1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core IEEE1394 transaction logic 4 * 5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/completion.h> 10 #include <linux/device.h> 11 #include <linux/errno.h> 12 #include <linux/firewire.h> 13 #include <linux/firewire-constants.h> 14 #include <linux/fs.h> 15 #include <linux/init.h> 16 #include <linux/jiffies.h> 17 #include <linux/kernel.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/rculist.h> 21 #include <linux/slab.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/timer.h> 25 #include <linux/types.h> 26 #include <linux/workqueue.h> 27 28 #include <asm/byteorder.h> 29 30 #include "core.h" 31 #include "packet-header-definitions.h" 32 #include "phy-packet-definitions.h" 33 #include <trace/events/firewire.h> 34 35 #define HEADER_DESTINATION_IS_BROADCAST(header) \ 36 ((async_header_get_destination(header) & 0x3f) == 0x3f) 37 38 /* returns 0 if the split timeout handler is already running */ 39 static int try_cancel_split_timeout(struct fw_transaction *t) 40 { 41 if (t->is_split_transaction) 42 return timer_delete(&t->split_timeout_timer); 43 else 44 return 1; 45 } 46 47 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode, 48 u32 response_tstamp) 49 { 50 struct fw_transaction *t = NULL, *iter; 51 52 scoped_guard(spinlock_irqsave, &card->lock) { 53 list_for_each_entry(iter, &card->transaction_list, link) { 54 if (iter == transaction) { 55 if (try_cancel_split_timeout(iter)) { 56 list_del_init(&iter->link); 57 card->tlabel_mask &= ~(1ULL << iter->tlabel); 58 t = iter; 59 } 60 break; 61 } 62 } 63 } 64 65 if (!t) 66 return -ENOENT; 67 68 if (!t->with_tstamp) { 69 t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data); 70 } else { 71 t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0, 72 t->callback_data); 73 } 74 75 return 0; 76 } 77 78 /* 79 * Only valid for transactions that are potentially pending (ie have 80 * been sent). 81 */ 82 int fw_cancel_transaction(struct fw_card *card, 83 struct fw_transaction *transaction) 84 { 85 u32 tstamp; 86 87 /* 88 * Cancel the packet transmission if it's still queued. That 89 * will call the packet transmission callback which cancels 90 * the transaction. 91 */ 92 93 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 94 return 0; 95 96 /* 97 * If the request packet has already been sent, we need to see 98 * if the transaction is still pending and remove it in that case. 99 */ 100 101 if (transaction->packet.ack == 0) { 102 // The timestamp is reused since it was just read now. 103 tstamp = transaction->packet.timestamp; 104 } else { 105 u32 curr_cycle_time = 0; 106 107 (void)fw_card_read_cycle_time(card, &curr_cycle_time); 108 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); 109 } 110 111 return close_transaction(transaction, card, RCODE_CANCELLED, tstamp); 112 } 113 EXPORT_SYMBOL(fw_cancel_transaction); 114 115 static void split_transaction_timeout_callback(struct timer_list *timer) 116 { 117 struct fw_transaction *t = timer_container_of(t, timer, split_timeout_timer); 118 struct fw_card *card = t->card; 119 120 scoped_guard(spinlock_irqsave, &card->lock) { 121 if (list_empty(&t->link)) 122 return; 123 list_del(&t->link); 124 card->tlabel_mask &= ~(1ULL << t->tlabel); 125 } 126 127 if (!t->with_tstamp) { 128 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 129 } else { 130 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, 131 t->split_timeout_cycle, NULL, 0, t->callback_data); 132 } 133 } 134 135 static void start_split_transaction_timeout(struct fw_transaction *t, 136 struct fw_card *card) 137 { 138 guard(spinlock_irqsave)(&card->lock); 139 140 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) 141 return; 142 143 t->is_split_transaction = true; 144 mod_timer(&t->split_timeout_timer, 145 jiffies + card->split_timeout_jiffies); 146 } 147 148 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp); 149 150 static void transmit_complete_callback(struct fw_packet *packet, 151 struct fw_card *card, int status) 152 { 153 struct fw_transaction *t = 154 container_of(packet, struct fw_transaction, packet); 155 156 trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation, 157 packet->speed, status, packet->timestamp); 158 159 switch (status) { 160 case ACK_COMPLETE: 161 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp); 162 break; 163 case ACK_PENDING: 164 { 165 t->split_timeout_cycle = 166 compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff; 167 start_split_transaction_timeout(t, card); 168 break; 169 } 170 case ACK_BUSY_X: 171 case ACK_BUSY_A: 172 case ACK_BUSY_B: 173 close_transaction(t, card, RCODE_BUSY, packet->timestamp); 174 break; 175 case ACK_DATA_ERROR: 176 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp); 177 break; 178 case ACK_TYPE_ERROR: 179 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp); 180 break; 181 default: 182 /* 183 * In this case the ack is really a juju specific 184 * rcode, so just forward that to the callback. 185 */ 186 close_transaction(t, card, status, packet->timestamp); 187 break; 188 } 189 } 190 191 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 192 int destination_id, int source_id, int generation, int speed, 193 unsigned long long offset, void *payload, size_t length) 194 { 195 int ext_tcode; 196 197 if (tcode == TCODE_STREAM_DATA) { 198 // The value of destination_id argument should include tag, channel, and sy fields 199 // as isochronous packet header has. 200 packet->header[0] = destination_id; 201 isoc_header_set_data_length(packet->header, length); 202 isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA); 203 packet->header_length = 4; 204 packet->payload = payload; 205 packet->payload_length = length; 206 207 goto common; 208 } 209 210 if (tcode > 0x10) { 211 ext_tcode = tcode & ~0x10; 212 tcode = TCODE_LOCK_REQUEST; 213 } else 214 ext_tcode = 0; 215 216 async_header_set_retry(packet->header, RETRY_X); 217 async_header_set_tlabel(packet->header, tlabel); 218 async_header_set_tcode(packet->header, tcode); 219 async_header_set_destination(packet->header, destination_id); 220 async_header_set_source(packet->header, source_id); 221 async_header_set_offset(packet->header, offset); 222 223 switch (tcode) { 224 case TCODE_WRITE_QUADLET_REQUEST: 225 async_header_set_quadlet_data(packet->header, *(u32 *)payload); 226 packet->header_length = 16; 227 packet->payload_length = 0; 228 break; 229 230 case TCODE_LOCK_REQUEST: 231 case TCODE_WRITE_BLOCK_REQUEST: 232 async_header_set_data_length(packet->header, length); 233 async_header_set_extended_tcode(packet->header, ext_tcode); 234 packet->header_length = 16; 235 packet->payload = payload; 236 packet->payload_length = length; 237 break; 238 239 case TCODE_READ_QUADLET_REQUEST: 240 packet->header_length = 12; 241 packet->payload_length = 0; 242 break; 243 244 case TCODE_READ_BLOCK_REQUEST: 245 async_header_set_data_length(packet->header, length); 246 async_header_set_extended_tcode(packet->header, ext_tcode); 247 packet->header_length = 16; 248 packet->payload_length = 0; 249 break; 250 251 default: 252 WARN(1, "wrong tcode %d\n", tcode); 253 } 254 common: 255 packet->speed = speed; 256 packet->generation = generation; 257 packet->ack = 0; 258 packet->payload_mapped = false; 259 } 260 261 static int allocate_tlabel(struct fw_card *card) 262 { 263 int tlabel; 264 265 tlabel = card->current_tlabel; 266 while (card->tlabel_mask & (1ULL << tlabel)) { 267 tlabel = (tlabel + 1) & 0x3f; 268 if (tlabel == card->current_tlabel) 269 return -EBUSY; 270 } 271 272 card->current_tlabel = (tlabel + 1) & 0x3f; 273 card->tlabel_mask |= 1ULL << tlabel; 274 275 return tlabel; 276 } 277 278 /** 279 * __fw_send_request() - submit a request packet for transmission to generate callback for response 280 * subaction with or without time stamp. 281 * @card: interface to send the request at 282 * @t: transaction instance to which the request belongs 283 * @tcode: transaction code 284 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 285 * @generation: bus generation in which request and response are valid 286 * @speed: transmission speed 287 * @offset: 48bit wide offset into destination's address space 288 * @payload: data payload for the request subaction 289 * @length: length of the payload, in bytes 290 * @callback: union of two functions whether to receive time stamp or not for response 291 * subaction. 292 * @with_tstamp: Whether to receive time stamp or not for response subaction. 293 * @callback_data: data to be passed to the transaction completion callback 294 * 295 * Submit a request packet into the asynchronous request transmission queue. 296 * Can be called from atomic context. If you prefer a blocking API, use 297 * fw_run_transaction() in a context that can sleep. 298 * 299 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 300 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 301 * 302 * Make sure that the value in @destination_id is not older than the one in 303 * @generation. Otherwise the request is in danger to be sent to a wrong node. 304 * 305 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 306 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 307 * It will contain tag, channel, and sy data instead of a node ID then. 308 * 309 * The payload buffer at @data is going to be DMA-mapped except in case of 310 * @length <= 8 or of local (loopback) requests. Hence make sure that the 311 * buffer complies with the restrictions of the streaming DMA mapping API. 312 * @payload must not be freed before the @callback is called. 313 * 314 * In case of request types without payload, @data is NULL and @length is 0. 315 * 316 * After the transaction is completed successfully or unsuccessfully, the 317 * @callback will be called. Among its parameters is the response code which 318 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 319 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 320 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 321 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 322 * generation, or missing ACK respectively. 323 * 324 * Note some timing corner cases: fw_send_request() may complete much earlier 325 * than when the request packet actually hits the wire. On the other hand, 326 * transaction completion and hence execution of @callback may happen even 327 * before fw_send_request() returns. 328 */ 329 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 330 int destination_id, int generation, int speed, unsigned long long offset, 331 void *payload, size_t length, union fw_transaction_callback callback, 332 bool with_tstamp, void *callback_data) 333 { 334 unsigned long flags; 335 int tlabel; 336 337 /* 338 * Allocate tlabel from the bitmap and put the transaction on 339 * the list while holding the card spinlock. 340 */ 341 342 spin_lock_irqsave(&card->lock, flags); 343 344 tlabel = allocate_tlabel(card); 345 if (tlabel < 0) { 346 spin_unlock_irqrestore(&card->lock, flags); 347 if (!with_tstamp) { 348 callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 349 } else { 350 // Timestamping on behalf of hardware. 351 u32 curr_cycle_time = 0; 352 u32 tstamp; 353 354 (void)fw_card_read_cycle_time(card, &curr_cycle_time); 355 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); 356 357 callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0, 358 callback_data); 359 } 360 return; 361 } 362 363 t->node_id = destination_id; 364 t->tlabel = tlabel; 365 t->card = card; 366 t->is_split_transaction = false; 367 timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0); 368 t->callback = callback; 369 t->with_tstamp = with_tstamp; 370 t->callback_data = callback_data; 371 372 fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation, 373 speed, offset, payload, length); 374 t->packet.callback = transmit_complete_callback; 375 376 list_add_tail(&t->link, &card->transaction_list); 377 378 spin_unlock_irqrestore(&card->lock, flags); 379 380 trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed, 381 t->packet.header, payload, 382 tcode_is_read_request(tcode) ? 0 : length / 4); 383 384 card->driver->send_request(card, &t->packet); 385 } 386 EXPORT_SYMBOL_GPL(__fw_send_request); 387 388 struct transaction_callback_data { 389 struct completion done; 390 void *payload; 391 int rcode; 392 }; 393 394 static void transaction_callback(struct fw_card *card, int rcode, 395 void *payload, size_t length, void *data) 396 { 397 struct transaction_callback_data *d = data; 398 399 if (rcode == RCODE_COMPLETE) 400 memcpy(d->payload, payload, length); 401 d->rcode = rcode; 402 complete(&d->done); 403 } 404 405 /** 406 * fw_run_transaction() - send request and sleep until transaction is completed 407 * @card: card interface for this request 408 * @tcode: transaction code 409 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 410 * @generation: bus generation in which request and response are valid 411 * @speed: transmission speed 412 * @offset: 48bit wide offset into destination's address space 413 * @payload: data payload for the request subaction 414 * @length: length of the payload, in bytes 415 * 416 * Returns the RCODE. See fw_send_request() for parameter documentation. 417 * Unlike fw_send_request(), @data points to the payload of the request or/and 418 * to the payload of the response. DMA mapping restrictions apply to outbound 419 * request payloads of >= 8 bytes but not to inbound response payloads. 420 */ 421 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 422 int generation, int speed, unsigned long long offset, 423 void *payload, size_t length) 424 { 425 struct transaction_callback_data d; 426 struct fw_transaction t; 427 428 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0); 429 init_completion(&d.done); 430 d.payload = payload; 431 fw_send_request(card, &t, tcode, destination_id, generation, speed, 432 offset, payload, length, transaction_callback, &d); 433 wait_for_completion(&d.done); 434 timer_destroy_on_stack(&t.split_timeout_timer); 435 436 return d.rcode; 437 } 438 EXPORT_SYMBOL(fw_run_transaction); 439 440 static DEFINE_MUTEX(phy_config_mutex); 441 static DECLARE_COMPLETION(phy_config_done); 442 443 static void transmit_phy_packet_callback(struct fw_packet *packet, 444 struct fw_card *card, int status) 445 { 446 trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status, 447 packet->timestamp); 448 complete(&phy_config_done); 449 } 450 451 static struct fw_packet phy_config_packet = { 452 .header_length = 12, 453 .payload_length = 0, 454 .speed = SCODE_100, 455 .callback = transmit_phy_packet_callback, 456 }; 457 458 void fw_send_phy_config(struct fw_card *card, 459 int node_id, int generation, int gap_count) 460 { 461 long timeout = DIV_ROUND_UP(HZ, 10); 462 u32 data = 0; 463 464 phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG); 465 466 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) { 467 phy_packet_phy_config_set_root_id(&data, node_id); 468 phy_packet_phy_config_set_force_root_node(&data, true); 469 } 470 471 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 472 gap_count = card->driver->read_phy_reg(card, 1); 473 if (gap_count < 0) 474 return; 475 476 gap_count &= 63; 477 if (gap_count == 63) 478 return; 479 } 480 phy_packet_phy_config_set_gap_count(&data, gap_count); 481 phy_packet_phy_config_set_gap_count_optimization(&data, true); 482 483 guard(mutex)(&phy_config_mutex); 484 485 async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL); 486 phy_config_packet.header[1] = data; 487 phy_config_packet.header[2] = ~data; 488 phy_config_packet.generation = generation; 489 reinit_completion(&phy_config_done); 490 491 trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index, 492 phy_config_packet.generation, phy_config_packet.header[1], 493 phy_config_packet.header[2]); 494 495 card->driver->send_request(card, &phy_config_packet); 496 wait_for_completion_timeout(&phy_config_done, timeout); 497 } 498 499 static struct fw_address_handler *lookup_overlapping_address_handler( 500 struct list_head *list, unsigned long long offset, size_t length) 501 { 502 struct fw_address_handler *handler; 503 504 list_for_each_entry_rcu(handler, list, link) { 505 if (handler->offset < offset + length && 506 offset < handler->offset + handler->length) 507 return handler; 508 } 509 510 return NULL; 511 } 512 513 static bool is_enclosing_handler(struct fw_address_handler *handler, 514 unsigned long long offset, size_t length) 515 { 516 return handler->offset <= offset && 517 offset + length <= handler->offset + handler->length; 518 } 519 520 static struct fw_address_handler *lookup_enclosing_address_handler( 521 struct list_head *list, unsigned long long offset, size_t length) 522 { 523 struct fw_address_handler *handler; 524 525 list_for_each_entry_rcu(handler, list, link) { 526 if (is_enclosing_handler(handler, offset, length)) 527 return handler; 528 } 529 530 return NULL; 531 } 532 533 static DEFINE_SPINLOCK(address_handler_list_lock); 534 static LIST_HEAD(address_handler_list); 535 536 const struct fw_address_region fw_high_memory_region = 537 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, }; 538 EXPORT_SYMBOL(fw_high_memory_region); 539 540 static const struct fw_address_region low_memory_region = 541 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, }; 542 543 #if 0 544 const struct fw_address_region fw_private_region = 545 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 546 const struct fw_address_region fw_csr_region = 547 { .start = CSR_REGISTER_BASE, 548 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 549 const struct fw_address_region fw_unit_space_region = 550 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 551 #endif /* 0 */ 552 553 /** 554 * fw_core_add_address_handler() - register for incoming requests 555 * @handler: callback 556 * @region: region in the IEEE 1212 node space address range 557 * 558 * region->start, ->end, and handler->length have to be quadlet-aligned. 559 * 560 * When a request is received that falls within the specified address range, the specified callback 561 * is invoked. The parameters passed to the callback give the details of the particular request. 562 * The callback is invoked in the workqueue context in most cases. However, if the request is 563 * initiated by the local node, the callback is invoked in the initiator's context. 564 * 565 * To be called in process context. 566 * Return value: 0 on success, non-zero otherwise. 567 * 568 * The start offset of the handler's address region is determined by 569 * fw_core_add_address_handler() and is returned in handler->offset. 570 * 571 * Address allocations are exclusive, except for the FCP registers. 572 */ 573 int fw_core_add_address_handler(struct fw_address_handler *handler, 574 const struct fw_address_region *region) 575 { 576 struct fw_address_handler *other; 577 int ret = -EBUSY; 578 579 if (region->start & 0xffff000000000003ULL || 580 region->start >= region->end || 581 region->end > 0x0001000000000000ULL || 582 handler->length & 3 || 583 handler->length == 0) 584 return -EINVAL; 585 586 guard(spinlock)(&address_handler_list_lock); 587 588 handler->offset = region->start; 589 while (handler->offset + handler->length <= region->end) { 590 if (is_in_fcp_region(handler->offset, handler->length)) 591 other = NULL; 592 else 593 other = lookup_overlapping_address_handler 594 (&address_handler_list, 595 handler->offset, handler->length); 596 if (other != NULL) { 597 handler->offset += other->length; 598 } else { 599 list_add_tail_rcu(&handler->link, &address_handler_list); 600 ret = 0; 601 break; 602 } 603 } 604 605 return ret; 606 } 607 EXPORT_SYMBOL(fw_core_add_address_handler); 608 609 /** 610 * fw_core_remove_address_handler() - unregister an address handler 611 * @handler: callback 612 * 613 * To be called in process context. 614 * 615 * When fw_core_remove_address_handler() returns, @handler->callback() is 616 * guaranteed to not run on any CPU anymore. 617 */ 618 void fw_core_remove_address_handler(struct fw_address_handler *handler) 619 { 620 scoped_guard(spinlock, &address_handler_list_lock) 621 list_del_rcu(&handler->link); 622 623 synchronize_rcu(); 624 } 625 EXPORT_SYMBOL(fw_core_remove_address_handler); 626 627 struct fw_request { 628 struct kref kref; 629 struct fw_packet response; 630 u32 request_header[ASYNC_HEADER_QUADLET_COUNT]; 631 int ack; 632 u32 timestamp; 633 u32 length; 634 u32 data[]; 635 }; 636 637 void fw_request_get(struct fw_request *request) 638 { 639 kref_get(&request->kref); 640 } 641 642 static void release_request(struct kref *kref) 643 { 644 struct fw_request *request = container_of(kref, struct fw_request, kref); 645 646 kfree(request); 647 } 648 649 void fw_request_put(struct fw_request *request) 650 { 651 kref_put(&request->kref, release_request); 652 } 653 654 static void free_response_callback(struct fw_packet *packet, 655 struct fw_card *card, int status) 656 { 657 struct fw_request *request = container_of(packet, struct fw_request, response); 658 659 trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation, 660 packet->speed, status, packet->timestamp); 661 662 // Decrease the reference count since not at in-flight. 663 fw_request_put(request); 664 665 // Decrease the reference count to release the object. 666 fw_request_put(request); 667 } 668 669 int fw_get_response_length(struct fw_request *r) 670 { 671 int tcode, ext_tcode, data_length; 672 673 tcode = async_header_get_tcode(r->request_header); 674 675 switch (tcode) { 676 case TCODE_WRITE_QUADLET_REQUEST: 677 case TCODE_WRITE_BLOCK_REQUEST: 678 return 0; 679 680 case TCODE_READ_QUADLET_REQUEST: 681 return 4; 682 683 case TCODE_READ_BLOCK_REQUEST: 684 data_length = async_header_get_data_length(r->request_header); 685 return data_length; 686 687 case TCODE_LOCK_REQUEST: 688 ext_tcode = async_header_get_extended_tcode(r->request_header); 689 data_length = async_header_get_data_length(r->request_header); 690 switch (ext_tcode) { 691 case EXTCODE_FETCH_ADD: 692 case EXTCODE_LITTLE_ADD: 693 return data_length; 694 default: 695 return data_length / 2; 696 } 697 698 default: 699 WARN(1, "wrong tcode %d\n", tcode); 700 return 0; 701 } 702 } 703 704 void fw_fill_response(struct fw_packet *response, u32 *request_header, 705 int rcode, void *payload, size_t length) 706 { 707 int tcode, tlabel, extended_tcode, source, destination; 708 709 tcode = async_header_get_tcode(request_header); 710 tlabel = async_header_get_tlabel(request_header); 711 source = async_header_get_destination(request_header); // Exchange. 712 destination = async_header_get_source(request_header); // Exchange. 713 extended_tcode = async_header_get_extended_tcode(request_header); 714 715 async_header_set_retry(response->header, RETRY_1); 716 async_header_set_tlabel(response->header, tlabel); 717 async_header_set_destination(response->header, destination); 718 async_header_set_source(response->header, source); 719 async_header_set_rcode(response->header, rcode); 720 response->header[2] = 0; // The field is reserved. 721 722 switch (tcode) { 723 case TCODE_WRITE_QUADLET_REQUEST: 724 case TCODE_WRITE_BLOCK_REQUEST: 725 async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE); 726 response->header_length = 12; 727 response->payload_length = 0; 728 break; 729 730 case TCODE_READ_QUADLET_REQUEST: 731 async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE); 732 if (payload != NULL) 733 async_header_set_quadlet_data(response->header, *(u32 *)payload); 734 else 735 async_header_set_quadlet_data(response->header, 0); 736 response->header_length = 16; 737 response->payload_length = 0; 738 break; 739 740 case TCODE_READ_BLOCK_REQUEST: 741 case TCODE_LOCK_REQUEST: 742 async_header_set_tcode(response->header, tcode + 2); 743 async_header_set_data_length(response->header, length); 744 async_header_set_extended_tcode(response->header, extended_tcode); 745 response->header_length = 16; 746 response->payload = payload; 747 response->payload_length = length; 748 break; 749 750 default: 751 WARN(1, "wrong tcode %d\n", tcode); 752 } 753 754 response->payload_mapped = false; 755 } 756 EXPORT_SYMBOL(fw_fill_response); 757 758 static u32 compute_split_timeout_timestamp(struct fw_card *card, 759 u32 request_timestamp) 760 { 761 unsigned int cycles; 762 u32 timestamp; 763 764 cycles = card->split_timeout_cycles; 765 cycles += request_timestamp & 0x1fff; 766 767 timestamp = request_timestamp & ~0x1fff; 768 timestamp += (cycles / 8000) << 13; 769 timestamp |= cycles % 8000; 770 771 return timestamp; 772 } 773 774 static struct fw_request *allocate_request(struct fw_card *card, 775 struct fw_packet *p) 776 { 777 struct fw_request *request; 778 u32 *data, length; 779 int request_tcode; 780 781 request_tcode = async_header_get_tcode(p->header); 782 switch (request_tcode) { 783 case TCODE_WRITE_QUADLET_REQUEST: 784 data = &p->header[3]; 785 length = 4; 786 break; 787 788 case TCODE_WRITE_BLOCK_REQUEST: 789 case TCODE_LOCK_REQUEST: 790 data = p->payload; 791 length = async_header_get_data_length(p->header); 792 break; 793 794 case TCODE_READ_QUADLET_REQUEST: 795 data = NULL; 796 length = 4; 797 break; 798 799 case TCODE_READ_BLOCK_REQUEST: 800 data = NULL; 801 length = async_header_get_data_length(p->header); 802 break; 803 804 default: 805 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", 806 p->header[0], p->header[1], p->header[2]); 807 return NULL; 808 } 809 810 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 811 if (request == NULL) 812 return NULL; 813 kref_init(&request->kref); 814 815 request->response.speed = p->speed; 816 request->response.timestamp = 817 compute_split_timeout_timestamp(card, p->timestamp); 818 request->response.generation = p->generation; 819 request->response.ack = 0; 820 request->response.callback = free_response_callback; 821 request->ack = p->ack; 822 request->timestamp = p->timestamp; 823 request->length = length; 824 if (data) 825 memcpy(request->data, data, length); 826 827 memcpy(request->request_header, p->header, sizeof(p->header)); 828 829 return request; 830 } 831 832 /** 833 * fw_send_response: - send response packet for asynchronous transaction. 834 * @card: interface to send the response at. 835 * @request: firewire request data for the transaction. 836 * @rcode: response code to send. 837 * 838 * Submit a response packet into the asynchronous response transmission queue. The @request 839 * is going to be released when the transmission successfully finishes later. 840 */ 841 void fw_send_response(struct fw_card *card, 842 struct fw_request *request, int rcode) 843 { 844 u32 *data = NULL; 845 unsigned int data_length = 0; 846 847 /* unified transaction or broadcast transaction: don't respond */ 848 if (request->ack != ACK_PENDING || 849 HEADER_DESTINATION_IS_BROADCAST(request->request_header)) { 850 fw_request_put(request); 851 return; 852 } 853 854 if (rcode == RCODE_COMPLETE) { 855 data = request->data; 856 data_length = fw_get_response_length(request); 857 } 858 859 fw_fill_response(&request->response, request->request_header, rcode, data, data_length); 860 861 // Increase the reference count so that the object is kept during in-flight. 862 fw_request_get(request); 863 864 trace_async_response_outbound_initiate((uintptr_t)request, card->index, 865 request->response.generation, request->response.speed, 866 request->response.header, data, 867 data ? data_length / 4 : 0); 868 869 card->driver->send_response(card, &request->response); 870 } 871 EXPORT_SYMBOL(fw_send_response); 872 873 /** 874 * fw_get_request_speed() - returns speed at which the @request was received 875 * @request: firewire request data 876 */ 877 int fw_get_request_speed(struct fw_request *request) 878 { 879 return request->response.speed; 880 } 881 EXPORT_SYMBOL(fw_get_request_speed); 882 883 /** 884 * fw_request_get_timestamp: Get timestamp of the request. 885 * @request: The opaque pointer to request structure. 886 * 887 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The 888 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count 889 * field of isochronous cycle time register. 890 * 891 * Returns: timestamp of the request. 892 */ 893 u32 fw_request_get_timestamp(const struct fw_request *request) 894 { 895 return request->timestamp; 896 } 897 EXPORT_SYMBOL_GPL(fw_request_get_timestamp); 898 899 static void handle_exclusive_region_request(struct fw_card *card, 900 struct fw_packet *p, 901 struct fw_request *request, 902 unsigned long long offset) 903 { 904 struct fw_address_handler *handler; 905 int tcode, destination, source; 906 907 destination = async_header_get_destination(p->header); 908 source = async_header_get_source(p->header); 909 tcode = async_header_get_tcode(p->header); 910 if (tcode == TCODE_LOCK_REQUEST) 911 tcode = 0x10 + async_header_get_extended_tcode(p->header); 912 913 scoped_guard(rcu) { 914 handler = lookup_enclosing_address_handler(&address_handler_list, offset, 915 request->length); 916 if (handler) 917 handler->address_callback(card, request, tcode, destination, source, 918 p->generation, offset, request->data, 919 request->length, handler->callback_data); 920 } 921 922 if (!handler) 923 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 924 } 925 926 static void handle_fcp_region_request(struct fw_card *card, 927 struct fw_packet *p, 928 struct fw_request *request, 929 unsigned long long offset) 930 { 931 struct fw_address_handler *handler; 932 int tcode, destination, source; 933 934 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 935 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 936 request->length > 0x200) { 937 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 938 939 return; 940 } 941 942 tcode = async_header_get_tcode(p->header); 943 destination = async_header_get_destination(p->header); 944 source = async_header_get_source(p->header); 945 946 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 947 tcode != TCODE_WRITE_BLOCK_REQUEST) { 948 fw_send_response(card, request, RCODE_TYPE_ERROR); 949 950 return; 951 } 952 953 scoped_guard(rcu) { 954 list_for_each_entry_rcu(handler, &address_handler_list, link) { 955 if (is_enclosing_handler(handler, offset, request->length)) 956 handler->address_callback(card, request, tcode, destination, source, 957 p->generation, offset, request->data, 958 request->length, handler->callback_data); 959 } 960 } 961 962 fw_send_response(card, request, RCODE_COMPLETE); 963 } 964 965 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 966 { 967 struct fw_request *request; 968 unsigned long long offset; 969 unsigned int tcode; 970 971 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 972 return; 973 974 tcode = async_header_get_tcode(p->header); 975 if (tcode_is_link_internal(tcode)) { 976 trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp, 977 p->header[1], p->header[2]); 978 fw_cdev_handle_phy_packet(card, p); 979 return; 980 } 981 982 request = allocate_request(card, p); 983 if (request == NULL) { 984 /* FIXME: send statically allocated busy packet. */ 985 return; 986 } 987 988 trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed, 989 p->ack, p->timestamp, p->header, request->data, 990 tcode_is_read_request(tcode) ? 0 : request->length / 4); 991 992 offset = async_header_get_offset(p->header); 993 994 if (!is_in_fcp_region(offset, request->length)) 995 handle_exclusive_region_request(card, p, request, offset); 996 else 997 handle_fcp_region_request(card, p, request, offset); 998 999 } 1000 EXPORT_SYMBOL(fw_core_handle_request); 1001 1002 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 1003 { 1004 struct fw_transaction *t = NULL, *iter; 1005 u32 *data; 1006 size_t data_length; 1007 int tcode, tlabel, source, rcode; 1008 1009 tcode = async_header_get_tcode(p->header); 1010 tlabel = async_header_get_tlabel(p->header); 1011 source = async_header_get_source(p->header); 1012 rcode = async_header_get_rcode(p->header); 1013 1014 // FIXME: sanity check packet, is length correct, does tcodes 1015 // and addresses match to the transaction request queried later. 1016 // 1017 // For the tracepoints event, let us decode the header here against the concern. 1018 1019 switch (tcode) { 1020 case TCODE_READ_QUADLET_RESPONSE: 1021 data = (u32 *) &p->header[3]; 1022 data_length = 4; 1023 break; 1024 1025 case TCODE_WRITE_RESPONSE: 1026 data = NULL; 1027 data_length = 0; 1028 break; 1029 1030 case TCODE_READ_BLOCK_RESPONSE: 1031 case TCODE_LOCK_RESPONSE: 1032 data = p->payload; 1033 data_length = async_header_get_data_length(p->header); 1034 break; 1035 1036 default: 1037 /* Should never happen, this is just to shut up gcc. */ 1038 data = NULL; 1039 data_length = 0; 1040 break; 1041 } 1042 1043 scoped_guard(spinlock_irqsave, &card->lock) { 1044 list_for_each_entry(iter, &card->transaction_list, link) { 1045 if (iter->node_id == source && iter->tlabel == tlabel) { 1046 if (try_cancel_split_timeout(iter)) { 1047 list_del_init(&iter->link); 1048 card->tlabel_mask &= ~(1ULL << iter->tlabel); 1049 t = iter; 1050 } 1051 break; 1052 } 1053 } 1054 } 1055 1056 trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack, 1057 p->timestamp, p->header, data, data_length / 4); 1058 1059 if (!t) { 1060 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", 1061 source, tlabel); 1062 return; 1063 } 1064 1065 /* 1066 * The response handler may be executed while the request handler 1067 * is still pending. Cancel the request handler. 1068 */ 1069 card->driver->cancel_packet(card, &t->packet); 1070 1071 if (!t->with_tstamp) { 1072 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data); 1073 } else { 1074 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data, 1075 data_length, t->callback_data); 1076 } 1077 } 1078 EXPORT_SYMBOL(fw_core_handle_response); 1079 1080 /** 1081 * fw_rcode_string - convert a firewire result code to an error description 1082 * @rcode: the result code 1083 */ 1084 const char *fw_rcode_string(int rcode) 1085 { 1086 static const char *const names[] = { 1087 [RCODE_COMPLETE] = "no error", 1088 [RCODE_CONFLICT_ERROR] = "conflict error", 1089 [RCODE_DATA_ERROR] = "data error", 1090 [RCODE_TYPE_ERROR] = "type error", 1091 [RCODE_ADDRESS_ERROR] = "address error", 1092 [RCODE_SEND_ERROR] = "send error", 1093 [RCODE_CANCELLED] = "timeout", 1094 [RCODE_BUSY] = "busy", 1095 [RCODE_GENERATION] = "bus reset", 1096 [RCODE_NO_ACK] = "no ack", 1097 }; 1098 1099 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode]) 1100 return names[rcode]; 1101 else 1102 return "unknown"; 1103 } 1104 EXPORT_SYMBOL(fw_rcode_string); 1105 1106 static const struct fw_address_region topology_map_region = 1107 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 1108 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 1109 1110 static void handle_topology_map(struct fw_card *card, struct fw_request *request, 1111 int tcode, int destination, int source, int generation, 1112 unsigned long long offset, void *payload, size_t length, 1113 void *callback_data) 1114 { 1115 int start; 1116 1117 if (!tcode_is_read_request(tcode)) { 1118 fw_send_response(card, request, RCODE_TYPE_ERROR); 1119 return; 1120 } 1121 1122 if ((offset & 3) > 0 || (length & 3) > 0) { 1123 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1124 return; 1125 } 1126 1127 start = (offset - topology_map_region.start) / 4; 1128 memcpy(payload, &card->topology_map[start], length); 1129 1130 fw_send_response(card, request, RCODE_COMPLETE); 1131 } 1132 1133 static struct fw_address_handler topology_map = { 1134 .length = 0x400, 1135 .address_callback = handle_topology_map, 1136 }; 1137 1138 static const struct fw_address_region registers_region = 1139 { .start = CSR_REGISTER_BASE, 1140 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1141 1142 static void update_split_timeout(struct fw_card *card) 1143 { 1144 unsigned int cycles; 1145 1146 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); 1147 1148 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ 1149 cycles = clamp(cycles, 800u, 3u * 8000u); 1150 1151 card->split_timeout_cycles = cycles; 1152 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); 1153 } 1154 1155 static void handle_registers(struct fw_card *card, struct fw_request *request, 1156 int tcode, int destination, int source, int generation, 1157 unsigned long long offset, void *payload, size_t length, 1158 void *callback_data) 1159 { 1160 int reg = offset & ~CSR_REGISTER_BASE; 1161 __be32 *data = payload; 1162 int rcode = RCODE_COMPLETE; 1163 1164 switch (reg) { 1165 case CSR_PRIORITY_BUDGET: 1166 if (!card->priority_budget_implemented) { 1167 rcode = RCODE_ADDRESS_ERROR; 1168 break; 1169 } 1170 fallthrough; 1171 1172 case CSR_NODE_IDS: 1173 /* 1174 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1175 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1176 */ 1177 fallthrough; 1178 1179 case CSR_STATE_CLEAR: 1180 case CSR_STATE_SET: 1181 case CSR_CYCLE_TIME: 1182 case CSR_BUS_TIME: 1183 case CSR_BUSY_TIMEOUT: 1184 if (tcode == TCODE_READ_QUADLET_REQUEST) 1185 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1186 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1187 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1188 else 1189 rcode = RCODE_TYPE_ERROR; 1190 break; 1191 1192 case CSR_RESET_START: 1193 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1194 card->driver->write_csr(card, CSR_STATE_CLEAR, 1195 CSR_STATE_BIT_ABDICATE); 1196 else 1197 rcode = RCODE_TYPE_ERROR; 1198 break; 1199 1200 case CSR_SPLIT_TIMEOUT_HI: 1201 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1202 *data = cpu_to_be32(card->split_timeout_hi); 1203 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1204 guard(spinlock_irqsave)(&card->lock); 1205 1206 card->split_timeout_hi = be32_to_cpu(*data) & 7; 1207 update_split_timeout(card); 1208 } else { 1209 rcode = RCODE_TYPE_ERROR; 1210 } 1211 break; 1212 1213 case CSR_SPLIT_TIMEOUT_LO: 1214 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1215 *data = cpu_to_be32(card->split_timeout_lo); 1216 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1217 guard(spinlock_irqsave)(&card->lock); 1218 1219 card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000; 1220 update_split_timeout(card); 1221 } else { 1222 rcode = RCODE_TYPE_ERROR; 1223 } 1224 break; 1225 1226 case CSR_MAINT_UTILITY: 1227 if (tcode == TCODE_READ_QUADLET_REQUEST) 1228 *data = card->maint_utility_register; 1229 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1230 card->maint_utility_register = *data; 1231 else 1232 rcode = RCODE_TYPE_ERROR; 1233 break; 1234 1235 case CSR_BROADCAST_CHANNEL: 1236 if (tcode == TCODE_READ_QUADLET_REQUEST) 1237 *data = cpu_to_be32(card->broadcast_channel); 1238 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1239 card->broadcast_channel = 1240 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1241 BROADCAST_CHANNEL_INITIAL; 1242 else 1243 rcode = RCODE_TYPE_ERROR; 1244 break; 1245 1246 case CSR_BUS_MANAGER_ID: 1247 case CSR_BANDWIDTH_AVAILABLE: 1248 case CSR_CHANNELS_AVAILABLE_HI: 1249 case CSR_CHANNELS_AVAILABLE_LO: 1250 /* 1251 * FIXME: these are handled by the OHCI hardware and 1252 * the stack never sees these request. If we add 1253 * support for a new type of controller that doesn't 1254 * handle this in hardware we need to deal with these 1255 * transactions. 1256 */ 1257 BUG(); 1258 break; 1259 1260 default: 1261 rcode = RCODE_ADDRESS_ERROR; 1262 break; 1263 } 1264 1265 fw_send_response(card, request, rcode); 1266 } 1267 1268 static struct fw_address_handler registers = { 1269 .length = 0x400, 1270 .address_callback = handle_registers, 1271 }; 1272 1273 static void handle_low_memory(struct fw_card *card, struct fw_request *request, 1274 int tcode, int destination, int source, int generation, 1275 unsigned long long offset, void *payload, size_t length, 1276 void *callback_data) 1277 { 1278 /* 1279 * This catches requests not handled by the physical DMA unit, 1280 * i.e., wrong transaction types or unauthorized source nodes. 1281 */ 1282 fw_send_response(card, request, RCODE_TYPE_ERROR); 1283 } 1284 1285 static struct fw_address_handler low_memory = { 1286 .length = FW_MAX_PHYSICAL_RANGE, 1287 .address_callback = handle_low_memory, 1288 }; 1289 1290 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1291 MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1292 MODULE_LICENSE("GPL"); 1293 1294 static const u32 vendor_textual_descriptor[] = { 1295 /* textual descriptor leaf () */ 1296 0x00060000, 1297 0x00000000, 1298 0x00000000, 1299 0x4c696e75, /* L i n u */ 1300 0x78204669, /* x F i */ 1301 0x72657769, /* r e w i */ 1302 0x72650000, /* r e */ 1303 }; 1304 1305 static const u32 model_textual_descriptor[] = { 1306 /* model descriptor leaf () */ 1307 0x00030000, 1308 0x00000000, 1309 0x00000000, 1310 0x4a756a75, /* J u j u */ 1311 }; 1312 1313 static struct fw_descriptor vendor_id_descriptor = { 1314 .length = ARRAY_SIZE(vendor_textual_descriptor), 1315 .immediate = 0x03001f11, 1316 .key = 0x81000000, 1317 .data = vendor_textual_descriptor, 1318 }; 1319 1320 static struct fw_descriptor model_id_descriptor = { 1321 .length = ARRAY_SIZE(model_textual_descriptor), 1322 .immediate = 0x17023901, 1323 .key = 0x81000000, 1324 .data = model_textual_descriptor, 1325 }; 1326 1327 static int __init fw_core_init(void) 1328 { 1329 int ret; 1330 1331 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0); 1332 if (!fw_workqueue) 1333 return -ENOMEM; 1334 1335 ret = bus_register(&fw_bus_type); 1336 if (ret < 0) { 1337 destroy_workqueue(fw_workqueue); 1338 return ret; 1339 } 1340 1341 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1342 if (fw_cdev_major < 0) { 1343 bus_unregister(&fw_bus_type); 1344 destroy_workqueue(fw_workqueue); 1345 return fw_cdev_major; 1346 } 1347 1348 fw_core_add_address_handler(&topology_map, &topology_map_region); 1349 fw_core_add_address_handler(®isters, ®isters_region); 1350 fw_core_add_address_handler(&low_memory, &low_memory_region); 1351 fw_core_add_descriptor(&vendor_id_descriptor); 1352 fw_core_add_descriptor(&model_id_descriptor); 1353 1354 return 0; 1355 } 1356 1357 static void __exit fw_core_cleanup(void) 1358 { 1359 unregister_chrdev(fw_cdev_major, "firewire"); 1360 bus_unregister(&fw_bus_type); 1361 destroy_workqueue(fw_workqueue); 1362 xa_destroy(&fw_device_xa); 1363 } 1364 1365 module_init(fw_core_init); 1366 module_exit(fw_core_cleanup); 1367