1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core IEEE1394 transaction logic 4 * 5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/completion.h> 10 #include <linux/device.h> 11 #include <linux/errno.h> 12 #include <linux/firewire.h> 13 #include <linux/firewire-constants.h> 14 #include <linux/fs.h> 15 #include <linux/init.h> 16 #include <linux/jiffies.h> 17 #include <linux/kernel.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/rculist.h> 21 #include <linux/slab.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/timer.h> 25 #include <linux/types.h> 26 #include <linux/workqueue.h> 27 28 #include <asm/byteorder.h> 29 30 #include "core.h" 31 #include "packet-header-definitions.h" 32 #include "phy-packet-definitions.h" 33 #include <trace/events/firewire.h> 34 35 #define HEADER_DESTINATION_IS_BROADCAST(header) \ 36 ((async_header_get_destination(header) & 0x3f) == 0x3f) 37 38 /* returns 0 if the split timeout handler is already running */ 39 static int try_cancel_split_timeout(struct fw_transaction *t) 40 { 41 if (t->is_split_transaction) 42 return timer_delete(&t->split_timeout_timer); 43 else 44 return 1; 45 } 46 47 // card->transactions.lock must be acquired in advance. 48 static void remove_transaction_entry(struct fw_card *card, struct fw_transaction *entry) 49 { 50 list_del_init(&entry->link); 51 card->transactions.tlabel_mask &= ~(1ULL << entry->tlabel); 52 } 53 54 // Must be called without holding card->transactions.lock. 55 void fw_cancel_pending_transactions(struct fw_card *card) 56 { 57 struct fw_transaction *t, *tmp; 58 LIST_HEAD(pending_list); 59 60 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 61 // local destination never runs in any type of IRQ context. 62 scoped_guard(spinlock_irqsave, &card->transactions.lock) { 63 list_for_each_entry_safe(t, tmp, &card->transactions.list, link) { 64 if (try_cancel_split_timeout(t)) 65 list_move(&t->link, &pending_list); 66 } 67 } 68 69 list_for_each_entry_safe(t, tmp, &pending_list, link) { 70 list_del(&t->link); 71 72 if (!t->with_tstamp) { 73 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, 74 t->callback_data); 75 } else { 76 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, 0, 77 NULL, 0, t->callback_data); 78 } 79 } 80 } 81 82 // card->transactions.lock must be acquired in advance. 83 #define find_and_pop_transaction_entry(card, condition) \ 84 ({ \ 85 struct fw_transaction *iter, *t = NULL; \ 86 list_for_each_entry(iter, &card->transactions.list, link) { \ 87 if (condition) { \ 88 t = iter; \ 89 break; \ 90 } \ 91 } \ 92 if (t && try_cancel_split_timeout(t)) \ 93 remove_transaction_entry(card, t); \ 94 t; \ 95 }) 96 97 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode, 98 u32 response_tstamp) 99 { 100 struct fw_transaction *t; 101 102 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 103 // local destination never runs in any type of IRQ context. 104 scoped_guard(spinlock_irqsave, &card->transactions.lock) { 105 t = find_and_pop_transaction_entry(card, iter == transaction); 106 if (!t) 107 return -ENOENT; 108 } 109 110 if (!t->with_tstamp) { 111 t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data); 112 } else { 113 t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0, 114 t->callback_data); 115 } 116 117 return 0; 118 } 119 120 /* 121 * Only valid for transactions that are potentially pending (ie have 122 * been sent). 123 */ 124 int fw_cancel_transaction(struct fw_card *card, 125 struct fw_transaction *transaction) 126 { 127 u32 tstamp; 128 129 /* 130 * Cancel the packet transmission if it's still queued. That 131 * will call the packet transmission callback which cancels 132 * the transaction. 133 */ 134 135 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 136 return 0; 137 138 /* 139 * If the request packet has already been sent, we need to see 140 * if the transaction is still pending and remove it in that case. 141 */ 142 143 if (transaction->packet.ack == 0) { 144 // The timestamp is reused since it was just read now. 145 tstamp = transaction->packet.timestamp; 146 } else { 147 u32 curr_cycle_time = 0; 148 149 (void)fw_card_read_cycle_time(card, &curr_cycle_time); 150 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); 151 } 152 153 return close_transaction(transaction, card, RCODE_CANCELLED, tstamp); 154 } 155 EXPORT_SYMBOL(fw_cancel_transaction); 156 157 static void split_transaction_timeout_callback(struct timer_list *timer) 158 { 159 struct fw_transaction *t = timer_container_of(t, timer, split_timeout_timer); 160 struct fw_card *card = t->card; 161 162 scoped_guard(spinlock_irqsave, &card->transactions.lock) { 163 if (list_empty(&t->link)) 164 return; 165 remove_transaction_entry(card, t); 166 } 167 168 if (!t->with_tstamp) { 169 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 170 } else { 171 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, 172 t->split_timeout_cycle, NULL, 0, t->callback_data); 173 } 174 } 175 176 static void start_split_transaction_timeout(struct fw_transaction *t, 177 struct fw_card *card) 178 { 179 unsigned long delta; 180 181 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) 182 return; 183 184 t->is_split_transaction = true; 185 186 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 187 // local destination never runs in any type of IRQ context. 188 scoped_guard(spinlock_irqsave, &card->split_timeout.lock) 189 delta = card->split_timeout.jiffies; 190 mod_timer(&t->split_timeout_timer, jiffies + delta); 191 } 192 193 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp); 194 195 static void transmit_complete_callback(struct fw_packet *packet, 196 struct fw_card *card, int status) 197 { 198 struct fw_transaction *t = 199 container_of(packet, struct fw_transaction, packet); 200 201 trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation, 202 packet->speed, status, packet->timestamp); 203 204 switch (status) { 205 case ACK_COMPLETE: 206 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp); 207 break; 208 case ACK_PENDING: 209 { 210 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 211 // local destination never runs in any type of IRQ context. 212 scoped_guard(spinlock_irqsave, &card->split_timeout.lock) { 213 t->split_timeout_cycle = 214 compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff; 215 } 216 start_split_transaction_timeout(t, card); 217 break; 218 } 219 case ACK_BUSY_X: 220 case ACK_BUSY_A: 221 case ACK_BUSY_B: 222 close_transaction(t, card, RCODE_BUSY, packet->timestamp); 223 break; 224 case ACK_DATA_ERROR: 225 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp); 226 break; 227 case ACK_TYPE_ERROR: 228 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp); 229 break; 230 default: 231 /* 232 * In this case the ack is really a juju specific 233 * rcode, so just forward that to the callback. 234 */ 235 close_transaction(t, card, status, packet->timestamp); 236 break; 237 } 238 } 239 240 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 241 int destination_id, int source_id, int generation, int speed, 242 unsigned long long offset, void *payload, size_t length) 243 { 244 int ext_tcode; 245 246 if (tcode == TCODE_STREAM_DATA) { 247 // The value of destination_id argument should include tag, channel, and sy fields 248 // as isochronous packet header has. 249 packet->header[0] = destination_id; 250 isoc_header_set_data_length(packet->header, length); 251 isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA); 252 packet->header_length = 4; 253 packet->payload = payload; 254 packet->payload_length = length; 255 256 goto common; 257 } 258 259 if (tcode > 0x10) { 260 ext_tcode = tcode & ~0x10; 261 tcode = TCODE_LOCK_REQUEST; 262 } else 263 ext_tcode = 0; 264 265 async_header_set_retry(packet->header, RETRY_X); 266 async_header_set_tlabel(packet->header, tlabel); 267 async_header_set_tcode(packet->header, tcode); 268 async_header_set_destination(packet->header, destination_id); 269 async_header_set_source(packet->header, source_id); 270 async_header_set_offset(packet->header, offset); 271 272 switch (tcode) { 273 case TCODE_WRITE_QUADLET_REQUEST: 274 async_header_set_quadlet_data(packet->header, *(u32 *)payload); 275 packet->header_length = 16; 276 packet->payload_length = 0; 277 break; 278 279 case TCODE_LOCK_REQUEST: 280 case TCODE_WRITE_BLOCK_REQUEST: 281 async_header_set_data_length(packet->header, length); 282 async_header_set_extended_tcode(packet->header, ext_tcode); 283 packet->header_length = 16; 284 packet->payload = payload; 285 packet->payload_length = length; 286 break; 287 288 case TCODE_READ_QUADLET_REQUEST: 289 packet->header_length = 12; 290 packet->payload_length = 0; 291 break; 292 293 case TCODE_READ_BLOCK_REQUEST: 294 async_header_set_data_length(packet->header, length); 295 async_header_set_extended_tcode(packet->header, ext_tcode); 296 packet->header_length = 16; 297 packet->payload_length = 0; 298 break; 299 300 default: 301 WARN(1, "wrong tcode %d\n", tcode); 302 } 303 common: 304 packet->speed = speed; 305 packet->generation = generation; 306 packet->ack = 0; 307 packet->payload_mapped = false; 308 } 309 310 static int allocate_tlabel(struct fw_card *card) 311 __must_hold(&card->transactions.lock) 312 { 313 int tlabel; 314 315 lockdep_assert_held(&card->transactions.lock); 316 317 tlabel = card->transactions.current_tlabel; 318 while (card->transactions.tlabel_mask & (1ULL << tlabel)) { 319 tlabel = (tlabel + 1) & 0x3f; 320 if (tlabel == card->transactions.current_tlabel) 321 return -EBUSY; 322 } 323 324 card->transactions.current_tlabel = (tlabel + 1) & 0x3f; 325 card->transactions.tlabel_mask |= 1ULL << tlabel; 326 327 return tlabel; 328 } 329 330 /** 331 * __fw_send_request() - submit a request packet for transmission to generate callback for response 332 * subaction with or without time stamp. 333 * @card: interface to send the request at 334 * @t: transaction instance to which the request belongs 335 * @tcode: transaction code 336 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 337 * @generation: bus generation in which request and response are valid 338 * @speed: transmission speed 339 * @offset: 48bit wide offset into destination's address space 340 * @payload: data payload for the request subaction 341 * @length: length of the payload, in bytes 342 * @callback: union of two functions whether to receive time stamp or not for response 343 * subaction. 344 * @with_tstamp: Whether to receive time stamp or not for response subaction. 345 * @callback_data: data to be passed to the transaction completion callback 346 * 347 * Submit a request packet into the asynchronous request transmission queue. 348 * Can be called from atomic context. If you prefer a blocking API, use 349 * fw_run_transaction() in a context that can sleep. 350 * 351 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 352 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 353 * 354 * Make sure that the value in @destination_id is not older than the one in 355 * @generation. Otherwise the request is in danger to be sent to a wrong node. 356 * 357 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 358 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 359 * It will contain tag, channel, and sy data instead of a node ID then. 360 * 361 * The payload buffer at @data is going to be DMA-mapped except in case of 362 * @length <= 8 or of local (loopback) requests. Hence make sure that the 363 * buffer complies with the restrictions of the streaming DMA mapping API. 364 * @payload must not be freed before the @callback is called. 365 * 366 * In case of request types without payload, @data is NULL and @length is 0. 367 * 368 * After the transaction is completed successfully or unsuccessfully, the 369 * @callback will be called. Among its parameters is the response code which 370 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 371 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 372 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 373 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 374 * generation, or missing ACK respectively. 375 * 376 * Note some timing corner cases: fw_send_request() may complete much earlier 377 * than when the request packet actually hits the wire. On the other hand, 378 * transaction completion and hence execution of @callback may happen even 379 * before fw_send_request() returns. 380 */ 381 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 382 int destination_id, int generation, int speed, unsigned long long offset, 383 void *payload, size_t length, union fw_transaction_callback callback, 384 bool with_tstamp, void *callback_data) 385 { 386 int tlabel; 387 388 /* 389 * Allocate tlabel from the bitmap and put the transaction on 390 * the list while holding the card spinlock. 391 */ 392 393 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 394 // local destination never runs in any type of IRQ context. 395 scoped_guard(spinlock_irqsave, &card->transactions.lock) 396 tlabel = allocate_tlabel(card); 397 if (tlabel < 0) { 398 if (!with_tstamp) { 399 callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 400 } else { 401 // Timestamping on behalf of hardware. 402 u32 curr_cycle_time = 0; 403 u32 tstamp; 404 405 (void)fw_card_read_cycle_time(card, &curr_cycle_time); 406 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); 407 408 callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0, 409 callback_data); 410 } 411 return; 412 } 413 414 t->node_id = destination_id; 415 t->tlabel = tlabel; 416 t->card = card; 417 t->is_split_transaction = false; 418 timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0); 419 t->callback = callback; 420 t->with_tstamp = with_tstamp; 421 t->callback_data = callback_data; 422 t->packet.callback = transmit_complete_callback; 423 424 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 425 // local destination never runs in any type of IRQ context. 426 scoped_guard(spinlock_irqsave, &card->lock) { 427 // The node_id field of fw_card can be updated when handling SelfIDComplete. 428 fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, 429 generation, speed, offset, payload, length); 430 } 431 432 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 433 // local destination never runs in any type of IRQ context. 434 scoped_guard(spinlock_irqsave, &card->transactions.lock) 435 list_add_tail(&t->link, &card->transactions.list); 436 437 // Safe with no lock, since the index field of fw_card is immutable once assigned. 438 trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed, 439 t->packet.header, payload, 440 tcode_is_read_request(tcode) ? 0 : length / 4); 441 442 card->driver->send_request(card, &t->packet); 443 } 444 EXPORT_SYMBOL_GPL(__fw_send_request); 445 446 struct transaction_callback_data { 447 struct completion done; 448 void *payload; 449 int rcode; 450 }; 451 452 static void transaction_callback(struct fw_card *card, int rcode, 453 void *payload, size_t length, void *data) 454 { 455 struct transaction_callback_data *d = data; 456 457 if (rcode == RCODE_COMPLETE) 458 memcpy(d->payload, payload, length); 459 d->rcode = rcode; 460 complete(&d->done); 461 } 462 463 /** 464 * fw_run_transaction() - send request and sleep until transaction is completed 465 * @card: card interface for this request 466 * @tcode: transaction code 467 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 468 * @generation: bus generation in which request and response are valid 469 * @speed: transmission speed 470 * @offset: 48bit wide offset into destination's address space 471 * @payload: data payload for the request subaction 472 * @length: length of the payload, in bytes 473 * 474 * Returns the RCODE. See fw_send_request() for parameter documentation. 475 * Unlike fw_send_request(), @data points to the payload of the request or/and 476 * to the payload of the response. DMA mapping restrictions apply to outbound 477 * request payloads of >= 8 bytes but not to inbound response payloads. 478 */ 479 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 480 int generation, int speed, unsigned long long offset, 481 void *payload, size_t length) 482 { 483 struct transaction_callback_data d; 484 struct fw_transaction t; 485 486 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0); 487 init_completion(&d.done); 488 d.payload = payload; 489 fw_send_request(card, &t, tcode, destination_id, generation, speed, 490 offset, payload, length, transaction_callback, &d); 491 wait_for_completion(&d.done); 492 timer_destroy_on_stack(&t.split_timeout_timer); 493 494 return d.rcode; 495 } 496 EXPORT_SYMBOL(fw_run_transaction); 497 498 static DEFINE_MUTEX(phy_config_mutex); 499 static DECLARE_COMPLETION(phy_config_done); 500 501 static void transmit_phy_packet_callback(struct fw_packet *packet, 502 struct fw_card *card, int status) 503 { 504 trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status, 505 packet->timestamp); 506 complete(&phy_config_done); 507 } 508 509 static struct fw_packet phy_config_packet = { 510 .header_length = 12, 511 .payload_length = 0, 512 .speed = SCODE_100, 513 .callback = transmit_phy_packet_callback, 514 }; 515 516 void fw_send_phy_config(struct fw_card *card, 517 int node_id, int generation, int gap_count) 518 { 519 long timeout = msecs_to_jiffies(100); 520 u32 data = 0; 521 522 phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG); 523 524 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) { 525 phy_packet_phy_config_set_root_id(&data, node_id); 526 phy_packet_phy_config_set_force_root_node(&data, true); 527 } 528 529 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 530 gap_count = card->driver->read_phy_reg(card, 1); 531 if (gap_count < 0) 532 return; 533 534 gap_count &= 63; 535 if (gap_count == 63) 536 return; 537 } 538 phy_packet_phy_config_set_gap_count(&data, gap_count); 539 phy_packet_phy_config_set_gap_count_optimization(&data, true); 540 541 guard(mutex)(&phy_config_mutex); 542 543 async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL); 544 phy_config_packet.header[1] = data; 545 phy_config_packet.header[2] = ~data; 546 phy_config_packet.generation = generation; 547 reinit_completion(&phy_config_done); 548 549 trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index, 550 phy_config_packet.generation, phy_config_packet.header[1], 551 phy_config_packet.header[2]); 552 553 card->driver->send_request(card, &phy_config_packet); 554 wait_for_completion_timeout(&phy_config_done, timeout); 555 } 556 557 static struct fw_address_handler *lookup_overlapping_address_handler( 558 struct list_head *list, unsigned long long offset, size_t length) 559 { 560 struct fw_address_handler *handler; 561 562 list_for_each_entry_rcu(handler, list, link) { 563 if (handler->offset < offset + length && 564 offset < handler->offset + handler->length) 565 return handler; 566 } 567 568 return NULL; 569 } 570 571 static bool is_enclosing_handler(struct fw_address_handler *handler, 572 unsigned long long offset, size_t length) 573 { 574 return handler->offset <= offset && 575 offset + length <= handler->offset + handler->length; 576 } 577 578 static struct fw_address_handler *lookup_enclosing_address_handler( 579 struct list_head *list, unsigned long long offset, size_t length) 580 { 581 struct fw_address_handler *handler; 582 583 list_for_each_entry_rcu(handler, list, link) { 584 if (is_enclosing_handler(handler, offset, length)) 585 return handler; 586 } 587 588 return NULL; 589 } 590 591 static DEFINE_SPINLOCK(address_handler_list_lock); 592 static LIST_HEAD(address_handler_list); 593 594 const struct fw_address_region fw_high_memory_region = 595 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, }; 596 EXPORT_SYMBOL(fw_high_memory_region); 597 598 static const struct fw_address_region low_memory_region = 599 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, }; 600 601 #if 0 602 const struct fw_address_region fw_private_region = 603 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 604 const struct fw_address_region fw_csr_region = 605 { .start = CSR_REGISTER_BASE, 606 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 607 const struct fw_address_region fw_unit_space_region = 608 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 609 #endif /* 0 */ 610 611 static void complete_address_handler(struct kref *kref) 612 { 613 struct fw_address_handler *handler = container_of(kref, struct fw_address_handler, kref); 614 615 complete(&handler->done); 616 } 617 618 static void get_address_handler(struct fw_address_handler *handler) 619 { 620 kref_get(&handler->kref); 621 } 622 623 static int put_address_handler(struct fw_address_handler *handler) 624 { 625 return kref_put(&handler->kref, complete_address_handler); 626 } 627 628 /** 629 * fw_core_add_address_handler() - register for incoming requests 630 * @handler: callback 631 * @region: region in the IEEE 1212 node space address range 632 * 633 * region->start, ->end, and handler->length have to be quadlet-aligned. 634 * 635 * When a request is received that falls within the specified address range, the specified callback 636 * is invoked. The parameters passed to the callback give the details of the particular request. 637 * The callback is invoked in the workqueue context in most cases. However, if the request is 638 * initiated by the local node, the callback is invoked in the initiator's context. 639 * 640 * To be called in process context. 641 * Return value: 0 on success, non-zero otherwise. 642 * 643 * The start offset of the handler's address region is determined by 644 * fw_core_add_address_handler() and is returned in handler->offset. 645 * 646 * Address allocations are exclusive, except for the FCP registers. 647 */ 648 int fw_core_add_address_handler(struct fw_address_handler *handler, 649 const struct fw_address_region *region) 650 { 651 struct fw_address_handler *other; 652 int ret = -EBUSY; 653 654 if (region->start & 0xffff000000000003ULL || 655 region->start >= region->end || 656 region->end > 0x0001000000000000ULL || 657 handler->length & 3 || 658 handler->length == 0) 659 return -EINVAL; 660 661 guard(spinlock)(&address_handler_list_lock); 662 663 handler->offset = region->start; 664 while (handler->offset + handler->length <= region->end) { 665 if (is_in_fcp_region(handler->offset, handler->length)) 666 other = NULL; 667 else 668 other = lookup_overlapping_address_handler 669 (&address_handler_list, 670 handler->offset, handler->length); 671 if (other != NULL) { 672 handler->offset += other->length; 673 } else { 674 init_completion(&handler->done); 675 kref_init(&handler->kref); 676 list_add_tail_rcu(&handler->link, &address_handler_list); 677 ret = 0; 678 break; 679 } 680 } 681 682 return ret; 683 } 684 EXPORT_SYMBOL(fw_core_add_address_handler); 685 686 /** 687 * fw_core_remove_address_handler() - unregister an address handler 688 * @handler: callback 689 * 690 * To be called in process context. 691 * 692 * When fw_core_remove_address_handler() returns, @handler->callback() is 693 * guaranteed to not run on any CPU anymore. 694 */ 695 void fw_core_remove_address_handler(struct fw_address_handler *handler) 696 { 697 scoped_guard(spinlock, &address_handler_list_lock) 698 list_del_rcu(&handler->link); 699 700 synchronize_rcu(); 701 702 if (!put_address_handler(handler)) 703 wait_for_completion(&handler->done); 704 } 705 EXPORT_SYMBOL(fw_core_remove_address_handler); 706 707 struct fw_request { 708 struct kref kref; 709 struct fw_packet response; 710 u32 request_header[ASYNC_HEADER_QUADLET_COUNT]; 711 int ack; 712 u32 timestamp; 713 u32 length; 714 u32 data[]; 715 }; 716 717 void fw_request_get(struct fw_request *request) 718 { 719 kref_get(&request->kref); 720 } 721 722 static void release_request(struct kref *kref) 723 { 724 struct fw_request *request = container_of(kref, struct fw_request, kref); 725 726 kfree(request); 727 } 728 729 void fw_request_put(struct fw_request *request) 730 { 731 kref_put(&request->kref, release_request); 732 } 733 734 static void free_response_callback(struct fw_packet *packet, 735 struct fw_card *card, int status) 736 { 737 struct fw_request *request = container_of(packet, struct fw_request, response); 738 739 trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation, 740 packet->speed, status, packet->timestamp); 741 742 // Decrease the reference count since not at in-flight. 743 fw_request_put(request); 744 745 // Decrease the reference count to release the object. 746 fw_request_put(request); 747 } 748 749 int fw_get_response_length(struct fw_request *r) 750 { 751 int tcode, ext_tcode, data_length; 752 753 tcode = async_header_get_tcode(r->request_header); 754 755 switch (tcode) { 756 case TCODE_WRITE_QUADLET_REQUEST: 757 case TCODE_WRITE_BLOCK_REQUEST: 758 return 0; 759 760 case TCODE_READ_QUADLET_REQUEST: 761 return 4; 762 763 case TCODE_READ_BLOCK_REQUEST: 764 data_length = async_header_get_data_length(r->request_header); 765 return data_length; 766 767 case TCODE_LOCK_REQUEST: 768 ext_tcode = async_header_get_extended_tcode(r->request_header); 769 data_length = async_header_get_data_length(r->request_header); 770 switch (ext_tcode) { 771 case EXTCODE_FETCH_ADD: 772 case EXTCODE_LITTLE_ADD: 773 return data_length; 774 default: 775 return data_length / 2; 776 } 777 778 default: 779 WARN(1, "wrong tcode %d\n", tcode); 780 return 0; 781 } 782 } 783 784 void fw_fill_response(struct fw_packet *response, u32 *request_header, 785 int rcode, void *payload, size_t length) 786 { 787 int tcode, tlabel, extended_tcode, source, destination; 788 789 tcode = async_header_get_tcode(request_header); 790 tlabel = async_header_get_tlabel(request_header); 791 source = async_header_get_destination(request_header); // Exchange. 792 destination = async_header_get_source(request_header); // Exchange. 793 extended_tcode = async_header_get_extended_tcode(request_header); 794 795 async_header_set_retry(response->header, RETRY_1); 796 async_header_set_tlabel(response->header, tlabel); 797 async_header_set_destination(response->header, destination); 798 async_header_set_source(response->header, source); 799 async_header_set_rcode(response->header, rcode); 800 response->header[2] = 0; // The field is reserved. 801 802 switch (tcode) { 803 case TCODE_WRITE_QUADLET_REQUEST: 804 case TCODE_WRITE_BLOCK_REQUEST: 805 async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE); 806 response->header_length = 12; 807 response->payload_length = 0; 808 break; 809 810 case TCODE_READ_QUADLET_REQUEST: 811 async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE); 812 if (payload != NULL) 813 async_header_set_quadlet_data(response->header, *(u32 *)payload); 814 else 815 async_header_set_quadlet_data(response->header, 0); 816 response->header_length = 16; 817 response->payload_length = 0; 818 break; 819 820 case TCODE_READ_BLOCK_REQUEST: 821 case TCODE_LOCK_REQUEST: 822 async_header_set_tcode(response->header, tcode + 2); 823 async_header_set_data_length(response->header, length); 824 async_header_set_extended_tcode(response->header, extended_tcode); 825 response->header_length = 16; 826 response->payload = payload; 827 response->payload_length = length; 828 break; 829 830 default: 831 WARN(1, "wrong tcode %d\n", tcode); 832 } 833 834 response->payload_mapped = false; 835 } 836 EXPORT_SYMBOL(fw_fill_response); 837 838 static u32 compute_split_timeout_timestamp(struct fw_card *card, 839 u32 request_timestamp) 840 __must_hold(&card->split_timeout.lock) 841 { 842 unsigned int cycles; 843 u32 timestamp; 844 845 lockdep_assert_held(&card->split_timeout.lock); 846 847 cycles = card->split_timeout.cycles; 848 cycles += request_timestamp & 0x1fff; 849 850 timestamp = request_timestamp & ~0x1fff; 851 timestamp += (cycles / 8000) << 13; 852 timestamp |= cycles % 8000; 853 854 return timestamp; 855 } 856 857 static struct fw_request *allocate_request(struct fw_card *card, 858 struct fw_packet *p) 859 { 860 struct fw_request *request; 861 u32 *data, length; 862 int request_tcode; 863 864 request_tcode = async_header_get_tcode(p->header); 865 switch (request_tcode) { 866 case TCODE_WRITE_QUADLET_REQUEST: 867 data = &p->header[3]; 868 length = 4; 869 break; 870 871 case TCODE_WRITE_BLOCK_REQUEST: 872 case TCODE_LOCK_REQUEST: 873 data = p->payload; 874 length = async_header_get_data_length(p->header); 875 break; 876 877 case TCODE_READ_QUADLET_REQUEST: 878 data = NULL; 879 length = 4; 880 break; 881 882 case TCODE_READ_BLOCK_REQUEST: 883 data = NULL; 884 length = async_header_get_data_length(p->header); 885 break; 886 887 default: 888 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", 889 p->header[0], p->header[1], p->header[2]); 890 return NULL; 891 } 892 893 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 894 if (request == NULL) 895 return NULL; 896 kref_init(&request->kref); 897 898 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 899 // local destination never runs in any type of IRQ context. 900 scoped_guard(spinlock_irqsave, &card->split_timeout.lock) 901 request->response.timestamp = compute_split_timeout_timestamp(card, p->timestamp); 902 903 request->response.speed = p->speed; 904 request->response.generation = p->generation; 905 request->response.ack = 0; 906 request->response.callback = free_response_callback; 907 request->ack = p->ack; 908 request->timestamp = p->timestamp; 909 request->length = length; 910 if (data) 911 memcpy(request->data, data, length); 912 913 memcpy(request->request_header, p->header, sizeof(p->header)); 914 915 return request; 916 } 917 918 /** 919 * fw_send_response: - send response packet for asynchronous transaction. 920 * @card: interface to send the response at. 921 * @request: firewire request data for the transaction. 922 * @rcode: response code to send. 923 * 924 * Submit a response packet into the asynchronous response transmission queue. The @request 925 * is going to be released when the transmission successfully finishes later. 926 */ 927 void fw_send_response(struct fw_card *card, 928 struct fw_request *request, int rcode) 929 { 930 u32 *data = NULL; 931 unsigned int data_length = 0; 932 933 /* unified transaction or broadcast transaction: don't respond */ 934 if (request->ack != ACK_PENDING || 935 HEADER_DESTINATION_IS_BROADCAST(request->request_header)) { 936 fw_request_put(request); 937 return; 938 } 939 940 if (rcode == RCODE_COMPLETE) { 941 data = request->data; 942 data_length = fw_get_response_length(request); 943 } 944 945 fw_fill_response(&request->response, request->request_header, rcode, data, data_length); 946 947 // Increase the reference count so that the object is kept during in-flight. 948 fw_request_get(request); 949 950 trace_async_response_outbound_initiate((uintptr_t)request, card->index, 951 request->response.generation, request->response.speed, 952 request->response.header, data, 953 data ? data_length / 4 : 0); 954 955 card->driver->send_response(card, &request->response); 956 } 957 EXPORT_SYMBOL(fw_send_response); 958 959 /** 960 * fw_get_request_speed() - returns speed at which the @request was received 961 * @request: firewire request data 962 */ 963 int fw_get_request_speed(struct fw_request *request) 964 { 965 return request->response.speed; 966 } 967 EXPORT_SYMBOL(fw_get_request_speed); 968 969 /** 970 * fw_request_get_timestamp: Get timestamp of the request. 971 * @request: The opaque pointer to request structure. 972 * 973 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The 974 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count 975 * field of isochronous cycle time register. 976 * 977 * Returns: timestamp of the request. 978 */ 979 u32 fw_request_get_timestamp(const struct fw_request *request) 980 { 981 return request->timestamp; 982 } 983 EXPORT_SYMBOL_GPL(fw_request_get_timestamp); 984 985 static void handle_exclusive_region_request(struct fw_card *card, 986 struct fw_packet *p, 987 struct fw_request *request, 988 unsigned long long offset) 989 { 990 struct fw_address_handler *handler; 991 int tcode, destination, source; 992 993 destination = async_header_get_destination(p->header); 994 source = async_header_get_source(p->header); 995 tcode = async_header_get_tcode(p->header); 996 if (tcode == TCODE_LOCK_REQUEST) 997 tcode = 0x10 + async_header_get_extended_tcode(p->header); 998 999 scoped_guard(rcu) { 1000 handler = lookup_enclosing_address_handler(&address_handler_list, offset, 1001 request->length); 1002 if (handler) 1003 get_address_handler(handler); 1004 } 1005 1006 if (!handler) { 1007 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1008 return; 1009 } 1010 1011 // Outside the RCU read-side critical section. Without spinlock. With reference count. 1012 handler->address_callback(card, request, tcode, destination, source, p->generation, offset, 1013 request->data, request->length, handler->callback_data); 1014 put_address_handler(handler); 1015 } 1016 1017 // To use kmalloc allocator efficiently, this should be power of two. 1018 #define BUFFER_ON_KERNEL_STACK_SIZE 4 1019 1020 static void handle_fcp_region_request(struct fw_card *card, 1021 struct fw_packet *p, 1022 struct fw_request *request, 1023 unsigned long long offset) 1024 { 1025 struct fw_address_handler *buffer_on_kernel_stack[BUFFER_ON_KERNEL_STACK_SIZE]; 1026 struct fw_address_handler *handler, **handlers; 1027 int tcode, destination, source, i, count, buffer_size; 1028 1029 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 1030 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 1031 request->length > 0x200) { 1032 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1033 1034 return; 1035 } 1036 1037 tcode = async_header_get_tcode(p->header); 1038 destination = async_header_get_destination(p->header); 1039 source = async_header_get_source(p->header); 1040 1041 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 1042 tcode != TCODE_WRITE_BLOCK_REQUEST) { 1043 fw_send_response(card, request, RCODE_TYPE_ERROR); 1044 1045 return; 1046 } 1047 1048 count = 0; 1049 handlers = buffer_on_kernel_stack; 1050 buffer_size = ARRAY_SIZE(buffer_on_kernel_stack); 1051 scoped_guard(rcu) { 1052 list_for_each_entry_rcu(handler, &address_handler_list, link) { 1053 if (is_enclosing_handler(handler, offset, request->length)) { 1054 if (count >= buffer_size) { 1055 int next_size = buffer_size * 2; 1056 struct fw_address_handler **buffer_on_kernel_heap; 1057 1058 if (handlers == buffer_on_kernel_stack) 1059 buffer_on_kernel_heap = NULL; 1060 else 1061 buffer_on_kernel_heap = handlers; 1062 1063 buffer_on_kernel_heap = 1064 krealloc_array(buffer_on_kernel_heap, next_size, 1065 sizeof(*buffer_on_kernel_heap), GFP_ATOMIC); 1066 // FCP is used for purposes unrelated to significant system 1067 // resources (e.g. storage or networking), so allocation 1068 // failures are not considered so critical. 1069 if (!buffer_on_kernel_heap) 1070 break; 1071 1072 if (handlers == buffer_on_kernel_stack) { 1073 memcpy(buffer_on_kernel_heap, buffer_on_kernel_stack, 1074 sizeof(buffer_on_kernel_stack)); 1075 } 1076 1077 handlers = buffer_on_kernel_heap; 1078 buffer_size = next_size; 1079 } 1080 get_address_handler(handler); 1081 handlers[count++] = handler; 1082 } 1083 } 1084 } 1085 1086 for (i = 0; i < count; ++i) { 1087 handler = handlers[i]; 1088 handler->address_callback(card, request, tcode, destination, source, 1089 p->generation, offset, request->data, 1090 request->length, handler->callback_data); 1091 put_address_handler(handler); 1092 } 1093 1094 if (handlers != buffer_on_kernel_stack) 1095 kfree(handlers); 1096 1097 fw_send_response(card, request, RCODE_COMPLETE); 1098 } 1099 1100 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 1101 { 1102 struct fw_request *request; 1103 unsigned long long offset; 1104 unsigned int tcode; 1105 1106 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 1107 return; 1108 1109 tcode = async_header_get_tcode(p->header); 1110 if (tcode_is_link_internal(tcode)) { 1111 trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp, 1112 p->header[1], p->header[2]); 1113 fw_cdev_handle_phy_packet(card, p); 1114 return; 1115 } 1116 1117 request = allocate_request(card, p); 1118 if (request == NULL) { 1119 /* FIXME: send statically allocated busy packet. */ 1120 return; 1121 } 1122 1123 trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed, 1124 p->ack, p->timestamp, p->header, request->data, 1125 tcode_is_read_request(tcode) ? 0 : request->length / 4); 1126 1127 offset = async_header_get_offset(p->header); 1128 1129 if (!is_in_fcp_region(offset, request->length)) 1130 handle_exclusive_region_request(card, p, request, offset); 1131 else 1132 handle_fcp_region_request(card, p, request, offset); 1133 1134 } 1135 EXPORT_SYMBOL(fw_core_handle_request); 1136 1137 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 1138 { 1139 struct fw_transaction *t = NULL; 1140 u32 *data; 1141 size_t data_length; 1142 int tcode, tlabel, source, rcode; 1143 1144 tcode = async_header_get_tcode(p->header); 1145 tlabel = async_header_get_tlabel(p->header); 1146 source = async_header_get_source(p->header); 1147 rcode = async_header_get_rcode(p->header); 1148 1149 // FIXME: sanity check packet, is length correct, does tcodes 1150 // and addresses match to the transaction request queried later. 1151 // 1152 // For the tracepoints event, let us decode the header here against the concern. 1153 1154 switch (tcode) { 1155 case TCODE_READ_QUADLET_RESPONSE: 1156 data = (u32 *) &p->header[3]; 1157 data_length = 4; 1158 break; 1159 1160 case TCODE_WRITE_RESPONSE: 1161 data = NULL; 1162 data_length = 0; 1163 break; 1164 1165 case TCODE_READ_BLOCK_RESPONSE: 1166 case TCODE_LOCK_RESPONSE: 1167 data = p->payload; 1168 data_length = async_header_get_data_length(p->header); 1169 break; 1170 1171 default: 1172 /* Should never happen, this is just to shut up gcc. */ 1173 data = NULL; 1174 data_length = 0; 1175 break; 1176 } 1177 1178 // NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for 1179 // local destination never runs in any type of IRQ context. 1180 scoped_guard(spinlock_irqsave, &card->transactions.lock) { 1181 t = find_and_pop_transaction_entry(card, 1182 iter->node_id == source && iter->tlabel == tlabel); 1183 } 1184 1185 trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack, 1186 p->timestamp, p->header, data, data_length / 4); 1187 1188 if (!t) { 1189 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", 1190 source, tlabel); 1191 return; 1192 } 1193 1194 /* 1195 * The response handler may be executed while the request handler 1196 * is still pending. Cancel the request handler. 1197 */ 1198 card->driver->cancel_packet(card, &t->packet); 1199 1200 if (!t->with_tstamp) { 1201 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data); 1202 } else { 1203 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data, 1204 data_length, t->callback_data); 1205 } 1206 } 1207 EXPORT_SYMBOL(fw_core_handle_response); 1208 1209 /** 1210 * fw_rcode_string - convert a firewire result code to an error description 1211 * @rcode: the result code 1212 */ 1213 const char *fw_rcode_string(int rcode) 1214 { 1215 static const char *const names[] = { 1216 [RCODE_COMPLETE] = "no error", 1217 [RCODE_CONFLICT_ERROR] = "conflict error", 1218 [RCODE_DATA_ERROR] = "data error", 1219 [RCODE_TYPE_ERROR] = "type error", 1220 [RCODE_ADDRESS_ERROR] = "address error", 1221 [RCODE_SEND_ERROR] = "send error", 1222 [RCODE_CANCELLED] = "timeout", 1223 [RCODE_BUSY] = "busy", 1224 [RCODE_GENERATION] = "bus reset", 1225 [RCODE_NO_ACK] = "no ack", 1226 }; 1227 1228 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode]) 1229 return names[rcode]; 1230 else 1231 return "unknown"; 1232 } 1233 EXPORT_SYMBOL(fw_rcode_string); 1234 1235 static const struct fw_address_region topology_map_region = 1236 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 1237 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 1238 1239 static void handle_topology_map(struct fw_card *card, struct fw_request *request, 1240 int tcode, int destination, int source, int generation, 1241 unsigned long long offset, void *payload, size_t length, 1242 void *callback_data) 1243 { 1244 int start; 1245 1246 if (!tcode_is_read_request(tcode)) { 1247 fw_send_response(card, request, RCODE_TYPE_ERROR); 1248 return; 1249 } 1250 1251 if ((offset & 3) > 0 || (length & 3) > 0) { 1252 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1253 return; 1254 } 1255 1256 start = (offset - topology_map_region.start) / 4; 1257 1258 // NOTE: This can be without irqsave when we can guarantee that fw_send_request() for local 1259 // destination never runs in any type of IRQ context. 1260 scoped_guard(spinlock_irqsave, &card->topology_map.lock) 1261 memcpy(payload, &card->topology_map.buffer[start], length); 1262 1263 fw_send_response(card, request, RCODE_COMPLETE); 1264 } 1265 1266 static struct fw_address_handler topology_map = { 1267 .length = 0x400, 1268 .address_callback = handle_topology_map, 1269 }; 1270 1271 static const struct fw_address_region registers_region = 1272 { .start = CSR_REGISTER_BASE, 1273 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1274 1275 static void update_split_timeout(struct fw_card *card) 1276 __must_hold(&card->split_timeout.lock) 1277 { 1278 unsigned int cycles; 1279 1280 cycles = card->split_timeout.hi * 8000 + (card->split_timeout.lo >> 19); 1281 1282 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ 1283 cycles = clamp(cycles, 800u, 3u * 8000u); 1284 1285 card->split_timeout.cycles = cycles; 1286 card->split_timeout.jiffies = isoc_cycles_to_jiffies(cycles); 1287 } 1288 1289 static void handle_registers(struct fw_card *card, struct fw_request *request, 1290 int tcode, int destination, int source, int generation, 1291 unsigned long long offset, void *payload, size_t length, 1292 void *callback_data) 1293 { 1294 int reg = offset & ~CSR_REGISTER_BASE; 1295 __be32 *data = payload; 1296 int rcode = RCODE_COMPLETE; 1297 1298 switch (reg) { 1299 case CSR_PRIORITY_BUDGET: 1300 if (!card->priority_budget_implemented) { 1301 rcode = RCODE_ADDRESS_ERROR; 1302 break; 1303 } 1304 fallthrough; 1305 1306 case CSR_NODE_IDS: 1307 /* 1308 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1309 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1310 */ 1311 fallthrough; 1312 1313 case CSR_STATE_CLEAR: 1314 case CSR_STATE_SET: 1315 case CSR_CYCLE_TIME: 1316 case CSR_BUS_TIME: 1317 case CSR_BUSY_TIMEOUT: 1318 if (tcode == TCODE_READ_QUADLET_REQUEST) 1319 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1320 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1321 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1322 else 1323 rcode = RCODE_TYPE_ERROR; 1324 break; 1325 1326 case CSR_RESET_START: 1327 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1328 card->driver->write_csr(card, CSR_STATE_CLEAR, 1329 CSR_STATE_BIT_ABDICATE); 1330 else 1331 rcode = RCODE_TYPE_ERROR; 1332 break; 1333 1334 case CSR_SPLIT_TIMEOUT_HI: 1335 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1336 *data = cpu_to_be32(card->split_timeout.hi); 1337 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1338 // NOTE: This can be without irqsave when we can guarantee that 1339 // __fw_send_request() for local destination never runs in any type of IRQ 1340 // context. 1341 scoped_guard(spinlock_irqsave, &card->split_timeout.lock) { 1342 card->split_timeout.hi = be32_to_cpu(*data) & 7; 1343 update_split_timeout(card); 1344 } 1345 } else { 1346 rcode = RCODE_TYPE_ERROR; 1347 } 1348 break; 1349 1350 case CSR_SPLIT_TIMEOUT_LO: 1351 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1352 *data = cpu_to_be32(card->split_timeout.lo); 1353 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1354 // NOTE: This can be without irqsave when we can guarantee that 1355 // __fw_send_request() for local destination never runs in any type of IRQ 1356 // context. 1357 scoped_guard(spinlock_irqsave, &card->split_timeout.lock) { 1358 card->split_timeout.lo = be32_to_cpu(*data) & 0xfff80000; 1359 update_split_timeout(card); 1360 } 1361 } else { 1362 rcode = RCODE_TYPE_ERROR; 1363 } 1364 break; 1365 1366 case CSR_MAINT_UTILITY: 1367 if (tcode == TCODE_READ_QUADLET_REQUEST) 1368 *data = card->maint_utility_register; 1369 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1370 card->maint_utility_register = *data; 1371 else 1372 rcode = RCODE_TYPE_ERROR; 1373 break; 1374 1375 case CSR_BROADCAST_CHANNEL: 1376 if (tcode == TCODE_READ_QUADLET_REQUEST) 1377 *data = cpu_to_be32(card->broadcast_channel); 1378 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1379 card->broadcast_channel = 1380 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1381 BROADCAST_CHANNEL_INITIAL; 1382 else 1383 rcode = RCODE_TYPE_ERROR; 1384 break; 1385 1386 case CSR_BUS_MANAGER_ID: 1387 case CSR_BANDWIDTH_AVAILABLE: 1388 case CSR_CHANNELS_AVAILABLE_HI: 1389 case CSR_CHANNELS_AVAILABLE_LO: 1390 /* 1391 * FIXME: these are handled by the OHCI hardware and 1392 * the stack never sees these request. If we add 1393 * support for a new type of controller that doesn't 1394 * handle this in hardware we need to deal with these 1395 * transactions. 1396 */ 1397 BUG(); 1398 break; 1399 1400 default: 1401 rcode = RCODE_ADDRESS_ERROR; 1402 break; 1403 } 1404 1405 fw_send_response(card, request, rcode); 1406 } 1407 1408 static struct fw_address_handler registers = { 1409 .length = 0x400, 1410 .address_callback = handle_registers, 1411 }; 1412 1413 static void handle_low_memory(struct fw_card *card, struct fw_request *request, 1414 int tcode, int destination, int source, int generation, 1415 unsigned long long offset, void *payload, size_t length, 1416 void *callback_data) 1417 { 1418 /* 1419 * This catches requests not handled by the physical DMA unit, 1420 * i.e., wrong transaction types or unauthorized source nodes. 1421 */ 1422 fw_send_response(card, request, RCODE_TYPE_ERROR); 1423 } 1424 1425 static struct fw_address_handler low_memory = { 1426 .length = FW_MAX_PHYSICAL_RANGE, 1427 .address_callback = handle_low_memory, 1428 }; 1429 1430 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1431 MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1432 MODULE_LICENSE("GPL"); 1433 1434 static const u32 vendor_textual_descriptor[] = { 1435 /* textual descriptor leaf () */ 1436 0x00060000, 1437 0x00000000, 1438 0x00000000, 1439 0x4c696e75, /* L i n u */ 1440 0x78204669, /* x F i */ 1441 0x72657769, /* r e w i */ 1442 0x72650000, /* r e */ 1443 }; 1444 1445 static const u32 model_textual_descriptor[] = { 1446 /* model descriptor leaf () */ 1447 0x00030000, 1448 0x00000000, 1449 0x00000000, 1450 0x4a756a75, /* J u j u */ 1451 }; 1452 1453 static struct fw_descriptor vendor_id_descriptor = { 1454 .length = ARRAY_SIZE(vendor_textual_descriptor), 1455 .immediate = 0x03001f11, 1456 .key = 0x81000000, 1457 .data = vendor_textual_descriptor, 1458 }; 1459 1460 static struct fw_descriptor model_id_descriptor = { 1461 .length = ARRAY_SIZE(model_textual_descriptor), 1462 .immediate = 0x17023901, 1463 .key = 0x81000000, 1464 .data = model_textual_descriptor, 1465 }; 1466 1467 static int __init fw_core_init(void) 1468 { 1469 int ret; 1470 1471 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM | WQ_UNBOUND, 1472 0); 1473 if (!fw_workqueue) 1474 return -ENOMEM; 1475 1476 ret = bus_register(&fw_bus_type); 1477 if (ret < 0) { 1478 destroy_workqueue(fw_workqueue); 1479 return ret; 1480 } 1481 1482 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1483 if (fw_cdev_major < 0) { 1484 bus_unregister(&fw_bus_type); 1485 destroy_workqueue(fw_workqueue); 1486 return fw_cdev_major; 1487 } 1488 1489 fw_core_add_address_handler(&topology_map, &topology_map_region); 1490 fw_core_add_address_handler(®isters, ®isters_region); 1491 fw_core_add_address_handler(&low_memory, &low_memory_region); 1492 fw_core_add_descriptor(&vendor_id_descriptor); 1493 fw_core_add_descriptor(&model_id_descriptor); 1494 1495 return 0; 1496 } 1497 1498 static void __exit fw_core_cleanup(void) 1499 { 1500 unregister_chrdev(fw_cdev_major, "firewire"); 1501 bus_unregister(&fw_bus_type); 1502 destroy_workqueue(fw_workqueue); 1503 xa_destroy(&fw_device_xa); 1504 } 1505 1506 module_init(fw_core_init); 1507 module_exit(fw_core_cleanup); 1508