1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * IPv4 over IEEE 1394, per RFC 2734 4 * IPv6 over IEEE 1394, per RFC 3146 5 * 6 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com> 7 * 8 * based on eth1394 by Ben Collins et al 9 */ 10 11 #include <linux/bug.h> 12 #include <linux/compiler.h> 13 #include <linux/delay.h> 14 #include <linux/device.h> 15 #include <linux/ethtool.h> 16 #include <linux/firewire.h> 17 #include <linux/firewire-constants.h> 18 #include <linux/highmem.h> 19 #include <linux/in.h> 20 #include <linux/ip.h> 21 #include <linux/jiffies.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/module.h> 24 #include <linux/moduleparam.h> 25 #include <linux/mutex.h> 26 #include <linux/netdevice.h> 27 #include <linux/skbuff.h> 28 #include <linux/slab.h> 29 #include <linux/spinlock.h> 30 31 #include <linux/unaligned.h> 32 #include <net/arp.h> 33 #include <net/firewire.h> 34 35 /* rx limits */ 36 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */ 37 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2) 38 39 /* tx limits */ 40 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */ 41 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */ 42 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */ 43 44 #define IEEE1394_BROADCAST_CHANNEL 31 45 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f) 46 #define IEEE1394_MAX_PAYLOAD_S100 512 47 #define FWNET_NO_FIFO_ADDR (~0ULL) 48 49 #define IANA_SPECIFIER_ID 0x00005eU 50 #define RFC2734_SW_VERSION 0x000001U 51 #define RFC3146_SW_VERSION 0x000002U 52 53 #define IEEE1394_GASP_HDR_SIZE 8 54 55 #define RFC2374_UNFRAG_HDR_SIZE 4 56 #define RFC2374_FRAG_HDR_SIZE 8 57 #define RFC2374_FRAG_OVERHEAD 4 58 59 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */ 60 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */ 61 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */ 62 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */ 63 64 static bool fwnet_hwaddr_is_multicast(u8 *ha) 65 { 66 return !!(*ha & 1); 67 } 68 69 /* IPv4 and IPv6 encapsulation header */ 70 struct rfc2734_header { 71 u32 w0; 72 u32 w1; 73 }; 74 75 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30) 76 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff)) 77 #define fwnet_get_hdr_dg_size(h) ((((h)->w0 & 0x0fff0000) >> 16) + 1) 78 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff)) 79 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16) 80 81 #define fwnet_set_hdr_lf(lf) ((lf) << 30) 82 #define fwnet_set_hdr_ether_type(et) (et) 83 #define fwnet_set_hdr_dg_size(dgs) (((dgs) - 1) << 16) 84 #define fwnet_set_hdr_fg_off(fgo) (fgo) 85 86 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16) 87 88 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr, 89 unsigned ether_type) 90 { 91 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG) 92 | fwnet_set_hdr_ether_type(ether_type); 93 } 94 95 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr, 96 unsigned ether_type, unsigned dg_size, unsigned dgl) 97 { 98 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG) 99 | fwnet_set_hdr_dg_size(dg_size) 100 | fwnet_set_hdr_ether_type(ether_type); 101 hdr->w1 = fwnet_set_hdr_dgl(dgl); 102 } 103 104 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr, 105 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) 106 { 107 hdr->w0 = fwnet_set_hdr_lf(lf) 108 | fwnet_set_hdr_dg_size(dg_size) 109 | fwnet_set_hdr_fg_off(fg_off); 110 hdr->w1 = fwnet_set_hdr_dgl(dgl); 111 } 112 113 /* This list keeps track of what parts of the datagram have been filled in */ 114 struct fwnet_fragment_info { 115 struct list_head fi_link; 116 u16 offset; 117 u16 len; 118 }; 119 120 struct fwnet_partial_datagram { 121 struct list_head pd_link; 122 struct list_head fi_list; 123 struct sk_buff *skb; 124 /* FIXME Why not use skb->data? */ 125 char *pbuf; 126 u16 datagram_label; 127 u16 ether_type; 128 u16 datagram_size; 129 }; 130 131 static DEFINE_MUTEX(fwnet_device_mutex); 132 static LIST_HEAD(fwnet_device_list); 133 134 struct fwnet_device { 135 struct list_head dev_link; 136 spinlock_t lock; 137 enum { 138 FWNET_BROADCAST_ERROR, 139 FWNET_BROADCAST_RUNNING, 140 FWNET_BROADCAST_STOPPED, 141 } broadcast_state; 142 struct fw_iso_context *broadcast_rcv_context; 143 struct fw_iso_buffer broadcast_rcv_buffer; 144 void **broadcast_rcv_buffer_ptrs; 145 unsigned broadcast_rcv_next_ptr; 146 unsigned num_broadcast_rcv_ptrs; 147 unsigned rcv_buffer_size; 148 /* 149 * This value is the maximum unfragmented datagram size that can be 150 * sent by the hardware. It already has the GASP overhead and the 151 * unfragmented datagram header overhead calculated into it. 152 */ 153 unsigned broadcast_xmt_max_payload; 154 u16 broadcast_xmt_datagramlabel; 155 156 /* 157 * The CSR address that remote nodes must send datagrams to for us to 158 * receive them. 159 */ 160 struct fw_address_handler handler; 161 u64 local_fifo; 162 163 /* Number of tx datagrams that have been queued but not yet acked */ 164 int queued_datagrams; 165 166 int peer_count; 167 struct list_head peer_list; 168 struct fw_card *card; 169 struct net_device *netdev; 170 }; 171 172 struct fwnet_peer { 173 struct list_head peer_link; 174 struct fwnet_device *dev; 175 u64 guid; 176 177 /* guarded by dev->lock */ 178 struct list_head pd_list; /* received partial datagrams */ 179 unsigned pdg_size; /* pd_list size */ 180 181 u16 datagram_label; /* outgoing datagram label */ 182 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */ 183 int node_id; 184 int generation; 185 unsigned speed; 186 }; 187 188 /* This is our task struct. It's used for the packet complete callback. */ 189 struct fwnet_packet_task { 190 struct fw_transaction transaction; 191 struct rfc2734_header hdr; 192 struct sk_buff *skb; 193 struct fwnet_device *dev; 194 195 int outstanding_pkts; 196 u64 fifo_addr; 197 u16 dest_node; 198 u16 max_payload; 199 u8 generation; 200 u8 speed; 201 u8 enqueued; 202 }; 203 204 /* 205 * saddr == NULL means use device source address. 206 * daddr == NULL means leave destination address (eg unresolved arp). 207 */ 208 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net, 209 unsigned short type, const void *daddr, 210 const void *saddr, unsigned len) 211 { 212 struct fwnet_header *h; 213 214 h = skb_push(skb, sizeof(*h)); 215 put_unaligned_be16(type, &h->h_proto); 216 217 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) { 218 memset(h->h_dest, 0, net->addr_len); 219 220 return net->hard_header_len; 221 } 222 223 if (daddr) { 224 memcpy(h->h_dest, daddr, net->addr_len); 225 226 return net->hard_header_len; 227 } 228 229 return -net->hard_header_len; 230 } 231 232 static int fwnet_header_cache(const struct neighbour *neigh, 233 struct hh_cache *hh, __be16 type) 234 { 235 struct net_device *net; 236 struct fwnet_header *h; 237 238 if (type == cpu_to_be16(ETH_P_802_3)) 239 return -1; 240 net = neigh->dev; 241 h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h))); 242 h->h_proto = type; 243 memcpy(h->h_dest, neigh->ha, net->addr_len); 244 245 /* Pairs with the READ_ONCE() in neigh_resolve_output(), 246 * neigh_hh_output() and neigh_update_hhs(). 247 */ 248 smp_store_release(&hh->hh_len, FWNET_HLEN); 249 250 return 0; 251 } 252 253 /* Called by Address Resolution module to notify changes in address. */ 254 static void fwnet_header_cache_update(struct hh_cache *hh, 255 const struct net_device *net, const unsigned char *haddr) 256 { 257 memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len); 258 } 259 260 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr) 261 { 262 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN); 263 264 return FWNET_ALEN; 265 } 266 267 static const struct header_ops fwnet_header_ops = { 268 .create = fwnet_header_create, 269 .cache = fwnet_header_cache, 270 .cache_update = fwnet_header_cache_update, 271 .parse = fwnet_header_parse, 272 }; 273 274 /* FIXME: is this correct for all cases? */ 275 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd, 276 unsigned offset, unsigned len) 277 { 278 struct fwnet_fragment_info *fi; 279 unsigned end = offset + len; 280 281 list_for_each_entry(fi, &pd->fi_list, fi_link) 282 if (offset < fi->offset + fi->len && end > fi->offset) 283 return true; 284 285 return false; 286 } 287 288 /* Assumes that new fragment does not overlap any existing fragments */ 289 static struct fwnet_fragment_info *fwnet_frag_new( 290 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) 291 { 292 struct fwnet_fragment_info *fi, *fi2, *new; 293 struct list_head *list; 294 295 list = &pd->fi_list; 296 list_for_each_entry(fi, &pd->fi_list, fi_link) { 297 if (fi->offset + fi->len == offset) { 298 /* The new fragment can be tacked on to the end */ 299 /* Did the new fragment plug a hole? */ 300 fi2 = list_entry(fi->fi_link.next, 301 struct fwnet_fragment_info, fi_link); 302 if (fi->offset + fi->len == fi2->offset) { 303 /* glue fragments together */ 304 fi->len += len + fi2->len; 305 list_del(&fi2->fi_link); 306 kfree(fi2); 307 } else { 308 fi->len += len; 309 } 310 311 return fi; 312 } 313 if (offset + len == fi->offset) { 314 /* The new fragment can be tacked on to the beginning */ 315 /* Did the new fragment plug a hole? */ 316 fi2 = list_entry(fi->fi_link.prev, 317 struct fwnet_fragment_info, fi_link); 318 if (fi2->offset + fi2->len == fi->offset) { 319 /* glue fragments together */ 320 fi2->len += fi->len + len; 321 list_del(&fi->fi_link); 322 kfree(fi); 323 324 return fi2; 325 } 326 fi->offset = offset; 327 fi->len += len; 328 329 return fi; 330 } 331 if (offset > fi->offset + fi->len) { 332 list = &fi->fi_link; 333 break; 334 } 335 if (offset + len < fi->offset) { 336 list = fi->fi_link.prev; 337 break; 338 } 339 } 340 341 new = kmalloc(sizeof(*new), GFP_ATOMIC); 342 if (!new) 343 return NULL; 344 345 new->offset = offset; 346 new->len = len; 347 list_add(&new->fi_link, list); 348 349 return new; 350 } 351 352 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net, 353 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size, 354 void *frag_buf, unsigned frag_off, unsigned frag_len) 355 { 356 struct fwnet_partial_datagram *new; 357 struct fwnet_fragment_info *fi; 358 359 new = kmalloc(sizeof(*new), GFP_ATOMIC); 360 if (!new) 361 goto fail; 362 363 INIT_LIST_HEAD(&new->fi_list); 364 fi = fwnet_frag_new(new, frag_off, frag_len); 365 if (fi == NULL) 366 goto fail_w_new; 367 368 new->datagram_label = datagram_label; 369 new->datagram_size = dg_size; 370 new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net)); 371 if (new->skb == NULL) 372 goto fail_w_fi; 373 374 skb_reserve(new->skb, LL_RESERVED_SPACE(net)); 375 new->pbuf = skb_put(new->skb, dg_size); 376 memcpy(new->pbuf + frag_off, frag_buf, frag_len); 377 list_add_tail(&new->pd_link, &peer->pd_list); 378 379 return new; 380 381 fail_w_fi: 382 kfree(fi); 383 fail_w_new: 384 kfree(new); 385 fail: 386 return NULL; 387 } 388 389 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer, 390 u16 datagram_label) 391 { 392 struct fwnet_partial_datagram *pd; 393 394 list_for_each_entry(pd, &peer->pd_list, pd_link) 395 if (pd->datagram_label == datagram_label) 396 return pd; 397 398 return NULL; 399 } 400 401 402 static void fwnet_pd_delete(struct fwnet_partial_datagram *old) 403 { 404 struct fwnet_fragment_info *fi, *n; 405 406 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link) 407 kfree(fi); 408 409 list_del(&old->pd_link); 410 dev_kfree_skb_any(old->skb); 411 kfree(old); 412 } 413 414 static bool fwnet_pd_update(struct fwnet_peer *peer, 415 struct fwnet_partial_datagram *pd, void *frag_buf, 416 unsigned frag_off, unsigned frag_len) 417 { 418 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL) 419 return false; 420 421 memcpy(pd->pbuf + frag_off, frag_buf, frag_len); 422 423 /* 424 * Move list entry to beginning of list so that oldest partial 425 * datagrams percolate to the end of the list 426 */ 427 list_move_tail(&pd->pd_link, &peer->pd_list); 428 429 return true; 430 } 431 432 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd) 433 { 434 struct fwnet_fragment_info *fi; 435 436 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link); 437 438 return fi->len == pd->datagram_size; 439 } 440 441 /* caller must hold dev->lock */ 442 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev, 443 u64 guid) 444 { 445 struct fwnet_peer *peer; 446 447 list_for_each_entry(peer, &dev->peer_list, peer_link) 448 if (peer->guid == guid) 449 return peer; 450 451 return NULL; 452 } 453 454 /* caller must hold dev->lock */ 455 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev, 456 int node_id, int generation) 457 { 458 struct fwnet_peer *peer; 459 460 list_for_each_entry(peer, &dev->peer_list, peer_link) 461 if (peer->node_id == node_id && 462 peer->generation == generation) 463 return peer; 464 465 return NULL; 466 } 467 468 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */ 469 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed) 470 { 471 max_rec = min(max_rec, speed + 8); 472 max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */ 473 474 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE; 475 } 476 477 478 static int fwnet_finish_incoming_packet(struct net_device *net, 479 struct sk_buff *skb, u16 source_node_id, 480 bool is_broadcast, u16 ether_type) 481 { 482 int status, len; 483 484 switch (ether_type) { 485 case ETH_P_ARP: 486 case ETH_P_IP: 487 #if IS_ENABLED(CONFIG_IPV6) 488 case ETH_P_IPV6: 489 #endif 490 break; 491 default: 492 goto err; 493 } 494 495 /* Write metadata, and then pass to the receive level */ 496 skb->dev = net; 497 skb->ip_summed = CHECKSUM_NONE; 498 499 /* 500 * Parse the encapsulation header. This actually does the job of 501 * converting to an ethernet-like pseudo frame header. 502 */ 503 if (dev_hard_header(skb, net, ether_type, 504 is_broadcast ? net->broadcast : net->dev_addr, 505 NULL, skb->len) >= 0) { 506 struct fwnet_header *eth; 507 u16 *rawp; 508 __be16 protocol; 509 510 skb_reset_mac_header(skb); 511 skb_pull(skb, sizeof(*eth)); 512 eth = (struct fwnet_header *)skb_mac_header(skb); 513 if (fwnet_hwaddr_is_multicast(eth->h_dest)) { 514 if (memcmp(eth->h_dest, net->broadcast, 515 net->addr_len) == 0) 516 skb->pkt_type = PACKET_BROADCAST; 517 #if 0 518 else 519 skb->pkt_type = PACKET_MULTICAST; 520 #endif 521 } else { 522 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len)) 523 skb->pkt_type = PACKET_OTHERHOST; 524 } 525 if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) { 526 protocol = eth->h_proto; 527 } else { 528 rawp = (u16 *)skb->data; 529 if (*rawp == 0xffff) 530 protocol = htons(ETH_P_802_3); 531 else 532 protocol = htons(ETH_P_802_2); 533 } 534 skb->protocol = protocol; 535 } 536 537 len = skb->len; 538 status = netif_rx(skb); 539 if (status == NET_RX_DROP) { 540 net->stats.rx_errors++; 541 net->stats.rx_dropped++; 542 } else { 543 net->stats.rx_packets++; 544 net->stats.rx_bytes += len; 545 } 546 547 return 0; 548 549 err: 550 net->stats.rx_errors++; 551 net->stats.rx_dropped++; 552 553 dev_kfree_skb_any(skb); 554 555 return -ENOENT; 556 } 557 558 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len, 559 int source_node_id, int generation, 560 bool is_broadcast) 561 { 562 struct sk_buff *skb; 563 struct net_device *net = dev->netdev; 564 struct rfc2734_header hdr; 565 unsigned lf; 566 unsigned long flags; 567 struct fwnet_peer *peer; 568 struct fwnet_partial_datagram *pd; 569 int fg_off; 570 int dg_size; 571 u16 datagram_label; 572 int retval; 573 u16 ether_type; 574 575 if (len <= RFC2374_UNFRAG_HDR_SIZE) 576 return 0; 577 578 hdr.w0 = be32_to_cpu(buf[0]); 579 lf = fwnet_get_hdr_lf(&hdr); 580 if (lf == RFC2374_HDR_UNFRAG) { 581 /* 582 * An unfragmented datagram has been received by the ieee1394 583 * bus. Build an skbuff around it so we can pass it to the 584 * high level network layer. 585 */ 586 ether_type = fwnet_get_hdr_ether_type(&hdr); 587 buf++; 588 len -= RFC2374_UNFRAG_HDR_SIZE; 589 590 skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net)); 591 if (unlikely(!skb)) { 592 net->stats.rx_dropped++; 593 594 return -ENOMEM; 595 } 596 skb_reserve(skb, LL_RESERVED_SPACE(net)); 597 skb_put_data(skb, buf, len); 598 599 return fwnet_finish_incoming_packet(net, skb, source_node_id, 600 is_broadcast, ether_type); 601 } 602 603 /* A datagram fragment has been received, now the fun begins. */ 604 605 if (len <= RFC2374_FRAG_HDR_SIZE) 606 return 0; 607 608 hdr.w1 = ntohl(buf[1]); 609 buf += 2; 610 len -= RFC2374_FRAG_HDR_SIZE; 611 if (lf == RFC2374_HDR_FIRSTFRAG) { 612 ether_type = fwnet_get_hdr_ether_type(&hdr); 613 fg_off = 0; 614 } else { 615 ether_type = 0; 616 fg_off = fwnet_get_hdr_fg_off(&hdr); 617 } 618 datagram_label = fwnet_get_hdr_dgl(&hdr); 619 dg_size = fwnet_get_hdr_dg_size(&hdr); 620 621 if (fg_off + len > dg_size) 622 return 0; 623 624 spin_lock_irqsave(&dev->lock, flags); 625 626 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation); 627 if (!peer) { 628 retval = -ENOENT; 629 goto fail; 630 } 631 632 pd = fwnet_pd_find(peer, datagram_label); 633 if (pd == NULL) { 634 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) { 635 /* remove the oldest */ 636 fwnet_pd_delete(list_first_entry(&peer->pd_list, 637 struct fwnet_partial_datagram, pd_link)); 638 peer->pdg_size--; 639 } 640 pd = fwnet_pd_new(net, peer, datagram_label, 641 dg_size, buf, fg_off, len); 642 if (pd == NULL) { 643 retval = -ENOMEM; 644 goto fail; 645 } 646 peer->pdg_size++; 647 } else { 648 if (fwnet_frag_overlap(pd, fg_off, len) || 649 pd->datagram_size != dg_size) { 650 /* 651 * Differing datagram sizes or overlapping fragments, 652 * discard old datagram and start a new one. 653 */ 654 fwnet_pd_delete(pd); 655 pd = fwnet_pd_new(net, peer, datagram_label, 656 dg_size, buf, fg_off, len); 657 if (pd == NULL) { 658 peer->pdg_size--; 659 retval = -ENOMEM; 660 goto fail; 661 } 662 } else { 663 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) { 664 /* 665 * Couldn't save off fragment anyway 666 * so might as well obliterate the 667 * datagram now. 668 */ 669 fwnet_pd_delete(pd); 670 peer->pdg_size--; 671 retval = -ENOMEM; 672 goto fail; 673 } 674 } 675 } /* new datagram or add to existing one */ 676 677 if (lf == RFC2374_HDR_FIRSTFRAG) 678 pd->ether_type = ether_type; 679 680 if (fwnet_pd_is_complete(pd)) { 681 ether_type = pd->ether_type; 682 peer->pdg_size--; 683 skb = skb_get(pd->skb); 684 fwnet_pd_delete(pd); 685 686 spin_unlock_irqrestore(&dev->lock, flags); 687 688 return fwnet_finish_incoming_packet(net, skb, source_node_id, 689 false, ether_type); 690 } 691 /* 692 * Datagram is not complete, we're done for the 693 * moment. 694 */ 695 retval = 0; 696 fail: 697 spin_unlock_irqrestore(&dev->lock, flags); 698 699 return retval; 700 } 701 702 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r, 703 int tcode, int destination, int source, int generation, 704 unsigned long long offset, void *payload, size_t length, 705 void *callback_data) 706 { 707 struct fwnet_device *dev = callback_data; 708 int rcode; 709 710 if (destination == IEEE1394_ALL_NODES) { 711 // Although the response to the broadcast packet is not necessarily required, the 712 // fw_send_response() function should still be called to maintain the reference 713 // counting of the object. In the case, the call of function just releases the 714 // object as a result to decrease the reference counting. 715 rcode = RCODE_COMPLETE; 716 } else if (offset != dev->handler.offset) { 717 rcode = RCODE_ADDRESS_ERROR; 718 } else if (tcode != TCODE_WRITE_BLOCK_REQUEST) { 719 rcode = RCODE_TYPE_ERROR; 720 } else if (fwnet_incoming_packet(dev, payload, length, 721 source, generation, false) != 0) { 722 dev_err(&dev->netdev->dev, "incoming packet failure\n"); 723 rcode = RCODE_CONFLICT_ERROR; 724 } else { 725 rcode = RCODE_COMPLETE; 726 } 727 728 fw_send_response(card, r, rcode); 729 } 730 731 static int gasp_source_id(__be32 *p) 732 { 733 return be32_to_cpu(p[0]) >> 16; 734 } 735 736 static u32 gasp_specifier_id(__be32 *p) 737 { 738 return (be32_to_cpu(p[0]) & 0xffff) << 8 | 739 (be32_to_cpu(p[1]) & 0xff000000) >> 24; 740 } 741 742 static u32 gasp_version(__be32 *p) 743 { 744 return be32_to_cpu(p[1]) & 0xffffff; 745 } 746 747 static void fwnet_receive_broadcast(struct fw_iso_context *context, 748 u32 cycle, size_t header_length, void *header, void *data) 749 { 750 struct fwnet_device *dev; 751 struct fw_iso_packet packet; 752 __be16 *hdr_ptr; 753 __be32 *buf_ptr; 754 int retval; 755 u32 length; 756 unsigned long offset; 757 unsigned long flags; 758 759 dev = data; 760 hdr_ptr = header; 761 length = be16_to_cpup(hdr_ptr); 762 763 spin_lock_irqsave(&dev->lock, flags); 764 765 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr; 766 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++]; 767 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs) 768 dev->broadcast_rcv_next_ptr = 0; 769 770 spin_unlock_irqrestore(&dev->lock, flags); 771 772 if (length > IEEE1394_GASP_HDR_SIZE && 773 gasp_specifier_id(buf_ptr) == IANA_SPECIFIER_ID && 774 (gasp_version(buf_ptr) == RFC2734_SW_VERSION 775 #if IS_ENABLED(CONFIG_IPV6) 776 || gasp_version(buf_ptr) == RFC3146_SW_VERSION 777 #endif 778 )) 779 fwnet_incoming_packet(dev, buf_ptr + 2, 780 length - IEEE1394_GASP_HDR_SIZE, 781 gasp_source_id(buf_ptr), 782 context->card->generation, true); 783 784 packet.payload_length = dev->rcv_buffer_size; 785 packet.interrupt = 1; 786 packet.skip = 0; 787 packet.tag = 3; 788 packet.sy = 0; 789 packet.header_length = IEEE1394_GASP_HDR_SIZE; 790 791 spin_lock_irqsave(&dev->lock, flags); 792 793 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet, 794 &dev->broadcast_rcv_buffer, offset); 795 796 spin_unlock_irqrestore(&dev->lock, flags); 797 798 if (retval >= 0) 799 fw_iso_context_queue_flush(dev->broadcast_rcv_context); 800 else 801 dev_err(&dev->netdev->dev, "requeue failed\n"); 802 } 803 804 static struct kmem_cache *fwnet_packet_task_cache; 805 806 static void fwnet_free_ptask(struct fwnet_packet_task *ptask) 807 { 808 dev_kfree_skb_any(ptask->skb); 809 kmem_cache_free(fwnet_packet_task_cache, ptask); 810 } 811 812 /* Caller must hold dev->lock. */ 813 static void dec_queued_datagrams(struct fwnet_device *dev) 814 { 815 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS) 816 netif_wake_queue(dev->netdev); 817 } 818 819 static int fwnet_send_packet(struct fwnet_packet_task *ptask); 820 821 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask) 822 { 823 struct fwnet_device *dev = ptask->dev; 824 struct sk_buff *skb = ptask->skb; 825 unsigned long flags; 826 bool free; 827 828 spin_lock_irqsave(&dev->lock, flags); 829 830 ptask->outstanding_pkts--; 831 832 /* Check whether we or the networking TX soft-IRQ is last user. */ 833 free = (ptask->outstanding_pkts == 0 && ptask->enqueued); 834 if (free) 835 dec_queued_datagrams(dev); 836 837 if (ptask->outstanding_pkts == 0) { 838 dev->netdev->stats.tx_packets++; 839 dev->netdev->stats.tx_bytes += skb->len; 840 } 841 842 spin_unlock_irqrestore(&dev->lock, flags); 843 844 if (ptask->outstanding_pkts > 0) { 845 u16 dg_size; 846 u16 fg_off; 847 u16 datagram_label; 848 u16 lf; 849 850 /* Update the ptask to point to the next fragment and send it */ 851 lf = fwnet_get_hdr_lf(&ptask->hdr); 852 switch (lf) { 853 case RFC2374_HDR_LASTFRAG: 854 case RFC2374_HDR_UNFRAG: 855 default: 856 dev_err(&dev->netdev->dev, 857 "outstanding packet %x lf %x, header %x,%x\n", 858 ptask->outstanding_pkts, lf, ptask->hdr.w0, 859 ptask->hdr.w1); 860 BUG(); 861 862 case RFC2374_HDR_FIRSTFRAG: 863 /* Set frag type here for future interior fragments */ 864 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 865 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 866 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 867 break; 868 869 case RFC2374_HDR_INTFRAG: 870 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 871 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr) 872 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 873 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 874 break; 875 } 876 877 if (ptask->dest_node == IEEE1394_ALL_NODES) { 878 skb_pull(skb, 879 ptask->max_payload + IEEE1394_GASP_HDR_SIZE); 880 } else { 881 skb_pull(skb, ptask->max_payload); 882 } 883 if (ptask->outstanding_pkts > 1) { 884 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG, 885 dg_size, fg_off, datagram_label); 886 } else { 887 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG, 888 dg_size, fg_off, datagram_label); 889 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE; 890 } 891 fwnet_send_packet(ptask); 892 } 893 894 if (free) 895 fwnet_free_ptask(ptask); 896 } 897 898 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask) 899 { 900 struct fwnet_device *dev = ptask->dev; 901 unsigned long flags; 902 bool free; 903 904 spin_lock_irqsave(&dev->lock, flags); 905 906 /* One fragment failed; don't try to send remaining fragments. */ 907 ptask->outstanding_pkts = 0; 908 909 /* Check whether we or the networking TX soft-IRQ is last user. */ 910 free = ptask->enqueued; 911 if (free) 912 dec_queued_datagrams(dev); 913 914 dev->netdev->stats.tx_dropped++; 915 dev->netdev->stats.tx_errors++; 916 917 spin_unlock_irqrestore(&dev->lock, flags); 918 919 if (free) 920 fwnet_free_ptask(ptask); 921 } 922 923 static void fwnet_write_complete(struct fw_card *card, int rcode, 924 void *payload, size_t length, void *data) 925 { 926 struct fwnet_packet_task *ptask = data; 927 static unsigned long j; 928 static int last_rcode, errors_skipped; 929 930 if (rcode == RCODE_COMPLETE) { 931 fwnet_transmit_packet_done(ptask); 932 } else { 933 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) { 934 dev_err(&ptask->dev->netdev->dev, 935 "fwnet_write_complete failed: %x (skipped %d)\n", 936 rcode, errors_skipped); 937 938 errors_skipped = 0; 939 last_rcode = rcode; 940 } else { 941 errors_skipped++; 942 } 943 fwnet_transmit_packet_failed(ptask); 944 } 945 } 946 947 static int fwnet_send_packet(struct fwnet_packet_task *ptask) 948 { 949 struct fwnet_device *dev; 950 unsigned tx_len; 951 struct rfc2734_header *bufhdr; 952 unsigned long flags; 953 bool free; 954 955 dev = ptask->dev; 956 tx_len = ptask->max_payload; 957 switch (fwnet_get_hdr_lf(&ptask->hdr)) { 958 case RFC2374_HDR_UNFRAG: 959 bufhdr = skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE); 960 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 961 break; 962 963 case RFC2374_HDR_FIRSTFRAG: 964 case RFC2374_HDR_INTFRAG: 965 case RFC2374_HDR_LASTFRAG: 966 bufhdr = skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE); 967 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 968 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1); 969 break; 970 971 default: 972 BUG(); 973 } 974 if (ptask->dest_node == IEEE1394_ALL_NODES) { 975 u8 *p; 976 int generation; 977 int node_id; 978 unsigned int sw_version; 979 980 /* ptask->generation may not have been set yet */ 981 generation = dev->card->generation; 982 smp_rmb(); 983 node_id = dev->card->node_id; 984 985 switch (ptask->skb->protocol) { 986 default: 987 sw_version = RFC2734_SW_VERSION; 988 break; 989 #if IS_ENABLED(CONFIG_IPV6) 990 case htons(ETH_P_IPV6): 991 sw_version = RFC3146_SW_VERSION; 992 #endif 993 } 994 995 p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE); 996 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p); 997 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24 998 | sw_version, &p[4]); 999 1000 /* We should not transmit if broadcast_channel.valid == 0. */ 1001 fw_send_request(dev->card, &ptask->transaction, 1002 TCODE_STREAM_DATA, 1003 fw_stream_packet_destination_id(3, 1004 IEEE1394_BROADCAST_CHANNEL, 0), 1005 generation, SCODE_100, 0ULL, ptask->skb->data, 1006 tx_len + 8, fwnet_write_complete, ptask); 1007 1008 spin_lock_irqsave(&dev->lock, flags); 1009 1010 /* If the AT tasklet already ran, we may be last user. */ 1011 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); 1012 if (!free) 1013 ptask->enqueued = true; 1014 else 1015 dec_queued_datagrams(dev); 1016 1017 spin_unlock_irqrestore(&dev->lock, flags); 1018 1019 goto out; 1020 } 1021 1022 fw_send_request(dev->card, &ptask->transaction, 1023 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, 1024 ptask->generation, ptask->speed, ptask->fifo_addr, 1025 ptask->skb->data, tx_len, fwnet_write_complete, ptask); 1026 1027 spin_lock_irqsave(&dev->lock, flags); 1028 1029 /* If the AT tasklet already ran, we may be last user. */ 1030 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); 1031 if (!free) 1032 ptask->enqueued = true; 1033 else 1034 dec_queued_datagrams(dev); 1035 1036 spin_unlock_irqrestore(&dev->lock, flags); 1037 1038 netif_trans_update(dev->netdev); 1039 out: 1040 if (free) 1041 fwnet_free_ptask(ptask); 1042 1043 return 0; 1044 } 1045 1046 static void fwnet_fifo_stop(struct fwnet_device *dev) 1047 { 1048 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) 1049 return; 1050 1051 fw_core_remove_address_handler(&dev->handler); 1052 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1053 } 1054 1055 static int fwnet_fifo_start(struct fwnet_device *dev) 1056 { 1057 int retval; 1058 1059 if (dev->local_fifo != FWNET_NO_FIFO_ADDR) 1060 return 0; 1061 1062 dev->handler.length = 4096; 1063 dev->handler.address_callback = fwnet_receive_packet; 1064 dev->handler.callback_data = dev; 1065 1066 retval = fw_core_add_address_handler(&dev->handler, 1067 &fw_high_memory_region); 1068 if (retval < 0) 1069 return retval; 1070 1071 dev->local_fifo = dev->handler.offset; 1072 1073 return 0; 1074 } 1075 1076 static void __fwnet_broadcast_stop(struct fwnet_device *dev) 1077 { 1078 unsigned u; 1079 1080 if (dev->broadcast_state != FWNET_BROADCAST_ERROR) { 1081 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) 1082 kunmap(dev->broadcast_rcv_buffer.pages[u]); 1083 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card); 1084 } 1085 if (dev->broadcast_rcv_context) { 1086 fw_iso_context_destroy(dev->broadcast_rcv_context); 1087 dev->broadcast_rcv_context = NULL; 1088 } 1089 kfree(dev->broadcast_rcv_buffer_ptrs); 1090 dev->broadcast_rcv_buffer_ptrs = NULL; 1091 dev->broadcast_state = FWNET_BROADCAST_ERROR; 1092 } 1093 1094 static void fwnet_broadcast_stop(struct fwnet_device *dev) 1095 { 1096 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) 1097 return; 1098 fw_iso_context_stop(dev->broadcast_rcv_context); 1099 __fwnet_broadcast_stop(dev); 1100 } 1101 1102 static int fwnet_broadcast_start(struct fwnet_device *dev) 1103 { 1104 struct fw_iso_context *context; 1105 int retval; 1106 unsigned num_packets; 1107 unsigned max_receive; 1108 struct fw_iso_packet packet; 1109 unsigned long offset; 1110 void **ptrptr; 1111 unsigned u; 1112 1113 if (dev->broadcast_state != FWNET_BROADCAST_ERROR) 1114 return 0; 1115 1116 max_receive = 1U << (dev->card->max_receive + 1); 1117 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive; 1118 1119 ptrptr = kmalloc_array(num_packets, sizeof(void *), GFP_KERNEL); 1120 if (!ptrptr) { 1121 retval = -ENOMEM; 1122 goto failed; 1123 } 1124 dev->broadcast_rcv_buffer_ptrs = ptrptr; 1125 1126 context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE, 1127 IEEE1394_BROADCAST_CHANNEL, 1128 dev->card->link_speed, 8, 1129 fwnet_receive_broadcast, dev); 1130 if (IS_ERR(context)) { 1131 retval = PTR_ERR(context); 1132 goto failed; 1133 } 1134 1135 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card, 1136 FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE); 1137 if (retval < 0) 1138 goto failed; 1139 1140 dev->broadcast_state = FWNET_BROADCAST_STOPPED; 1141 1142 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) { 1143 void *ptr; 1144 unsigned v; 1145 1146 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]); 1147 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++) 1148 *ptrptr++ = (void *) ((char *)ptr + v * max_receive); 1149 } 1150 dev->broadcast_rcv_context = context; 1151 1152 packet.payload_length = max_receive; 1153 packet.interrupt = 1; 1154 packet.skip = 0; 1155 packet.tag = 3; 1156 packet.sy = 0; 1157 packet.header_length = IEEE1394_GASP_HDR_SIZE; 1158 offset = 0; 1159 1160 for (u = 0; u < num_packets; u++) { 1161 retval = fw_iso_context_queue(context, &packet, 1162 &dev->broadcast_rcv_buffer, offset); 1163 if (retval < 0) 1164 goto failed; 1165 1166 offset += max_receive; 1167 } 1168 dev->num_broadcast_rcv_ptrs = num_packets; 1169 dev->rcv_buffer_size = max_receive; 1170 dev->broadcast_rcv_next_ptr = 0U; 1171 retval = fw_iso_context_start(context, -1, 0, 1172 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */ 1173 if (retval < 0) 1174 goto failed; 1175 1176 /* FIXME: adjust it according to the min. speed of all known peers? */ 1177 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100 1178 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE; 1179 dev->broadcast_state = FWNET_BROADCAST_RUNNING; 1180 1181 return 0; 1182 1183 failed: 1184 __fwnet_broadcast_stop(dev); 1185 return retval; 1186 } 1187 1188 static void set_carrier_state(struct fwnet_device *dev) 1189 { 1190 if (dev->peer_count > 1) 1191 netif_carrier_on(dev->netdev); 1192 else 1193 netif_carrier_off(dev->netdev); 1194 } 1195 1196 /* ifup */ 1197 static int fwnet_open(struct net_device *net) 1198 { 1199 struct fwnet_device *dev = netdev_priv(net); 1200 int ret; 1201 1202 ret = fwnet_broadcast_start(dev); 1203 if (ret) 1204 return ret; 1205 1206 netif_start_queue(net); 1207 1208 spin_lock_irq(&dev->lock); 1209 set_carrier_state(dev); 1210 spin_unlock_irq(&dev->lock); 1211 1212 return 0; 1213 } 1214 1215 /* ifdown */ 1216 static int fwnet_stop(struct net_device *net) 1217 { 1218 struct fwnet_device *dev = netdev_priv(net); 1219 1220 netif_stop_queue(net); 1221 fwnet_broadcast_stop(dev); 1222 1223 return 0; 1224 } 1225 1226 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net) 1227 { 1228 struct fwnet_header hdr_buf; 1229 struct fwnet_device *dev = netdev_priv(net); 1230 __be16 proto; 1231 u16 dest_node; 1232 unsigned max_payload; 1233 u16 dg_size; 1234 u16 *datagram_label_ptr; 1235 struct fwnet_packet_task *ptask; 1236 struct fwnet_peer *peer; 1237 unsigned long flags; 1238 1239 spin_lock_irqsave(&dev->lock, flags); 1240 1241 /* Can this happen? */ 1242 if (netif_queue_stopped(dev->netdev)) { 1243 spin_unlock_irqrestore(&dev->lock, flags); 1244 1245 return NETDEV_TX_BUSY; 1246 } 1247 1248 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC); 1249 if (ptask == NULL) 1250 goto fail; 1251 1252 skb = skb_share_check(skb, GFP_ATOMIC); 1253 if (!skb) 1254 goto fail; 1255 1256 /* 1257 * Make a copy of the driver-specific header. 1258 * We might need to rebuild the header on tx failure. 1259 */ 1260 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); 1261 proto = hdr_buf.h_proto; 1262 1263 switch (proto) { 1264 case htons(ETH_P_ARP): 1265 case htons(ETH_P_IP): 1266 #if IS_ENABLED(CONFIG_IPV6) 1267 case htons(ETH_P_IPV6): 1268 #endif 1269 break; 1270 default: 1271 goto fail; 1272 } 1273 1274 skb_pull(skb, sizeof(hdr_buf)); 1275 dg_size = skb->len; 1276 1277 /* 1278 * Set the transmission type for the packet. ARP packets and IP 1279 * broadcast packets are sent via GASP. 1280 */ 1281 if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) { 1282 max_payload = dev->broadcast_xmt_max_payload; 1283 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel; 1284 1285 ptask->fifo_addr = FWNET_NO_FIFO_ADDR; 1286 ptask->generation = 0; 1287 ptask->dest_node = IEEE1394_ALL_NODES; 1288 ptask->speed = SCODE_100; 1289 } else { 1290 union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest; 1291 __be64 guid = get_unaligned(&ha->uc.uniq_id); 1292 u8 generation; 1293 1294 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid)); 1295 if (!peer) 1296 goto fail; 1297 1298 generation = peer->generation; 1299 dest_node = peer->node_id; 1300 max_payload = peer->max_payload; 1301 datagram_label_ptr = &peer->datagram_label; 1302 1303 ptask->fifo_addr = get_unaligned_be48(ha->uc.fifo); 1304 ptask->generation = generation; 1305 ptask->dest_node = dest_node; 1306 ptask->speed = peer->speed; 1307 } 1308 1309 ptask->hdr.w0 = 0; 1310 ptask->hdr.w1 = 0; 1311 ptask->skb = skb; 1312 ptask->dev = dev; 1313 1314 /* Does it all fit in one packet? */ 1315 if (dg_size <= max_payload) { 1316 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto)); 1317 ptask->outstanding_pkts = 1; 1318 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE; 1319 } else { 1320 u16 datagram_label; 1321 1322 max_payload -= RFC2374_FRAG_OVERHEAD; 1323 datagram_label = (*datagram_label_ptr)++; 1324 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size, 1325 datagram_label); 1326 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); 1327 max_payload += RFC2374_FRAG_HDR_SIZE; 1328 } 1329 1330 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS) 1331 netif_stop_queue(dev->netdev); 1332 1333 spin_unlock_irqrestore(&dev->lock, flags); 1334 1335 ptask->max_payload = max_payload; 1336 ptask->enqueued = 0; 1337 1338 fwnet_send_packet(ptask); 1339 1340 return NETDEV_TX_OK; 1341 1342 fail: 1343 spin_unlock_irqrestore(&dev->lock, flags); 1344 1345 if (ptask) 1346 kmem_cache_free(fwnet_packet_task_cache, ptask); 1347 1348 if (skb != NULL) 1349 dev_kfree_skb(skb); 1350 1351 net->stats.tx_dropped++; 1352 net->stats.tx_errors++; 1353 1354 /* 1355 * FIXME: According to a patch from 2003-02-26, "returning non-zero 1356 * causes serious problems" here, allegedly. Before that patch, 1357 * -ERRNO was returned which is not appropriate under Linux 2.6. 1358 * Perhaps more needs to be done? Stop the queue in serious 1359 * conditions and restart it elsewhere? 1360 */ 1361 return NETDEV_TX_OK; 1362 } 1363 1364 static const struct ethtool_ops fwnet_ethtool_ops = { 1365 .get_link = ethtool_op_get_link, 1366 }; 1367 1368 static const struct net_device_ops fwnet_netdev_ops = { 1369 .ndo_open = fwnet_open, 1370 .ndo_stop = fwnet_stop, 1371 .ndo_start_xmit = fwnet_tx, 1372 }; 1373 1374 static void fwnet_init_dev(struct net_device *net) 1375 { 1376 net->header_ops = &fwnet_header_ops; 1377 net->netdev_ops = &fwnet_netdev_ops; 1378 net->watchdog_timeo = 2 * HZ; 1379 net->flags = IFF_BROADCAST | IFF_MULTICAST; 1380 net->features = NETIF_F_HIGHDMA; 1381 net->addr_len = FWNET_ALEN; 1382 net->hard_header_len = FWNET_HLEN; 1383 net->type = ARPHRD_IEEE1394; 1384 net->tx_queue_len = FWNET_TX_QUEUE_LEN; 1385 net->ethtool_ops = &fwnet_ethtool_ops; 1386 } 1387 1388 /* caller must hold fwnet_device_mutex */ 1389 static struct fwnet_device *fwnet_dev_find(struct fw_card *card) 1390 { 1391 struct fwnet_device *dev; 1392 1393 list_for_each_entry(dev, &fwnet_device_list, dev_link) 1394 if (dev->card == card) 1395 return dev; 1396 1397 return NULL; 1398 } 1399 1400 static int fwnet_add_peer(struct fwnet_device *dev, 1401 struct fw_unit *unit, struct fw_device *device) 1402 { 1403 struct fwnet_peer *peer; 1404 1405 peer = kmalloc(sizeof(*peer), GFP_KERNEL); 1406 if (!peer) 1407 return -ENOMEM; 1408 1409 dev_set_drvdata(&unit->device, peer); 1410 1411 peer->dev = dev; 1412 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1413 INIT_LIST_HEAD(&peer->pd_list); 1414 peer->pdg_size = 0; 1415 peer->datagram_label = 0; 1416 peer->speed = device->max_speed; 1417 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed); 1418 1419 peer->generation = device->generation; 1420 smp_rmb(); 1421 peer->node_id = device->node_id; 1422 1423 spin_lock_irq(&dev->lock); 1424 list_add_tail(&peer->peer_link, &dev->peer_list); 1425 dev->peer_count++; 1426 set_carrier_state(dev); 1427 spin_unlock_irq(&dev->lock); 1428 1429 return 0; 1430 } 1431 1432 static int fwnet_probe(struct fw_unit *unit, 1433 const struct ieee1394_device_id *id) 1434 { 1435 struct fw_device *device = fw_parent_device(unit); 1436 struct fw_card *card = device->card; 1437 struct net_device *net; 1438 bool allocated_netdev = false; 1439 struct fwnet_device *dev; 1440 union fwnet_hwaddr ha; 1441 int ret; 1442 1443 mutex_lock(&fwnet_device_mutex); 1444 1445 dev = fwnet_dev_find(card); 1446 if (dev) { 1447 net = dev->netdev; 1448 goto have_dev; 1449 } 1450 1451 net = alloc_netdev(sizeof(*dev), "firewire%d", NET_NAME_UNKNOWN, 1452 fwnet_init_dev); 1453 if (net == NULL) { 1454 mutex_unlock(&fwnet_device_mutex); 1455 return -ENOMEM; 1456 } 1457 1458 allocated_netdev = true; 1459 SET_NETDEV_DEV(net, card->device); 1460 dev = netdev_priv(net); 1461 1462 spin_lock_init(&dev->lock); 1463 dev->broadcast_state = FWNET_BROADCAST_ERROR; 1464 dev->broadcast_rcv_context = NULL; 1465 dev->broadcast_xmt_max_payload = 0; 1466 dev->broadcast_xmt_datagramlabel = 0; 1467 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1468 dev->queued_datagrams = 0; 1469 INIT_LIST_HEAD(&dev->peer_list); 1470 dev->card = card; 1471 dev->netdev = net; 1472 1473 ret = fwnet_fifo_start(dev); 1474 if (ret < 0) 1475 goto out; 1476 dev->local_fifo = dev->handler.offset; 1477 1478 /* 1479 * default MTU: RFC 2734 cl. 4, RFC 3146 cl. 4 1480 * maximum MTU: RFC 2734 cl. 4.2, fragment encapsulation header's 1481 * maximum possible datagram_size + 1 = 0xfff + 1 1482 */ 1483 net->mtu = 1500U; 1484 net->min_mtu = ETH_MIN_MTU; 1485 net->max_mtu = 4096U; 1486 1487 /* Set our hardware address while we're at it */ 1488 ha.uc.uniq_id = cpu_to_be64(card->guid); 1489 ha.uc.max_rec = dev->card->max_receive; 1490 ha.uc.sspd = dev->card->link_speed; 1491 put_unaligned_be48(dev->local_fifo, ha.uc.fifo); 1492 dev_addr_set(net, ha.u); 1493 1494 memset(net->broadcast, -1, net->addr_len); 1495 1496 ret = register_netdev(net); 1497 if (ret) 1498 goto out; 1499 1500 list_add_tail(&dev->dev_link, &fwnet_device_list); 1501 dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n", 1502 dev_name(card->device)); 1503 have_dev: 1504 ret = fwnet_add_peer(dev, unit, device); 1505 if (ret && allocated_netdev) { 1506 unregister_netdev(net); 1507 list_del(&dev->dev_link); 1508 out: 1509 fwnet_fifo_stop(dev); 1510 free_netdev(net); 1511 } 1512 1513 mutex_unlock(&fwnet_device_mutex); 1514 1515 return ret; 1516 } 1517 1518 /* 1519 * FIXME abort partially sent fragmented datagrams, 1520 * discard partially received fragmented datagrams 1521 */ 1522 static void fwnet_update(struct fw_unit *unit) 1523 { 1524 struct fw_device *device = fw_parent_device(unit); 1525 struct fwnet_peer *peer = dev_get_drvdata(&unit->device); 1526 int generation; 1527 1528 generation = device->generation; 1529 1530 spin_lock_irq(&peer->dev->lock); 1531 peer->node_id = device->node_id; 1532 peer->generation = generation; 1533 spin_unlock_irq(&peer->dev->lock); 1534 } 1535 1536 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev) 1537 { 1538 struct fwnet_partial_datagram *pd, *pd_next; 1539 1540 spin_lock_irq(&dev->lock); 1541 list_del(&peer->peer_link); 1542 dev->peer_count--; 1543 set_carrier_state(dev); 1544 spin_unlock_irq(&dev->lock); 1545 1546 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link) 1547 fwnet_pd_delete(pd); 1548 1549 kfree(peer); 1550 } 1551 1552 static void fwnet_remove(struct fw_unit *unit) 1553 { 1554 struct fwnet_peer *peer = dev_get_drvdata(&unit->device); 1555 struct fwnet_device *dev = peer->dev; 1556 struct net_device *net; 1557 int i; 1558 1559 mutex_lock(&fwnet_device_mutex); 1560 1561 net = dev->netdev; 1562 1563 fwnet_remove_peer(peer, dev); 1564 1565 if (list_empty(&dev->peer_list)) { 1566 unregister_netdev(net); 1567 1568 fwnet_fifo_stop(dev); 1569 1570 for (i = 0; dev->queued_datagrams && i < 5; i++) 1571 ssleep(1); 1572 WARN_ON(dev->queued_datagrams); 1573 list_del(&dev->dev_link); 1574 1575 free_netdev(net); 1576 } 1577 1578 mutex_unlock(&fwnet_device_mutex); 1579 } 1580 1581 static const struct ieee1394_device_id fwnet_id_table[] = { 1582 { 1583 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1584 IEEE1394_MATCH_VERSION, 1585 .specifier_id = IANA_SPECIFIER_ID, 1586 .version = RFC2734_SW_VERSION, 1587 }, 1588 #if IS_ENABLED(CONFIG_IPV6) 1589 { 1590 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1591 IEEE1394_MATCH_VERSION, 1592 .specifier_id = IANA_SPECIFIER_ID, 1593 .version = RFC3146_SW_VERSION, 1594 }, 1595 #endif 1596 { } 1597 }; 1598 1599 static struct fw_driver fwnet_driver = { 1600 .driver = { 1601 .owner = THIS_MODULE, 1602 .name = KBUILD_MODNAME, 1603 .bus = &fw_bus_type, 1604 }, 1605 .probe = fwnet_probe, 1606 .update = fwnet_update, 1607 .remove = fwnet_remove, 1608 .id_table = fwnet_id_table, 1609 }; 1610 1611 static const u32 rfc2374_unit_directory_data[] = { 1612 0x00040000, /* directory_length */ 1613 0x1200005e, /* unit_specifier_id: IANA */ 1614 0x81000003, /* textual descriptor offset */ 1615 0x13000001, /* unit_sw_version: RFC 2734 */ 1616 0x81000005, /* textual descriptor offset */ 1617 0x00030000, /* descriptor_length */ 1618 0x00000000, /* text */ 1619 0x00000000, /* minimal ASCII, en */ 1620 0x49414e41, /* I A N A */ 1621 0x00030000, /* descriptor_length */ 1622 0x00000000, /* text */ 1623 0x00000000, /* minimal ASCII, en */ 1624 0x49507634, /* I P v 4 */ 1625 }; 1626 1627 static struct fw_descriptor rfc2374_unit_directory = { 1628 .length = ARRAY_SIZE(rfc2374_unit_directory_data), 1629 .key = (CSR_DIRECTORY | CSR_UNIT) << 24, 1630 .data = rfc2374_unit_directory_data 1631 }; 1632 1633 #if IS_ENABLED(CONFIG_IPV6) 1634 static const u32 rfc3146_unit_directory_data[] = { 1635 0x00040000, /* directory_length */ 1636 0x1200005e, /* unit_specifier_id: IANA */ 1637 0x81000003, /* textual descriptor offset */ 1638 0x13000002, /* unit_sw_version: RFC 3146 */ 1639 0x81000005, /* textual descriptor offset */ 1640 0x00030000, /* descriptor_length */ 1641 0x00000000, /* text */ 1642 0x00000000, /* minimal ASCII, en */ 1643 0x49414e41, /* I A N A */ 1644 0x00030000, /* descriptor_length */ 1645 0x00000000, /* text */ 1646 0x00000000, /* minimal ASCII, en */ 1647 0x49507636, /* I P v 6 */ 1648 }; 1649 1650 static struct fw_descriptor rfc3146_unit_directory = { 1651 .length = ARRAY_SIZE(rfc3146_unit_directory_data), 1652 .key = (CSR_DIRECTORY | CSR_UNIT) << 24, 1653 .data = rfc3146_unit_directory_data 1654 }; 1655 #endif 1656 1657 static int __init fwnet_init(void) 1658 { 1659 int err; 1660 1661 err = fw_core_add_descriptor(&rfc2374_unit_directory); 1662 if (err) 1663 return err; 1664 1665 #if IS_ENABLED(CONFIG_IPV6) 1666 err = fw_core_add_descriptor(&rfc3146_unit_directory); 1667 if (err) 1668 goto out; 1669 #endif 1670 1671 fwnet_packet_task_cache = kmem_cache_create("packet_task", 1672 sizeof(struct fwnet_packet_task), 0, 0, NULL); 1673 if (!fwnet_packet_task_cache) { 1674 err = -ENOMEM; 1675 goto out2; 1676 } 1677 1678 err = driver_register(&fwnet_driver.driver); 1679 if (!err) 1680 return 0; 1681 1682 kmem_cache_destroy(fwnet_packet_task_cache); 1683 out2: 1684 #if IS_ENABLED(CONFIG_IPV6) 1685 fw_core_remove_descriptor(&rfc3146_unit_directory); 1686 out: 1687 #endif 1688 fw_core_remove_descriptor(&rfc2374_unit_directory); 1689 1690 return err; 1691 } 1692 module_init(fwnet_init); 1693 1694 static void __exit fwnet_cleanup(void) 1695 { 1696 driver_unregister(&fwnet_driver.driver); 1697 kmem_cache_destroy(fwnet_packet_task_cache); 1698 #if IS_ENABLED(CONFIG_IPV6) 1699 fw_core_remove_descriptor(&rfc3146_unit_directory); 1700 #endif 1701 fw_core_remove_descriptor(&rfc2374_unit_directory); 1702 } 1703 module_exit(fwnet_cleanup); 1704 1705 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>"); 1706 MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146"); 1707 MODULE_LICENSE("GPL"); 1708 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table); 1709