1 /* 2 * Core IEEE1394 transaction logic 3 * 4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bug.h> 22 #include <linux/completion.h> 23 #include <linux/device.h> 24 #include <linux/errno.h> 25 #include <linux/firewire.h> 26 #include <linux/firewire-constants.h> 27 #include <linux/fs.h> 28 #include <linux/init.h> 29 #include <linux/idr.h> 30 #include <linux/jiffies.h> 31 #include <linux/kernel.h> 32 #include <linux/list.h> 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/spinlock.h> 36 #include <linux/string.h> 37 #include <linux/timer.h> 38 #include <linux/types.h> 39 40 #include <asm/byteorder.h> 41 42 #include "core.h" 43 44 #define HEADER_PRI(pri) ((pri) << 0) 45 #define HEADER_TCODE(tcode) ((tcode) << 4) 46 #define HEADER_RETRY(retry) ((retry) << 8) 47 #define HEADER_TLABEL(tlabel) ((tlabel) << 10) 48 #define HEADER_DESTINATION(destination) ((destination) << 16) 49 #define HEADER_SOURCE(source) ((source) << 16) 50 #define HEADER_RCODE(rcode) ((rcode) << 12) 51 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0) 52 #define HEADER_DATA_LENGTH(length) ((length) << 16) 53 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0) 54 55 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) 56 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f) 57 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f) 58 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) 59 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff) 60 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) 61 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) 62 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) 63 64 #define HEADER_DESTINATION_IS_BROADCAST(q) \ 65 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f)) 66 67 #define PHY_PACKET_CONFIG 0x0 68 #define PHY_PACKET_LINK_ON 0x1 69 #define PHY_PACKET_SELF_ID 0x2 70 71 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22)) 72 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23)) 73 #define PHY_IDENTIFIER(id) ((id) << 30) 74 75 static int close_transaction(struct fw_transaction *transaction, 76 struct fw_card *card, int rcode) 77 { 78 struct fw_transaction *t; 79 unsigned long flags; 80 81 spin_lock_irqsave(&card->lock, flags); 82 list_for_each_entry(t, &card->transaction_list, link) { 83 if (t == transaction) { 84 list_del_init(&t->link); 85 card->tlabel_mask &= ~(1ULL << t->tlabel); 86 break; 87 } 88 } 89 spin_unlock_irqrestore(&card->lock, flags); 90 91 if (&t->link != &card->transaction_list) { 92 del_timer_sync(&t->split_timeout_timer); 93 t->callback(card, rcode, NULL, 0, t->callback_data); 94 return 0; 95 } 96 97 return -ENOENT; 98 } 99 100 /* 101 * Only valid for transactions that are potentially pending (ie have 102 * been sent). 103 */ 104 int fw_cancel_transaction(struct fw_card *card, 105 struct fw_transaction *transaction) 106 { 107 /* 108 * Cancel the packet transmission if it's still queued. That 109 * will call the packet transmission callback which cancels 110 * the transaction. 111 */ 112 113 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 114 return 0; 115 116 /* 117 * If the request packet has already been sent, we need to see 118 * if the transaction is still pending and remove it in that case. 119 */ 120 121 return close_transaction(transaction, card, RCODE_CANCELLED); 122 } 123 EXPORT_SYMBOL(fw_cancel_transaction); 124 125 static void split_transaction_timeout_callback(unsigned long data) 126 { 127 struct fw_transaction *t = (struct fw_transaction *)data; 128 struct fw_card *card = t->card; 129 unsigned long flags; 130 131 spin_lock_irqsave(&card->lock, flags); 132 if (list_empty(&t->link)) { 133 spin_unlock_irqrestore(&card->lock, flags); 134 return; 135 } 136 list_del(&t->link); 137 card->tlabel_mask &= ~(1ULL << t->tlabel); 138 spin_unlock_irqrestore(&card->lock, flags); 139 140 card->driver->cancel_packet(card, &t->packet); 141 142 /* 143 * At this point cancel_packet will never call the transaction 144 * callback, since we just took the transaction out of the list. 145 * So do it here. 146 */ 147 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 148 } 149 150 static void transmit_complete_callback(struct fw_packet *packet, 151 struct fw_card *card, int status) 152 { 153 struct fw_transaction *t = 154 container_of(packet, struct fw_transaction, packet); 155 156 switch (status) { 157 case ACK_COMPLETE: 158 close_transaction(t, card, RCODE_COMPLETE); 159 break; 160 case ACK_PENDING: 161 t->timestamp = packet->timestamp; 162 break; 163 case ACK_BUSY_X: 164 case ACK_BUSY_A: 165 case ACK_BUSY_B: 166 close_transaction(t, card, RCODE_BUSY); 167 break; 168 case ACK_DATA_ERROR: 169 close_transaction(t, card, RCODE_DATA_ERROR); 170 break; 171 case ACK_TYPE_ERROR: 172 close_transaction(t, card, RCODE_TYPE_ERROR); 173 break; 174 default: 175 /* 176 * In this case the ack is really a juju specific 177 * rcode, so just forward that to the callback. 178 */ 179 close_transaction(t, card, status); 180 break; 181 } 182 } 183 184 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 185 int destination_id, int source_id, int generation, int speed, 186 unsigned long long offset, void *payload, size_t length) 187 { 188 int ext_tcode; 189 190 if (tcode == TCODE_STREAM_DATA) { 191 packet->header[0] = 192 HEADER_DATA_LENGTH(length) | 193 destination_id | 194 HEADER_TCODE(TCODE_STREAM_DATA); 195 packet->header_length = 4; 196 packet->payload = payload; 197 packet->payload_length = length; 198 199 goto common; 200 } 201 202 if (tcode > 0x10) { 203 ext_tcode = tcode & ~0x10; 204 tcode = TCODE_LOCK_REQUEST; 205 } else 206 ext_tcode = 0; 207 208 packet->header[0] = 209 HEADER_RETRY(RETRY_X) | 210 HEADER_TLABEL(tlabel) | 211 HEADER_TCODE(tcode) | 212 HEADER_DESTINATION(destination_id); 213 packet->header[1] = 214 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id); 215 packet->header[2] = 216 offset; 217 218 switch (tcode) { 219 case TCODE_WRITE_QUADLET_REQUEST: 220 packet->header[3] = *(u32 *)payload; 221 packet->header_length = 16; 222 packet->payload_length = 0; 223 break; 224 225 case TCODE_LOCK_REQUEST: 226 case TCODE_WRITE_BLOCK_REQUEST: 227 packet->header[3] = 228 HEADER_DATA_LENGTH(length) | 229 HEADER_EXTENDED_TCODE(ext_tcode); 230 packet->header_length = 16; 231 packet->payload = payload; 232 packet->payload_length = length; 233 break; 234 235 case TCODE_READ_QUADLET_REQUEST: 236 packet->header_length = 12; 237 packet->payload_length = 0; 238 break; 239 240 case TCODE_READ_BLOCK_REQUEST: 241 packet->header[3] = 242 HEADER_DATA_LENGTH(length) | 243 HEADER_EXTENDED_TCODE(ext_tcode); 244 packet->header_length = 16; 245 packet->payload_length = 0; 246 break; 247 248 default: 249 WARN(1, "wrong tcode %d", tcode); 250 } 251 common: 252 packet->speed = speed; 253 packet->generation = generation; 254 packet->ack = 0; 255 packet->payload_mapped = false; 256 } 257 258 static int allocate_tlabel(struct fw_card *card) 259 { 260 int tlabel; 261 262 tlabel = card->current_tlabel; 263 while (card->tlabel_mask & (1ULL << tlabel)) { 264 tlabel = (tlabel + 1) & 0x3f; 265 if (tlabel == card->current_tlabel) 266 return -EBUSY; 267 } 268 269 card->current_tlabel = (tlabel + 1) & 0x3f; 270 card->tlabel_mask |= 1ULL << tlabel; 271 272 return tlabel; 273 } 274 275 /** 276 * fw_send_request() - submit a request packet for transmission 277 * @card: interface to send the request at 278 * @t: transaction instance to which the request belongs 279 * @tcode: transaction code 280 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 281 * @generation: bus generation in which request and response are valid 282 * @speed: transmission speed 283 * @offset: 48bit wide offset into destination's address space 284 * @payload: data payload for the request subaction 285 * @length: length of the payload, in bytes 286 * @callback: function to be called when the transaction is completed 287 * @callback_data: data to be passed to the transaction completion callback 288 * 289 * Submit a request packet into the asynchronous request transmission queue. 290 * Can be called from atomic context. If you prefer a blocking API, use 291 * fw_run_transaction() in a context that can sleep. 292 * 293 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 294 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 295 * 296 * Make sure that the value in @destination_id is not older than the one in 297 * @generation. Otherwise the request is in danger to be sent to a wrong node. 298 * 299 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 300 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 301 * It will contain tag, channel, and sy data instead of a node ID then. 302 * 303 * The payload buffer at @data is going to be DMA-mapped except in case of 304 * quadlet-sized payload or of local (loopback) requests. Hence make sure that 305 * the buffer complies with the restrictions for DMA-mapped memory. The 306 * @payload must not be freed before the @callback is called. 307 * 308 * In case of request types without payload, @data is NULL and @length is 0. 309 * 310 * After the transaction is completed successfully or unsuccessfully, the 311 * @callback will be called. Among its parameters is the response code which 312 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 313 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 314 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 315 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 316 * generation, or missing ACK respectively. 317 * 318 * Note some timing corner cases: fw_send_request() may complete much earlier 319 * than when the request packet actually hits the wire. On the other hand, 320 * transaction completion and hence execution of @callback may happen even 321 * before fw_send_request() returns. 322 */ 323 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 324 int destination_id, int generation, int speed, 325 unsigned long long offset, void *payload, size_t length, 326 fw_transaction_callback_t callback, void *callback_data) 327 { 328 unsigned long flags; 329 int tlabel; 330 331 /* 332 * Allocate tlabel from the bitmap and put the transaction on 333 * the list while holding the card spinlock. 334 */ 335 336 spin_lock_irqsave(&card->lock, flags); 337 338 tlabel = allocate_tlabel(card); 339 if (tlabel < 0) { 340 spin_unlock_irqrestore(&card->lock, flags); 341 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 342 return; 343 } 344 345 t->node_id = destination_id; 346 t->tlabel = tlabel; 347 t->card = card; 348 setup_timer(&t->split_timeout_timer, 349 split_transaction_timeout_callback, (unsigned long)t); 350 /* FIXME: start this timer later, relative to t->timestamp */ 351 mod_timer(&t->split_timeout_timer, 352 jiffies + card->split_timeout_jiffies); 353 t->callback = callback; 354 t->callback_data = callback_data; 355 356 fw_fill_request(&t->packet, tcode, t->tlabel, 357 destination_id, card->node_id, generation, 358 speed, offset, payload, length); 359 t->packet.callback = transmit_complete_callback; 360 361 list_add_tail(&t->link, &card->transaction_list); 362 363 spin_unlock_irqrestore(&card->lock, flags); 364 365 card->driver->send_request(card, &t->packet); 366 } 367 EXPORT_SYMBOL(fw_send_request); 368 369 struct transaction_callback_data { 370 struct completion done; 371 void *payload; 372 int rcode; 373 }; 374 375 static void transaction_callback(struct fw_card *card, int rcode, 376 void *payload, size_t length, void *data) 377 { 378 struct transaction_callback_data *d = data; 379 380 if (rcode == RCODE_COMPLETE) 381 memcpy(d->payload, payload, length); 382 d->rcode = rcode; 383 complete(&d->done); 384 } 385 386 /** 387 * fw_run_transaction() - send request and sleep until transaction is completed 388 * 389 * Returns the RCODE. See fw_send_request() for parameter documentation. 390 * Unlike fw_send_request(), @data points to the payload of the request or/and 391 * to the payload of the response. 392 */ 393 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 394 int generation, int speed, unsigned long long offset, 395 void *payload, size_t length) 396 { 397 struct transaction_callback_data d; 398 struct fw_transaction t; 399 400 init_timer_on_stack(&t.split_timeout_timer); 401 init_completion(&d.done); 402 d.payload = payload; 403 fw_send_request(card, &t, tcode, destination_id, generation, speed, 404 offset, payload, length, transaction_callback, &d); 405 wait_for_completion(&d.done); 406 destroy_timer_on_stack(&t.split_timeout_timer); 407 408 return d.rcode; 409 } 410 EXPORT_SYMBOL(fw_run_transaction); 411 412 static DEFINE_MUTEX(phy_config_mutex); 413 static DECLARE_COMPLETION(phy_config_done); 414 415 static void transmit_phy_packet_callback(struct fw_packet *packet, 416 struct fw_card *card, int status) 417 { 418 complete(&phy_config_done); 419 } 420 421 static struct fw_packet phy_config_packet = { 422 .header_length = 8, 423 .payload_length = 0, 424 .speed = SCODE_100, 425 .callback = transmit_phy_packet_callback, 426 }; 427 428 void fw_send_phy_config(struct fw_card *card, 429 int node_id, int generation, int gap_count) 430 { 431 long timeout = DIV_ROUND_UP(HZ, 10); 432 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG); 433 434 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) 435 data |= PHY_CONFIG_ROOT_ID(node_id); 436 437 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 438 gap_count = card->driver->read_phy_reg(card, 1); 439 if (gap_count < 0) 440 return; 441 442 gap_count &= 63; 443 if (gap_count == 63) 444 return; 445 } 446 data |= PHY_CONFIG_GAP_COUNT(gap_count); 447 448 mutex_lock(&phy_config_mutex); 449 450 phy_config_packet.header[0] = data; 451 phy_config_packet.header[1] = ~data; 452 phy_config_packet.generation = generation; 453 INIT_COMPLETION(phy_config_done); 454 455 card->driver->send_request(card, &phy_config_packet); 456 wait_for_completion_timeout(&phy_config_done, timeout); 457 458 mutex_unlock(&phy_config_mutex); 459 } 460 461 static struct fw_address_handler *lookup_overlapping_address_handler( 462 struct list_head *list, unsigned long long offset, size_t length) 463 { 464 struct fw_address_handler *handler; 465 466 list_for_each_entry(handler, list, link) { 467 if (handler->offset < offset + length && 468 offset < handler->offset + handler->length) 469 return handler; 470 } 471 472 return NULL; 473 } 474 475 static bool is_enclosing_handler(struct fw_address_handler *handler, 476 unsigned long long offset, size_t length) 477 { 478 return handler->offset <= offset && 479 offset + length <= handler->offset + handler->length; 480 } 481 482 static struct fw_address_handler *lookup_enclosing_address_handler( 483 struct list_head *list, unsigned long long offset, size_t length) 484 { 485 struct fw_address_handler *handler; 486 487 list_for_each_entry(handler, list, link) { 488 if (is_enclosing_handler(handler, offset, length)) 489 return handler; 490 } 491 492 return NULL; 493 } 494 495 static DEFINE_SPINLOCK(address_handler_lock); 496 static LIST_HEAD(address_handler_list); 497 498 const struct fw_address_region fw_high_memory_region = 499 { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL, }; 500 EXPORT_SYMBOL(fw_high_memory_region); 501 502 #if 0 503 const struct fw_address_region fw_low_memory_region = 504 { .start = 0x000000000000ULL, .end = 0x000100000000ULL, }; 505 const struct fw_address_region fw_private_region = 506 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 507 const struct fw_address_region fw_csr_region = 508 { .start = CSR_REGISTER_BASE, 509 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 510 const struct fw_address_region fw_unit_space_region = 511 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 512 #endif /* 0 */ 513 514 static bool is_in_fcp_region(u64 offset, size_t length) 515 { 516 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 517 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END); 518 } 519 520 /** 521 * fw_core_add_address_handler() - register for incoming requests 522 * @handler: callback 523 * @region: region in the IEEE 1212 node space address range 524 * 525 * region->start, ->end, and handler->length have to be quadlet-aligned. 526 * 527 * When a request is received that falls within the specified address range, 528 * the specified callback is invoked. The parameters passed to the callback 529 * give the details of the particular request. 530 * 531 * Return value: 0 on success, non-zero otherwise. 532 * 533 * The start offset of the handler's address region is determined by 534 * fw_core_add_address_handler() and is returned in handler->offset. 535 * 536 * Address allocations are exclusive, except for the FCP registers. 537 */ 538 int fw_core_add_address_handler(struct fw_address_handler *handler, 539 const struct fw_address_region *region) 540 { 541 struct fw_address_handler *other; 542 unsigned long flags; 543 int ret = -EBUSY; 544 545 if (region->start & 0xffff000000000003ULL || 546 region->start >= region->end || 547 region->end > 0x0001000000000000ULL || 548 handler->length & 3 || 549 handler->length == 0) 550 return -EINVAL; 551 552 spin_lock_irqsave(&address_handler_lock, flags); 553 554 handler->offset = region->start; 555 while (handler->offset + handler->length <= region->end) { 556 if (is_in_fcp_region(handler->offset, handler->length)) 557 other = NULL; 558 else 559 other = lookup_overlapping_address_handler 560 (&address_handler_list, 561 handler->offset, handler->length); 562 if (other != NULL) { 563 handler->offset += other->length; 564 } else { 565 list_add_tail(&handler->link, &address_handler_list); 566 ret = 0; 567 break; 568 } 569 } 570 571 spin_unlock_irqrestore(&address_handler_lock, flags); 572 573 return ret; 574 } 575 EXPORT_SYMBOL(fw_core_add_address_handler); 576 577 /** 578 * fw_core_remove_address_handler() - unregister an address handler 579 */ 580 void fw_core_remove_address_handler(struct fw_address_handler *handler) 581 { 582 unsigned long flags; 583 584 spin_lock_irqsave(&address_handler_lock, flags); 585 list_del(&handler->link); 586 spin_unlock_irqrestore(&address_handler_lock, flags); 587 } 588 EXPORT_SYMBOL(fw_core_remove_address_handler); 589 590 struct fw_request { 591 struct fw_packet response; 592 u32 request_header[4]; 593 int ack; 594 u32 length; 595 u32 data[0]; 596 }; 597 598 static void free_response_callback(struct fw_packet *packet, 599 struct fw_card *card, int status) 600 { 601 struct fw_request *request; 602 603 request = container_of(packet, struct fw_request, response); 604 kfree(request); 605 } 606 607 int fw_get_response_length(struct fw_request *r) 608 { 609 int tcode, ext_tcode, data_length; 610 611 tcode = HEADER_GET_TCODE(r->request_header[0]); 612 613 switch (tcode) { 614 case TCODE_WRITE_QUADLET_REQUEST: 615 case TCODE_WRITE_BLOCK_REQUEST: 616 return 0; 617 618 case TCODE_READ_QUADLET_REQUEST: 619 return 4; 620 621 case TCODE_READ_BLOCK_REQUEST: 622 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 623 return data_length; 624 625 case TCODE_LOCK_REQUEST: 626 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]); 627 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 628 switch (ext_tcode) { 629 case EXTCODE_FETCH_ADD: 630 case EXTCODE_LITTLE_ADD: 631 return data_length; 632 default: 633 return data_length / 2; 634 } 635 636 default: 637 WARN(1, "wrong tcode %d", tcode); 638 return 0; 639 } 640 } 641 642 void fw_fill_response(struct fw_packet *response, u32 *request_header, 643 int rcode, void *payload, size_t length) 644 { 645 int tcode, tlabel, extended_tcode, source, destination; 646 647 tcode = HEADER_GET_TCODE(request_header[0]); 648 tlabel = HEADER_GET_TLABEL(request_header[0]); 649 source = HEADER_GET_DESTINATION(request_header[0]); 650 destination = HEADER_GET_SOURCE(request_header[1]); 651 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]); 652 653 response->header[0] = 654 HEADER_RETRY(RETRY_1) | 655 HEADER_TLABEL(tlabel) | 656 HEADER_DESTINATION(destination); 657 response->header[1] = 658 HEADER_SOURCE(source) | 659 HEADER_RCODE(rcode); 660 response->header[2] = 0; 661 662 switch (tcode) { 663 case TCODE_WRITE_QUADLET_REQUEST: 664 case TCODE_WRITE_BLOCK_REQUEST: 665 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE); 666 response->header_length = 12; 667 response->payload_length = 0; 668 break; 669 670 case TCODE_READ_QUADLET_REQUEST: 671 response->header[0] |= 672 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE); 673 if (payload != NULL) 674 response->header[3] = *(u32 *)payload; 675 else 676 response->header[3] = 0; 677 response->header_length = 16; 678 response->payload_length = 0; 679 break; 680 681 case TCODE_READ_BLOCK_REQUEST: 682 case TCODE_LOCK_REQUEST: 683 response->header[0] |= HEADER_TCODE(tcode + 2); 684 response->header[3] = 685 HEADER_DATA_LENGTH(length) | 686 HEADER_EXTENDED_TCODE(extended_tcode); 687 response->header_length = 16; 688 response->payload = payload; 689 response->payload_length = length; 690 break; 691 692 default: 693 WARN(1, "wrong tcode %d", tcode); 694 } 695 696 response->payload_mapped = false; 697 } 698 EXPORT_SYMBOL(fw_fill_response); 699 700 static u32 compute_split_timeout_timestamp(struct fw_card *card, 701 u32 request_timestamp) 702 { 703 unsigned int cycles; 704 u32 timestamp; 705 706 cycles = card->split_timeout_cycles; 707 cycles += request_timestamp & 0x1fff; 708 709 timestamp = request_timestamp & ~0x1fff; 710 timestamp += (cycles / 8000) << 13; 711 timestamp |= cycles % 8000; 712 713 return timestamp; 714 } 715 716 static struct fw_request *allocate_request(struct fw_card *card, 717 struct fw_packet *p) 718 { 719 struct fw_request *request; 720 u32 *data, length; 721 int request_tcode; 722 723 request_tcode = HEADER_GET_TCODE(p->header[0]); 724 switch (request_tcode) { 725 case TCODE_WRITE_QUADLET_REQUEST: 726 data = &p->header[3]; 727 length = 4; 728 break; 729 730 case TCODE_WRITE_BLOCK_REQUEST: 731 case TCODE_LOCK_REQUEST: 732 data = p->payload; 733 length = HEADER_GET_DATA_LENGTH(p->header[3]); 734 break; 735 736 case TCODE_READ_QUADLET_REQUEST: 737 data = NULL; 738 length = 4; 739 break; 740 741 case TCODE_READ_BLOCK_REQUEST: 742 data = NULL; 743 length = HEADER_GET_DATA_LENGTH(p->header[3]); 744 break; 745 746 default: 747 fw_error("ERROR - corrupt request received - %08x %08x %08x\n", 748 p->header[0], p->header[1], p->header[2]); 749 return NULL; 750 } 751 752 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 753 if (request == NULL) 754 return NULL; 755 756 request->response.speed = p->speed; 757 request->response.timestamp = 758 compute_split_timeout_timestamp(card, p->timestamp); 759 request->response.generation = p->generation; 760 request->response.ack = 0; 761 request->response.callback = free_response_callback; 762 request->ack = p->ack; 763 request->length = length; 764 if (data) 765 memcpy(request->data, data, length); 766 767 memcpy(request->request_header, p->header, sizeof(p->header)); 768 769 return request; 770 } 771 772 void fw_send_response(struct fw_card *card, 773 struct fw_request *request, int rcode) 774 { 775 if (WARN_ONCE(!request, "invalid for FCP address handlers")) 776 return; 777 778 /* unified transaction or broadcast transaction: don't respond */ 779 if (request->ack != ACK_PENDING || 780 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) { 781 kfree(request); 782 return; 783 } 784 785 if (rcode == RCODE_COMPLETE) 786 fw_fill_response(&request->response, request->request_header, 787 rcode, request->data, 788 fw_get_response_length(request)); 789 else 790 fw_fill_response(&request->response, request->request_header, 791 rcode, NULL, 0); 792 793 card->driver->send_response(card, &request->response); 794 } 795 EXPORT_SYMBOL(fw_send_response); 796 797 static void handle_exclusive_region_request(struct fw_card *card, 798 struct fw_packet *p, 799 struct fw_request *request, 800 unsigned long long offset) 801 { 802 struct fw_address_handler *handler; 803 unsigned long flags; 804 int tcode, destination, source; 805 806 destination = HEADER_GET_DESTINATION(p->header[0]); 807 source = HEADER_GET_SOURCE(p->header[1]); 808 tcode = HEADER_GET_TCODE(p->header[0]); 809 if (tcode == TCODE_LOCK_REQUEST) 810 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]); 811 812 spin_lock_irqsave(&address_handler_lock, flags); 813 handler = lookup_enclosing_address_handler(&address_handler_list, 814 offset, request->length); 815 spin_unlock_irqrestore(&address_handler_lock, flags); 816 817 /* 818 * FIXME: lookup the fw_node corresponding to the sender of 819 * this request and pass that to the address handler instead 820 * of the node ID. We may also want to move the address 821 * allocations to fw_node so we only do this callback if the 822 * upper layers registered it for this node. 823 */ 824 825 if (handler == NULL) 826 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 827 else 828 handler->address_callback(card, request, 829 tcode, destination, source, 830 p->generation, offset, 831 request->data, request->length, 832 handler->callback_data); 833 } 834 835 static void handle_fcp_region_request(struct fw_card *card, 836 struct fw_packet *p, 837 struct fw_request *request, 838 unsigned long long offset) 839 { 840 struct fw_address_handler *handler; 841 unsigned long flags; 842 int tcode, destination, source; 843 844 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 845 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 846 request->length > 0x200) { 847 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 848 849 return; 850 } 851 852 tcode = HEADER_GET_TCODE(p->header[0]); 853 destination = HEADER_GET_DESTINATION(p->header[0]); 854 source = HEADER_GET_SOURCE(p->header[1]); 855 856 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 857 tcode != TCODE_WRITE_BLOCK_REQUEST) { 858 fw_send_response(card, request, RCODE_TYPE_ERROR); 859 860 return; 861 } 862 863 spin_lock_irqsave(&address_handler_lock, flags); 864 list_for_each_entry(handler, &address_handler_list, link) { 865 if (is_enclosing_handler(handler, offset, request->length)) 866 handler->address_callback(card, NULL, tcode, 867 destination, source, 868 p->generation, offset, 869 request->data, 870 request->length, 871 handler->callback_data); 872 } 873 spin_unlock_irqrestore(&address_handler_lock, flags); 874 875 fw_send_response(card, request, RCODE_COMPLETE); 876 } 877 878 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 879 { 880 struct fw_request *request; 881 unsigned long long offset; 882 883 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 884 return; 885 886 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) { 887 fw_cdev_handle_phy_packet(card, p); 888 return; 889 } 890 891 request = allocate_request(card, p); 892 if (request == NULL) { 893 /* FIXME: send statically allocated busy packet. */ 894 return; 895 } 896 897 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | 898 p->header[2]; 899 900 if (!is_in_fcp_region(offset, request->length)) 901 handle_exclusive_region_request(card, p, request, offset); 902 else 903 handle_fcp_region_request(card, p, request, offset); 904 905 } 906 EXPORT_SYMBOL(fw_core_handle_request); 907 908 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 909 { 910 struct fw_transaction *t; 911 unsigned long flags; 912 u32 *data; 913 size_t data_length; 914 int tcode, tlabel, source, rcode; 915 916 tcode = HEADER_GET_TCODE(p->header[0]); 917 tlabel = HEADER_GET_TLABEL(p->header[0]); 918 source = HEADER_GET_SOURCE(p->header[1]); 919 rcode = HEADER_GET_RCODE(p->header[1]); 920 921 spin_lock_irqsave(&card->lock, flags); 922 list_for_each_entry(t, &card->transaction_list, link) { 923 if (t->node_id == source && t->tlabel == tlabel) { 924 list_del_init(&t->link); 925 card->tlabel_mask &= ~(1ULL << t->tlabel); 926 break; 927 } 928 } 929 spin_unlock_irqrestore(&card->lock, flags); 930 931 if (&t->link == &card->transaction_list) { 932 fw_notify("Unsolicited response (source %x, tlabel %x)\n", 933 source, tlabel); 934 return; 935 } 936 937 /* 938 * FIXME: sanity check packet, is length correct, does tcodes 939 * and addresses match. 940 */ 941 942 switch (tcode) { 943 case TCODE_READ_QUADLET_RESPONSE: 944 data = (u32 *) &p->header[3]; 945 data_length = 4; 946 break; 947 948 case TCODE_WRITE_RESPONSE: 949 data = NULL; 950 data_length = 0; 951 break; 952 953 case TCODE_READ_BLOCK_RESPONSE: 954 case TCODE_LOCK_RESPONSE: 955 data = p->payload; 956 data_length = HEADER_GET_DATA_LENGTH(p->header[3]); 957 break; 958 959 default: 960 /* Should never happen, this is just to shut up gcc. */ 961 data = NULL; 962 data_length = 0; 963 break; 964 } 965 966 del_timer_sync(&t->split_timeout_timer); 967 968 /* 969 * The response handler may be executed while the request handler 970 * is still pending. Cancel the request handler. 971 */ 972 card->driver->cancel_packet(card, &t->packet); 973 974 t->callback(card, rcode, data, data_length, t->callback_data); 975 } 976 EXPORT_SYMBOL(fw_core_handle_response); 977 978 static const struct fw_address_region topology_map_region = 979 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 980 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 981 982 static void handle_topology_map(struct fw_card *card, struct fw_request *request, 983 int tcode, int destination, int source, int generation, 984 unsigned long long offset, void *payload, size_t length, 985 void *callback_data) 986 { 987 int start; 988 989 if (!TCODE_IS_READ_REQUEST(tcode)) { 990 fw_send_response(card, request, RCODE_TYPE_ERROR); 991 return; 992 } 993 994 if ((offset & 3) > 0 || (length & 3) > 0) { 995 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 996 return; 997 } 998 999 start = (offset - topology_map_region.start) / 4; 1000 memcpy(payload, &card->topology_map[start], length); 1001 1002 fw_send_response(card, request, RCODE_COMPLETE); 1003 } 1004 1005 static struct fw_address_handler topology_map = { 1006 .length = 0x400, 1007 .address_callback = handle_topology_map, 1008 }; 1009 1010 static const struct fw_address_region registers_region = 1011 { .start = CSR_REGISTER_BASE, 1012 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1013 1014 static void update_split_timeout(struct fw_card *card) 1015 { 1016 unsigned int cycles; 1017 1018 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); 1019 1020 cycles = max(cycles, 800u); /* minimum as per the spec */ 1021 cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */ 1022 1023 card->split_timeout_cycles = cycles; 1024 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); 1025 } 1026 1027 static void handle_registers(struct fw_card *card, struct fw_request *request, 1028 int tcode, int destination, int source, int generation, 1029 unsigned long long offset, void *payload, size_t length, 1030 void *callback_data) 1031 { 1032 int reg = offset & ~CSR_REGISTER_BASE; 1033 __be32 *data = payload; 1034 int rcode = RCODE_COMPLETE; 1035 unsigned long flags; 1036 1037 switch (reg) { 1038 case CSR_PRIORITY_BUDGET: 1039 if (!card->priority_budget_implemented) { 1040 rcode = RCODE_ADDRESS_ERROR; 1041 break; 1042 } 1043 /* else fall through */ 1044 1045 case CSR_NODE_IDS: 1046 /* 1047 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1048 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1049 */ 1050 /* fall through */ 1051 1052 case CSR_STATE_CLEAR: 1053 case CSR_STATE_SET: 1054 case CSR_CYCLE_TIME: 1055 case CSR_BUS_TIME: 1056 case CSR_BUSY_TIMEOUT: 1057 if (tcode == TCODE_READ_QUADLET_REQUEST) 1058 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1059 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1060 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1061 else 1062 rcode = RCODE_TYPE_ERROR; 1063 break; 1064 1065 case CSR_RESET_START: 1066 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1067 card->driver->write_csr(card, CSR_STATE_CLEAR, 1068 CSR_STATE_BIT_ABDICATE); 1069 else 1070 rcode = RCODE_TYPE_ERROR; 1071 break; 1072 1073 case CSR_SPLIT_TIMEOUT_HI: 1074 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1075 *data = cpu_to_be32(card->split_timeout_hi); 1076 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1077 spin_lock_irqsave(&card->lock, flags); 1078 card->split_timeout_hi = be32_to_cpu(*data) & 7; 1079 update_split_timeout(card); 1080 spin_unlock_irqrestore(&card->lock, flags); 1081 } else { 1082 rcode = RCODE_TYPE_ERROR; 1083 } 1084 break; 1085 1086 case CSR_SPLIT_TIMEOUT_LO: 1087 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1088 *data = cpu_to_be32(card->split_timeout_lo); 1089 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1090 spin_lock_irqsave(&card->lock, flags); 1091 card->split_timeout_lo = 1092 be32_to_cpu(*data) & 0xfff80000; 1093 update_split_timeout(card); 1094 spin_unlock_irqrestore(&card->lock, flags); 1095 } else { 1096 rcode = RCODE_TYPE_ERROR; 1097 } 1098 break; 1099 1100 case CSR_MAINT_UTILITY: 1101 if (tcode == TCODE_READ_QUADLET_REQUEST) 1102 *data = card->maint_utility_register; 1103 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1104 card->maint_utility_register = *data; 1105 else 1106 rcode = RCODE_TYPE_ERROR; 1107 break; 1108 1109 case CSR_BROADCAST_CHANNEL: 1110 if (tcode == TCODE_READ_QUADLET_REQUEST) 1111 *data = cpu_to_be32(card->broadcast_channel); 1112 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1113 card->broadcast_channel = 1114 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1115 BROADCAST_CHANNEL_INITIAL; 1116 else 1117 rcode = RCODE_TYPE_ERROR; 1118 break; 1119 1120 case CSR_BUS_MANAGER_ID: 1121 case CSR_BANDWIDTH_AVAILABLE: 1122 case CSR_CHANNELS_AVAILABLE_HI: 1123 case CSR_CHANNELS_AVAILABLE_LO: 1124 /* 1125 * FIXME: these are handled by the OHCI hardware and 1126 * the stack never sees these request. If we add 1127 * support for a new type of controller that doesn't 1128 * handle this in hardware we need to deal with these 1129 * transactions. 1130 */ 1131 BUG(); 1132 break; 1133 1134 default: 1135 rcode = RCODE_ADDRESS_ERROR; 1136 break; 1137 } 1138 1139 fw_send_response(card, request, rcode); 1140 } 1141 1142 static struct fw_address_handler registers = { 1143 .length = 0x400, 1144 .address_callback = handle_registers, 1145 }; 1146 1147 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1148 MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1149 MODULE_LICENSE("GPL"); 1150 1151 static const u32 vendor_textual_descriptor[] = { 1152 /* textual descriptor leaf () */ 1153 0x00060000, 1154 0x00000000, 1155 0x00000000, 1156 0x4c696e75, /* L i n u */ 1157 0x78204669, /* x F i */ 1158 0x72657769, /* r e w i */ 1159 0x72650000, /* r e */ 1160 }; 1161 1162 static const u32 model_textual_descriptor[] = { 1163 /* model descriptor leaf () */ 1164 0x00030000, 1165 0x00000000, 1166 0x00000000, 1167 0x4a756a75, /* J u j u */ 1168 }; 1169 1170 static struct fw_descriptor vendor_id_descriptor = { 1171 .length = ARRAY_SIZE(vendor_textual_descriptor), 1172 .immediate = 0x03d00d1e, 1173 .key = 0x81000000, 1174 .data = vendor_textual_descriptor, 1175 }; 1176 1177 static struct fw_descriptor model_id_descriptor = { 1178 .length = ARRAY_SIZE(model_textual_descriptor), 1179 .immediate = 0x17000001, 1180 .key = 0x81000000, 1181 .data = model_textual_descriptor, 1182 }; 1183 1184 static int __init fw_core_init(void) 1185 { 1186 int ret; 1187 1188 ret = bus_register(&fw_bus_type); 1189 if (ret < 0) 1190 return ret; 1191 1192 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1193 if (fw_cdev_major < 0) { 1194 bus_unregister(&fw_bus_type); 1195 return fw_cdev_major; 1196 } 1197 1198 fw_core_add_address_handler(&topology_map, &topology_map_region); 1199 fw_core_add_address_handler(®isters, ®isters_region); 1200 fw_core_add_descriptor(&vendor_id_descriptor); 1201 fw_core_add_descriptor(&model_id_descriptor); 1202 1203 return 0; 1204 } 1205 1206 static void __exit fw_core_cleanup(void) 1207 { 1208 unregister_chrdev(fw_cdev_major, "firewire"); 1209 bus_unregister(&fw_bus_type); 1210 idr_destroy(&fw_device_idr); 1211 } 1212 1213 module_init(fw_core_init); 1214 module_exit(fw_core_cleanup); 1215