xref: /linux/drivers/firewire/core-transaction.c (revision dff6f36878799a5ffabd15336ce993dc737374dc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core IEEE1394 transaction logic
4  *
5  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/rculist.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/timer.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27 
28 #include <asm/byteorder.h>
29 
30 #include "core.h"
31 #include "packet-header-definitions.h"
32 #include "phy-packet-definitions.h"
33 #include <trace/events/firewire.h>
34 
35 #define HEADER_DESTINATION_IS_BROADCAST(header) \
36 	((async_header_get_destination(header) & 0x3f) == 0x3f)
37 
38 /* returns 0 if the split timeout handler is already running */
39 static int try_cancel_split_timeout(struct fw_transaction *t)
40 {
41 	if (t->is_split_transaction)
42 		return timer_delete(&t->split_timeout_timer);
43 	else
44 		return 1;
45 }
46 
47 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
48 			     u32 response_tstamp)
49 {
50 	struct fw_transaction *t = NULL, *iter;
51 
52 	scoped_guard(spinlock_irqsave, &card->lock) {
53 		list_for_each_entry(iter, &card->transaction_list, link) {
54 			if (iter == transaction) {
55 				if (try_cancel_split_timeout(iter)) {
56 					list_del_init(&iter->link);
57 					card->tlabel_mask &= ~(1ULL << iter->tlabel);
58 					t = iter;
59 				}
60 				break;
61 			}
62 		}
63 	}
64 
65 	if (!t)
66 		return -ENOENT;
67 
68 	if (!t->with_tstamp) {
69 		t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
70 	} else {
71 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
72 					t->callback_data);
73 	}
74 
75 	return 0;
76 }
77 
78 /*
79  * Only valid for transactions that are potentially pending (ie have
80  * been sent).
81  */
82 int fw_cancel_transaction(struct fw_card *card,
83 			  struct fw_transaction *transaction)
84 {
85 	u32 tstamp;
86 
87 	/*
88 	 * Cancel the packet transmission if it's still queued.  That
89 	 * will call the packet transmission callback which cancels
90 	 * the transaction.
91 	 */
92 
93 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
94 		return 0;
95 
96 	/*
97 	 * If the request packet has already been sent, we need to see
98 	 * if the transaction is still pending and remove it in that case.
99 	 */
100 
101 	if (transaction->packet.ack == 0) {
102 		// The timestamp is reused since it was just read now.
103 		tstamp = transaction->packet.timestamp;
104 	} else {
105 		u32 curr_cycle_time = 0;
106 
107 		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
108 		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
109 	}
110 
111 	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
112 }
113 EXPORT_SYMBOL(fw_cancel_transaction);
114 
115 static void split_transaction_timeout_callback(struct timer_list *timer)
116 {
117 	struct fw_transaction *t = timer_container_of(t, timer, split_timeout_timer);
118 	struct fw_card *card = t->card;
119 
120 	scoped_guard(spinlock_irqsave, &card->lock) {
121 		if (list_empty(&t->link))
122 			return;
123 		list_del(&t->link);
124 		card->tlabel_mask &= ~(1ULL << t->tlabel);
125 	}
126 
127 	if (!t->with_tstamp) {
128 		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
129 	} else {
130 		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
131 					t->split_timeout_cycle, NULL, 0, t->callback_data);
132 	}
133 }
134 
135 static void start_split_transaction_timeout(struct fw_transaction *t,
136 					    struct fw_card *card)
137 {
138 	guard(spinlock_irqsave)(&card->lock);
139 
140 	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
141 		return;
142 
143 	t->is_split_transaction = true;
144 	mod_timer(&t->split_timeout_timer,
145 		  jiffies + card->split_timeout_jiffies);
146 }
147 
148 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
149 
150 static void transmit_complete_callback(struct fw_packet *packet,
151 				       struct fw_card *card, int status)
152 {
153 	struct fw_transaction *t =
154 	    container_of(packet, struct fw_transaction, packet);
155 
156 	trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
157 					      packet->speed, status, packet->timestamp);
158 
159 	switch (status) {
160 	case ACK_COMPLETE:
161 		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
162 		break;
163 	case ACK_PENDING:
164 	{
165 		t->split_timeout_cycle =
166 			compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
167 		start_split_transaction_timeout(t, card);
168 		break;
169 	}
170 	case ACK_BUSY_X:
171 	case ACK_BUSY_A:
172 	case ACK_BUSY_B:
173 		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
174 		break;
175 	case ACK_DATA_ERROR:
176 		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
177 		break;
178 	case ACK_TYPE_ERROR:
179 		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
180 		break;
181 	default:
182 		/*
183 		 * In this case the ack is really a juju specific
184 		 * rcode, so just forward that to the callback.
185 		 */
186 		close_transaction(t, card, status, packet->timestamp);
187 		break;
188 	}
189 }
190 
191 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
192 		int destination_id, int source_id, int generation, int speed,
193 		unsigned long long offset, void *payload, size_t length)
194 {
195 	int ext_tcode;
196 
197 	if (tcode == TCODE_STREAM_DATA) {
198 		// The value of destination_id argument should include tag, channel, and sy fields
199 		// as isochronous packet header has.
200 		packet->header[0] = destination_id;
201 		isoc_header_set_data_length(packet->header, length);
202 		isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
203 		packet->header_length = 4;
204 		packet->payload = payload;
205 		packet->payload_length = length;
206 
207 		goto common;
208 	}
209 
210 	if (tcode > 0x10) {
211 		ext_tcode = tcode & ~0x10;
212 		tcode = TCODE_LOCK_REQUEST;
213 	} else
214 		ext_tcode = 0;
215 
216 	async_header_set_retry(packet->header, RETRY_X);
217 	async_header_set_tlabel(packet->header, tlabel);
218 	async_header_set_tcode(packet->header, tcode);
219 	async_header_set_destination(packet->header, destination_id);
220 	async_header_set_source(packet->header, source_id);
221 	async_header_set_offset(packet->header, offset);
222 
223 	switch (tcode) {
224 	case TCODE_WRITE_QUADLET_REQUEST:
225 		async_header_set_quadlet_data(packet->header, *(u32 *)payload);
226 		packet->header_length = 16;
227 		packet->payload_length = 0;
228 		break;
229 
230 	case TCODE_LOCK_REQUEST:
231 	case TCODE_WRITE_BLOCK_REQUEST:
232 		async_header_set_data_length(packet->header, length);
233 		async_header_set_extended_tcode(packet->header, ext_tcode);
234 		packet->header_length = 16;
235 		packet->payload = payload;
236 		packet->payload_length = length;
237 		break;
238 
239 	case TCODE_READ_QUADLET_REQUEST:
240 		packet->header_length = 12;
241 		packet->payload_length = 0;
242 		break;
243 
244 	case TCODE_READ_BLOCK_REQUEST:
245 		async_header_set_data_length(packet->header, length);
246 		async_header_set_extended_tcode(packet->header, ext_tcode);
247 		packet->header_length = 16;
248 		packet->payload_length = 0;
249 		break;
250 
251 	default:
252 		WARN(1, "wrong tcode %d\n", tcode);
253 	}
254  common:
255 	packet->speed = speed;
256 	packet->generation = generation;
257 	packet->ack = 0;
258 	packet->payload_mapped = false;
259 }
260 
261 static int allocate_tlabel(struct fw_card *card)
262 {
263 	int tlabel;
264 
265 	tlabel = card->current_tlabel;
266 	while (card->tlabel_mask & (1ULL << tlabel)) {
267 		tlabel = (tlabel + 1) & 0x3f;
268 		if (tlabel == card->current_tlabel)
269 			return -EBUSY;
270 	}
271 
272 	card->current_tlabel = (tlabel + 1) & 0x3f;
273 	card->tlabel_mask |= 1ULL << tlabel;
274 
275 	return tlabel;
276 }
277 
278 /**
279  * __fw_send_request() - submit a request packet for transmission to generate callback for response
280  *			 subaction with or without time stamp.
281  * @card:		interface to send the request at
282  * @t:			transaction instance to which the request belongs
283  * @tcode:		transaction code
284  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
285  * @generation:		bus generation in which request and response are valid
286  * @speed:		transmission speed
287  * @offset:		48bit wide offset into destination's address space
288  * @payload:		data payload for the request subaction
289  * @length:		length of the payload, in bytes
290  * @callback:		union of two functions whether to receive time stamp or not for response
291  *			subaction.
292  * @with_tstamp:	Whether to receive time stamp or not for response subaction.
293  * @callback_data:	data to be passed to the transaction completion callback
294  *
295  * Submit a request packet into the asynchronous request transmission queue.
296  * Can be called from atomic context.  If you prefer a blocking API, use
297  * fw_run_transaction() in a context that can sleep.
298  *
299  * In case of lock requests, specify one of the firewire-core specific %TCODE_
300  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
301  *
302  * Make sure that the value in @destination_id is not older than the one in
303  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
304  *
305  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
306  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
307  * It will contain tag, channel, and sy data instead of a node ID then.
308  *
309  * The payload buffer at @data is going to be DMA-mapped except in case of
310  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
311  * buffer complies with the restrictions of the streaming DMA mapping API.
312  * @payload must not be freed before the @callback is called.
313  *
314  * In case of request types without payload, @data is NULL and @length is 0.
315  *
316  * After the transaction is completed successfully or unsuccessfully, the
317  * @callback will be called.  Among its parameters is the response code which
318  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
319  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
320  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
321  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
322  * generation, or missing ACK respectively.
323  *
324  * Note some timing corner cases:  fw_send_request() may complete much earlier
325  * than when the request packet actually hits the wire.  On the other hand,
326  * transaction completion and hence execution of @callback may happen even
327  * before fw_send_request() returns.
328  */
329 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
330 		int destination_id, int generation, int speed, unsigned long long offset,
331 		void *payload, size_t length, union fw_transaction_callback callback,
332 		bool with_tstamp, void *callback_data)
333 {
334 	unsigned long flags;
335 	int tlabel;
336 
337 	/*
338 	 * Allocate tlabel from the bitmap and put the transaction on
339 	 * the list while holding the card spinlock.
340 	 */
341 
342 	spin_lock_irqsave(&card->lock, flags);
343 
344 	tlabel = allocate_tlabel(card);
345 	if (tlabel < 0) {
346 		spin_unlock_irqrestore(&card->lock, flags);
347 		if (!with_tstamp) {
348 			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
349 		} else {
350 			// Timestamping on behalf of hardware.
351 			u32 curr_cycle_time = 0;
352 			u32 tstamp;
353 
354 			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
355 			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
356 
357 			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
358 					     callback_data);
359 		}
360 		return;
361 	}
362 
363 	t->node_id = destination_id;
364 	t->tlabel = tlabel;
365 	t->card = card;
366 	t->is_split_transaction = false;
367 	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
368 	t->callback = callback;
369 	t->with_tstamp = with_tstamp;
370 	t->callback_data = callback_data;
371 
372 	fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
373 			speed, offset, payload, length);
374 	t->packet.callback = transmit_complete_callback;
375 
376 	list_add_tail(&t->link, &card->transaction_list);
377 
378 	spin_unlock_irqrestore(&card->lock, flags);
379 
380 	trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
381 					      t->packet.header, payload,
382 					      tcode_is_read_request(tcode) ? 0 : length / 4);
383 
384 	card->driver->send_request(card, &t->packet);
385 }
386 EXPORT_SYMBOL_GPL(__fw_send_request);
387 
388 struct transaction_callback_data {
389 	struct completion done;
390 	void *payload;
391 	int rcode;
392 };
393 
394 static void transaction_callback(struct fw_card *card, int rcode,
395 				 void *payload, size_t length, void *data)
396 {
397 	struct transaction_callback_data *d = data;
398 
399 	if (rcode == RCODE_COMPLETE)
400 		memcpy(d->payload, payload, length);
401 	d->rcode = rcode;
402 	complete(&d->done);
403 }
404 
405 /**
406  * fw_run_transaction() - send request and sleep until transaction is completed
407  * @card:		card interface for this request
408  * @tcode:		transaction code
409  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
410  * @generation:		bus generation in which request and response are valid
411  * @speed:		transmission speed
412  * @offset:		48bit wide offset into destination's address space
413  * @payload:		data payload for the request subaction
414  * @length:		length of the payload, in bytes
415  *
416  * Returns the RCODE.  See fw_send_request() for parameter documentation.
417  * Unlike fw_send_request(), @data points to the payload of the request or/and
418  * to the payload of the response.  DMA mapping restrictions apply to outbound
419  * request payloads of >= 8 bytes but not to inbound response payloads.
420  */
421 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
422 		       int generation, int speed, unsigned long long offset,
423 		       void *payload, size_t length)
424 {
425 	struct transaction_callback_data d;
426 	struct fw_transaction t;
427 
428 	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
429 	init_completion(&d.done);
430 	d.payload = payload;
431 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
432 			offset, payload, length, transaction_callback, &d);
433 	wait_for_completion(&d.done);
434 	timer_destroy_on_stack(&t.split_timeout_timer);
435 
436 	return d.rcode;
437 }
438 EXPORT_SYMBOL(fw_run_transaction);
439 
440 static DEFINE_MUTEX(phy_config_mutex);
441 static DECLARE_COMPLETION(phy_config_done);
442 
443 static void transmit_phy_packet_callback(struct fw_packet *packet,
444 					 struct fw_card *card, int status)
445 {
446 	trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
447 					  packet->timestamp);
448 	complete(&phy_config_done);
449 }
450 
451 static struct fw_packet phy_config_packet = {
452 	.header_length	= 12,
453 	.payload_length	= 0,
454 	.speed		= SCODE_100,
455 	.callback	= transmit_phy_packet_callback,
456 };
457 
458 void fw_send_phy_config(struct fw_card *card,
459 			int node_id, int generation, int gap_count)
460 {
461 	long timeout = DIV_ROUND_UP(HZ, 10);
462 	u32 data = 0;
463 
464 	phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
465 
466 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
467 		phy_packet_phy_config_set_root_id(&data, node_id);
468 		phy_packet_phy_config_set_force_root_node(&data, true);
469 	}
470 
471 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
472 		gap_count = card->driver->read_phy_reg(card, 1);
473 		if (gap_count < 0)
474 			return;
475 
476 		gap_count &= 63;
477 		if (gap_count == 63)
478 			return;
479 	}
480 	phy_packet_phy_config_set_gap_count(&data, gap_count);
481 	phy_packet_phy_config_set_gap_count_optimization(&data, true);
482 
483 	guard(mutex)(&phy_config_mutex);
484 
485 	async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
486 	phy_config_packet.header[1] = data;
487 	phy_config_packet.header[2] = ~data;
488 	phy_config_packet.generation = generation;
489 	reinit_completion(&phy_config_done);
490 
491 	trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
492 					  phy_config_packet.generation, phy_config_packet.header[1],
493 					  phy_config_packet.header[2]);
494 
495 	card->driver->send_request(card, &phy_config_packet);
496 	wait_for_completion_timeout(&phy_config_done, timeout);
497 }
498 
499 static struct fw_address_handler *lookup_overlapping_address_handler(
500 	struct list_head *list, unsigned long long offset, size_t length)
501 {
502 	struct fw_address_handler *handler;
503 
504 	list_for_each_entry_rcu(handler, list, link) {
505 		if (handler->offset < offset + length &&
506 		    offset < handler->offset + handler->length)
507 			return handler;
508 	}
509 
510 	return NULL;
511 }
512 
513 static bool is_enclosing_handler(struct fw_address_handler *handler,
514 				 unsigned long long offset, size_t length)
515 {
516 	return handler->offset <= offset &&
517 		offset + length <= handler->offset + handler->length;
518 }
519 
520 static struct fw_address_handler *lookup_enclosing_address_handler(
521 	struct list_head *list, unsigned long long offset, size_t length)
522 {
523 	struct fw_address_handler *handler;
524 
525 	list_for_each_entry_rcu(handler, list, link) {
526 		if (is_enclosing_handler(handler, offset, length))
527 			return handler;
528 	}
529 
530 	return NULL;
531 }
532 
533 static DEFINE_SPINLOCK(address_handler_list_lock);
534 static LIST_HEAD(address_handler_list);
535 
536 const struct fw_address_region fw_high_memory_region =
537 	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
538 EXPORT_SYMBOL(fw_high_memory_region);
539 
540 static const struct fw_address_region low_memory_region =
541 	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
542 
543 #if 0
544 const struct fw_address_region fw_private_region =
545 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
546 const struct fw_address_region fw_csr_region =
547 	{ .start = CSR_REGISTER_BASE,
548 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
549 const struct fw_address_region fw_unit_space_region =
550 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
551 #endif  /*  0  */
552 
553 /**
554  * fw_core_add_address_handler() - register for incoming requests
555  * @handler:	callback
556  * @region:	region in the IEEE 1212 node space address range
557  *
558  * region->start, ->end, and handler->length have to be quadlet-aligned.
559  *
560  * When a request is received that falls within the specified address range, the specified callback
561  * is invoked.  The parameters passed to the callback give the details of the particular request.
562  * The callback is invoked in the workqueue context in most cases. However, if the request is
563  * initiated by the local node, the callback is invoked in the initiator's context.
564  *
565  * To be called in process context.
566  * Return value:  0 on success, non-zero otherwise.
567  *
568  * The start offset of the handler's address region is determined by
569  * fw_core_add_address_handler() and is returned in handler->offset.
570  *
571  * Address allocations are exclusive, except for the FCP registers.
572  */
573 int fw_core_add_address_handler(struct fw_address_handler *handler,
574 				const struct fw_address_region *region)
575 {
576 	struct fw_address_handler *other;
577 	int ret = -EBUSY;
578 
579 	if (region->start & 0xffff000000000003ULL ||
580 	    region->start >= region->end ||
581 	    region->end   > 0x0001000000000000ULL ||
582 	    handler->length & 3 ||
583 	    handler->length == 0)
584 		return -EINVAL;
585 
586 	guard(spinlock)(&address_handler_list_lock);
587 
588 	handler->offset = region->start;
589 	while (handler->offset + handler->length <= region->end) {
590 		if (is_in_fcp_region(handler->offset, handler->length))
591 			other = NULL;
592 		else
593 			other = lookup_overlapping_address_handler
594 					(&address_handler_list,
595 					 handler->offset, handler->length);
596 		if (other != NULL) {
597 			handler->offset += other->length;
598 		} else {
599 			list_add_tail_rcu(&handler->link, &address_handler_list);
600 			ret = 0;
601 			break;
602 		}
603 	}
604 
605 	return ret;
606 }
607 EXPORT_SYMBOL(fw_core_add_address_handler);
608 
609 /**
610  * fw_core_remove_address_handler() - unregister an address handler
611  * @handler: callback
612  *
613  * To be called in process context.
614  *
615  * When fw_core_remove_address_handler() returns, @handler->callback() is
616  * guaranteed to not run on any CPU anymore.
617  */
618 void fw_core_remove_address_handler(struct fw_address_handler *handler)
619 {
620 	scoped_guard(spinlock, &address_handler_list_lock)
621 		list_del_rcu(&handler->link);
622 
623 	synchronize_rcu();
624 }
625 EXPORT_SYMBOL(fw_core_remove_address_handler);
626 
627 struct fw_request {
628 	struct kref kref;
629 	struct fw_packet response;
630 	u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
631 	int ack;
632 	u32 timestamp;
633 	u32 length;
634 	u32 data[];
635 };
636 
637 void fw_request_get(struct fw_request *request)
638 {
639 	kref_get(&request->kref);
640 }
641 
642 static void release_request(struct kref *kref)
643 {
644 	struct fw_request *request = container_of(kref, struct fw_request, kref);
645 
646 	kfree(request);
647 }
648 
649 void fw_request_put(struct fw_request *request)
650 {
651 	kref_put(&request->kref, release_request);
652 }
653 
654 static void free_response_callback(struct fw_packet *packet,
655 				   struct fw_card *card, int status)
656 {
657 	struct fw_request *request = container_of(packet, struct fw_request, response);
658 
659 	trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
660 					       packet->speed, status, packet->timestamp);
661 
662 	// Decrease the reference count since not at in-flight.
663 	fw_request_put(request);
664 
665 	// Decrease the reference count to release the object.
666 	fw_request_put(request);
667 }
668 
669 int fw_get_response_length(struct fw_request *r)
670 {
671 	int tcode, ext_tcode, data_length;
672 
673 	tcode = async_header_get_tcode(r->request_header);
674 
675 	switch (tcode) {
676 	case TCODE_WRITE_QUADLET_REQUEST:
677 	case TCODE_WRITE_BLOCK_REQUEST:
678 		return 0;
679 
680 	case TCODE_READ_QUADLET_REQUEST:
681 		return 4;
682 
683 	case TCODE_READ_BLOCK_REQUEST:
684 		data_length = async_header_get_data_length(r->request_header);
685 		return data_length;
686 
687 	case TCODE_LOCK_REQUEST:
688 		ext_tcode = async_header_get_extended_tcode(r->request_header);
689 		data_length = async_header_get_data_length(r->request_header);
690 		switch (ext_tcode) {
691 		case EXTCODE_FETCH_ADD:
692 		case EXTCODE_LITTLE_ADD:
693 			return data_length;
694 		default:
695 			return data_length / 2;
696 		}
697 
698 	default:
699 		WARN(1, "wrong tcode %d\n", tcode);
700 		return 0;
701 	}
702 }
703 
704 void fw_fill_response(struct fw_packet *response, u32 *request_header,
705 		      int rcode, void *payload, size_t length)
706 {
707 	int tcode, tlabel, extended_tcode, source, destination;
708 
709 	tcode = async_header_get_tcode(request_header);
710 	tlabel = async_header_get_tlabel(request_header);
711 	source = async_header_get_destination(request_header); // Exchange.
712 	destination = async_header_get_source(request_header); // Exchange.
713 	extended_tcode = async_header_get_extended_tcode(request_header);
714 
715 	async_header_set_retry(response->header, RETRY_1);
716 	async_header_set_tlabel(response->header, tlabel);
717 	async_header_set_destination(response->header, destination);
718 	async_header_set_source(response->header, source);
719 	async_header_set_rcode(response->header, rcode);
720 	response->header[2] = 0;	// The field is reserved.
721 
722 	switch (tcode) {
723 	case TCODE_WRITE_QUADLET_REQUEST:
724 	case TCODE_WRITE_BLOCK_REQUEST:
725 		async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
726 		response->header_length = 12;
727 		response->payload_length = 0;
728 		break;
729 
730 	case TCODE_READ_QUADLET_REQUEST:
731 		async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
732 		if (payload != NULL)
733 			async_header_set_quadlet_data(response->header, *(u32 *)payload);
734 		else
735 			async_header_set_quadlet_data(response->header, 0);
736 		response->header_length = 16;
737 		response->payload_length = 0;
738 		break;
739 
740 	case TCODE_READ_BLOCK_REQUEST:
741 	case TCODE_LOCK_REQUEST:
742 		async_header_set_tcode(response->header, tcode + 2);
743 		async_header_set_data_length(response->header, length);
744 		async_header_set_extended_tcode(response->header, extended_tcode);
745 		response->header_length = 16;
746 		response->payload = payload;
747 		response->payload_length = length;
748 		break;
749 
750 	default:
751 		WARN(1, "wrong tcode %d\n", tcode);
752 	}
753 
754 	response->payload_mapped = false;
755 }
756 EXPORT_SYMBOL(fw_fill_response);
757 
758 static u32 compute_split_timeout_timestamp(struct fw_card *card,
759 					   u32 request_timestamp)
760 {
761 	unsigned int cycles;
762 	u32 timestamp;
763 
764 	cycles = card->split_timeout_cycles;
765 	cycles += request_timestamp & 0x1fff;
766 
767 	timestamp = request_timestamp & ~0x1fff;
768 	timestamp += (cycles / 8000) << 13;
769 	timestamp |= cycles % 8000;
770 
771 	return timestamp;
772 }
773 
774 static struct fw_request *allocate_request(struct fw_card *card,
775 					   struct fw_packet *p)
776 {
777 	struct fw_request *request;
778 	u32 *data, length;
779 	int request_tcode;
780 
781 	request_tcode = async_header_get_tcode(p->header);
782 	switch (request_tcode) {
783 	case TCODE_WRITE_QUADLET_REQUEST:
784 		data = &p->header[3];
785 		length = 4;
786 		break;
787 
788 	case TCODE_WRITE_BLOCK_REQUEST:
789 	case TCODE_LOCK_REQUEST:
790 		data = p->payload;
791 		length = async_header_get_data_length(p->header);
792 		break;
793 
794 	case TCODE_READ_QUADLET_REQUEST:
795 		data = NULL;
796 		length = 4;
797 		break;
798 
799 	case TCODE_READ_BLOCK_REQUEST:
800 		data = NULL;
801 		length = async_header_get_data_length(p->header);
802 		break;
803 
804 	default:
805 		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
806 			 p->header[0], p->header[1], p->header[2]);
807 		return NULL;
808 	}
809 
810 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
811 	if (request == NULL)
812 		return NULL;
813 	kref_init(&request->kref);
814 
815 	request->response.speed = p->speed;
816 	request->response.timestamp =
817 			compute_split_timeout_timestamp(card, p->timestamp);
818 	request->response.generation = p->generation;
819 	request->response.ack = 0;
820 	request->response.callback = free_response_callback;
821 	request->ack = p->ack;
822 	request->timestamp = p->timestamp;
823 	request->length = length;
824 	if (data)
825 		memcpy(request->data, data, length);
826 
827 	memcpy(request->request_header, p->header, sizeof(p->header));
828 
829 	return request;
830 }
831 
832 /**
833  * fw_send_response: - send response packet for asynchronous transaction.
834  * @card:	interface to send the response at.
835  * @request:	firewire request data for the transaction.
836  * @rcode:	response code to send.
837  *
838  * Submit a response packet into the asynchronous response transmission queue. The @request
839  * is going to be released when the transmission successfully finishes later.
840  */
841 void fw_send_response(struct fw_card *card,
842 		      struct fw_request *request, int rcode)
843 {
844 	u32 *data = NULL;
845 	unsigned int data_length = 0;
846 
847 	/* unified transaction or broadcast transaction: don't respond */
848 	if (request->ack != ACK_PENDING ||
849 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
850 		fw_request_put(request);
851 		return;
852 	}
853 
854 	if (rcode == RCODE_COMPLETE) {
855 		data = request->data;
856 		data_length = fw_get_response_length(request);
857 	}
858 
859 	fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
860 
861 	// Increase the reference count so that the object is kept during in-flight.
862 	fw_request_get(request);
863 
864 	trace_async_response_outbound_initiate((uintptr_t)request, card->index,
865 					       request->response.generation, request->response.speed,
866 					       request->response.header, data,
867 					       data ? data_length / 4 : 0);
868 
869 	card->driver->send_response(card, &request->response);
870 }
871 EXPORT_SYMBOL(fw_send_response);
872 
873 /**
874  * fw_get_request_speed() - returns speed at which the @request was received
875  * @request: firewire request data
876  */
877 int fw_get_request_speed(struct fw_request *request)
878 {
879 	return request->response.speed;
880 }
881 EXPORT_SYMBOL(fw_get_request_speed);
882 
883 /**
884  * fw_request_get_timestamp: Get timestamp of the request.
885  * @request: The opaque pointer to request structure.
886  *
887  * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
888  * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
889  * field of isochronous cycle time register.
890  *
891  * Returns: timestamp of the request.
892  */
893 u32 fw_request_get_timestamp(const struct fw_request *request)
894 {
895 	return request->timestamp;
896 }
897 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
898 
899 static void handle_exclusive_region_request(struct fw_card *card,
900 					    struct fw_packet *p,
901 					    struct fw_request *request,
902 					    unsigned long long offset)
903 {
904 	struct fw_address_handler *handler;
905 	int tcode, destination, source;
906 
907 	destination = async_header_get_destination(p->header);
908 	source = async_header_get_source(p->header);
909 	tcode = async_header_get_tcode(p->header);
910 	if (tcode == TCODE_LOCK_REQUEST)
911 		tcode = 0x10 + async_header_get_extended_tcode(p->header);
912 
913 	scoped_guard(rcu) {
914 		handler = lookup_enclosing_address_handler(&address_handler_list, offset,
915 							   request->length);
916 		if (handler)
917 			handler->address_callback(card, request, tcode, destination, source,
918 						  p->generation, offset, request->data,
919 						  request->length, handler->callback_data);
920 	}
921 
922 	if (!handler)
923 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
924 }
925 
926 static void handle_fcp_region_request(struct fw_card *card,
927 				      struct fw_packet *p,
928 				      struct fw_request *request,
929 				      unsigned long long offset)
930 {
931 	struct fw_address_handler *handler;
932 	int tcode, destination, source;
933 
934 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
935 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
936 	    request->length > 0x200) {
937 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
938 
939 		return;
940 	}
941 
942 	tcode = async_header_get_tcode(p->header);
943 	destination = async_header_get_destination(p->header);
944 	source = async_header_get_source(p->header);
945 
946 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
947 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
948 		fw_send_response(card, request, RCODE_TYPE_ERROR);
949 
950 		return;
951 	}
952 
953 	scoped_guard(rcu) {
954 		list_for_each_entry_rcu(handler, &address_handler_list, link) {
955 			if (is_enclosing_handler(handler, offset, request->length))
956 				handler->address_callback(card, request, tcode, destination, source,
957 							  p->generation, offset, request->data,
958 							  request->length, handler->callback_data);
959 		}
960 	}
961 
962 	fw_send_response(card, request, RCODE_COMPLETE);
963 }
964 
965 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
966 {
967 	struct fw_request *request;
968 	unsigned long long offset;
969 	unsigned int tcode;
970 
971 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
972 		return;
973 
974 	tcode = async_header_get_tcode(p->header);
975 	if (tcode_is_link_internal(tcode)) {
976 		trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
977 					 p->header[1], p->header[2]);
978 		fw_cdev_handle_phy_packet(card, p);
979 		return;
980 	}
981 
982 	request = allocate_request(card, p);
983 	if (request == NULL) {
984 		/* FIXME: send statically allocated busy packet. */
985 		return;
986 	}
987 
988 	trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
989 				    p->ack, p->timestamp, p->header, request->data,
990 				    tcode_is_read_request(tcode) ? 0 : request->length / 4);
991 
992 	offset = async_header_get_offset(p->header);
993 
994 	if (!is_in_fcp_region(offset, request->length))
995 		handle_exclusive_region_request(card, p, request, offset);
996 	else
997 		handle_fcp_region_request(card, p, request, offset);
998 
999 }
1000 EXPORT_SYMBOL(fw_core_handle_request);
1001 
1002 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1003 {
1004 	struct fw_transaction *t = NULL, *iter;
1005 	u32 *data;
1006 	size_t data_length;
1007 	int tcode, tlabel, source, rcode;
1008 
1009 	tcode = async_header_get_tcode(p->header);
1010 	tlabel = async_header_get_tlabel(p->header);
1011 	source = async_header_get_source(p->header);
1012 	rcode = async_header_get_rcode(p->header);
1013 
1014 	// FIXME: sanity check packet, is length correct, does tcodes
1015 	// and addresses match to the transaction request queried later.
1016 	//
1017 	// For the tracepoints event, let us decode the header here against the concern.
1018 
1019 	switch (tcode) {
1020 	case TCODE_READ_QUADLET_RESPONSE:
1021 		data = (u32 *) &p->header[3];
1022 		data_length = 4;
1023 		break;
1024 
1025 	case TCODE_WRITE_RESPONSE:
1026 		data = NULL;
1027 		data_length = 0;
1028 		break;
1029 
1030 	case TCODE_READ_BLOCK_RESPONSE:
1031 	case TCODE_LOCK_RESPONSE:
1032 		data = p->payload;
1033 		data_length = async_header_get_data_length(p->header);
1034 		break;
1035 
1036 	default:
1037 		/* Should never happen, this is just to shut up gcc. */
1038 		data = NULL;
1039 		data_length = 0;
1040 		break;
1041 	}
1042 
1043 	scoped_guard(spinlock_irqsave, &card->lock) {
1044 		list_for_each_entry(iter, &card->transaction_list, link) {
1045 			if (iter->node_id == source && iter->tlabel == tlabel) {
1046 				if (try_cancel_split_timeout(iter)) {
1047 					list_del_init(&iter->link);
1048 					card->tlabel_mask &= ~(1ULL << iter->tlabel);
1049 					t = iter;
1050 				}
1051 				break;
1052 			}
1053 		}
1054 	}
1055 
1056 	trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1057 				     p->timestamp, p->header, data, data_length / 4);
1058 
1059 	if (!t) {
1060 		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1061 			  source, tlabel);
1062 		return;
1063 	}
1064 
1065 	/*
1066 	 * The response handler may be executed while the request handler
1067 	 * is still pending.  Cancel the request handler.
1068 	 */
1069 	card->driver->cancel_packet(card, &t->packet);
1070 
1071 	if (!t->with_tstamp) {
1072 		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1073 	} else {
1074 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1075 					data_length, t->callback_data);
1076 	}
1077 }
1078 EXPORT_SYMBOL(fw_core_handle_response);
1079 
1080 /**
1081  * fw_rcode_string - convert a firewire result code to an error description
1082  * @rcode: the result code
1083  */
1084 const char *fw_rcode_string(int rcode)
1085 {
1086 	static const char *const names[] = {
1087 		[RCODE_COMPLETE]       = "no error",
1088 		[RCODE_CONFLICT_ERROR] = "conflict error",
1089 		[RCODE_DATA_ERROR]     = "data error",
1090 		[RCODE_TYPE_ERROR]     = "type error",
1091 		[RCODE_ADDRESS_ERROR]  = "address error",
1092 		[RCODE_SEND_ERROR]     = "send error",
1093 		[RCODE_CANCELLED]      = "timeout",
1094 		[RCODE_BUSY]           = "busy",
1095 		[RCODE_GENERATION]     = "bus reset",
1096 		[RCODE_NO_ACK]         = "no ack",
1097 	};
1098 
1099 	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1100 		return names[rcode];
1101 	else
1102 		return "unknown";
1103 }
1104 EXPORT_SYMBOL(fw_rcode_string);
1105 
1106 static const struct fw_address_region topology_map_region =
1107 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1108 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1109 
1110 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1111 		int tcode, int destination, int source, int generation,
1112 		unsigned long long offset, void *payload, size_t length,
1113 		void *callback_data)
1114 {
1115 	int start;
1116 
1117 	if (!tcode_is_read_request(tcode)) {
1118 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1119 		return;
1120 	}
1121 
1122 	if ((offset & 3) > 0 || (length & 3) > 0) {
1123 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1124 		return;
1125 	}
1126 
1127 	start = (offset - topology_map_region.start) / 4;
1128 	memcpy(payload, &card->topology_map[start], length);
1129 
1130 	fw_send_response(card, request, RCODE_COMPLETE);
1131 }
1132 
1133 static struct fw_address_handler topology_map = {
1134 	.length			= 0x400,
1135 	.address_callback	= handle_topology_map,
1136 };
1137 
1138 static const struct fw_address_region registers_region =
1139 	{ .start = CSR_REGISTER_BASE,
1140 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1141 
1142 static void update_split_timeout(struct fw_card *card)
1143 {
1144 	unsigned int cycles;
1145 
1146 	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1147 
1148 	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1149 	cycles = clamp(cycles, 800u, 3u * 8000u);
1150 
1151 	card->split_timeout_cycles = cycles;
1152 	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1153 }
1154 
1155 static void handle_registers(struct fw_card *card, struct fw_request *request,
1156 		int tcode, int destination, int source, int generation,
1157 		unsigned long long offset, void *payload, size_t length,
1158 		void *callback_data)
1159 {
1160 	int reg = offset & ~CSR_REGISTER_BASE;
1161 	__be32 *data = payload;
1162 	int rcode = RCODE_COMPLETE;
1163 
1164 	switch (reg) {
1165 	case CSR_PRIORITY_BUDGET:
1166 		if (!card->priority_budget_implemented) {
1167 			rcode = RCODE_ADDRESS_ERROR;
1168 			break;
1169 		}
1170 		fallthrough;
1171 
1172 	case CSR_NODE_IDS:
1173 		/*
1174 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1175 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1176 		 */
1177 		fallthrough;
1178 
1179 	case CSR_STATE_CLEAR:
1180 	case CSR_STATE_SET:
1181 	case CSR_CYCLE_TIME:
1182 	case CSR_BUS_TIME:
1183 	case CSR_BUSY_TIMEOUT:
1184 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1185 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1186 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1187 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1188 		else
1189 			rcode = RCODE_TYPE_ERROR;
1190 		break;
1191 
1192 	case CSR_RESET_START:
1193 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1194 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1195 						CSR_STATE_BIT_ABDICATE);
1196 		else
1197 			rcode = RCODE_TYPE_ERROR;
1198 		break;
1199 
1200 	case CSR_SPLIT_TIMEOUT_HI:
1201 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1202 			*data = cpu_to_be32(card->split_timeout_hi);
1203 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1204 			guard(spinlock_irqsave)(&card->lock);
1205 
1206 			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1207 			update_split_timeout(card);
1208 		} else {
1209 			rcode = RCODE_TYPE_ERROR;
1210 		}
1211 		break;
1212 
1213 	case CSR_SPLIT_TIMEOUT_LO:
1214 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1215 			*data = cpu_to_be32(card->split_timeout_lo);
1216 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1217 			guard(spinlock_irqsave)(&card->lock);
1218 
1219 			card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000;
1220 			update_split_timeout(card);
1221 		} else {
1222 			rcode = RCODE_TYPE_ERROR;
1223 		}
1224 		break;
1225 
1226 	case CSR_MAINT_UTILITY:
1227 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1228 			*data = card->maint_utility_register;
1229 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1230 			card->maint_utility_register = *data;
1231 		else
1232 			rcode = RCODE_TYPE_ERROR;
1233 		break;
1234 
1235 	case CSR_BROADCAST_CHANNEL:
1236 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1237 			*data = cpu_to_be32(card->broadcast_channel);
1238 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1239 			card->broadcast_channel =
1240 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1241 			    BROADCAST_CHANNEL_INITIAL;
1242 		else
1243 			rcode = RCODE_TYPE_ERROR;
1244 		break;
1245 
1246 	case CSR_BUS_MANAGER_ID:
1247 	case CSR_BANDWIDTH_AVAILABLE:
1248 	case CSR_CHANNELS_AVAILABLE_HI:
1249 	case CSR_CHANNELS_AVAILABLE_LO:
1250 		/*
1251 		 * FIXME: these are handled by the OHCI hardware and
1252 		 * the stack never sees these request. If we add
1253 		 * support for a new type of controller that doesn't
1254 		 * handle this in hardware we need to deal with these
1255 		 * transactions.
1256 		 */
1257 		BUG();
1258 		break;
1259 
1260 	default:
1261 		rcode = RCODE_ADDRESS_ERROR;
1262 		break;
1263 	}
1264 
1265 	fw_send_response(card, request, rcode);
1266 }
1267 
1268 static struct fw_address_handler registers = {
1269 	.length			= 0x400,
1270 	.address_callback	= handle_registers,
1271 };
1272 
1273 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1274 		int tcode, int destination, int source, int generation,
1275 		unsigned long long offset, void *payload, size_t length,
1276 		void *callback_data)
1277 {
1278 	/*
1279 	 * This catches requests not handled by the physical DMA unit,
1280 	 * i.e., wrong transaction types or unauthorized source nodes.
1281 	 */
1282 	fw_send_response(card, request, RCODE_TYPE_ERROR);
1283 }
1284 
1285 static struct fw_address_handler low_memory = {
1286 	.length			= FW_MAX_PHYSICAL_RANGE,
1287 	.address_callback	= handle_low_memory,
1288 };
1289 
1290 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1291 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1292 MODULE_LICENSE("GPL");
1293 
1294 static const u32 vendor_textual_descriptor[] = {
1295 	/* textual descriptor leaf () */
1296 	0x00060000,
1297 	0x00000000,
1298 	0x00000000,
1299 	0x4c696e75,		/* L i n u */
1300 	0x78204669,		/* x   F i */
1301 	0x72657769,		/* r e w i */
1302 	0x72650000,		/* r e     */
1303 };
1304 
1305 static const u32 model_textual_descriptor[] = {
1306 	/* model descriptor leaf () */
1307 	0x00030000,
1308 	0x00000000,
1309 	0x00000000,
1310 	0x4a756a75,		/* J u j u */
1311 };
1312 
1313 static struct fw_descriptor vendor_id_descriptor = {
1314 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1315 	.immediate = 0x03001f11,
1316 	.key = 0x81000000,
1317 	.data = vendor_textual_descriptor,
1318 };
1319 
1320 static struct fw_descriptor model_id_descriptor = {
1321 	.length = ARRAY_SIZE(model_textual_descriptor),
1322 	.immediate = 0x17023901,
1323 	.key = 0x81000000,
1324 	.data = model_textual_descriptor,
1325 };
1326 
1327 static int __init fw_core_init(void)
1328 {
1329 	int ret;
1330 
1331 	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1332 	if (!fw_workqueue)
1333 		return -ENOMEM;
1334 
1335 	ret = bus_register(&fw_bus_type);
1336 	if (ret < 0) {
1337 		destroy_workqueue(fw_workqueue);
1338 		return ret;
1339 	}
1340 
1341 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1342 	if (fw_cdev_major < 0) {
1343 		bus_unregister(&fw_bus_type);
1344 		destroy_workqueue(fw_workqueue);
1345 		return fw_cdev_major;
1346 	}
1347 
1348 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1349 	fw_core_add_address_handler(&registers, &registers_region);
1350 	fw_core_add_address_handler(&low_memory, &low_memory_region);
1351 	fw_core_add_descriptor(&vendor_id_descriptor);
1352 	fw_core_add_descriptor(&model_id_descriptor);
1353 
1354 	return 0;
1355 }
1356 
1357 static void __exit fw_core_cleanup(void)
1358 {
1359 	unregister_chrdev(fw_cdev_major, "firewire");
1360 	bus_unregister(&fw_bus_type);
1361 	destroy_workqueue(fw_workqueue);
1362 	xa_destroy(&fw_device_xa);
1363 }
1364 
1365 module_init(fw_core_init);
1366 module_exit(fw_core_cleanup);
1367