1 /* 2 * IPv4 over IEEE 1394, per RFC 2734 3 * 4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com> 5 * 6 * based on eth1394 by Ben Collins et al 7 */ 8 9 #include <linux/bug.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/ethtool.h> 13 #include <linux/firewire.h> 14 #include <linux/firewire-constants.h> 15 #include <linux/highmem.h> 16 #include <linux/in.h> 17 #include <linux/ip.h> 18 #include <linux/jiffies.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mutex.h> 23 #include <linux/netdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/slab.h> 26 #include <linux/spinlock.h> 27 28 #include <asm/unaligned.h> 29 #include <net/arp.h> 30 31 /* rx limits */ 32 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */ 33 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2) 34 35 /* tx limits */ 36 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */ 37 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */ 38 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */ 39 40 #define IEEE1394_BROADCAST_CHANNEL 31 41 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f) 42 #define IEEE1394_MAX_PAYLOAD_S100 512 43 #define FWNET_NO_FIFO_ADDR (~0ULL) 44 45 #define IANA_SPECIFIER_ID 0x00005eU 46 #define RFC2734_SW_VERSION 0x000001U 47 48 #define IEEE1394_GASP_HDR_SIZE 8 49 50 #define RFC2374_UNFRAG_HDR_SIZE 4 51 #define RFC2374_FRAG_HDR_SIZE 8 52 #define RFC2374_FRAG_OVERHEAD 4 53 54 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */ 55 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */ 56 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */ 57 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */ 58 59 #define RFC2734_HW_ADDR_LEN 16 60 61 struct rfc2734_arp { 62 __be16 hw_type; /* 0x0018 */ 63 __be16 proto_type; /* 0x0806 */ 64 u8 hw_addr_len; /* 16 */ 65 u8 ip_addr_len; /* 4 */ 66 __be16 opcode; /* ARP Opcode */ 67 /* Above is exactly the same format as struct arphdr */ 68 69 __be64 s_uniq_id; /* Sender's 64bit EUI */ 70 u8 max_rec; /* Sender's max packet size */ 71 u8 sspd; /* Sender's max speed */ 72 __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */ 73 __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */ 74 __be32 sip; /* Sender's IP Address */ 75 __be32 tip; /* IP Address of requested hw addr */ 76 } __attribute__((packed)); 77 78 /* This header format is specific to this driver implementation. */ 79 #define FWNET_ALEN 8 80 #define FWNET_HLEN 10 81 struct fwnet_header { 82 u8 h_dest[FWNET_ALEN]; /* destination address */ 83 __be16 h_proto; /* packet type ID field */ 84 } __attribute__((packed)); 85 86 /* IPv4 and IPv6 encapsulation header */ 87 struct rfc2734_header { 88 u32 w0; 89 u32 w1; 90 }; 91 92 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30) 93 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff)) 94 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16) 95 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff)) 96 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16) 97 98 #define fwnet_set_hdr_lf(lf) ((lf) << 30) 99 #define fwnet_set_hdr_ether_type(et) (et) 100 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16) 101 #define fwnet_set_hdr_fg_off(fgo) (fgo) 102 103 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16) 104 105 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr, 106 unsigned ether_type) 107 { 108 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG) 109 | fwnet_set_hdr_ether_type(ether_type); 110 } 111 112 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr, 113 unsigned ether_type, unsigned dg_size, unsigned dgl) 114 { 115 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG) 116 | fwnet_set_hdr_dg_size(dg_size) 117 | fwnet_set_hdr_ether_type(ether_type); 118 hdr->w1 = fwnet_set_hdr_dgl(dgl); 119 } 120 121 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr, 122 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) 123 { 124 hdr->w0 = fwnet_set_hdr_lf(lf) 125 | fwnet_set_hdr_dg_size(dg_size) 126 | fwnet_set_hdr_fg_off(fg_off); 127 hdr->w1 = fwnet_set_hdr_dgl(dgl); 128 } 129 130 /* This list keeps track of what parts of the datagram have been filled in */ 131 struct fwnet_fragment_info { 132 struct list_head fi_link; 133 u16 offset; 134 u16 len; 135 }; 136 137 struct fwnet_partial_datagram { 138 struct list_head pd_link; 139 struct list_head fi_list; 140 struct sk_buff *skb; 141 /* FIXME Why not use skb->data? */ 142 char *pbuf; 143 u16 datagram_label; 144 u16 ether_type; 145 u16 datagram_size; 146 }; 147 148 static DEFINE_MUTEX(fwnet_device_mutex); 149 static LIST_HEAD(fwnet_device_list); 150 151 struct fwnet_device { 152 struct list_head dev_link; 153 spinlock_t lock; 154 enum { 155 FWNET_BROADCAST_ERROR, 156 FWNET_BROADCAST_RUNNING, 157 FWNET_BROADCAST_STOPPED, 158 } broadcast_state; 159 struct fw_iso_context *broadcast_rcv_context; 160 struct fw_iso_buffer broadcast_rcv_buffer; 161 void **broadcast_rcv_buffer_ptrs; 162 unsigned broadcast_rcv_next_ptr; 163 unsigned num_broadcast_rcv_ptrs; 164 unsigned rcv_buffer_size; 165 /* 166 * This value is the maximum unfragmented datagram size that can be 167 * sent by the hardware. It already has the GASP overhead and the 168 * unfragmented datagram header overhead calculated into it. 169 */ 170 unsigned broadcast_xmt_max_payload; 171 u16 broadcast_xmt_datagramlabel; 172 173 /* 174 * The CSR address that remote nodes must send datagrams to for us to 175 * receive them. 176 */ 177 struct fw_address_handler handler; 178 u64 local_fifo; 179 180 /* Number of tx datagrams that have been queued but not yet acked */ 181 int queued_datagrams; 182 183 int peer_count; 184 struct list_head peer_list; 185 struct fw_card *card; 186 struct net_device *netdev; 187 }; 188 189 struct fwnet_peer { 190 struct list_head peer_link; 191 struct fwnet_device *dev; 192 u64 guid; 193 u64 fifo; 194 195 /* guarded by dev->lock */ 196 struct list_head pd_list; /* received partial datagrams */ 197 unsigned pdg_size; /* pd_list size */ 198 199 u16 datagram_label; /* outgoing datagram label */ 200 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */ 201 int node_id; 202 int generation; 203 unsigned speed; 204 }; 205 206 /* This is our task struct. It's used for the packet complete callback. */ 207 struct fwnet_packet_task { 208 struct fw_transaction transaction; 209 struct rfc2734_header hdr; 210 struct sk_buff *skb; 211 struct fwnet_device *dev; 212 213 int outstanding_pkts; 214 u64 fifo_addr; 215 u16 dest_node; 216 u16 max_payload; 217 u8 generation; 218 u8 speed; 219 u8 enqueued; 220 }; 221 222 /* 223 * saddr == NULL means use device source address. 224 * daddr == NULL means leave destination address (eg unresolved arp). 225 */ 226 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net, 227 unsigned short type, const void *daddr, 228 const void *saddr, unsigned len) 229 { 230 struct fwnet_header *h; 231 232 h = (struct fwnet_header *)skb_push(skb, sizeof(*h)); 233 put_unaligned_be16(type, &h->h_proto); 234 235 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) { 236 memset(h->h_dest, 0, net->addr_len); 237 238 return net->hard_header_len; 239 } 240 241 if (daddr) { 242 memcpy(h->h_dest, daddr, net->addr_len); 243 244 return net->hard_header_len; 245 } 246 247 return -net->hard_header_len; 248 } 249 250 static int fwnet_header_rebuild(struct sk_buff *skb) 251 { 252 struct fwnet_header *h = (struct fwnet_header *)skb->data; 253 254 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP) 255 return arp_find((unsigned char *)&h->h_dest, skb); 256 257 fw_notify("%s: unable to resolve type %04x addresses\n", 258 skb->dev->name, be16_to_cpu(h->h_proto)); 259 return 0; 260 } 261 262 static int fwnet_header_cache(const struct neighbour *neigh, 263 struct hh_cache *hh) 264 { 265 struct net_device *net; 266 struct fwnet_header *h; 267 268 if (hh->hh_type == cpu_to_be16(ETH_P_802_3)) 269 return -1; 270 net = neigh->dev; 271 h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h)); 272 h->h_proto = hh->hh_type; 273 memcpy(h->h_dest, neigh->ha, net->addr_len); 274 hh->hh_len = FWNET_HLEN; 275 276 return 0; 277 } 278 279 /* Called by Address Resolution module to notify changes in address. */ 280 static void fwnet_header_cache_update(struct hh_cache *hh, 281 const struct net_device *net, const unsigned char *haddr) 282 { 283 memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len); 284 } 285 286 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr) 287 { 288 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN); 289 290 return FWNET_ALEN; 291 } 292 293 static const struct header_ops fwnet_header_ops = { 294 .create = fwnet_header_create, 295 .rebuild = fwnet_header_rebuild, 296 .cache = fwnet_header_cache, 297 .cache_update = fwnet_header_cache_update, 298 .parse = fwnet_header_parse, 299 }; 300 301 /* FIXME: is this correct for all cases? */ 302 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd, 303 unsigned offset, unsigned len) 304 { 305 struct fwnet_fragment_info *fi; 306 unsigned end = offset + len; 307 308 list_for_each_entry(fi, &pd->fi_list, fi_link) 309 if (offset < fi->offset + fi->len && end > fi->offset) 310 return true; 311 312 return false; 313 } 314 315 /* Assumes that new fragment does not overlap any existing fragments */ 316 static struct fwnet_fragment_info *fwnet_frag_new( 317 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) 318 { 319 struct fwnet_fragment_info *fi, *fi2, *new; 320 struct list_head *list; 321 322 list = &pd->fi_list; 323 list_for_each_entry(fi, &pd->fi_list, fi_link) { 324 if (fi->offset + fi->len == offset) { 325 /* The new fragment can be tacked on to the end */ 326 /* Did the new fragment plug a hole? */ 327 fi2 = list_entry(fi->fi_link.next, 328 struct fwnet_fragment_info, fi_link); 329 if (fi->offset + fi->len == fi2->offset) { 330 /* glue fragments together */ 331 fi->len += len + fi2->len; 332 list_del(&fi2->fi_link); 333 kfree(fi2); 334 } else { 335 fi->len += len; 336 } 337 338 return fi; 339 } 340 if (offset + len == fi->offset) { 341 /* The new fragment can be tacked on to the beginning */ 342 /* Did the new fragment plug a hole? */ 343 fi2 = list_entry(fi->fi_link.prev, 344 struct fwnet_fragment_info, fi_link); 345 if (fi2->offset + fi2->len == fi->offset) { 346 /* glue fragments together */ 347 fi2->len += fi->len + len; 348 list_del(&fi->fi_link); 349 kfree(fi); 350 351 return fi2; 352 } 353 fi->offset = offset; 354 fi->len += len; 355 356 return fi; 357 } 358 if (offset > fi->offset + fi->len) { 359 list = &fi->fi_link; 360 break; 361 } 362 if (offset + len < fi->offset) { 363 list = fi->fi_link.prev; 364 break; 365 } 366 } 367 368 new = kmalloc(sizeof(*new), GFP_ATOMIC); 369 if (!new) { 370 fw_error("out of memory\n"); 371 return NULL; 372 } 373 374 new->offset = offset; 375 new->len = len; 376 list_add(&new->fi_link, list); 377 378 return new; 379 } 380 381 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net, 382 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size, 383 void *frag_buf, unsigned frag_off, unsigned frag_len) 384 { 385 struct fwnet_partial_datagram *new; 386 struct fwnet_fragment_info *fi; 387 388 new = kmalloc(sizeof(*new), GFP_ATOMIC); 389 if (!new) 390 goto fail; 391 392 INIT_LIST_HEAD(&new->fi_list); 393 fi = fwnet_frag_new(new, frag_off, frag_len); 394 if (fi == NULL) 395 goto fail_w_new; 396 397 new->datagram_label = datagram_label; 398 new->datagram_size = dg_size; 399 new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15); 400 if (new->skb == NULL) 401 goto fail_w_fi; 402 403 skb_reserve(new->skb, (net->hard_header_len + 15) & ~15); 404 new->pbuf = skb_put(new->skb, dg_size); 405 memcpy(new->pbuf + frag_off, frag_buf, frag_len); 406 list_add_tail(&new->pd_link, &peer->pd_list); 407 408 return new; 409 410 fail_w_fi: 411 kfree(fi); 412 fail_w_new: 413 kfree(new); 414 fail: 415 fw_error("out of memory\n"); 416 417 return NULL; 418 } 419 420 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer, 421 u16 datagram_label) 422 { 423 struct fwnet_partial_datagram *pd; 424 425 list_for_each_entry(pd, &peer->pd_list, pd_link) 426 if (pd->datagram_label == datagram_label) 427 return pd; 428 429 return NULL; 430 } 431 432 433 static void fwnet_pd_delete(struct fwnet_partial_datagram *old) 434 { 435 struct fwnet_fragment_info *fi, *n; 436 437 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link) 438 kfree(fi); 439 440 list_del(&old->pd_link); 441 dev_kfree_skb_any(old->skb); 442 kfree(old); 443 } 444 445 static bool fwnet_pd_update(struct fwnet_peer *peer, 446 struct fwnet_partial_datagram *pd, void *frag_buf, 447 unsigned frag_off, unsigned frag_len) 448 { 449 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL) 450 return false; 451 452 memcpy(pd->pbuf + frag_off, frag_buf, frag_len); 453 454 /* 455 * Move list entry to beginnig of list so that oldest partial 456 * datagrams percolate to the end of the list 457 */ 458 list_move_tail(&pd->pd_link, &peer->pd_list); 459 460 return true; 461 } 462 463 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd) 464 { 465 struct fwnet_fragment_info *fi; 466 467 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link); 468 469 return fi->len == pd->datagram_size; 470 } 471 472 /* caller must hold dev->lock */ 473 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev, 474 u64 guid) 475 { 476 struct fwnet_peer *peer; 477 478 list_for_each_entry(peer, &dev->peer_list, peer_link) 479 if (peer->guid == guid) 480 return peer; 481 482 return NULL; 483 } 484 485 /* caller must hold dev->lock */ 486 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev, 487 int node_id, int generation) 488 { 489 struct fwnet_peer *peer; 490 491 list_for_each_entry(peer, &dev->peer_list, peer_link) 492 if (peer->node_id == node_id && 493 peer->generation == generation) 494 return peer; 495 496 return NULL; 497 } 498 499 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */ 500 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed) 501 { 502 max_rec = min(max_rec, speed + 8); 503 max_rec = min(max_rec, 0xbU); /* <= 4096 */ 504 if (max_rec < 8) { 505 fw_notify("max_rec %x out of range\n", max_rec); 506 max_rec = 8; 507 } 508 509 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE; 510 } 511 512 513 static int fwnet_finish_incoming_packet(struct net_device *net, 514 struct sk_buff *skb, u16 source_node_id, 515 bool is_broadcast, u16 ether_type) 516 { 517 struct fwnet_device *dev; 518 static const __be64 broadcast_hw = cpu_to_be64(~0ULL); 519 int status; 520 __be64 guid; 521 522 dev = netdev_priv(net); 523 /* Write metadata, and then pass to the receive level */ 524 skb->dev = net; 525 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */ 526 527 /* 528 * Parse the encapsulation header. This actually does the job of 529 * converting to an ethernet frame header, as well as arp 530 * conversion if needed. ARP conversion is easier in this 531 * direction, since we are using ethernet as our backend. 532 */ 533 /* 534 * If this is an ARP packet, convert it. First, we want to make 535 * use of some of the fields, since they tell us a little bit 536 * about the sending machine. 537 */ 538 if (ether_type == ETH_P_ARP) { 539 struct rfc2734_arp *arp1394; 540 struct arphdr *arp; 541 unsigned char *arp_ptr; 542 u64 fifo_addr; 543 u64 peer_guid; 544 unsigned sspd; 545 u16 max_payload; 546 struct fwnet_peer *peer; 547 unsigned long flags; 548 549 arp1394 = (struct rfc2734_arp *)skb->data; 550 arp = (struct arphdr *)skb->data; 551 arp_ptr = (unsigned char *)(arp + 1); 552 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id); 553 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32 554 | get_unaligned_be32(&arp1394->fifo_lo); 555 556 sspd = arp1394->sspd; 557 /* Sanity check. OS X 10.3 PPC reportedly sends 131. */ 558 if (sspd > SCODE_3200) { 559 fw_notify("sspd %x out of range\n", sspd); 560 sspd = SCODE_3200; 561 } 562 max_payload = fwnet_max_payload(arp1394->max_rec, sspd); 563 564 spin_lock_irqsave(&dev->lock, flags); 565 peer = fwnet_peer_find_by_guid(dev, peer_guid); 566 if (peer) { 567 peer->fifo = fifo_addr; 568 569 if (peer->speed > sspd) 570 peer->speed = sspd; 571 if (peer->max_payload > max_payload) 572 peer->max_payload = max_payload; 573 } 574 spin_unlock_irqrestore(&dev->lock, flags); 575 576 if (!peer) { 577 fw_notify("No peer for ARP packet from %016llx\n", 578 (unsigned long long)peer_guid); 579 goto no_peer; 580 } 581 582 /* 583 * Now that we're done with the 1394 specific stuff, we'll 584 * need to alter some of the data. Believe it or not, all 585 * that needs to be done is sender_IP_address needs to be 586 * moved, the destination hardware address get stuffed 587 * in and the hardware address length set to 8. 588 * 589 * IMPORTANT: The code below overwrites 1394 specific data 590 * needed above so keep the munging of the data for the 591 * higher level IP stack last. 592 */ 593 594 arp->ar_hln = 8; 595 /* skip over sender unique id */ 596 arp_ptr += arp->ar_hln; 597 /* move sender IP addr */ 598 put_unaligned(arp1394->sip, (u32 *)arp_ptr); 599 /* skip over sender IP addr */ 600 arp_ptr += arp->ar_pln; 601 602 if (arp->ar_op == htons(ARPOP_REQUEST)) 603 memset(arp_ptr, 0, sizeof(u64)); 604 else 605 memcpy(arp_ptr, net->dev_addr, sizeof(u64)); 606 } 607 608 /* Now add the ethernet header. */ 609 guid = cpu_to_be64(dev->card->guid); 610 if (dev_hard_header(skb, net, ether_type, 611 is_broadcast ? &broadcast_hw : &guid, 612 NULL, skb->len) >= 0) { 613 struct fwnet_header *eth; 614 u16 *rawp; 615 __be16 protocol; 616 617 skb_reset_mac_header(skb); 618 skb_pull(skb, sizeof(*eth)); 619 eth = (struct fwnet_header *)skb_mac_header(skb); 620 if (*eth->h_dest & 1) { 621 if (memcmp(eth->h_dest, net->broadcast, 622 net->addr_len) == 0) 623 skb->pkt_type = PACKET_BROADCAST; 624 #if 0 625 else 626 skb->pkt_type = PACKET_MULTICAST; 627 #endif 628 } else { 629 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len)) 630 skb->pkt_type = PACKET_OTHERHOST; 631 } 632 if (ntohs(eth->h_proto) >= 1536) { 633 protocol = eth->h_proto; 634 } else { 635 rawp = (u16 *)skb->data; 636 if (*rawp == 0xffff) 637 protocol = htons(ETH_P_802_3); 638 else 639 protocol = htons(ETH_P_802_2); 640 } 641 skb->protocol = protocol; 642 } 643 status = netif_rx(skb); 644 if (status == NET_RX_DROP) { 645 net->stats.rx_errors++; 646 net->stats.rx_dropped++; 647 } else { 648 net->stats.rx_packets++; 649 net->stats.rx_bytes += skb->len; 650 } 651 652 return 0; 653 654 no_peer: 655 net->stats.rx_errors++; 656 net->stats.rx_dropped++; 657 658 dev_kfree_skb_any(skb); 659 660 return -ENOENT; 661 } 662 663 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len, 664 int source_node_id, int generation, 665 bool is_broadcast) 666 { 667 struct sk_buff *skb; 668 struct net_device *net = dev->netdev; 669 struct rfc2734_header hdr; 670 unsigned lf; 671 unsigned long flags; 672 struct fwnet_peer *peer; 673 struct fwnet_partial_datagram *pd; 674 int fg_off; 675 int dg_size; 676 u16 datagram_label; 677 int retval; 678 u16 ether_type; 679 680 hdr.w0 = be32_to_cpu(buf[0]); 681 lf = fwnet_get_hdr_lf(&hdr); 682 if (lf == RFC2374_HDR_UNFRAG) { 683 /* 684 * An unfragmented datagram has been received by the ieee1394 685 * bus. Build an skbuff around it so we can pass it to the 686 * high level network layer. 687 */ 688 ether_type = fwnet_get_hdr_ether_type(&hdr); 689 buf++; 690 len -= RFC2374_UNFRAG_HDR_SIZE; 691 692 skb = dev_alloc_skb(len + net->hard_header_len + 15); 693 if (unlikely(!skb)) { 694 fw_error("out of memory\n"); 695 net->stats.rx_dropped++; 696 697 return -ENOMEM; 698 } 699 skb_reserve(skb, (net->hard_header_len + 15) & ~15); 700 memcpy(skb_put(skb, len), buf, len); 701 702 return fwnet_finish_incoming_packet(net, skb, source_node_id, 703 is_broadcast, ether_type); 704 } 705 /* A datagram fragment has been received, now the fun begins. */ 706 hdr.w1 = ntohl(buf[1]); 707 buf += 2; 708 len -= RFC2374_FRAG_HDR_SIZE; 709 if (lf == RFC2374_HDR_FIRSTFRAG) { 710 ether_type = fwnet_get_hdr_ether_type(&hdr); 711 fg_off = 0; 712 } else { 713 ether_type = 0; 714 fg_off = fwnet_get_hdr_fg_off(&hdr); 715 } 716 datagram_label = fwnet_get_hdr_dgl(&hdr); 717 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */ 718 719 spin_lock_irqsave(&dev->lock, flags); 720 721 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation); 722 if (!peer) { 723 retval = -ENOENT; 724 goto fail; 725 } 726 727 pd = fwnet_pd_find(peer, datagram_label); 728 if (pd == NULL) { 729 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) { 730 /* remove the oldest */ 731 fwnet_pd_delete(list_first_entry(&peer->pd_list, 732 struct fwnet_partial_datagram, pd_link)); 733 peer->pdg_size--; 734 } 735 pd = fwnet_pd_new(net, peer, datagram_label, 736 dg_size, buf, fg_off, len); 737 if (pd == NULL) { 738 retval = -ENOMEM; 739 goto fail; 740 } 741 peer->pdg_size++; 742 } else { 743 if (fwnet_frag_overlap(pd, fg_off, len) || 744 pd->datagram_size != dg_size) { 745 /* 746 * Differing datagram sizes or overlapping fragments, 747 * discard old datagram and start a new one. 748 */ 749 fwnet_pd_delete(pd); 750 pd = fwnet_pd_new(net, peer, datagram_label, 751 dg_size, buf, fg_off, len); 752 if (pd == NULL) { 753 peer->pdg_size--; 754 retval = -ENOMEM; 755 goto fail; 756 } 757 } else { 758 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) { 759 /* 760 * Couldn't save off fragment anyway 761 * so might as well obliterate the 762 * datagram now. 763 */ 764 fwnet_pd_delete(pd); 765 peer->pdg_size--; 766 retval = -ENOMEM; 767 goto fail; 768 } 769 } 770 } /* new datagram or add to existing one */ 771 772 if (lf == RFC2374_HDR_FIRSTFRAG) 773 pd->ether_type = ether_type; 774 775 if (fwnet_pd_is_complete(pd)) { 776 ether_type = pd->ether_type; 777 peer->pdg_size--; 778 skb = skb_get(pd->skb); 779 fwnet_pd_delete(pd); 780 781 spin_unlock_irqrestore(&dev->lock, flags); 782 783 return fwnet_finish_incoming_packet(net, skb, source_node_id, 784 false, ether_type); 785 } 786 /* 787 * Datagram is not complete, we're done for the 788 * moment. 789 */ 790 retval = 0; 791 fail: 792 spin_unlock_irqrestore(&dev->lock, flags); 793 794 return retval; 795 } 796 797 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r, 798 int tcode, int destination, int source, int generation, 799 unsigned long long offset, void *payload, size_t length, 800 void *callback_data) 801 { 802 struct fwnet_device *dev = callback_data; 803 int rcode; 804 805 if (destination == IEEE1394_ALL_NODES) { 806 kfree(r); 807 808 return; 809 } 810 811 if (offset != dev->handler.offset) 812 rcode = RCODE_ADDRESS_ERROR; 813 else if (tcode != TCODE_WRITE_BLOCK_REQUEST) 814 rcode = RCODE_TYPE_ERROR; 815 else if (fwnet_incoming_packet(dev, payload, length, 816 source, generation, false) != 0) { 817 fw_error("Incoming packet failure\n"); 818 rcode = RCODE_CONFLICT_ERROR; 819 } else 820 rcode = RCODE_COMPLETE; 821 822 fw_send_response(card, r, rcode); 823 } 824 825 static void fwnet_receive_broadcast(struct fw_iso_context *context, 826 u32 cycle, size_t header_length, void *header, void *data) 827 { 828 struct fwnet_device *dev; 829 struct fw_iso_packet packet; 830 struct fw_card *card; 831 __be16 *hdr_ptr; 832 __be32 *buf_ptr; 833 int retval; 834 u32 length; 835 u16 source_node_id; 836 u32 specifier_id; 837 u32 ver; 838 unsigned long offset; 839 unsigned long flags; 840 841 dev = data; 842 card = dev->card; 843 hdr_ptr = header; 844 length = be16_to_cpup(hdr_ptr); 845 846 spin_lock_irqsave(&dev->lock, flags); 847 848 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr; 849 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++]; 850 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs) 851 dev->broadcast_rcv_next_ptr = 0; 852 853 spin_unlock_irqrestore(&dev->lock, flags); 854 855 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8 856 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24; 857 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff; 858 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16; 859 860 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) { 861 buf_ptr += 2; 862 length -= IEEE1394_GASP_HDR_SIZE; 863 fwnet_incoming_packet(dev, buf_ptr, length, 864 source_node_id, -1, true); 865 } 866 867 packet.payload_length = dev->rcv_buffer_size; 868 packet.interrupt = 1; 869 packet.skip = 0; 870 packet.tag = 3; 871 packet.sy = 0; 872 packet.header_length = IEEE1394_GASP_HDR_SIZE; 873 874 spin_lock_irqsave(&dev->lock, flags); 875 876 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet, 877 &dev->broadcast_rcv_buffer, offset); 878 879 spin_unlock_irqrestore(&dev->lock, flags); 880 881 if (retval < 0) 882 fw_error("requeue failed\n"); 883 } 884 885 static struct kmem_cache *fwnet_packet_task_cache; 886 887 static void fwnet_free_ptask(struct fwnet_packet_task *ptask) 888 { 889 dev_kfree_skb_any(ptask->skb); 890 kmem_cache_free(fwnet_packet_task_cache, ptask); 891 } 892 893 /* Caller must hold dev->lock. */ 894 static void dec_queued_datagrams(struct fwnet_device *dev) 895 { 896 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS) 897 netif_wake_queue(dev->netdev); 898 } 899 900 static int fwnet_send_packet(struct fwnet_packet_task *ptask); 901 902 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask) 903 { 904 struct fwnet_device *dev = ptask->dev; 905 struct sk_buff *skb = ptask->skb; 906 unsigned long flags; 907 bool free; 908 909 spin_lock_irqsave(&dev->lock, flags); 910 911 ptask->outstanding_pkts--; 912 913 /* Check whether we or the networking TX soft-IRQ is last user. */ 914 free = (ptask->outstanding_pkts == 0 && ptask->enqueued); 915 if (free) 916 dec_queued_datagrams(dev); 917 918 if (ptask->outstanding_pkts == 0) { 919 dev->netdev->stats.tx_packets++; 920 dev->netdev->stats.tx_bytes += skb->len; 921 } 922 923 spin_unlock_irqrestore(&dev->lock, flags); 924 925 if (ptask->outstanding_pkts > 0) { 926 u16 dg_size; 927 u16 fg_off; 928 u16 datagram_label; 929 u16 lf; 930 931 /* Update the ptask to point to the next fragment and send it */ 932 lf = fwnet_get_hdr_lf(&ptask->hdr); 933 switch (lf) { 934 case RFC2374_HDR_LASTFRAG: 935 case RFC2374_HDR_UNFRAG: 936 default: 937 fw_error("Outstanding packet %x lf %x, header %x,%x\n", 938 ptask->outstanding_pkts, lf, ptask->hdr.w0, 939 ptask->hdr.w1); 940 BUG(); 941 942 case RFC2374_HDR_FIRSTFRAG: 943 /* Set frag type here for future interior fragments */ 944 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 945 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 946 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 947 break; 948 949 case RFC2374_HDR_INTFRAG: 950 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 951 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr) 952 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 953 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 954 break; 955 } 956 957 skb_pull(skb, ptask->max_payload); 958 if (ptask->outstanding_pkts > 1) { 959 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG, 960 dg_size, fg_off, datagram_label); 961 } else { 962 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG, 963 dg_size, fg_off, datagram_label); 964 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE; 965 } 966 fwnet_send_packet(ptask); 967 } 968 969 if (free) 970 fwnet_free_ptask(ptask); 971 } 972 973 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask) 974 { 975 struct fwnet_device *dev = ptask->dev; 976 unsigned long flags; 977 bool free; 978 979 spin_lock_irqsave(&dev->lock, flags); 980 981 /* One fragment failed; don't try to send remaining fragments. */ 982 ptask->outstanding_pkts = 0; 983 984 /* Check whether we or the networking TX soft-IRQ is last user. */ 985 free = ptask->enqueued; 986 if (free) 987 dec_queued_datagrams(dev); 988 989 dev->netdev->stats.tx_dropped++; 990 dev->netdev->stats.tx_errors++; 991 992 spin_unlock_irqrestore(&dev->lock, flags); 993 994 if (free) 995 fwnet_free_ptask(ptask); 996 } 997 998 static void fwnet_write_complete(struct fw_card *card, int rcode, 999 void *payload, size_t length, void *data) 1000 { 1001 struct fwnet_packet_task *ptask = data; 1002 static unsigned long j; 1003 static int last_rcode, errors_skipped; 1004 1005 if (rcode == RCODE_COMPLETE) { 1006 fwnet_transmit_packet_done(ptask); 1007 } else { 1008 fwnet_transmit_packet_failed(ptask); 1009 1010 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) { 1011 fw_error("fwnet_write_complete: " 1012 "failed: %x (skipped %d)\n", rcode, errors_skipped); 1013 1014 errors_skipped = 0; 1015 last_rcode = rcode; 1016 } else 1017 errors_skipped++; 1018 } 1019 } 1020 1021 static int fwnet_send_packet(struct fwnet_packet_task *ptask) 1022 { 1023 struct fwnet_device *dev; 1024 unsigned tx_len; 1025 struct rfc2734_header *bufhdr; 1026 unsigned long flags; 1027 bool free; 1028 1029 dev = ptask->dev; 1030 tx_len = ptask->max_payload; 1031 switch (fwnet_get_hdr_lf(&ptask->hdr)) { 1032 case RFC2374_HDR_UNFRAG: 1033 bufhdr = (struct rfc2734_header *) 1034 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE); 1035 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 1036 break; 1037 1038 case RFC2374_HDR_FIRSTFRAG: 1039 case RFC2374_HDR_INTFRAG: 1040 case RFC2374_HDR_LASTFRAG: 1041 bufhdr = (struct rfc2734_header *) 1042 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE); 1043 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 1044 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1); 1045 break; 1046 1047 default: 1048 BUG(); 1049 } 1050 if (ptask->dest_node == IEEE1394_ALL_NODES) { 1051 u8 *p; 1052 int generation; 1053 int node_id; 1054 1055 /* ptask->generation may not have been set yet */ 1056 generation = dev->card->generation; 1057 smp_rmb(); 1058 node_id = dev->card->node_id; 1059 1060 p = skb_push(ptask->skb, 8); 1061 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p); 1062 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24 1063 | RFC2734_SW_VERSION, &p[4]); 1064 1065 /* We should not transmit if broadcast_channel.valid == 0. */ 1066 fw_send_request(dev->card, &ptask->transaction, 1067 TCODE_STREAM_DATA, 1068 fw_stream_packet_destination_id(3, 1069 IEEE1394_BROADCAST_CHANNEL, 0), 1070 generation, SCODE_100, 0ULL, ptask->skb->data, 1071 tx_len + 8, fwnet_write_complete, ptask); 1072 1073 spin_lock_irqsave(&dev->lock, flags); 1074 1075 /* If the AT tasklet already ran, we may be last user. */ 1076 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); 1077 if (!free) 1078 ptask->enqueued = true; 1079 else 1080 dec_queued_datagrams(dev); 1081 1082 spin_unlock_irqrestore(&dev->lock, flags); 1083 1084 goto out; 1085 } 1086 1087 fw_send_request(dev->card, &ptask->transaction, 1088 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, 1089 ptask->generation, ptask->speed, ptask->fifo_addr, 1090 ptask->skb->data, tx_len, fwnet_write_complete, ptask); 1091 1092 spin_lock_irqsave(&dev->lock, flags); 1093 1094 /* If the AT tasklet already ran, we may be last user. */ 1095 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); 1096 if (!free) 1097 ptask->enqueued = true; 1098 else 1099 dec_queued_datagrams(dev); 1100 1101 spin_unlock_irqrestore(&dev->lock, flags); 1102 1103 dev->netdev->trans_start = jiffies; 1104 out: 1105 if (free) 1106 fwnet_free_ptask(ptask); 1107 1108 return 0; 1109 } 1110 1111 static int fwnet_broadcast_start(struct fwnet_device *dev) 1112 { 1113 struct fw_iso_context *context; 1114 int retval; 1115 unsigned num_packets; 1116 unsigned max_receive; 1117 struct fw_iso_packet packet; 1118 unsigned long offset; 1119 unsigned u; 1120 1121 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) { 1122 /* outside OHCI posted write area? */ 1123 static const struct fw_address_region region = { 1124 .start = 0xffff00000000ULL, 1125 .end = CSR_REGISTER_BASE, 1126 }; 1127 1128 dev->handler.length = 4096; 1129 dev->handler.address_callback = fwnet_receive_packet; 1130 dev->handler.callback_data = dev; 1131 1132 retval = fw_core_add_address_handler(&dev->handler, ®ion); 1133 if (retval < 0) 1134 goto failed_initial; 1135 1136 dev->local_fifo = dev->handler.offset; 1137 } 1138 1139 max_receive = 1U << (dev->card->max_receive + 1); 1140 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive; 1141 1142 if (!dev->broadcast_rcv_context) { 1143 void **ptrptr; 1144 1145 context = fw_iso_context_create(dev->card, 1146 FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL, 1147 dev->card->link_speed, 8, fwnet_receive_broadcast, dev); 1148 if (IS_ERR(context)) { 1149 retval = PTR_ERR(context); 1150 goto failed_context_create; 1151 } 1152 1153 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, 1154 dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE); 1155 if (retval < 0) 1156 goto failed_buffer_init; 1157 1158 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL); 1159 if (!ptrptr) { 1160 retval = -ENOMEM; 1161 goto failed_ptrs_alloc; 1162 } 1163 1164 dev->broadcast_rcv_buffer_ptrs = ptrptr; 1165 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) { 1166 void *ptr; 1167 unsigned v; 1168 1169 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]); 1170 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++) 1171 *ptrptr++ = (void *) 1172 ((char *)ptr + v * max_receive); 1173 } 1174 dev->broadcast_rcv_context = context; 1175 } else { 1176 context = dev->broadcast_rcv_context; 1177 } 1178 1179 packet.payload_length = max_receive; 1180 packet.interrupt = 1; 1181 packet.skip = 0; 1182 packet.tag = 3; 1183 packet.sy = 0; 1184 packet.header_length = IEEE1394_GASP_HDR_SIZE; 1185 offset = 0; 1186 1187 for (u = 0; u < num_packets; u++) { 1188 retval = fw_iso_context_queue(context, &packet, 1189 &dev->broadcast_rcv_buffer, offset); 1190 if (retval < 0) 1191 goto failed_rcv_queue; 1192 1193 offset += max_receive; 1194 } 1195 dev->num_broadcast_rcv_ptrs = num_packets; 1196 dev->rcv_buffer_size = max_receive; 1197 dev->broadcast_rcv_next_ptr = 0U; 1198 retval = fw_iso_context_start(context, -1, 0, 1199 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */ 1200 if (retval < 0) 1201 goto failed_rcv_queue; 1202 1203 /* FIXME: adjust it according to the min. speed of all known peers? */ 1204 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100 1205 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE; 1206 dev->broadcast_state = FWNET_BROADCAST_RUNNING; 1207 1208 return 0; 1209 1210 failed_rcv_queue: 1211 kfree(dev->broadcast_rcv_buffer_ptrs); 1212 dev->broadcast_rcv_buffer_ptrs = NULL; 1213 failed_ptrs_alloc: 1214 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card); 1215 failed_buffer_init: 1216 fw_iso_context_destroy(context); 1217 dev->broadcast_rcv_context = NULL; 1218 failed_context_create: 1219 fw_core_remove_address_handler(&dev->handler); 1220 failed_initial: 1221 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1222 1223 return retval; 1224 } 1225 1226 static void set_carrier_state(struct fwnet_device *dev) 1227 { 1228 if (dev->peer_count > 1) 1229 netif_carrier_on(dev->netdev); 1230 else 1231 netif_carrier_off(dev->netdev); 1232 } 1233 1234 /* ifup */ 1235 static int fwnet_open(struct net_device *net) 1236 { 1237 struct fwnet_device *dev = netdev_priv(net); 1238 int ret; 1239 1240 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) { 1241 ret = fwnet_broadcast_start(dev); 1242 if (ret) 1243 return ret; 1244 } 1245 netif_start_queue(net); 1246 1247 spin_lock_irq(&dev->lock); 1248 set_carrier_state(dev); 1249 spin_unlock_irq(&dev->lock); 1250 1251 return 0; 1252 } 1253 1254 /* ifdown */ 1255 static int fwnet_stop(struct net_device *net) 1256 { 1257 netif_stop_queue(net); 1258 1259 /* Deallocate iso context for use by other applications? */ 1260 1261 return 0; 1262 } 1263 1264 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net) 1265 { 1266 struct fwnet_header hdr_buf; 1267 struct fwnet_device *dev = netdev_priv(net); 1268 __be16 proto; 1269 u16 dest_node; 1270 unsigned max_payload; 1271 u16 dg_size; 1272 u16 *datagram_label_ptr; 1273 struct fwnet_packet_task *ptask; 1274 struct fwnet_peer *peer; 1275 unsigned long flags; 1276 1277 spin_lock_irqsave(&dev->lock, flags); 1278 1279 /* Can this happen? */ 1280 if (netif_queue_stopped(dev->netdev)) { 1281 spin_unlock_irqrestore(&dev->lock, flags); 1282 1283 return NETDEV_TX_BUSY; 1284 } 1285 1286 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC); 1287 if (ptask == NULL) 1288 goto fail; 1289 1290 skb = skb_share_check(skb, GFP_ATOMIC); 1291 if (!skb) 1292 goto fail; 1293 1294 /* 1295 * Make a copy of the driver-specific header. 1296 * We might need to rebuild the header on tx failure. 1297 */ 1298 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); 1299 skb_pull(skb, sizeof(hdr_buf)); 1300 1301 proto = hdr_buf.h_proto; 1302 dg_size = skb->len; 1303 1304 /* 1305 * Set the transmission type for the packet. ARP packets and IP 1306 * broadcast packets are sent via GASP. 1307 */ 1308 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0 1309 || proto == htons(ETH_P_ARP) 1310 || (proto == htons(ETH_P_IP) 1311 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) { 1312 max_payload = dev->broadcast_xmt_max_payload; 1313 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel; 1314 1315 ptask->fifo_addr = FWNET_NO_FIFO_ADDR; 1316 ptask->generation = 0; 1317 ptask->dest_node = IEEE1394_ALL_NODES; 1318 ptask->speed = SCODE_100; 1319 } else { 1320 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest); 1321 u8 generation; 1322 1323 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid)); 1324 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR) 1325 goto fail; 1326 1327 generation = peer->generation; 1328 dest_node = peer->node_id; 1329 max_payload = peer->max_payload; 1330 datagram_label_ptr = &peer->datagram_label; 1331 1332 ptask->fifo_addr = peer->fifo; 1333 ptask->generation = generation; 1334 ptask->dest_node = dest_node; 1335 ptask->speed = peer->speed; 1336 } 1337 1338 /* If this is an ARP packet, convert it */ 1339 if (proto == htons(ETH_P_ARP)) { 1340 struct arphdr *arp = (struct arphdr *)skb->data; 1341 unsigned char *arp_ptr = (unsigned char *)(arp + 1); 1342 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data; 1343 __be32 ipaddr; 1344 1345 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN)); 1346 1347 arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN; 1348 arp1394->max_rec = dev->card->max_receive; 1349 arp1394->sspd = dev->card->link_speed; 1350 1351 put_unaligned_be16(dev->local_fifo >> 32, 1352 &arp1394->fifo_hi); 1353 put_unaligned_be32(dev->local_fifo & 0xffffffff, 1354 &arp1394->fifo_lo); 1355 put_unaligned(ipaddr, &arp1394->sip); 1356 } 1357 1358 ptask->hdr.w0 = 0; 1359 ptask->hdr.w1 = 0; 1360 ptask->skb = skb; 1361 ptask->dev = dev; 1362 1363 /* Does it all fit in one packet? */ 1364 if (dg_size <= max_payload) { 1365 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto)); 1366 ptask->outstanding_pkts = 1; 1367 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE; 1368 } else { 1369 u16 datagram_label; 1370 1371 max_payload -= RFC2374_FRAG_OVERHEAD; 1372 datagram_label = (*datagram_label_ptr)++; 1373 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size, 1374 datagram_label); 1375 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); 1376 max_payload += RFC2374_FRAG_HDR_SIZE; 1377 } 1378 1379 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS) 1380 netif_stop_queue(dev->netdev); 1381 1382 spin_unlock_irqrestore(&dev->lock, flags); 1383 1384 ptask->max_payload = max_payload; 1385 ptask->enqueued = 0; 1386 1387 fwnet_send_packet(ptask); 1388 1389 return NETDEV_TX_OK; 1390 1391 fail: 1392 spin_unlock_irqrestore(&dev->lock, flags); 1393 1394 if (ptask) 1395 kmem_cache_free(fwnet_packet_task_cache, ptask); 1396 1397 if (skb != NULL) 1398 dev_kfree_skb(skb); 1399 1400 net->stats.tx_dropped++; 1401 net->stats.tx_errors++; 1402 1403 /* 1404 * FIXME: According to a patch from 2003-02-26, "returning non-zero 1405 * causes serious problems" here, allegedly. Before that patch, 1406 * -ERRNO was returned which is not appropriate under Linux 2.6. 1407 * Perhaps more needs to be done? Stop the queue in serious 1408 * conditions and restart it elsewhere? 1409 */ 1410 return NETDEV_TX_OK; 1411 } 1412 1413 static int fwnet_change_mtu(struct net_device *net, int new_mtu) 1414 { 1415 if (new_mtu < 68) 1416 return -EINVAL; 1417 1418 net->mtu = new_mtu; 1419 return 0; 1420 } 1421 1422 static const struct ethtool_ops fwnet_ethtool_ops = { 1423 .get_link = ethtool_op_get_link, 1424 }; 1425 1426 static const struct net_device_ops fwnet_netdev_ops = { 1427 .ndo_open = fwnet_open, 1428 .ndo_stop = fwnet_stop, 1429 .ndo_start_xmit = fwnet_tx, 1430 .ndo_change_mtu = fwnet_change_mtu, 1431 }; 1432 1433 static void fwnet_init_dev(struct net_device *net) 1434 { 1435 net->header_ops = &fwnet_header_ops; 1436 net->netdev_ops = &fwnet_netdev_ops; 1437 net->watchdog_timeo = 2 * HZ; 1438 net->flags = IFF_BROADCAST | IFF_MULTICAST; 1439 net->features = NETIF_F_HIGHDMA; 1440 net->addr_len = FWNET_ALEN; 1441 net->hard_header_len = FWNET_HLEN; 1442 net->type = ARPHRD_IEEE1394; 1443 net->tx_queue_len = FWNET_TX_QUEUE_LEN; 1444 net->ethtool_ops = &fwnet_ethtool_ops; 1445 } 1446 1447 /* caller must hold fwnet_device_mutex */ 1448 static struct fwnet_device *fwnet_dev_find(struct fw_card *card) 1449 { 1450 struct fwnet_device *dev; 1451 1452 list_for_each_entry(dev, &fwnet_device_list, dev_link) 1453 if (dev->card == card) 1454 return dev; 1455 1456 return NULL; 1457 } 1458 1459 static int fwnet_add_peer(struct fwnet_device *dev, 1460 struct fw_unit *unit, struct fw_device *device) 1461 { 1462 struct fwnet_peer *peer; 1463 1464 peer = kmalloc(sizeof(*peer), GFP_KERNEL); 1465 if (!peer) 1466 return -ENOMEM; 1467 1468 dev_set_drvdata(&unit->device, peer); 1469 1470 peer->dev = dev; 1471 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1472 peer->fifo = FWNET_NO_FIFO_ADDR; 1473 INIT_LIST_HEAD(&peer->pd_list); 1474 peer->pdg_size = 0; 1475 peer->datagram_label = 0; 1476 peer->speed = device->max_speed; 1477 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed); 1478 1479 peer->generation = device->generation; 1480 smp_rmb(); 1481 peer->node_id = device->node_id; 1482 1483 spin_lock_irq(&dev->lock); 1484 list_add_tail(&peer->peer_link, &dev->peer_list); 1485 dev->peer_count++; 1486 set_carrier_state(dev); 1487 spin_unlock_irq(&dev->lock); 1488 1489 return 0; 1490 } 1491 1492 static int fwnet_probe(struct device *_dev) 1493 { 1494 struct fw_unit *unit = fw_unit(_dev); 1495 struct fw_device *device = fw_parent_device(unit); 1496 struct fw_card *card = device->card; 1497 struct net_device *net; 1498 bool allocated_netdev = false; 1499 struct fwnet_device *dev; 1500 unsigned max_mtu; 1501 int ret; 1502 1503 mutex_lock(&fwnet_device_mutex); 1504 1505 dev = fwnet_dev_find(card); 1506 if (dev) { 1507 net = dev->netdev; 1508 goto have_dev; 1509 } 1510 1511 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev); 1512 if (net == NULL) { 1513 ret = -ENOMEM; 1514 goto out; 1515 } 1516 1517 allocated_netdev = true; 1518 SET_NETDEV_DEV(net, card->device); 1519 dev = netdev_priv(net); 1520 1521 spin_lock_init(&dev->lock); 1522 dev->broadcast_state = FWNET_BROADCAST_ERROR; 1523 dev->broadcast_rcv_context = NULL; 1524 dev->broadcast_xmt_max_payload = 0; 1525 dev->broadcast_xmt_datagramlabel = 0; 1526 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1527 dev->queued_datagrams = 0; 1528 INIT_LIST_HEAD(&dev->peer_list); 1529 dev->card = card; 1530 dev->netdev = net; 1531 1532 /* 1533 * Use the RFC 2734 default 1500 octets or the maximum payload 1534 * as initial MTU 1535 */ 1536 max_mtu = (1 << (card->max_receive + 1)) 1537 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE; 1538 net->mtu = min(1500U, max_mtu); 1539 1540 /* Set our hardware address while we're at it */ 1541 put_unaligned_be64(card->guid, net->dev_addr); 1542 put_unaligned_be64(~0ULL, net->broadcast); 1543 ret = register_netdev(net); 1544 if (ret) { 1545 fw_error("Cannot register the driver\n"); 1546 goto out; 1547 } 1548 1549 list_add_tail(&dev->dev_link, &fwnet_device_list); 1550 fw_notify("%s: IPv4 over FireWire on device %016llx\n", 1551 net->name, (unsigned long long)card->guid); 1552 have_dev: 1553 ret = fwnet_add_peer(dev, unit, device); 1554 if (ret && allocated_netdev) { 1555 unregister_netdev(net); 1556 list_del(&dev->dev_link); 1557 } 1558 out: 1559 if (ret && allocated_netdev) 1560 free_netdev(net); 1561 1562 mutex_unlock(&fwnet_device_mutex); 1563 1564 return ret; 1565 } 1566 1567 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev) 1568 { 1569 struct fwnet_partial_datagram *pd, *pd_next; 1570 1571 spin_lock_irq(&dev->lock); 1572 list_del(&peer->peer_link); 1573 dev->peer_count--; 1574 set_carrier_state(dev); 1575 spin_unlock_irq(&dev->lock); 1576 1577 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link) 1578 fwnet_pd_delete(pd); 1579 1580 kfree(peer); 1581 } 1582 1583 static int fwnet_remove(struct device *_dev) 1584 { 1585 struct fwnet_peer *peer = dev_get_drvdata(_dev); 1586 struct fwnet_device *dev = peer->dev; 1587 struct net_device *net; 1588 int i; 1589 1590 mutex_lock(&fwnet_device_mutex); 1591 1592 fwnet_remove_peer(peer, dev); 1593 1594 if (list_empty(&dev->peer_list)) { 1595 net = dev->netdev; 1596 unregister_netdev(net); 1597 1598 if (dev->local_fifo != FWNET_NO_FIFO_ADDR) 1599 fw_core_remove_address_handler(&dev->handler); 1600 if (dev->broadcast_rcv_context) { 1601 fw_iso_context_stop(dev->broadcast_rcv_context); 1602 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, 1603 dev->card); 1604 fw_iso_context_destroy(dev->broadcast_rcv_context); 1605 } 1606 for (i = 0; dev->queued_datagrams && i < 5; i++) 1607 ssleep(1); 1608 WARN_ON(dev->queued_datagrams); 1609 list_del(&dev->dev_link); 1610 1611 free_netdev(net); 1612 } 1613 1614 mutex_unlock(&fwnet_device_mutex); 1615 1616 return 0; 1617 } 1618 1619 /* 1620 * FIXME abort partially sent fragmented datagrams, 1621 * discard partially received fragmented datagrams 1622 */ 1623 static void fwnet_update(struct fw_unit *unit) 1624 { 1625 struct fw_device *device = fw_parent_device(unit); 1626 struct fwnet_peer *peer = dev_get_drvdata(&unit->device); 1627 int generation; 1628 1629 generation = device->generation; 1630 1631 spin_lock_irq(&peer->dev->lock); 1632 peer->node_id = device->node_id; 1633 peer->generation = generation; 1634 spin_unlock_irq(&peer->dev->lock); 1635 } 1636 1637 static const struct ieee1394_device_id fwnet_id_table[] = { 1638 { 1639 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1640 IEEE1394_MATCH_VERSION, 1641 .specifier_id = IANA_SPECIFIER_ID, 1642 .version = RFC2734_SW_VERSION, 1643 }, 1644 { } 1645 }; 1646 1647 static struct fw_driver fwnet_driver = { 1648 .driver = { 1649 .owner = THIS_MODULE, 1650 .name = "net", 1651 .bus = &fw_bus_type, 1652 .probe = fwnet_probe, 1653 .remove = fwnet_remove, 1654 }, 1655 .update = fwnet_update, 1656 .id_table = fwnet_id_table, 1657 }; 1658 1659 static const u32 rfc2374_unit_directory_data[] = { 1660 0x00040000, /* directory_length */ 1661 0x1200005e, /* unit_specifier_id: IANA */ 1662 0x81000003, /* textual descriptor offset */ 1663 0x13000001, /* unit_sw_version: RFC 2734 */ 1664 0x81000005, /* textual descriptor offset */ 1665 0x00030000, /* descriptor_length */ 1666 0x00000000, /* text */ 1667 0x00000000, /* minimal ASCII, en */ 1668 0x49414e41, /* I A N A */ 1669 0x00030000, /* descriptor_length */ 1670 0x00000000, /* text */ 1671 0x00000000, /* minimal ASCII, en */ 1672 0x49507634, /* I P v 4 */ 1673 }; 1674 1675 static struct fw_descriptor rfc2374_unit_directory = { 1676 .length = ARRAY_SIZE(rfc2374_unit_directory_data), 1677 .key = (CSR_DIRECTORY | CSR_UNIT) << 24, 1678 .data = rfc2374_unit_directory_data 1679 }; 1680 1681 static int __init fwnet_init(void) 1682 { 1683 int err; 1684 1685 err = fw_core_add_descriptor(&rfc2374_unit_directory); 1686 if (err) 1687 return err; 1688 1689 fwnet_packet_task_cache = kmem_cache_create("packet_task", 1690 sizeof(struct fwnet_packet_task), 0, 0, NULL); 1691 if (!fwnet_packet_task_cache) { 1692 err = -ENOMEM; 1693 goto out; 1694 } 1695 1696 err = driver_register(&fwnet_driver.driver); 1697 if (!err) 1698 return 0; 1699 1700 kmem_cache_destroy(fwnet_packet_task_cache); 1701 out: 1702 fw_core_remove_descriptor(&rfc2374_unit_directory); 1703 1704 return err; 1705 } 1706 module_init(fwnet_init); 1707 1708 static void __exit fwnet_cleanup(void) 1709 { 1710 driver_unregister(&fwnet_driver.driver); 1711 kmem_cache_destroy(fwnet_packet_task_cache); 1712 fw_core_remove_descriptor(&rfc2374_unit_directory); 1713 } 1714 module_exit(fwnet_cleanup); 1715 1716 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>"); 1717 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734"); 1718 MODULE_LICENSE("GPL"); 1719 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table); 1720