xref: /linux/drivers/firewire/net.c (revision 394d83c17fac2b7bcf05cb99d1e945135767bb6b)
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/ethtool.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/highmem.h>
16 #include <linux/in.h>
17 #include <linux/ip.h>
18 #include <linux/jiffies.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mutex.h>
23 #include <linux/netdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 
28 #include <asm/unaligned.h>
29 #include <net/arp.h>
30 
31 /* rx limits */
32 #define FWNET_MAX_FRAGMENTS		30 /* arbitrary, > TX queue depth */
33 #define FWNET_ISO_PAGE_COUNT		(PAGE_SIZE < 16*1024 ? 4 : 2)
34 
35 /* tx limits */
36 #define FWNET_MAX_QUEUED_DATAGRAMS	20 /* < 64 = number of tlabels */
37 #define FWNET_MIN_QUEUED_DATAGRAMS	10 /* should keep AT DMA busy enough */
38 #define FWNET_TX_QUEUE_LEN		FWNET_MAX_QUEUED_DATAGRAMS /* ? */
39 
40 #define IEEE1394_BROADCAST_CHANNEL	31
41 #define IEEE1394_ALL_NODES		(0xffc0 | 0x003f)
42 #define IEEE1394_MAX_PAYLOAD_S100	512
43 #define FWNET_NO_FIFO_ADDR		(~0ULL)
44 
45 #define IANA_SPECIFIER_ID		0x00005eU
46 #define RFC2734_SW_VERSION		0x000001U
47 
48 #define IEEE1394_GASP_HDR_SIZE	8
49 
50 #define RFC2374_UNFRAG_HDR_SIZE	4
51 #define RFC2374_FRAG_HDR_SIZE	8
52 #define RFC2374_FRAG_OVERHEAD	4
53 
54 #define RFC2374_HDR_UNFRAG	0	/* unfragmented		*/
55 #define RFC2374_HDR_FIRSTFRAG	1	/* first fragment	*/
56 #define RFC2374_HDR_LASTFRAG	2	/* last fragment	*/
57 #define RFC2374_HDR_INTFRAG	3	/* interior fragment	*/
58 
59 #define RFC2734_HW_ADDR_LEN	16
60 
61 struct rfc2734_arp {
62 	__be16 hw_type;		/* 0x0018	*/
63 	__be16 proto_type;	/* 0x0806       */
64 	u8 hw_addr_len;		/* 16		*/
65 	u8 ip_addr_len;		/* 4		*/
66 	__be16 opcode;		/* ARP Opcode	*/
67 	/* Above is exactly the same format as struct arphdr */
68 
69 	__be64 s_uniq_id;	/* Sender's 64bit EUI			*/
70 	u8 max_rec;		/* Sender's max packet size		*/
71 	u8 sspd;		/* Sender's max speed			*/
72 	__be16 fifo_hi;		/* hi 16bits of sender's FIFO addr	*/
73 	__be32 fifo_lo;		/* lo 32bits of sender's FIFO addr	*/
74 	__be32 sip;		/* Sender's IP Address			*/
75 	__be32 tip;		/* IP Address of requested hw addr	*/
76 } __attribute__((packed));
77 
78 /* This header format is specific to this driver implementation. */
79 #define FWNET_ALEN	8
80 #define FWNET_HLEN	10
81 struct fwnet_header {
82 	u8 h_dest[FWNET_ALEN];	/* destination address */
83 	__be16 h_proto;		/* packet type ID field */
84 } __attribute__((packed));
85 
86 /* IPv4 and IPv6 encapsulation header */
87 struct rfc2734_header {
88 	u32 w0;
89 	u32 w1;
90 };
91 
92 #define fwnet_get_hdr_lf(h)		(((h)->w0 & 0xc0000000) >> 30)
93 #define fwnet_get_hdr_ether_type(h)	(((h)->w0 & 0x0000ffff))
94 #define fwnet_get_hdr_dg_size(h)	(((h)->w0 & 0x0fff0000) >> 16)
95 #define fwnet_get_hdr_fg_off(h)		(((h)->w0 & 0x00000fff))
96 #define fwnet_get_hdr_dgl(h)		(((h)->w1 & 0xffff0000) >> 16)
97 
98 #define fwnet_set_hdr_lf(lf)		((lf)  << 30)
99 #define fwnet_set_hdr_ether_type(et)	(et)
100 #define fwnet_set_hdr_dg_size(dgs)	((dgs) << 16)
101 #define fwnet_set_hdr_fg_off(fgo)	(fgo)
102 
103 #define fwnet_set_hdr_dgl(dgl)		((dgl) << 16)
104 
105 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
106 		unsigned ether_type)
107 {
108 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
109 		  | fwnet_set_hdr_ether_type(ether_type);
110 }
111 
112 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
113 		unsigned ether_type, unsigned dg_size, unsigned dgl)
114 {
115 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
116 		  | fwnet_set_hdr_dg_size(dg_size)
117 		  | fwnet_set_hdr_ether_type(ether_type);
118 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
119 }
120 
121 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
122 		unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
123 {
124 	hdr->w0 = fwnet_set_hdr_lf(lf)
125 		  | fwnet_set_hdr_dg_size(dg_size)
126 		  | fwnet_set_hdr_fg_off(fg_off);
127 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
128 }
129 
130 /* This list keeps track of what parts of the datagram have been filled in */
131 struct fwnet_fragment_info {
132 	struct list_head fi_link;
133 	u16 offset;
134 	u16 len;
135 };
136 
137 struct fwnet_partial_datagram {
138 	struct list_head pd_link;
139 	struct list_head fi_list;
140 	struct sk_buff *skb;
141 	/* FIXME Why not use skb->data? */
142 	char *pbuf;
143 	u16 datagram_label;
144 	u16 ether_type;
145 	u16 datagram_size;
146 };
147 
148 static DEFINE_MUTEX(fwnet_device_mutex);
149 static LIST_HEAD(fwnet_device_list);
150 
151 struct fwnet_device {
152 	struct list_head dev_link;
153 	spinlock_t lock;
154 	enum {
155 		FWNET_BROADCAST_ERROR,
156 		FWNET_BROADCAST_RUNNING,
157 		FWNET_BROADCAST_STOPPED,
158 	} broadcast_state;
159 	struct fw_iso_context *broadcast_rcv_context;
160 	struct fw_iso_buffer broadcast_rcv_buffer;
161 	void **broadcast_rcv_buffer_ptrs;
162 	unsigned broadcast_rcv_next_ptr;
163 	unsigned num_broadcast_rcv_ptrs;
164 	unsigned rcv_buffer_size;
165 	/*
166 	 * This value is the maximum unfragmented datagram size that can be
167 	 * sent by the hardware.  It already has the GASP overhead and the
168 	 * unfragmented datagram header overhead calculated into it.
169 	 */
170 	unsigned broadcast_xmt_max_payload;
171 	u16 broadcast_xmt_datagramlabel;
172 
173 	/*
174 	 * The CSR address that remote nodes must send datagrams to for us to
175 	 * receive them.
176 	 */
177 	struct fw_address_handler handler;
178 	u64 local_fifo;
179 
180 	/* Number of tx datagrams that have been queued but not yet acked */
181 	int queued_datagrams;
182 
183 	int peer_count;
184 	struct list_head peer_list;
185 	struct fw_card *card;
186 	struct net_device *netdev;
187 };
188 
189 struct fwnet_peer {
190 	struct list_head peer_link;
191 	struct fwnet_device *dev;
192 	u64 guid;
193 	u64 fifo;
194 
195 	/* guarded by dev->lock */
196 	struct list_head pd_list; /* received partial datagrams */
197 	unsigned pdg_size;        /* pd_list size */
198 
199 	u16 datagram_label;       /* outgoing datagram label */
200 	u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
201 	int node_id;
202 	int generation;
203 	unsigned speed;
204 };
205 
206 /* This is our task struct. It's used for the packet complete callback.  */
207 struct fwnet_packet_task {
208 	struct fw_transaction transaction;
209 	struct rfc2734_header hdr;
210 	struct sk_buff *skb;
211 	struct fwnet_device *dev;
212 
213 	int outstanding_pkts;
214 	u64 fifo_addr;
215 	u16 dest_node;
216 	u16 max_payload;
217 	u8 generation;
218 	u8 speed;
219 	u8 enqueued;
220 };
221 
222 /*
223  * saddr == NULL means use device source address.
224  * daddr == NULL means leave destination address (eg unresolved arp).
225  */
226 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
227 			unsigned short type, const void *daddr,
228 			const void *saddr, unsigned len)
229 {
230 	struct fwnet_header *h;
231 
232 	h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
233 	put_unaligned_be16(type, &h->h_proto);
234 
235 	if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
236 		memset(h->h_dest, 0, net->addr_len);
237 
238 		return net->hard_header_len;
239 	}
240 
241 	if (daddr) {
242 		memcpy(h->h_dest, daddr, net->addr_len);
243 
244 		return net->hard_header_len;
245 	}
246 
247 	return -net->hard_header_len;
248 }
249 
250 static int fwnet_header_rebuild(struct sk_buff *skb)
251 {
252 	struct fwnet_header *h = (struct fwnet_header *)skb->data;
253 
254 	if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
255 		return arp_find((unsigned char *)&h->h_dest, skb);
256 
257 	fw_notify("%s: unable to resolve type %04x addresses\n",
258 		  skb->dev->name, be16_to_cpu(h->h_proto));
259 	return 0;
260 }
261 
262 static int fwnet_header_cache(const struct neighbour *neigh,
263 			      struct hh_cache *hh)
264 {
265 	struct net_device *net;
266 	struct fwnet_header *h;
267 
268 	if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
269 		return -1;
270 	net = neigh->dev;
271 	h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
272 	h->h_proto = hh->hh_type;
273 	memcpy(h->h_dest, neigh->ha, net->addr_len);
274 	hh->hh_len = FWNET_HLEN;
275 
276 	return 0;
277 }
278 
279 /* Called by Address Resolution module to notify changes in address. */
280 static void fwnet_header_cache_update(struct hh_cache *hh,
281 		const struct net_device *net, const unsigned char *haddr)
282 {
283 	memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
284 }
285 
286 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
287 {
288 	memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
289 
290 	return FWNET_ALEN;
291 }
292 
293 static const struct header_ops fwnet_header_ops = {
294 	.create         = fwnet_header_create,
295 	.rebuild        = fwnet_header_rebuild,
296 	.cache		= fwnet_header_cache,
297 	.cache_update	= fwnet_header_cache_update,
298 	.parse          = fwnet_header_parse,
299 };
300 
301 /* FIXME: is this correct for all cases? */
302 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
303 			       unsigned offset, unsigned len)
304 {
305 	struct fwnet_fragment_info *fi;
306 	unsigned end = offset + len;
307 
308 	list_for_each_entry(fi, &pd->fi_list, fi_link)
309 		if (offset < fi->offset + fi->len && end > fi->offset)
310 			return true;
311 
312 	return false;
313 }
314 
315 /* Assumes that new fragment does not overlap any existing fragments */
316 static struct fwnet_fragment_info *fwnet_frag_new(
317 	struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
318 {
319 	struct fwnet_fragment_info *fi, *fi2, *new;
320 	struct list_head *list;
321 
322 	list = &pd->fi_list;
323 	list_for_each_entry(fi, &pd->fi_list, fi_link) {
324 		if (fi->offset + fi->len == offset) {
325 			/* The new fragment can be tacked on to the end */
326 			/* Did the new fragment plug a hole? */
327 			fi2 = list_entry(fi->fi_link.next,
328 					 struct fwnet_fragment_info, fi_link);
329 			if (fi->offset + fi->len == fi2->offset) {
330 				/* glue fragments together */
331 				fi->len += len + fi2->len;
332 				list_del(&fi2->fi_link);
333 				kfree(fi2);
334 			} else {
335 				fi->len += len;
336 			}
337 
338 			return fi;
339 		}
340 		if (offset + len == fi->offset) {
341 			/* The new fragment can be tacked on to the beginning */
342 			/* Did the new fragment plug a hole? */
343 			fi2 = list_entry(fi->fi_link.prev,
344 					 struct fwnet_fragment_info, fi_link);
345 			if (fi2->offset + fi2->len == fi->offset) {
346 				/* glue fragments together */
347 				fi2->len += fi->len + len;
348 				list_del(&fi->fi_link);
349 				kfree(fi);
350 
351 				return fi2;
352 			}
353 			fi->offset = offset;
354 			fi->len += len;
355 
356 			return fi;
357 		}
358 		if (offset > fi->offset + fi->len) {
359 			list = &fi->fi_link;
360 			break;
361 		}
362 		if (offset + len < fi->offset) {
363 			list = fi->fi_link.prev;
364 			break;
365 		}
366 	}
367 
368 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
369 	if (!new) {
370 		fw_error("out of memory\n");
371 		return NULL;
372 	}
373 
374 	new->offset = offset;
375 	new->len = len;
376 	list_add(&new->fi_link, list);
377 
378 	return new;
379 }
380 
381 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
382 		struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
383 		void *frag_buf, unsigned frag_off, unsigned frag_len)
384 {
385 	struct fwnet_partial_datagram *new;
386 	struct fwnet_fragment_info *fi;
387 
388 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
389 	if (!new)
390 		goto fail;
391 
392 	INIT_LIST_HEAD(&new->fi_list);
393 	fi = fwnet_frag_new(new, frag_off, frag_len);
394 	if (fi == NULL)
395 		goto fail_w_new;
396 
397 	new->datagram_label = datagram_label;
398 	new->datagram_size = dg_size;
399 	new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
400 	if (new->skb == NULL)
401 		goto fail_w_fi;
402 
403 	skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
404 	new->pbuf = skb_put(new->skb, dg_size);
405 	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
406 	list_add_tail(&new->pd_link, &peer->pd_list);
407 
408 	return new;
409 
410 fail_w_fi:
411 	kfree(fi);
412 fail_w_new:
413 	kfree(new);
414 fail:
415 	fw_error("out of memory\n");
416 
417 	return NULL;
418 }
419 
420 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
421 						    u16 datagram_label)
422 {
423 	struct fwnet_partial_datagram *pd;
424 
425 	list_for_each_entry(pd, &peer->pd_list, pd_link)
426 		if (pd->datagram_label == datagram_label)
427 			return pd;
428 
429 	return NULL;
430 }
431 
432 
433 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
434 {
435 	struct fwnet_fragment_info *fi, *n;
436 
437 	list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
438 		kfree(fi);
439 
440 	list_del(&old->pd_link);
441 	dev_kfree_skb_any(old->skb);
442 	kfree(old);
443 }
444 
445 static bool fwnet_pd_update(struct fwnet_peer *peer,
446 		struct fwnet_partial_datagram *pd, void *frag_buf,
447 		unsigned frag_off, unsigned frag_len)
448 {
449 	if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
450 		return false;
451 
452 	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
453 
454 	/*
455 	 * Move list entry to beginnig of list so that oldest partial
456 	 * datagrams percolate to the end of the list
457 	 */
458 	list_move_tail(&pd->pd_link, &peer->pd_list);
459 
460 	return true;
461 }
462 
463 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
464 {
465 	struct fwnet_fragment_info *fi;
466 
467 	fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
468 
469 	return fi->len == pd->datagram_size;
470 }
471 
472 /* caller must hold dev->lock */
473 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
474 						  u64 guid)
475 {
476 	struct fwnet_peer *peer;
477 
478 	list_for_each_entry(peer, &dev->peer_list, peer_link)
479 		if (peer->guid == guid)
480 			return peer;
481 
482 	return NULL;
483 }
484 
485 /* caller must hold dev->lock */
486 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
487 						int node_id, int generation)
488 {
489 	struct fwnet_peer *peer;
490 
491 	list_for_each_entry(peer, &dev->peer_list, peer_link)
492 		if (peer->node_id    == node_id &&
493 		    peer->generation == generation)
494 			return peer;
495 
496 	return NULL;
497 }
498 
499 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
500 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
501 {
502 	max_rec = min(max_rec, speed + 8);
503 	max_rec = min(max_rec, 0xbU); /* <= 4096 */
504 	if (max_rec < 8) {
505 		fw_notify("max_rec %x out of range\n", max_rec);
506 		max_rec = 8;
507 	}
508 
509 	return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
510 }
511 
512 
513 static int fwnet_finish_incoming_packet(struct net_device *net,
514 					struct sk_buff *skb, u16 source_node_id,
515 					bool is_broadcast, u16 ether_type)
516 {
517 	struct fwnet_device *dev;
518 	static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
519 	int status;
520 	__be64 guid;
521 
522 	dev = netdev_priv(net);
523 	/* Write metadata, and then pass to the receive level */
524 	skb->dev = net;
525 	skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
526 
527 	/*
528 	 * Parse the encapsulation header. This actually does the job of
529 	 * converting to an ethernet frame header, as well as arp
530 	 * conversion if needed. ARP conversion is easier in this
531 	 * direction, since we are using ethernet as our backend.
532 	 */
533 	/*
534 	 * If this is an ARP packet, convert it. First, we want to make
535 	 * use of some of the fields, since they tell us a little bit
536 	 * about the sending machine.
537 	 */
538 	if (ether_type == ETH_P_ARP) {
539 		struct rfc2734_arp *arp1394;
540 		struct arphdr *arp;
541 		unsigned char *arp_ptr;
542 		u64 fifo_addr;
543 		u64 peer_guid;
544 		unsigned sspd;
545 		u16 max_payload;
546 		struct fwnet_peer *peer;
547 		unsigned long flags;
548 
549 		arp1394   = (struct rfc2734_arp *)skb->data;
550 		arp       = (struct arphdr *)skb->data;
551 		arp_ptr   = (unsigned char *)(arp + 1);
552 		peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
553 		fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
554 				| get_unaligned_be32(&arp1394->fifo_lo);
555 
556 		sspd = arp1394->sspd;
557 		/* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
558 		if (sspd > SCODE_3200) {
559 			fw_notify("sspd %x out of range\n", sspd);
560 			sspd = SCODE_3200;
561 		}
562 		max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
563 
564 		spin_lock_irqsave(&dev->lock, flags);
565 		peer = fwnet_peer_find_by_guid(dev, peer_guid);
566 		if (peer) {
567 			peer->fifo = fifo_addr;
568 
569 			if (peer->speed > sspd)
570 				peer->speed = sspd;
571 			if (peer->max_payload > max_payload)
572 				peer->max_payload = max_payload;
573 		}
574 		spin_unlock_irqrestore(&dev->lock, flags);
575 
576 		if (!peer) {
577 			fw_notify("No peer for ARP packet from %016llx\n",
578 				  (unsigned long long)peer_guid);
579 			goto no_peer;
580 		}
581 
582 		/*
583 		 * Now that we're done with the 1394 specific stuff, we'll
584 		 * need to alter some of the data.  Believe it or not, all
585 		 * that needs to be done is sender_IP_address needs to be
586 		 * moved, the destination hardware address get stuffed
587 		 * in and the hardware address length set to 8.
588 		 *
589 		 * IMPORTANT: The code below overwrites 1394 specific data
590 		 * needed above so keep the munging of the data for the
591 		 * higher level IP stack last.
592 		 */
593 
594 		arp->ar_hln = 8;
595 		/* skip over sender unique id */
596 		arp_ptr += arp->ar_hln;
597 		/* move sender IP addr */
598 		put_unaligned(arp1394->sip, (u32 *)arp_ptr);
599 		/* skip over sender IP addr */
600 		arp_ptr += arp->ar_pln;
601 
602 		if (arp->ar_op == htons(ARPOP_REQUEST))
603 			memset(arp_ptr, 0, sizeof(u64));
604 		else
605 			memcpy(arp_ptr, net->dev_addr, sizeof(u64));
606 	}
607 
608 	/* Now add the ethernet header. */
609 	guid = cpu_to_be64(dev->card->guid);
610 	if (dev_hard_header(skb, net, ether_type,
611 			   is_broadcast ? &broadcast_hw : &guid,
612 			   NULL, skb->len) >= 0) {
613 		struct fwnet_header *eth;
614 		u16 *rawp;
615 		__be16 protocol;
616 
617 		skb_reset_mac_header(skb);
618 		skb_pull(skb, sizeof(*eth));
619 		eth = (struct fwnet_header *)skb_mac_header(skb);
620 		if (*eth->h_dest & 1) {
621 			if (memcmp(eth->h_dest, net->broadcast,
622 				   net->addr_len) == 0)
623 				skb->pkt_type = PACKET_BROADCAST;
624 #if 0
625 			else
626 				skb->pkt_type = PACKET_MULTICAST;
627 #endif
628 		} else {
629 			if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
630 				skb->pkt_type = PACKET_OTHERHOST;
631 		}
632 		if (ntohs(eth->h_proto) >= 1536) {
633 			protocol = eth->h_proto;
634 		} else {
635 			rawp = (u16 *)skb->data;
636 			if (*rawp == 0xffff)
637 				protocol = htons(ETH_P_802_3);
638 			else
639 				protocol = htons(ETH_P_802_2);
640 		}
641 		skb->protocol = protocol;
642 	}
643 	status = netif_rx(skb);
644 	if (status == NET_RX_DROP) {
645 		net->stats.rx_errors++;
646 		net->stats.rx_dropped++;
647 	} else {
648 		net->stats.rx_packets++;
649 		net->stats.rx_bytes += skb->len;
650 	}
651 
652 	return 0;
653 
654  no_peer:
655 	net->stats.rx_errors++;
656 	net->stats.rx_dropped++;
657 
658 	dev_kfree_skb_any(skb);
659 
660 	return -ENOENT;
661 }
662 
663 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
664 				 int source_node_id, int generation,
665 				 bool is_broadcast)
666 {
667 	struct sk_buff *skb;
668 	struct net_device *net = dev->netdev;
669 	struct rfc2734_header hdr;
670 	unsigned lf;
671 	unsigned long flags;
672 	struct fwnet_peer *peer;
673 	struct fwnet_partial_datagram *pd;
674 	int fg_off;
675 	int dg_size;
676 	u16 datagram_label;
677 	int retval;
678 	u16 ether_type;
679 
680 	hdr.w0 = be32_to_cpu(buf[0]);
681 	lf = fwnet_get_hdr_lf(&hdr);
682 	if (lf == RFC2374_HDR_UNFRAG) {
683 		/*
684 		 * An unfragmented datagram has been received by the ieee1394
685 		 * bus. Build an skbuff around it so we can pass it to the
686 		 * high level network layer.
687 		 */
688 		ether_type = fwnet_get_hdr_ether_type(&hdr);
689 		buf++;
690 		len -= RFC2374_UNFRAG_HDR_SIZE;
691 
692 		skb = dev_alloc_skb(len + net->hard_header_len + 15);
693 		if (unlikely(!skb)) {
694 			fw_error("out of memory\n");
695 			net->stats.rx_dropped++;
696 
697 			return -ENOMEM;
698 		}
699 		skb_reserve(skb, (net->hard_header_len + 15) & ~15);
700 		memcpy(skb_put(skb, len), buf, len);
701 
702 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
703 						    is_broadcast, ether_type);
704 	}
705 	/* A datagram fragment has been received, now the fun begins. */
706 	hdr.w1 = ntohl(buf[1]);
707 	buf += 2;
708 	len -= RFC2374_FRAG_HDR_SIZE;
709 	if (lf == RFC2374_HDR_FIRSTFRAG) {
710 		ether_type = fwnet_get_hdr_ether_type(&hdr);
711 		fg_off = 0;
712 	} else {
713 		ether_type = 0;
714 		fg_off = fwnet_get_hdr_fg_off(&hdr);
715 	}
716 	datagram_label = fwnet_get_hdr_dgl(&hdr);
717 	dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
718 
719 	spin_lock_irqsave(&dev->lock, flags);
720 
721 	peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
722 	if (!peer) {
723 		retval = -ENOENT;
724 		goto fail;
725 	}
726 
727 	pd = fwnet_pd_find(peer, datagram_label);
728 	if (pd == NULL) {
729 		while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
730 			/* remove the oldest */
731 			fwnet_pd_delete(list_first_entry(&peer->pd_list,
732 				struct fwnet_partial_datagram, pd_link));
733 			peer->pdg_size--;
734 		}
735 		pd = fwnet_pd_new(net, peer, datagram_label,
736 				  dg_size, buf, fg_off, len);
737 		if (pd == NULL) {
738 			retval = -ENOMEM;
739 			goto fail;
740 		}
741 		peer->pdg_size++;
742 	} else {
743 		if (fwnet_frag_overlap(pd, fg_off, len) ||
744 		    pd->datagram_size != dg_size) {
745 			/*
746 			 * Differing datagram sizes or overlapping fragments,
747 			 * discard old datagram and start a new one.
748 			 */
749 			fwnet_pd_delete(pd);
750 			pd = fwnet_pd_new(net, peer, datagram_label,
751 					  dg_size, buf, fg_off, len);
752 			if (pd == NULL) {
753 				peer->pdg_size--;
754 				retval = -ENOMEM;
755 				goto fail;
756 			}
757 		} else {
758 			if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
759 				/*
760 				 * Couldn't save off fragment anyway
761 				 * so might as well obliterate the
762 				 * datagram now.
763 				 */
764 				fwnet_pd_delete(pd);
765 				peer->pdg_size--;
766 				retval = -ENOMEM;
767 				goto fail;
768 			}
769 		}
770 	} /* new datagram or add to existing one */
771 
772 	if (lf == RFC2374_HDR_FIRSTFRAG)
773 		pd->ether_type = ether_type;
774 
775 	if (fwnet_pd_is_complete(pd)) {
776 		ether_type = pd->ether_type;
777 		peer->pdg_size--;
778 		skb = skb_get(pd->skb);
779 		fwnet_pd_delete(pd);
780 
781 		spin_unlock_irqrestore(&dev->lock, flags);
782 
783 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
784 						    false, ether_type);
785 	}
786 	/*
787 	 * Datagram is not complete, we're done for the
788 	 * moment.
789 	 */
790 	retval = 0;
791  fail:
792 	spin_unlock_irqrestore(&dev->lock, flags);
793 
794 	return retval;
795 }
796 
797 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
798 		int tcode, int destination, int source, int generation,
799 		unsigned long long offset, void *payload, size_t length,
800 		void *callback_data)
801 {
802 	struct fwnet_device *dev = callback_data;
803 	int rcode;
804 
805 	if (destination == IEEE1394_ALL_NODES) {
806 		kfree(r);
807 
808 		return;
809 	}
810 
811 	if (offset != dev->handler.offset)
812 		rcode = RCODE_ADDRESS_ERROR;
813 	else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
814 		rcode = RCODE_TYPE_ERROR;
815 	else if (fwnet_incoming_packet(dev, payload, length,
816 				       source, generation, false) != 0) {
817 		fw_error("Incoming packet failure\n");
818 		rcode = RCODE_CONFLICT_ERROR;
819 	} else
820 		rcode = RCODE_COMPLETE;
821 
822 	fw_send_response(card, r, rcode);
823 }
824 
825 static void fwnet_receive_broadcast(struct fw_iso_context *context,
826 		u32 cycle, size_t header_length, void *header, void *data)
827 {
828 	struct fwnet_device *dev;
829 	struct fw_iso_packet packet;
830 	struct fw_card *card;
831 	__be16 *hdr_ptr;
832 	__be32 *buf_ptr;
833 	int retval;
834 	u32 length;
835 	u16 source_node_id;
836 	u32 specifier_id;
837 	u32 ver;
838 	unsigned long offset;
839 	unsigned long flags;
840 
841 	dev = data;
842 	card = dev->card;
843 	hdr_ptr = header;
844 	length = be16_to_cpup(hdr_ptr);
845 
846 	spin_lock_irqsave(&dev->lock, flags);
847 
848 	offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
849 	buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
850 	if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
851 		dev->broadcast_rcv_next_ptr = 0;
852 
853 	spin_unlock_irqrestore(&dev->lock, flags);
854 
855 	specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
856 			| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
857 	ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
858 	source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
859 
860 	if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
861 		buf_ptr += 2;
862 		length -= IEEE1394_GASP_HDR_SIZE;
863 		fwnet_incoming_packet(dev, buf_ptr, length,
864 				      source_node_id, -1, true);
865 	}
866 
867 	packet.payload_length = dev->rcv_buffer_size;
868 	packet.interrupt = 1;
869 	packet.skip = 0;
870 	packet.tag = 3;
871 	packet.sy = 0;
872 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
873 
874 	spin_lock_irqsave(&dev->lock, flags);
875 
876 	retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
877 				      &dev->broadcast_rcv_buffer, offset);
878 
879 	spin_unlock_irqrestore(&dev->lock, flags);
880 
881 	if (retval < 0)
882 		fw_error("requeue failed\n");
883 }
884 
885 static struct kmem_cache *fwnet_packet_task_cache;
886 
887 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
888 {
889 	dev_kfree_skb_any(ptask->skb);
890 	kmem_cache_free(fwnet_packet_task_cache, ptask);
891 }
892 
893 /* Caller must hold dev->lock. */
894 static void dec_queued_datagrams(struct fwnet_device *dev)
895 {
896 	if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
897 		netif_wake_queue(dev->netdev);
898 }
899 
900 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
901 
902 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
903 {
904 	struct fwnet_device *dev = ptask->dev;
905 	struct sk_buff *skb = ptask->skb;
906 	unsigned long flags;
907 	bool free;
908 
909 	spin_lock_irqsave(&dev->lock, flags);
910 
911 	ptask->outstanding_pkts--;
912 
913 	/* Check whether we or the networking TX soft-IRQ is last user. */
914 	free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
915 	if (free)
916 		dec_queued_datagrams(dev);
917 
918 	if (ptask->outstanding_pkts == 0) {
919 		dev->netdev->stats.tx_packets++;
920 		dev->netdev->stats.tx_bytes += skb->len;
921 	}
922 
923 	spin_unlock_irqrestore(&dev->lock, flags);
924 
925 	if (ptask->outstanding_pkts > 0) {
926 		u16 dg_size;
927 		u16 fg_off;
928 		u16 datagram_label;
929 		u16 lf;
930 
931 		/* Update the ptask to point to the next fragment and send it */
932 		lf = fwnet_get_hdr_lf(&ptask->hdr);
933 		switch (lf) {
934 		case RFC2374_HDR_LASTFRAG:
935 		case RFC2374_HDR_UNFRAG:
936 		default:
937 			fw_error("Outstanding packet %x lf %x, header %x,%x\n",
938 				 ptask->outstanding_pkts, lf, ptask->hdr.w0,
939 				 ptask->hdr.w1);
940 			BUG();
941 
942 		case RFC2374_HDR_FIRSTFRAG:
943 			/* Set frag type here for future interior fragments */
944 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
945 			fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
946 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
947 			break;
948 
949 		case RFC2374_HDR_INTFRAG:
950 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
951 			fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
952 				  + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
953 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
954 			break;
955 		}
956 
957 		skb_pull(skb, ptask->max_payload);
958 		if (ptask->outstanding_pkts > 1) {
959 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
960 					  dg_size, fg_off, datagram_label);
961 		} else {
962 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
963 					  dg_size, fg_off, datagram_label);
964 			ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
965 		}
966 		fwnet_send_packet(ptask);
967 	}
968 
969 	if (free)
970 		fwnet_free_ptask(ptask);
971 }
972 
973 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
974 {
975 	struct fwnet_device *dev = ptask->dev;
976 	unsigned long flags;
977 	bool free;
978 
979 	spin_lock_irqsave(&dev->lock, flags);
980 
981 	/* One fragment failed; don't try to send remaining fragments. */
982 	ptask->outstanding_pkts = 0;
983 
984 	/* Check whether we or the networking TX soft-IRQ is last user. */
985 	free = ptask->enqueued;
986 	if (free)
987 		dec_queued_datagrams(dev);
988 
989 	dev->netdev->stats.tx_dropped++;
990 	dev->netdev->stats.tx_errors++;
991 
992 	spin_unlock_irqrestore(&dev->lock, flags);
993 
994 	if (free)
995 		fwnet_free_ptask(ptask);
996 }
997 
998 static void fwnet_write_complete(struct fw_card *card, int rcode,
999 				 void *payload, size_t length, void *data)
1000 {
1001 	struct fwnet_packet_task *ptask = data;
1002 	static unsigned long j;
1003 	static int last_rcode, errors_skipped;
1004 
1005 	if (rcode == RCODE_COMPLETE) {
1006 		fwnet_transmit_packet_done(ptask);
1007 	} else {
1008 		fwnet_transmit_packet_failed(ptask);
1009 
1010 		if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1011 			fw_error("fwnet_write_complete: "
1012 				"failed: %x (skipped %d)\n", rcode, errors_skipped);
1013 
1014 			errors_skipped = 0;
1015 			last_rcode = rcode;
1016 		} else
1017 			errors_skipped++;
1018 	}
1019 }
1020 
1021 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1022 {
1023 	struct fwnet_device *dev;
1024 	unsigned tx_len;
1025 	struct rfc2734_header *bufhdr;
1026 	unsigned long flags;
1027 	bool free;
1028 
1029 	dev = ptask->dev;
1030 	tx_len = ptask->max_payload;
1031 	switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1032 	case RFC2374_HDR_UNFRAG:
1033 		bufhdr = (struct rfc2734_header *)
1034 				skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1035 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1036 		break;
1037 
1038 	case RFC2374_HDR_FIRSTFRAG:
1039 	case RFC2374_HDR_INTFRAG:
1040 	case RFC2374_HDR_LASTFRAG:
1041 		bufhdr = (struct rfc2734_header *)
1042 				skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1043 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1044 		put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1045 		break;
1046 
1047 	default:
1048 		BUG();
1049 	}
1050 	if (ptask->dest_node == IEEE1394_ALL_NODES) {
1051 		u8 *p;
1052 		int generation;
1053 		int node_id;
1054 
1055 		/* ptask->generation may not have been set yet */
1056 		generation = dev->card->generation;
1057 		smp_rmb();
1058 		node_id = dev->card->node_id;
1059 
1060 		p = skb_push(ptask->skb, 8);
1061 		put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1062 		put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1063 						| RFC2734_SW_VERSION, &p[4]);
1064 
1065 		/* We should not transmit if broadcast_channel.valid == 0. */
1066 		fw_send_request(dev->card, &ptask->transaction,
1067 				TCODE_STREAM_DATA,
1068 				fw_stream_packet_destination_id(3,
1069 						IEEE1394_BROADCAST_CHANNEL, 0),
1070 				generation, SCODE_100, 0ULL, ptask->skb->data,
1071 				tx_len + 8, fwnet_write_complete, ptask);
1072 
1073 		spin_lock_irqsave(&dev->lock, flags);
1074 
1075 		/* If the AT tasklet already ran, we may be last user. */
1076 		free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1077 		if (!free)
1078 			ptask->enqueued = true;
1079 		else
1080 			dec_queued_datagrams(dev);
1081 
1082 		spin_unlock_irqrestore(&dev->lock, flags);
1083 
1084 		goto out;
1085 	}
1086 
1087 	fw_send_request(dev->card, &ptask->transaction,
1088 			TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1089 			ptask->generation, ptask->speed, ptask->fifo_addr,
1090 			ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1091 
1092 	spin_lock_irqsave(&dev->lock, flags);
1093 
1094 	/* If the AT tasklet already ran, we may be last user. */
1095 	free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1096 	if (!free)
1097 		ptask->enqueued = true;
1098 	else
1099 		dec_queued_datagrams(dev);
1100 
1101 	spin_unlock_irqrestore(&dev->lock, flags);
1102 
1103 	dev->netdev->trans_start = jiffies;
1104  out:
1105 	if (free)
1106 		fwnet_free_ptask(ptask);
1107 
1108 	return 0;
1109 }
1110 
1111 static int fwnet_broadcast_start(struct fwnet_device *dev)
1112 {
1113 	struct fw_iso_context *context;
1114 	int retval;
1115 	unsigned num_packets;
1116 	unsigned max_receive;
1117 	struct fw_iso_packet packet;
1118 	unsigned long offset;
1119 	unsigned u;
1120 
1121 	if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1122 		/* outside OHCI posted write area? */
1123 		static const struct fw_address_region region = {
1124 			.start = 0xffff00000000ULL,
1125 			.end   = CSR_REGISTER_BASE,
1126 		};
1127 
1128 		dev->handler.length = 4096;
1129 		dev->handler.address_callback = fwnet_receive_packet;
1130 		dev->handler.callback_data = dev;
1131 
1132 		retval = fw_core_add_address_handler(&dev->handler, &region);
1133 		if (retval < 0)
1134 			goto failed_initial;
1135 
1136 		dev->local_fifo = dev->handler.offset;
1137 	}
1138 
1139 	max_receive = 1U << (dev->card->max_receive + 1);
1140 	num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1141 
1142 	if (!dev->broadcast_rcv_context) {
1143 		void **ptrptr;
1144 
1145 		context = fw_iso_context_create(dev->card,
1146 		    FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1147 		    dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1148 		if (IS_ERR(context)) {
1149 			retval = PTR_ERR(context);
1150 			goto failed_context_create;
1151 		}
1152 
1153 		retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1154 		    dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1155 		if (retval < 0)
1156 			goto failed_buffer_init;
1157 
1158 		ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1159 		if (!ptrptr) {
1160 			retval = -ENOMEM;
1161 			goto failed_ptrs_alloc;
1162 		}
1163 
1164 		dev->broadcast_rcv_buffer_ptrs = ptrptr;
1165 		for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1166 			void *ptr;
1167 			unsigned v;
1168 
1169 			ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1170 			for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1171 				*ptrptr++ = (void *)
1172 						((char *)ptr + v * max_receive);
1173 		}
1174 		dev->broadcast_rcv_context = context;
1175 	} else {
1176 		context = dev->broadcast_rcv_context;
1177 	}
1178 
1179 	packet.payload_length = max_receive;
1180 	packet.interrupt = 1;
1181 	packet.skip = 0;
1182 	packet.tag = 3;
1183 	packet.sy = 0;
1184 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
1185 	offset = 0;
1186 
1187 	for (u = 0; u < num_packets; u++) {
1188 		retval = fw_iso_context_queue(context, &packet,
1189 				&dev->broadcast_rcv_buffer, offset);
1190 		if (retval < 0)
1191 			goto failed_rcv_queue;
1192 
1193 		offset += max_receive;
1194 	}
1195 	dev->num_broadcast_rcv_ptrs = num_packets;
1196 	dev->rcv_buffer_size = max_receive;
1197 	dev->broadcast_rcv_next_ptr = 0U;
1198 	retval = fw_iso_context_start(context, -1, 0,
1199 			FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1200 	if (retval < 0)
1201 		goto failed_rcv_queue;
1202 
1203 	/* FIXME: adjust it according to the min. speed of all known peers? */
1204 	dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1205 			- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1206 	dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1207 
1208 	return 0;
1209 
1210  failed_rcv_queue:
1211 	kfree(dev->broadcast_rcv_buffer_ptrs);
1212 	dev->broadcast_rcv_buffer_ptrs = NULL;
1213  failed_ptrs_alloc:
1214 	fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1215  failed_buffer_init:
1216 	fw_iso_context_destroy(context);
1217 	dev->broadcast_rcv_context = NULL;
1218  failed_context_create:
1219 	fw_core_remove_address_handler(&dev->handler);
1220  failed_initial:
1221 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1222 
1223 	return retval;
1224 }
1225 
1226 static void set_carrier_state(struct fwnet_device *dev)
1227 {
1228 	if (dev->peer_count > 1)
1229 		netif_carrier_on(dev->netdev);
1230 	else
1231 		netif_carrier_off(dev->netdev);
1232 }
1233 
1234 /* ifup */
1235 static int fwnet_open(struct net_device *net)
1236 {
1237 	struct fwnet_device *dev = netdev_priv(net);
1238 	int ret;
1239 
1240 	if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1241 		ret = fwnet_broadcast_start(dev);
1242 		if (ret)
1243 			return ret;
1244 	}
1245 	netif_start_queue(net);
1246 
1247 	spin_lock_irq(&dev->lock);
1248 	set_carrier_state(dev);
1249 	spin_unlock_irq(&dev->lock);
1250 
1251 	return 0;
1252 }
1253 
1254 /* ifdown */
1255 static int fwnet_stop(struct net_device *net)
1256 {
1257 	netif_stop_queue(net);
1258 
1259 	/* Deallocate iso context for use by other applications? */
1260 
1261 	return 0;
1262 }
1263 
1264 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1265 {
1266 	struct fwnet_header hdr_buf;
1267 	struct fwnet_device *dev = netdev_priv(net);
1268 	__be16 proto;
1269 	u16 dest_node;
1270 	unsigned max_payload;
1271 	u16 dg_size;
1272 	u16 *datagram_label_ptr;
1273 	struct fwnet_packet_task *ptask;
1274 	struct fwnet_peer *peer;
1275 	unsigned long flags;
1276 
1277 	spin_lock_irqsave(&dev->lock, flags);
1278 
1279 	/* Can this happen? */
1280 	if (netif_queue_stopped(dev->netdev)) {
1281 		spin_unlock_irqrestore(&dev->lock, flags);
1282 
1283 		return NETDEV_TX_BUSY;
1284 	}
1285 
1286 	ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1287 	if (ptask == NULL)
1288 		goto fail;
1289 
1290 	skb = skb_share_check(skb, GFP_ATOMIC);
1291 	if (!skb)
1292 		goto fail;
1293 
1294 	/*
1295 	 * Make a copy of the driver-specific header.
1296 	 * We might need to rebuild the header on tx failure.
1297 	 */
1298 	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1299 	skb_pull(skb, sizeof(hdr_buf));
1300 
1301 	proto = hdr_buf.h_proto;
1302 	dg_size = skb->len;
1303 
1304 	/*
1305 	 * Set the transmission type for the packet.  ARP packets and IP
1306 	 * broadcast packets are sent via GASP.
1307 	 */
1308 	if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1309 	    || proto == htons(ETH_P_ARP)
1310 	    || (proto == htons(ETH_P_IP)
1311 		&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1312 		max_payload        = dev->broadcast_xmt_max_payload;
1313 		datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1314 
1315 		ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1316 		ptask->generation  = 0;
1317 		ptask->dest_node   = IEEE1394_ALL_NODES;
1318 		ptask->speed       = SCODE_100;
1319 	} else {
1320 		__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1321 		u8 generation;
1322 
1323 		peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1324 		if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1325 			goto fail;
1326 
1327 		generation         = peer->generation;
1328 		dest_node          = peer->node_id;
1329 		max_payload        = peer->max_payload;
1330 		datagram_label_ptr = &peer->datagram_label;
1331 
1332 		ptask->fifo_addr   = peer->fifo;
1333 		ptask->generation  = generation;
1334 		ptask->dest_node   = dest_node;
1335 		ptask->speed       = peer->speed;
1336 	}
1337 
1338 	/* If this is an ARP packet, convert it */
1339 	if (proto == htons(ETH_P_ARP)) {
1340 		struct arphdr *arp = (struct arphdr *)skb->data;
1341 		unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1342 		struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1343 		__be32 ipaddr;
1344 
1345 		ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1346 
1347 		arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1348 		arp1394->max_rec        = dev->card->max_receive;
1349 		arp1394->sspd		= dev->card->link_speed;
1350 
1351 		put_unaligned_be16(dev->local_fifo >> 32,
1352 				   &arp1394->fifo_hi);
1353 		put_unaligned_be32(dev->local_fifo & 0xffffffff,
1354 				   &arp1394->fifo_lo);
1355 		put_unaligned(ipaddr, &arp1394->sip);
1356 	}
1357 
1358 	ptask->hdr.w0 = 0;
1359 	ptask->hdr.w1 = 0;
1360 	ptask->skb = skb;
1361 	ptask->dev = dev;
1362 
1363 	/* Does it all fit in one packet? */
1364 	if (dg_size <= max_payload) {
1365 		fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1366 		ptask->outstanding_pkts = 1;
1367 		max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1368 	} else {
1369 		u16 datagram_label;
1370 
1371 		max_payload -= RFC2374_FRAG_OVERHEAD;
1372 		datagram_label = (*datagram_label_ptr)++;
1373 		fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1374 				  datagram_label);
1375 		ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1376 		max_payload += RFC2374_FRAG_HDR_SIZE;
1377 	}
1378 
1379 	if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1380 		netif_stop_queue(dev->netdev);
1381 
1382 	spin_unlock_irqrestore(&dev->lock, flags);
1383 
1384 	ptask->max_payload = max_payload;
1385 	ptask->enqueued    = 0;
1386 
1387 	fwnet_send_packet(ptask);
1388 
1389 	return NETDEV_TX_OK;
1390 
1391  fail:
1392 	spin_unlock_irqrestore(&dev->lock, flags);
1393 
1394 	if (ptask)
1395 		kmem_cache_free(fwnet_packet_task_cache, ptask);
1396 
1397 	if (skb != NULL)
1398 		dev_kfree_skb(skb);
1399 
1400 	net->stats.tx_dropped++;
1401 	net->stats.tx_errors++;
1402 
1403 	/*
1404 	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1405 	 * causes serious problems" here, allegedly.  Before that patch,
1406 	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1407 	 * Perhaps more needs to be done?  Stop the queue in serious
1408 	 * conditions and restart it elsewhere?
1409 	 */
1410 	return NETDEV_TX_OK;
1411 }
1412 
1413 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1414 {
1415 	if (new_mtu < 68)
1416 		return -EINVAL;
1417 
1418 	net->mtu = new_mtu;
1419 	return 0;
1420 }
1421 
1422 static const struct ethtool_ops fwnet_ethtool_ops = {
1423 	.get_link	= ethtool_op_get_link,
1424 };
1425 
1426 static const struct net_device_ops fwnet_netdev_ops = {
1427 	.ndo_open       = fwnet_open,
1428 	.ndo_stop	= fwnet_stop,
1429 	.ndo_start_xmit = fwnet_tx,
1430 	.ndo_change_mtu = fwnet_change_mtu,
1431 };
1432 
1433 static void fwnet_init_dev(struct net_device *net)
1434 {
1435 	net->header_ops		= &fwnet_header_ops;
1436 	net->netdev_ops		= &fwnet_netdev_ops;
1437 	net->watchdog_timeo	= 2 * HZ;
1438 	net->flags		= IFF_BROADCAST | IFF_MULTICAST;
1439 	net->features		= NETIF_F_HIGHDMA;
1440 	net->addr_len		= FWNET_ALEN;
1441 	net->hard_header_len	= FWNET_HLEN;
1442 	net->type		= ARPHRD_IEEE1394;
1443 	net->tx_queue_len	= FWNET_TX_QUEUE_LEN;
1444 	net->ethtool_ops	= &fwnet_ethtool_ops;
1445 }
1446 
1447 /* caller must hold fwnet_device_mutex */
1448 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1449 {
1450 	struct fwnet_device *dev;
1451 
1452 	list_for_each_entry(dev, &fwnet_device_list, dev_link)
1453 		if (dev->card == card)
1454 			return dev;
1455 
1456 	return NULL;
1457 }
1458 
1459 static int fwnet_add_peer(struct fwnet_device *dev,
1460 			  struct fw_unit *unit, struct fw_device *device)
1461 {
1462 	struct fwnet_peer *peer;
1463 
1464 	peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1465 	if (!peer)
1466 		return -ENOMEM;
1467 
1468 	dev_set_drvdata(&unit->device, peer);
1469 
1470 	peer->dev = dev;
1471 	peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1472 	peer->fifo = FWNET_NO_FIFO_ADDR;
1473 	INIT_LIST_HEAD(&peer->pd_list);
1474 	peer->pdg_size = 0;
1475 	peer->datagram_label = 0;
1476 	peer->speed = device->max_speed;
1477 	peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1478 
1479 	peer->generation = device->generation;
1480 	smp_rmb();
1481 	peer->node_id = device->node_id;
1482 
1483 	spin_lock_irq(&dev->lock);
1484 	list_add_tail(&peer->peer_link, &dev->peer_list);
1485 	dev->peer_count++;
1486 	set_carrier_state(dev);
1487 	spin_unlock_irq(&dev->lock);
1488 
1489 	return 0;
1490 }
1491 
1492 static int fwnet_probe(struct device *_dev)
1493 {
1494 	struct fw_unit *unit = fw_unit(_dev);
1495 	struct fw_device *device = fw_parent_device(unit);
1496 	struct fw_card *card = device->card;
1497 	struct net_device *net;
1498 	bool allocated_netdev = false;
1499 	struct fwnet_device *dev;
1500 	unsigned max_mtu;
1501 	int ret;
1502 
1503 	mutex_lock(&fwnet_device_mutex);
1504 
1505 	dev = fwnet_dev_find(card);
1506 	if (dev) {
1507 		net = dev->netdev;
1508 		goto have_dev;
1509 	}
1510 
1511 	net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1512 	if (net == NULL) {
1513 		ret = -ENOMEM;
1514 		goto out;
1515 	}
1516 
1517 	allocated_netdev = true;
1518 	SET_NETDEV_DEV(net, card->device);
1519 	dev = netdev_priv(net);
1520 
1521 	spin_lock_init(&dev->lock);
1522 	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1523 	dev->broadcast_rcv_context = NULL;
1524 	dev->broadcast_xmt_max_payload = 0;
1525 	dev->broadcast_xmt_datagramlabel = 0;
1526 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1527 	dev->queued_datagrams = 0;
1528 	INIT_LIST_HEAD(&dev->peer_list);
1529 	dev->card = card;
1530 	dev->netdev = net;
1531 
1532 	/*
1533 	 * Use the RFC 2734 default 1500 octets or the maximum payload
1534 	 * as initial MTU
1535 	 */
1536 	max_mtu = (1 << (card->max_receive + 1))
1537 		  - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1538 	net->mtu = min(1500U, max_mtu);
1539 
1540 	/* Set our hardware address while we're at it */
1541 	put_unaligned_be64(card->guid, net->dev_addr);
1542 	put_unaligned_be64(~0ULL, net->broadcast);
1543 	ret = register_netdev(net);
1544 	if (ret) {
1545 		fw_error("Cannot register the driver\n");
1546 		goto out;
1547 	}
1548 
1549 	list_add_tail(&dev->dev_link, &fwnet_device_list);
1550 	fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1551 		  net->name, (unsigned long long)card->guid);
1552  have_dev:
1553 	ret = fwnet_add_peer(dev, unit, device);
1554 	if (ret && allocated_netdev) {
1555 		unregister_netdev(net);
1556 		list_del(&dev->dev_link);
1557 	}
1558  out:
1559 	if (ret && allocated_netdev)
1560 		free_netdev(net);
1561 
1562 	mutex_unlock(&fwnet_device_mutex);
1563 
1564 	return ret;
1565 }
1566 
1567 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1568 {
1569 	struct fwnet_partial_datagram *pd, *pd_next;
1570 
1571 	spin_lock_irq(&dev->lock);
1572 	list_del(&peer->peer_link);
1573 	dev->peer_count--;
1574 	set_carrier_state(dev);
1575 	spin_unlock_irq(&dev->lock);
1576 
1577 	list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1578 		fwnet_pd_delete(pd);
1579 
1580 	kfree(peer);
1581 }
1582 
1583 static int fwnet_remove(struct device *_dev)
1584 {
1585 	struct fwnet_peer *peer = dev_get_drvdata(_dev);
1586 	struct fwnet_device *dev = peer->dev;
1587 	struct net_device *net;
1588 	int i;
1589 
1590 	mutex_lock(&fwnet_device_mutex);
1591 
1592 	fwnet_remove_peer(peer, dev);
1593 
1594 	if (list_empty(&dev->peer_list)) {
1595 		net = dev->netdev;
1596 		unregister_netdev(net);
1597 
1598 		if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1599 			fw_core_remove_address_handler(&dev->handler);
1600 		if (dev->broadcast_rcv_context) {
1601 			fw_iso_context_stop(dev->broadcast_rcv_context);
1602 			fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1603 					      dev->card);
1604 			fw_iso_context_destroy(dev->broadcast_rcv_context);
1605 		}
1606 		for (i = 0; dev->queued_datagrams && i < 5; i++)
1607 			ssleep(1);
1608 		WARN_ON(dev->queued_datagrams);
1609 		list_del(&dev->dev_link);
1610 
1611 		free_netdev(net);
1612 	}
1613 
1614 	mutex_unlock(&fwnet_device_mutex);
1615 
1616 	return 0;
1617 }
1618 
1619 /*
1620  * FIXME abort partially sent fragmented datagrams,
1621  * discard partially received fragmented datagrams
1622  */
1623 static void fwnet_update(struct fw_unit *unit)
1624 {
1625 	struct fw_device *device = fw_parent_device(unit);
1626 	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1627 	int generation;
1628 
1629 	generation = device->generation;
1630 
1631 	spin_lock_irq(&peer->dev->lock);
1632 	peer->node_id    = device->node_id;
1633 	peer->generation = generation;
1634 	spin_unlock_irq(&peer->dev->lock);
1635 }
1636 
1637 static const struct ieee1394_device_id fwnet_id_table[] = {
1638 	{
1639 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1640 				IEEE1394_MATCH_VERSION,
1641 		.specifier_id = IANA_SPECIFIER_ID,
1642 		.version      = RFC2734_SW_VERSION,
1643 	},
1644 	{ }
1645 };
1646 
1647 static struct fw_driver fwnet_driver = {
1648 	.driver = {
1649 		.owner  = THIS_MODULE,
1650 		.name   = "net",
1651 		.bus    = &fw_bus_type,
1652 		.probe  = fwnet_probe,
1653 		.remove = fwnet_remove,
1654 	},
1655 	.update   = fwnet_update,
1656 	.id_table = fwnet_id_table,
1657 };
1658 
1659 static const u32 rfc2374_unit_directory_data[] = {
1660 	0x00040000,	/* directory_length		*/
1661 	0x1200005e,	/* unit_specifier_id: IANA	*/
1662 	0x81000003,	/* textual descriptor offset	*/
1663 	0x13000001,	/* unit_sw_version: RFC 2734	*/
1664 	0x81000005,	/* textual descriptor offset	*/
1665 	0x00030000,	/* descriptor_length		*/
1666 	0x00000000,	/* text				*/
1667 	0x00000000,	/* minimal ASCII, en		*/
1668 	0x49414e41,	/* I A N A			*/
1669 	0x00030000,	/* descriptor_length		*/
1670 	0x00000000,	/* text				*/
1671 	0x00000000,	/* minimal ASCII, en		*/
1672 	0x49507634,	/* I P v 4			*/
1673 };
1674 
1675 static struct fw_descriptor rfc2374_unit_directory = {
1676 	.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1677 	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1678 	.data   = rfc2374_unit_directory_data
1679 };
1680 
1681 static int __init fwnet_init(void)
1682 {
1683 	int err;
1684 
1685 	err = fw_core_add_descriptor(&rfc2374_unit_directory);
1686 	if (err)
1687 		return err;
1688 
1689 	fwnet_packet_task_cache = kmem_cache_create("packet_task",
1690 			sizeof(struct fwnet_packet_task), 0, 0, NULL);
1691 	if (!fwnet_packet_task_cache) {
1692 		err = -ENOMEM;
1693 		goto out;
1694 	}
1695 
1696 	err = driver_register(&fwnet_driver.driver);
1697 	if (!err)
1698 		return 0;
1699 
1700 	kmem_cache_destroy(fwnet_packet_task_cache);
1701 out:
1702 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1703 
1704 	return err;
1705 }
1706 module_init(fwnet_init);
1707 
1708 static void __exit fwnet_cleanup(void)
1709 {
1710 	driver_unregister(&fwnet_driver.driver);
1711 	kmem_cache_destroy(fwnet_packet_task_cache);
1712 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1713 }
1714 module_exit(fwnet_cleanup);
1715 
1716 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1717 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1718 MODULE_LICENSE("GPL");
1719 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1720