out of memory\n");
373 		return NULL;
374 	}
375 
376 	new->offset = offset;
377 	new->len = len;
378 	list_add(&new->fi_link, list);
379 
380 	return new;
381 }
382 
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384 		struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385 		void *frag_buf, unsigned frag_off, unsigned frag_len)
386 {
387 	struct fwnet_partial_datagram *new;
388 	struct fwnet_fragment_info *fi;
389 
390 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
391 	if (!new)
392 		goto fail;
393 
394 	INIT_LIST_HEAD(&new->fi_list);
395 	fi = fwnet_frag_new(new, frag_off, frag_len);
396 	if (fi == NULL)
397 		goto fail_w_new;
398 
399 	new->datagram_label = datagram_label;
400 	new->datagram_size = dg_size;
401 	new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402 	if (new->skb == NULL)
403 		goto fail_w_fi;
404 
405 	skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406 	new->pbuf = skb_put(new->skb, dg_size);
407 	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408 	list_add_tail(&new->pd_link, &peer->pd_list);
409 
410 	return new;
411 
412 fail_w_fi:
413 	kfree(fi);
414 fail_w_new:
415 	kfree(new);
416 fail:
417 	fw_error("out of memory\n");
418 
419 	return NULL;
420 }
421 
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423 						    u16 datagram_label)
424 {
425 	struct fwnet_partial_datagram *pd;
426 
427 	list_for_each_entry(pd, &peer->pd_list, pd_link)
428 		if (pd->datagram_label == datagram_label)
429 			return pd;
430 
431 	return NULL;
432 }
433 
434 
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 {
437 	struct fwnet_fragment_info *fi, *n;
438 
439 	list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440 		kfree(fi);
441 
442 	list_del(&old->pd_link);
443 	dev_kfree_skb_any(old->skb);
444 	kfree(old);
445 }
446 
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448 		struct fwnet_partial_datagram *pd, void *frag_buf,
449 		unsigned frag_off, unsigned frag_len)
450 {
451 	if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452 		return false;
453 
454 	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
455 
456 	/*
457 	 * Move list entry to beginnig of list so that oldest partial
458 	 * datagrams percolate to the end of the list
459 	 */
460 	list_move_tail(&pd->pd_link, &peer->pd_list);
461 
462 	return true;
463 }
464 
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 {
467 	struct fwnet_fragment_info *fi;
468 
469 	fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470 
471 	return fi->len == pd->datagram_size;
472 }
473 
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476 						  u64 guid)
477 {
478 	struct fwnet_peer *peer;
479 
480 	list_for_each_entry(peer, &dev->peer_list, peer_link)
481 		if (peer->guid == guid)
482 			return peer;
483 
484 	return NULL;
485 }
486 
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489 						int node_id, int generation)
490 {
491 	struct fwnet_peer *peer;
492 
493 	list_for_each_entry(peer, &dev->peer_list, peer_link)
494 		if (peer->node_id    == node_id &&
495 		    peer->generation == generation)
496 			return peer;
497 
498 	return NULL;
499 }
500 
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 {
504 	max_rec = min(max_rec, speed + 8);
505 	max_rec = min(max_rec, 0xbU); /* <= 4096 */
506 	if (max_rec < 8) {
507 		fw_notify("max_rec %x out of range\n", max_rec);
508 		max_rec = 8;
509 	}
510 
511 	return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
512 }
513 
514 
515 static int fwnet_finish_incoming_packet(struct net_device *net,
516 					struct sk_buff *skb, u16 source_node_id,
517 					bool is_broadcast, u16 ether_type)
518 {
519 	struct fwnet_device *dev;
520 	static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
521 	int status;
522 	__be64 guid;
523 
524 	dev = netdev_priv(net);
525 	/* Write metadata, and then pass to the receive level */
526 	skb->dev = net;
527 	skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
528 
529 	/*
530 	 * Parse the encapsulation header. This actually does the job of
531 	 * converting to an ethernet frame header, as well as arp
532 	 * conversion if needed. ARP conversion is easier in this
533 	 * direction, since we are using ethernet as our backend.
534 	 */
535 	/*
536 	 * If this is an ARP packet, convert it. First, we want to make
537 	 * use of some of the fields, since they tell us a little bit
538 	 * about the sending machine.
539 	 */
540 	if (ether_type == ETH_P_ARP) {
541 		struct rfc2734_arp *arp1394;
542 		struct arphdr *arp;
543 		unsigned char *arp_ptr;
544 		u64 fifo_addr;
545 		u64 peer_guid;
546 		unsigned sspd;
547 		u16 max_payload;
548 		struct fwnet_peer *peer;
549 		unsigned long flags;
550 
551 		arp1394   = (struct rfc2734_arp *)skb->data;
552 		arp       = (struct arphdr *)skb->data;
553 		arp_ptr   = (unsigned char *)(arp + 1);
554 		peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
555 		fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
556 				| get_unaligned_be32(&arp1394->fifo_lo);
557 
558 		sspd = arp1394->sspd;
559 		/* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
560 		if (sspd > SCODE_3200) {
561 			fw_notify("sspd %x out of range\n", sspd);
562 			sspd = SCODE_3200;
563 		}
564 		max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
565 
566 		spin_lock_irqsave(&dev->lock, flags);
567 		peer = fwnet_peer_find_by_guid(dev, peer_guid);
568 		if (peer) {
569 			peer->fifo = fifo_addr;
570 
571 			if (peer->speed > sspd)
572 				peer->speed = sspd;
573 			if (peer->max_payload > max_payload)
574 				peer->max_payload = max_payload;
575 		}
576 		spin_unlock_irqrestore(&dev->lock, flags);
577 
578 		if (!peer) {
579 			fw_notify("No peer for ARP packet from %016llx\n",
580 				  (unsigned long long)peer_guid);
581 			goto failed_proto;
582 		}
583 
584 		/*
585 		 * Now that we're done with the 1394 specific stuff, we'll
586 		 * need to alter some of the data.  Believe it or not, all
587 		 * that needs to be done is sender_IP_address needs to be
588 		 * moved, the destination hardware address get stuffed
589 		 * in and the hardware address length set to 8.
590 		 *
591 		 * IMPORTANT: The code below overwrites 1394 specific data
592 		 * needed above so keep the munging of the data for the
593 		 * higher level IP stack last.
594 		 */
595 
596 		arp->ar_hln = 8;
597 		/* skip over sender unique id */
598 		arp_ptr += arp->ar_hln;
599 		/* move sender IP addr */
600 		put_unaligned(arp1394->sip, (u32 *)arp_ptr);
601 		/* skip over sender IP addr */
602 		arp_ptr += arp->ar_pln;
603 
604 		if (arp->ar_op == htons(ARPOP_REQUEST))
605 			memset(arp_ptr, 0, sizeof(u64));
606 		else
607 			memcpy(arp_ptr, net->dev_addr, sizeof(u64));
608 	}
609 
610 	/* Now add the ethernet header. */
611 	guid = cpu_to_be64(dev->card->guid);
612 	if (dev_hard_header(skb, net, ether_type,
613 			   is_broadcast ? &broadcast_hw : &guid,
614 			   NULL, skb->len) >= 0) {
615 		struct fwnet_header *eth;
616 		u16 *rawp;
617 		__be16 protocol;
618 
619 		skb_reset_mac_header(skb);
620 		skb_pull(skb, sizeof(*eth));
621 		eth = (struct fwnet_header *)skb_mac_header(skb);
622 		if (*eth->h_dest & 1) {
623 			if (memcmp(eth->h_dest, net->broadcast,
624 				   net->addr_len) == 0)
625 				skb->pkt_type = PACKET_BROADCAST;
626 #if 0
627 			else
628 				skb->pkt_type = PACKET_MULTICAST;
629 #endif
630 		} else {
631 			if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
632 				skb->pkt_type = PACKET_OTHERHOST;
633 		}
634 		if (ntohs(eth->h_proto) >= 1536) {
635 			protocol = eth->h_proto;
636 		} else {
637 			rawp = (u16 *)skb->data;
638 			if (*rawp == 0xffff)
639 				protocol = htons(ETH_P_802_3);
640 			else
641 				protocol = htons(ETH_P_802_2);
642 		}
643 		skb->protocol = protocol;
644 	}
645 	status = netif_rx(skb);
646 	if (status == NET_RX_DROP) {
647 		net->stats.rx_errors++;
648 		net->stats.rx_dropped++;
649 	} else {
650 		net->stats.rx_packets++;
651 		net->stats.rx_bytes += skb->len;
652 	}
653 	if (netif_queue_stopped(net))
654 		netif_wake_queue(net);
655 
656 	return 0;
657 
658  failed_proto:
659 	net->stats.rx_errors++;
660 	net->stats.rx_dropped++;
661 
662 	dev_kfree_skb_any(skb);
663 	if (netif_queue_stopped(net))
664 		netif_wake_queue(net);
665 
666 	net->last_rx = jiffies;
667 
668 	return 0;
669 }
670 
671 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
672 				 int source_node_id, int generation,
673 				 bool is_broadcast)
674 {
675 	struct sk_buff *skb;
676 	struct net_device *net = dev->netdev;
677 	struct rfc2734_header hdr;
678 	unsigned lf;
679 	unsigned long flags;
680 	struct fwnet_peer *peer;
681 	struct fwnet_partial_datagram *pd;
682 	int fg_off;
683 	int dg_size;
684 	u16 datagram_label;
685 	int retval;
686 	u16 ether_type;
687 
688 	hdr.w0 = be32_to_cpu(buf[0]);
689 	lf = fwnet_get_hdr_lf(&hdr);
690 	if (lf == RFC2374_HDR_UNFRAG) {
691 		/*
692 		 * An unfragmented datagram has been received by the ieee1394
693 		 * bus. Build an skbuff around it so we can pass it to the
694 		 * high level network layer.
695 		 */
696 		ether_type = fwnet_get_hdr_ether_type(&hdr);
697 		buf++;
698 		len -= RFC2374_UNFRAG_HDR_SIZE;
699 
700 		skb = dev_alloc_skb(len + net->hard_header_len + 15);
701 		if (unlikely(!skb)) {
702 			fw_error("out of memory\n");
703 			net->stats.rx_dropped++;
704 
705 			return -1;
706 		}
707 		skb_reserve(skb, (net->hard_header_len + 15) & ~15);
708 		memcpy(skb_put(skb, len), buf, len);
709 
710 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
711 						    is_broadcast, ether_type);
712 	}
713 	/* A datagram fragment has been received, now the fun begins. */
714 	hdr.w1 = ntohl(buf[1]);
715 	buf += 2;
716 	len -= RFC2374_FRAG_HDR_SIZE;
717 	if (lf == RFC2374_HDR_FIRSTFRAG) {
718 		ether_type = fwnet_get_hdr_ether_type(&hdr);
719 		fg_off = 0;
720 	} else {
721 		ether_type = 0;
722 		fg_off = fwnet_get_hdr_fg_off(&hdr);
723 	}
724 	datagram_label = fwnet_get_hdr_dgl(&hdr);
725 	dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
726 
727 	spin_lock_irqsave(&dev->lock, flags);
728 
729 	peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
730 	if (!peer)
731 		goto bad_proto;
732 
733 	pd = fwnet_pd_find(peer, datagram_label);
734 	if (pd == NULL) {
735 		while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
736 			/* remove the oldest */
737 			fwnet_pd_delete(list_first_entry(&peer->pd_list,
738 				struct fwnet_partial_datagram, pd_link));
739 			peer->pdg_size--;
740 		}
741 		pd = fwnet_pd_new(net, peer, datagram_label,
742 				  dg_size, buf, fg_off, len);
743 		if (pd == NULL) {
744 			retval = -ENOMEM;
745 			goto bad_proto;
746 		}
747 		peer->pdg_size++;
748 	} else {
749 		if (fwnet_frag_overlap(pd, fg_off, len) ||
750 		    pd->datagram_size != dg_size) {
751 			/*
752 			 * Differing datagram sizes or overlapping fragments,
753 			 * discard old datagram and start a new one.
754 			 */
755 			fwnet_pd_delete(pd);
756 			pd = fwnet_pd_new(net, peer, datagram_label,
757 					  dg_size, buf, fg_off, len);
758 			if (pd == NULL) {
759 				retval = -ENOMEM;
760 				peer->pdg_size--;
761 				goto bad_proto;
762 			}
763 		} else {
764 			if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
765 				/*
766 				 * Couldn't save off fragment anyway
767 				 * so might as well obliterate the
768 				 * datagram now.
769 				 */
770 				fwnet_pd_delete(pd);
771 				peer->pdg_size--;
772 				goto bad_proto;
773 			}
774 		}
775 	} /* new datagram or add to existing one */
776 
777 	if (lf == RFC2374_HDR_FIRSTFRAG)
778 		pd->ether_type = ether_type;
779 
780 	if (fwnet_pd_is_complete(pd)) {
781 		ether_type = pd->ether_type;
782 		peer->pdg_size--;
783 		skb = skb_get(pd->skb);
784 		fwnet_pd_delete(pd);
785 
786 		spin_unlock_irqrestore(&dev->lock, flags);
787 
788 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
789 						    false, ether_type);
790 	}
791 	/*
792 	 * Datagram is not complete, we're done for the
793 	 * moment.
794 	 */
795 	spin_unlock_irqrestore(&dev->lock, flags);
796 
797 	return 0;
798 
799  bad_proto:
800 	spin_unlock_irqrestore(&dev->lock, flags);
801 
802 	if (netif_queue_stopped(net))
803 		netif_wake_queue(net);
804 
805 	return 0;
806 }
807 
808 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
809 		int tcode, int destination, int source, int generation,
810 		int speed, unsigned long long offset, void *payload,
811 		size_t length, void *callback_data)
812 {
813 	struct fwnet_device *dev = callback_data;
814 	int rcode;
815 
816 	if (destination == IEEE1394_ALL_NODES) {
817 		kfree(r);
818 
819 		return;
820 	}
821 
822 	if (offset != dev->handler.offset)
823 		rcode = RCODE_ADDRESS_ERROR;
824 	else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
825 		rcode = RCODE_TYPE_ERROR;
826 	else if (fwnet_incoming_packet(dev, payload, length,
827 				       source, generation, false) != 0) {
828 		fw_error("Incoming packet failure\n");
829 		rcode = RCODE_CONFLICT_ERROR;
830 	} else
831 		rcode = RCODE_COMPLETE;
832 
833 	fw_send_response(card, r, rcode);
834 }
835 
836 static void fwnet_receive_broadcast(struct fw_iso_context *context,
837 		u32 cycle, size_t header_length, void *header, void *data)
838 {
839 	struct fwnet_device *dev;
840 	struct fw_iso_packet packet;
841 	struct fw_card *card;
842 	__be16 *hdr_ptr;
843 	__be32 *buf_ptr;
844 	int retval;
845 	u32 length;
846 	u16 source_node_id;
847 	u32 specifier_id;
848 	u32 ver;
849 	unsigned long offset;
850 	unsigned long flags;
851 
852 	dev = data;
853 	card = dev->card;
854 	hdr_ptr = header;
855 	length = be16_to_cpup(hdr_ptr);
856 
857 	spin_lock_irqsave(&dev->lock, flags);
858 
859 	offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
860 	buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
861 	if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
862 		dev->broadcast_rcv_next_ptr = 0;
863 
864 	spin_unlock_irqrestore(&dev->lock, flags);
865 
866 	specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
867 			| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
868 	ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
869 	source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
870 
871 	if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
872 		buf_ptr += 2;
873 		length -= IEEE1394_GASP_HDR_SIZE;
874 		fwnet_incoming_packet(dev, buf_ptr, length,
875 				      source_node_id, -1, true);
876 	}
877 
878 	packet.payload_length = dev->rcv_buffer_size;
879 	packet.interrupt = 1;
880 	packet.skip = 0;
881 	packet.tag = 3;
882 	packet.sy = 0;
883 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
884 
885 	spin_lock_irqsave(&dev->lock, flags);
886 
887 	retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
888 				      &dev->broadcast_rcv_buffer, offset);
889 
890 	spin_unlock_irqrestore(&dev->lock, flags);
891 
892 	if (retval < 0)
893 		fw_error("requeue failed\n");
894 }
895 
896 static struct kmem_cache *fwnet_packet_task_cache;
897 
898 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
899 
900 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
901 {
902 	struct fwnet_device *dev;
903 	unsigned long flags;
904 
905 	dev = ptask->dev;
906 
907 	spin_lock_irqsave(&dev->lock, flags);
908 	list_del(&ptask->pt_link);
909 	spin_unlock_irqrestore(&dev->lock, flags);
910 
911 	ptask->outstanding_pkts--; /* FIXME access inside lock */
912 
913 	if (ptask->outstanding_pkts > 0) {
914 		u16 dg_size;
915 		u16 fg_off;
916 		u16 datagram_label;
917 		u16 lf;
918 		struct sk_buff *skb;
919 
920 		/* Update the ptask to point to the next fragment and send it */
921 		lf = fwnet_get_hdr_lf(&ptask->hdr);
922 		switch (lf) {
923 		case RFC2374_HDR_LASTFRAG:
924 		case RFC2374_HDR_UNFRAG:
925 		default:
926 			fw_error("Outstanding packet %x lf %x, header %x,%x\n",
927 				 ptask->outstanding_pkts, lf, ptask->hdr.w0,
928 				 ptask->hdr.w1);
929 			BUG();
930 
931 		case RFC2374_HDR_FIRSTFRAG:
932 			/* Set frag type here for future interior fragments */
933 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
934 			fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
935 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
936 			break;
937 
938 		case RFC2374_HDR_INTFRAG:
939 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
940 			fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
941 				  + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
942 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
943 			break;
944 		}
945 		skb = ptask->skb;
946 		skb_pull(skb, ptask->max_payload);
947 		if (ptask->outstanding_pkts > 1) {
948 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
949 					  dg_size, fg_off, datagram_label);
950 		} else {
951 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
952 					  dg_size, fg_off, datagram_label);
953 			ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
954 		}
955 		fwnet_send_packet(ptask);
956 	} else {
957 		dev_kfree_skb_any(ptask->skb);
958 		kmem_cache_free(fwnet_packet_task_cache, ptask);
959 	}
960 }
961 
962 static void fwnet_write_complete(struct fw_card *card, int rcode,
963 				 void *payload, size_t length, void *data)
964 {
965 	struct fwnet_packet_task *ptask;
966 
967 	ptask = data;
968 
969 	if (rcode == RCODE_COMPLETE)
970 		fwnet_transmit_packet_done(ptask);
971 	else
972 		fw_error("fwnet_write_complete: failed: %x\n", rcode);
973 		/* ??? error recovery */
974 }
975 
976 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
977 {
978 	struct fwnet_device *dev;
979 	unsigned tx_len;
980 	struct rfc2734_header *bufhdr;
981 	unsigned long flags;
982 
983 	dev = ptask->dev;
984 	tx_len = ptask->max_payload;
985 	switch (fwnet_get_hdr_lf(&ptask->hdr)) {
986 	case RFC2374_HDR_UNFRAG:
987 		bufhdr = (struct rfc2734_header *)
988 				skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
989 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
990 		break;
991 
992 	case RFC2374_HDR_FIRSTFRAG:
993 	case RFC2374_HDR_INTFRAG:
994 	case RFC2374_HDR_LASTFRAG:
995 		bufhdr = (struct rfc2734_header *)
996 				skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
997 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
998 		put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
999 		break;
1000 
1001 	default:
1002 		BUG();
1003 	}
1004 	if (ptask->dest_node == IEEE1394_ALL_NODES) {
1005 		u8 *p;
1006 		int generation;
1007 		int node_id;
1008 
1009 		/* ptask->generation may not have been set yet */
1010 		generation = dev->card->generation;
1011 		smp_rmb();
1012 		node_id = dev->card->node_id;
1013 
1014 		p = skb_push(ptask->skb, 8);
1015 		put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1016 		put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1017 						| RFC2734_SW_VERSION, &p[4]);
1018 
1019 		/* We should not transmit if broadcast_channel.valid == 0. */
1020 		fw_send_request(dev->card, &ptask->transaction,
1021 				TCODE_STREAM_DATA,
1022 				fw_stream_packet_destination_id(3,
1023 						IEEE1394_BROADCAST_CHANNEL, 0),
1024 				generation, SCODE_100, 0ULL, ptask->skb->data,
1025 				tx_len + 8, fwnet_write_complete, ptask);
1026 
1027 		/* FIXME race? */
1028 		spin_lock_irqsave(&dev->lock, flags);
1029 		list_add_tail(&ptask->pt_link, &dev->broadcasted_list);
1030 		spin_unlock_irqrestore(&dev->lock, flags);
1031 
1032 		return 0;
1033 	}
1034 
1035 	fw_send_request(dev->card, &ptask->transaction,
1036 			TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1037 			ptask->generation, ptask->speed, ptask->fifo_addr,
1038 			ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1039 
1040 	/* FIXME race? */
1041 	spin_lock_irqsave(&dev->lock, flags);
1042 	list_add_tail(&ptask->pt_link, &dev->sent_list);
1043 	spin_unlock_irqrestore(&dev->lock, flags);
1044 
1045 	dev->netdev->trans_start = jiffies;
1046 
1047 	return 0;
1048 }
1049 
1050 static int fwnet_broadcast_start(struct fwnet_device *dev)
1051 {
1052 	struct fw_iso_context *context;
1053 	int retval;
1054 	unsigned num_packets;
1055 	unsigned max_receive;
1056 	struct fw_iso_packet packet;
1057 	unsigned long offset;
1058 	unsigned u;
1059 
1060 	if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1061 		/* outside OHCI posted write area? */
1062 		static const struct fw_address_region region = {
1063 			.start = 0xffff00000000ULL,
1064 			.end   = CSR_REGISTER_BASE,
1065 		};
1066 
1067 		dev->handler.length = 4096;
1068 		dev->handler.address_callback = fwnet_receive_packet;
1069 		dev->handler.callback_data = dev;
1070 
1071 		retval = fw_core_add_address_handler(&dev->handler, &region);
1072 		if (retval < 0)
1073 			goto failed_initial;
1074 
1075 		dev->local_fifo = dev->handler.offset;
1076 	}
1077 
1078 	max_receive = 1U << (dev->card->max_receive + 1);
1079 	num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1080 
1081 	if (!dev->broadcast_rcv_context) {
1082 		void **ptrptr;
1083 
1084 		context = fw_iso_context_create(dev->card,
1085 		    FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1086 		    dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1087 		if (IS_ERR(context)) {
1088 			retval = PTR_ERR(context);
1089 			goto failed_context_create;
1090 		}
1091 
1092 		retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1093 		    dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1094 		if (retval < 0)
1095 			goto failed_buffer_init;
1096 
1097 		ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1098 		if (!ptrptr) {
1099 			retval = -ENOMEM;
1100 			goto failed_ptrs_alloc;
1101 		}
1102 
1103 		dev->broadcast_rcv_buffer_ptrs = ptrptr;
1104 		for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1105 			void *ptr;
1106 			unsigned v;
1107 
1108 			ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1109 			for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1110 				*ptrptr++ = (void *)
1111 						((char *)ptr + v * max_receive);
1112 		}
1113 		dev->broadcast_rcv_context = context;
1114 	} else {
1115 		context = dev->broadcast_rcv_context;
1116 	}
1117 
1118 	packet.payload_length = max_receive;
1119 	packet.interrupt = 1;
1120 	packet.skip = 0;
1121 	packet.tag = 3;
1122 	packet.sy = 0;
1123 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
1124 	offset = 0;
1125 
1126 	for (u = 0; u < num_packets; u++) {
1127 		retval = fw_iso_context_queue(context, &packet,
1128 				&dev->broadcast_rcv_buffer, offset);
1129 		if (retval < 0)
1130 			goto failed_rcv_queue;
1131 
1132 		offset += max_receive;
1133 	}
1134 	dev->num_broadcast_rcv_ptrs = num_packets;
1135 	dev->rcv_buffer_size = max_receive;
1136 	dev->broadcast_rcv_next_ptr = 0U;
1137 	retval = fw_iso_context_start(context, -1, 0,
1138 			FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1139 	if (retval < 0)
1140 		goto failed_rcv_queue;
1141 
1142 	/* FIXME: adjust it according to the min. speed of all known peers? */
1143 	dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1144 			- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1145 	dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1146 
1147 	return 0;
1148 
1149  failed_rcv_queue:
1150 	kfree(dev->broadcast_rcv_buffer_ptrs);
1151 	dev->broadcast_rcv_buffer_ptrs = NULL;
1152  failed_ptrs_alloc:
1153 	fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1154  failed_buffer_init:
1155 	fw_iso_context_destroy(context);
1156 	dev->broadcast_rcv_context = NULL;
1157  failed_context_create:
1158 	fw_core_remove_address_handler(&dev->handler);
1159  failed_initial:
1160 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1161 
1162 	return retval;
1163 }
1164 
1165 /* ifup */
1166 static int fwnet_open(struct net_device *net)
1167 {
1168 	struct fwnet_device *dev = netdev_priv(net);
1169 	int ret;
1170 
1171 	if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1172 		ret = fwnet_broadcast_start(dev);
1173 		if (ret)
1174 			return ret;
1175 	}
1176 	netif_start_queue(net);
1177 
1178 	return 0;
1179 }
1180 
1181 /* ifdown */
1182 static int fwnet_stop(struct net_device *net)
1183 {
1184 	netif_stop_queue(net);
1185 
1186 	/* Deallocate iso context for use by other applications? */
1187 
1188 	return 0;
1189 }
1190 
1191 static int fwnet_tx(struct sk_buff *skb, struct net_device *net)
1192 {
1193 	struct fwnet_header hdr_buf;
1194 	struct fwnet_device *dev = netdev_priv(net);
1195 	__be16 proto;
1196 	u16 dest_node;
1197 	unsigned max_payload;
1198 	u16 dg_size;
1199 	u16 *datagram_label_ptr;
1200 	struct fwnet_packet_task *ptask;
1201 	struct fwnet_peer *peer;
1202 	unsigned long flags;
1203 
1204 	ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1205 	if (ptask == NULL)
1206 		goto fail;
1207 
1208 	skb = skb_share_check(skb, GFP_ATOMIC);
1209 	if (!skb)
1210 		goto fail;
1211 
1212 	/*
1213 	 * Make a copy of the driver-specific header.
1214 	 * We might need to rebuild the header on tx failure.
1215 	 */
1216 	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1217 	skb_pull(skb, sizeof(hdr_buf));
1218 
1219 	proto = hdr_buf.h_proto;
1220 	dg_size = skb->len;
1221 
1222 	/* serialize access to peer, including peer->datagram_label */
1223 	spin_lock_irqsave(&dev->lock, flags);
1224 
1225 	/*
1226 	 * Set the transmission type for the packet.  ARP packets and IP
1227 	 * broadcast packets are sent via GASP.
1228 	 */
1229 	if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1230 	    || proto == htons(ETH_P_ARP)
1231 	    || (proto == htons(ETH_P_IP)
1232 		&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1233 		max_payload        = dev->broadcast_xmt_max_payload;
1234 		datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1235 
1236 		ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1237 		ptask->generation  = 0;
1238 		ptask->dest_node   = IEEE1394_ALL_NODES;
1239 		ptask->speed       = SCODE_100;
1240 	} else {
1241 		__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1242 		u8 generation;
1243 
1244 		peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1245 		if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1246 			goto fail_unlock;
1247 
1248 		generation         = peer->generation;
1249 		dest_node          = peer->node_id;
1250 		max_payload        = peer->max_payload;
1251 		datagram_label_ptr = &peer->datagram_label;
1252 
1253 		ptask->fifo_addr   = peer->fifo;
1254 		ptask->generation  = generation;
1255 		ptask->dest_node   = dest_node;
1256 		ptask->speed       = peer->speed;
1257 	}
1258 
1259 	/* If this is an ARP packet, convert it */
1260 	if (proto == htons(ETH_P_ARP)) {
1261 		struct arphdr *arp = (struct arphdr *)skb->data;
1262 		unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1263 		struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1264 		__be32 ipaddr;
1265 
1266 		ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1267 
1268 		arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1269 		arp1394->max_rec        = dev->card->max_receive;
1270 		arp1394->sspd		= dev->card->link_speed;
1271 
1272 		put_unaligned_be16(dev->local_fifo >> 32,
1273 				   &arp1394->fifo_hi);
1274 		put_unaligned_be32(dev->local_fifo & 0xffffffff,
1275 				   &arp1394->fifo_lo);
1276 		put_unaligned(ipaddr, &arp1394->sip);
1277 	}
1278 
1279 	ptask->hdr.w0 = 0;
1280 	ptask->hdr.w1 = 0;
1281 	ptask->skb = skb;
1282 	ptask->dev = dev;
1283 
1284 	/* Does it all fit in one packet? */
1285 	if (dg_size <= max_payload) {
1286 		fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1287 		ptask->outstanding_pkts = 1;
1288 		max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1289 	} else {
1290 		u16 datagram_label;
1291 
1292 		max_payload -= RFC2374_FRAG_OVERHEAD;
1293 		datagram_label = (*datagram_label_ptr)++;
1294 		fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1295 				  datagram_label);
1296 		ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1297 		max_payload += RFC2374_FRAG_HDR_SIZE;
1298 	}
1299 
1300 	spin_unlock_irqrestore(&dev->lock, flags);
1301 
1302 	ptask->max_payload = max_payload;
1303 	fwnet_send_packet(ptask);
1304 
1305 	return NETDEV_TX_OK;
1306 
1307  fail_unlock:
1308 	spin_unlock_irqrestore(&dev->lock, flags);
1309  fail:
1310 	if (ptask)
1311 		kmem_cache_free(fwnet_packet_task_cache, ptask);
1312 
1313 	if (skb != NULL)
1314 		dev_kfree_skb(skb);
1315 
1316 	net->stats.tx_dropped++;
1317 	net->stats.tx_errors++;
1318 
1319 	/*
1320 	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1321 	 * causes serious problems" here, allegedly.  Before that patch,
1322 	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1323 	 * Perhaps more needs to be done?  Stop the queue in serious
1324 	 * conditions and restart it elsewhere?
1325 	 */
1326 	return NETDEV_TX_OK;
1327 }
1328 
1329 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1330 {
1331 	if (new_mtu < 68)
1332 		return -EINVAL;
1333 
1334 	net->mtu = new_mtu;
1335 	return 0;
1336 }
1337 
1338 static void fwnet_get_drvinfo(struct net_device *net,
1339 			      struct ethtool_drvinfo *info)
1340 {
1341 	strcpy(info->driver, KBUILD_MODNAME);
1342 	strcpy(info->bus_info, "ieee1394");
1343 }
1344 
1345 static struct ethtool_ops fwnet_ethtool_ops = {
1346 	.get_drvinfo = fwnet_get_drvinfo,
1347 };
1348 
1349 static const struct net_device_ops fwnet_netdev_ops = {
1350 	.ndo_open       = fwnet_open,
1351 	.ndo_stop	= fwnet_stop,
1352 	.ndo_start_xmit = fwnet_tx,
1353 	.ndo_change_mtu = fwnet_change_mtu,
1354 };
1355 
1356 static void fwnet_init_dev(struct net_device *net)
1357 {
1358 	net->header_ops		= &fwnet_header_ops;
1359 	net->netdev_ops		= &fwnet_netdev_ops;
1360 	net->watchdog_timeo	= 2 * HZ;
1361 	net->flags		= IFF_BROADCAST | IFF_MULTICAST;
1362 	net->features		= NETIF_F_HIGHDMA;
1363 	net->addr_len		= FWNET_ALEN;
1364 	net->hard_header_len	= FWNET_HLEN;
1365 	net->type		= ARPHRD_IEEE1394;
1366 	net->tx_queue_len	= 10;
1367 	SET_ETHTOOL_OPS(net, &fwnet_ethtool_ops);
1368 }
1369 
1370 /* caller must hold fwnet_device_mutex */
1371 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1372 {
1373 	struct fwnet_device *dev;
1374 
1375 	list_for_each_entry(dev, &fwnet_device_list, dev_link)
1376 		if (dev->card == card)
1377 			return dev;
1378 
1379 	return NULL;
1380 }
1381 
1382 static int fwnet_add_peer(struct fwnet_device *dev,
1383 			  struct fw_unit *unit, struct fw_device *device)
1384 {
1385 	struct fwnet_peer *peer;
1386 
1387 	peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1388 	if (!peer)
1389 		return -ENOMEM;
1390 
1391 	dev_set_drvdata(&unit->device, peer);
1392 
1393 	peer->dev = dev;
1394 	peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1395 	peer->fifo = FWNET_NO_FIFO_ADDR;
1396 	INIT_LIST_HEAD(&peer->pd_list);
1397 	peer->pdg_size = 0;
1398 	peer->datagram_label = 0;
1399 	peer->speed = device->max_speed;
1400 	peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1401 
1402 	peer->generation = device->generation;
1403 	smp_rmb();
1404 	peer->node_id = device->node_id;
1405 
1406 	spin_lock_irq(&dev->lock);
1407 	list_add_tail(&peer->peer_link, &dev->peer_list);
1408 	spin_unlock_irq(&dev->lock);
1409 
1410 	return 0;
1411 }
1412 
1413 static int fwnet_probe(struct device *_dev)
1414 {
1415 	struct fw_unit *unit = fw_unit(_dev);
1416 	struct fw_device *device = fw_parent_device(unit);
1417 	struct fw_card *card = device->card;
1418 	struct net_device *net;
1419 	bool allocated_netdev = false;
1420 	struct fwnet_device *dev;
1421 	unsigned max_mtu;
1422 	int ret;
1423 
1424 	mutex_lock(&fwnet_device_mutex);
1425 
1426 	dev = fwnet_dev_find(card);
1427 	if (dev) {
1428 		net = dev->netdev;
1429 		goto have_dev;
1430 	}
1431 
1432 	net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1433 	if (net == NULL) {
1434 		ret = -ENOMEM;
1435 		goto out;
1436 	}
1437 
1438 	allocated_netdev = true;
1439 	SET_NETDEV_DEV(net, card->device);
1440 	dev = netdev_priv(net);
1441 
1442 	spin_lock_init(&dev->lock);
1443 	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1444 	dev->broadcast_rcv_context = NULL;
1445 	dev->broadcast_xmt_max_payload = 0;
1446 	dev->broadcast_xmt_datagramlabel = 0;
1447 
1448 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1449 
1450 	INIT_LIST_HEAD(&dev->packet_list);
1451 	INIT_LIST_HEAD(&dev->broadcasted_list);
1452 	INIT_LIST_HEAD(&dev->sent_list);
1453 	INIT_LIST_HEAD(&dev->peer_list);
1454 
1455 	dev->card = card;
1456 	dev->netdev = net;
1457 
1458 	/*
1459 	 * Use the RFC 2734 default 1500 octets or the maximum payload
1460 	 * as initial MTU
1461 	 */
1462 	max_mtu = (1 << (card->max_receive + 1))
1463 		  - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1464 	net->mtu = min(1500U, max_mtu);
1465 
1466 	/* Set our hardware address while we're at it */
1467 	put_unaligned_be64(card->guid, net->dev_addr);
1468 	put_unaligned_be64(~0ULL, net->broadcast);
1469 	ret = register_netdev(net);
1470 	if (ret) {
1471 		fw_error("Cannot register the driver\n");
1472 		goto out;
1473 	}
1474 
1475 	list_add_tail(&dev->dev_link, &fwnet_device_list);
1476 	fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1477 		  net->name, (unsigned long long)card->guid);
1478  have_dev:
1479 	ret = fwnet_add_peer(dev, unit, device);
1480 	if (ret && allocated_netdev) {
1481 		unregister_netdev(net);
1482 		list_del(&dev->dev_link);
1483 	}
1484  out:
1485 	if (ret && allocated_netdev)
1486 		free_netdev(net);
1487 
1488 	mutex_unlock(&fwnet_device_mutex);
1489 
1490 	return ret;
1491 }
1492 
1493 static void fwnet_remove_peer(struct fwnet_peer *peer)
1494 {
1495 	struct fwnet_partial_datagram *pd, *pd_next;
1496 
1497 	spin_lock_irq(&peer->dev->lock);
1498 	list_del(&peer->peer_link);
1499 	spin_unlock_irq(&peer->dev->lock);
1500 
1501 	list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1502 		fwnet_pd_delete(pd);
1503 
1504 	kfree(peer);
1505 }
1506 
1507 static int fwnet_remove(struct device *_dev)
1508 {
1509 	struct fwnet_peer *peer = dev_get_drvdata(_dev);
1510 	struct fwnet_device *dev = peer->dev;
1511 	struct net_device *net;
1512 	struct fwnet_packet_task *ptask, *pt_next;
1513 
1514 	mutex_lock(&fwnet_device_mutex);
1515 
1516 	fwnet_remove_peer(peer);
1517 
1518 	if (list_empty(&dev->peer_list)) {
1519 		net = dev->netdev;
1520 		unregister_netdev(net);
1521 
1522 		if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1523 			fw_core_remove_address_handler(&dev->handler);
1524 		if (dev->broadcast_rcv_context) {
1525 			fw_iso_context_stop(dev->broadcast_rcv_context);
1526 			fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1527 					      dev->card);
1528 			fw_iso_context_destroy(dev->broadcast_rcv_context);
1529 		}
1530 		list_for_each_entry_safe(ptask, pt_next,
1531 					 &dev->packet_list, pt_link) {
1532 			dev_kfree_skb_any(ptask->skb);
1533 			kmem_cache_free(fwnet_packet_task_cache, ptask);
1534 		}
1535 		list_for_each_entry_safe(ptask, pt_next,
1536 					 &dev->broadcasted_list, pt_link) {
1537 			dev_kfree_skb_any(ptask->skb);
1538 			kmem_cache_free(fwnet_packet_task_cache, ptask);
1539 		}
1540 		list_for_each_entry_safe(ptask, pt_next,
1541 					 &dev->sent_list, pt_link) {
1542 			dev_kfree_skb_any(ptask->skb);
1543 			kmem_cache_free(fwnet_packet_task_cache, ptask);
1544 		}
1545 		list_del(&dev->dev_link);
1546 
1547 		free_netdev(net);
1548 	}
1549 
1550 	mutex_unlock(&fwnet_device_mutex);
1551 
1552 	return 0;
1553 }
1554 
1555 /*
1556  * FIXME abort partially sent fragmented datagrams,
1557  * discard partially received fragmented datagrams
1558  */
1559 static void fwnet_update(struct fw_unit *unit)
1560 {
1561 	struct fw_device *device = fw_parent_device(unit);
1562 	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1563 	int generation;
1564 
1565 	generation = device->generation;
1566 
1567 	spin_lock_irq(&peer->dev->lock);
1568 	peer->node_id    = device->node_id;
1569 	peer->generation = generation;
1570 	spin_unlock_irq(&peer->dev->lock);
1571 }
1572 
1573 static const struct ieee1394_device_id fwnet_id_table[] = {
1574 	{
1575 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1576 				IEEE1394_MATCH_VERSION,
1577 		.specifier_id = IANA_SPECIFIER_ID,
1578 		.version      = RFC2734_SW_VERSION,
1579 	},
1580 	{ }
1581 };
1582 
1583 static struct fw_driver fwnet_driver = {
1584 	.driver = {
1585 		.owner  = THIS_MODULE,
1586 		.name   = "net",
1587 		.bus    = &fw_bus_type,
1588 		.probe  = fwnet_probe,
1589 		.remove = fwnet_remove,
1590 	},
1591 	.update   = fwnet_update,
1592 	.id_table = fwnet_id_table,
1593 };
1594 
1595 static const u32 rfc2374_unit_directory_data[] = {
1596 	0x00040000,	/* directory_length		*/
1597 	0x1200005e,	/* unit_specifier_id: IANA	*/
1598 	0x81000003,	/* textual descriptor offset	*/
1599 	0x13000001,	/* unit_sw_version: RFC 2734	*/
1600 	0x81000005,	/* textual descriptor offset	*/
1601 	0x00030000,	/* descriptor_length		*/
1602 	0x00000000,	/* text				*/
1603 	0x00000000,	/* minimal ASCII, en		*/
1604 	0x49414e41,	/* I A N A			*/
1605 	0x00030000,	/* descriptor_length		*/
1606 	0x00000000,	/* text				*/
1607 	0x00000000,	/* minimal ASCII, en		*/
1608 	0x49507634,	/* I P v 4			*/
1609 };
1610 
1611 static struct fw_descriptor rfc2374_unit_directory = {
1612 	.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1613 	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1614 	.data   = rfc2374_unit_directory_data
1615 };
1616 
1617 static int __init fwnet_init(void)
1618 {
1619 	int err;
1620 
1621 	err = fw_core_add_descriptor(&rfc2374_unit_directory);
1622 	if (err)
1623 		return err;
1624 
1625 	fwnet_packet_task_cache = kmem_cache_create("packet_task",
1626 			sizeof(struct fwnet_packet_task), 0, 0, NULL);
1627 	if (!fwnet_packet_task_cache) {
1628 		err = -ENOMEM;
1629 		goto out;
1630 	}
1631 
1632 	err = driver_register(&fwnet_driver.driver);
1633 	if (!err)
1634 		return 0;
1635 
1636 	kmem_cache_destroy(fwnet_packet_task_cache);
1637 out:
1638 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1639 
1640 	return err;
1641 }
1642 module_init(fwnet_init);
1643 
1644 static void __exit fwnet_cleanup(void)
1645 {
1646 	driver_unregister(&fwnet_driver.driver);
1647 	kmem_cache_destroy(fwnet_packet_task_cache);
1648 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1649 }
1650 module_exit(fwnet_cleanup);
1651 
1652 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1653 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1654 MODULE_LICENSE("GPL");
1655 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1656