1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core IEEE1394 transaction logic 4 * 5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/completion.h> 10 #include <linux/device.h> 11 #include <linux/errno.h> 12 #include <linux/firewire.h> 13 #include <linux/firewire-constants.h> 14 #include <linux/fs.h> 15 #include <linux/init.h> 16 #include <linux/idr.h> 17 #include <linux/jiffies.h> 18 #include <linux/kernel.h> 19 #include <linux/list.h> 20 #include <linux/module.h> 21 #include <linux/rculist.h> 22 #include <linux/slab.h> 23 #include <linux/spinlock.h> 24 #include <linux/string.h> 25 #include <linux/timer.h> 26 #include <linux/types.h> 27 #include <linux/workqueue.h> 28 29 #include <asm/byteorder.h> 30 31 #include "core.h" 32 #include <trace/events/firewire.h> 33 #include "packet-header-definitions.h" 34 35 #define HEADER_DESTINATION_IS_BROADCAST(header) \ 36 ((async_header_get_destination(header) & 0x3f) == 0x3f) 37 38 #define PHY_PACKET_CONFIG 0x0 39 #define PHY_PACKET_LINK_ON 0x1 40 #define PHY_PACKET_SELF_ID 0x2 41 42 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22)) 43 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23)) 44 #define PHY_IDENTIFIER(id) ((id) << 30) 45 46 /* returns 0 if the split timeout handler is already running */ 47 static int try_cancel_split_timeout(struct fw_transaction *t) 48 { 49 if (t->is_split_transaction) 50 return del_timer(&t->split_timeout_timer); 51 else 52 return 1; 53 } 54 55 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode, 56 u32 response_tstamp) 57 { 58 struct fw_transaction *t = NULL, *iter; 59 unsigned long flags; 60 61 spin_lock_irqsave(&card->lock, flags); 62 list_for_each_entry(iter, &card->transaction_list, link) { 63 if (iter == transaction) { 64 if (!try_cancel_split_timeout(iter)) { 65 spin_unlock_irqrestore(&card->lock, flags); 66 goto timed_out; 67 } 68 list_del_init(&iter->link); 69 card->tlabel_mask &= ~(1ULL << iter->tlabel); 70 t = iter; 71 break; 72 } 73 } 74 spin_unlock_irqrestore(&card->lock, flags); 75 76 if (t) { 77 if (!t->with_tstamp) { 78 t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data); 79 } else { 80 t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, 81 NULL, 0, t->callback_data); 82 } 83 return 0; 84 } 85 86 timed_out: 87 return -ENOENT; 88 } 89 90 /* 91 * Only valid for transactions that are potentially pending (ie have 92 * been sent). 93 */ 94 int fw_cancel_transaction(struct fw_card *card, 95 struct fw_transaction *transaction) 96 { 97 u32 tstamp; 98 99 /* 100 * Cancel the packet transmission if it's still queued. That 101 * will call the packet transmission callback which cancels 102 * the transaction. 103 */ 104 105 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 106 return 0; 107 108 /* 109 * If the request packet has already been sent, we need to see 110 * if the transaction is still pending and remove it in that case. 111 */ 112 113 if (transaction->packet.ack == 0) { 114 // The timestamp is reused since it was just read now. 115 tstamp = transaction->packet.timestamp; 116 } else { 117 u32 curr_cycle_time = 0; 118 119 (void)fw_card_read_cycle_time(card, &curr_cycle_time); 120 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); 121 } 122 123 return close_transaction(transaction, card, RCODE_CANCELLED, tstamp); 124 } 125 EXPORT_SYMBOL(fw_cancel_transaction); 126 127 static void split_transaction_timeout_callback(struct timer_list *timer) 128 { 129 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer); 130 struct fw_card *card = t->card; 131 unsigned long flags; 132 133 spin_lock_irqsave(&card->lock, flags); 134 if (list_empty(&t->link)) { 135 spin_unlock_irqrestore(&card->lock, flags); 136 return; 137 } 138 list_del(&t->link); 139 card->tlabel_mask &= ~(1ULL << t->tlabel); 140 spin_unlock_irqrestore(&card->lock, flags); 141 142 if (!t->with_tstamp) { 143 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 144 } else { 145 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, 146 t->split_timeout_cycle, NULL, 0, t->callback_data); 147 } 148 } 149 150 static void start_split_transaction_timeout(struct fw_transaction *t, 151 struct fw_card *card) 152 { 153 unsigned long flags; 154 155 spin_lock_irqsave(&card->lock, flags); 156 157 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) { 158 spin_unlock_irqrestore(&card->lock, flags); 159 return; 160 } 161 162 t->is_split_transaction = true; 163 mod_timer(&t->split_timeout_timer, 164 jiffies + card->split_timeout_jiffies); 165 166 spin_unlock_irqrestore(&card->lock, flags); 167 } 168 169 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp); 170 171 static void transmit_complete_callback(struct fw_packet *packet, 172 struct fw_card *card, int status) 173 { 174 struct fw_transaction *t = 175 container_of(packet, struct fw_transaction, packet); 176 177 trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation, 178 packet->speed, status, packet->timestamp); 179 180 switch (status) { 181 case ACK_COMPLETE: 182 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp); 183 break; 184 case ACK_PENDING: 185 { 186 t->split_timeout_cycle = 187 compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff; 188 start_split_transaction_timeout(t, card); 189 break; 190 } 191 case ACK_BUSY_X: 192 case ACK_BUSY_A: 193 case ACK_BUSY_B: 194 close_transaction(t, card, RCODE_BUSY, packet->timestamp); 195 break; 196 case ACK_DATA_ERROR: 197 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp); 198 break; 199 case ACK_TYPE_ERROR: 200 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp); 201 break; 202 default: 203 /* 204 * In this case the ack is really a juju specific 205 * rcode, so just forward that to the callback. 206 */ 207 close_transaction(t, card, status, packet->timestamp); 208 break; 209 } 210 } 211 212 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 213 int destination_id, int source_id, int generation, int speed, 214 unsigned long long offset, void *payload, size_t length) 215 { 216 int ext_tcode; 217 218 if (tcode == TCODE_STREAM_DATA) { 219 // The value of destination_id argument should include tag, channel, and sy fields 220 // as isochronous packet header has. 221 packet->header[0] = destination_id; 222 isoc_header_set_data_length(packet->header, length); 223 isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA); 224 packet->header_length = 4; 225 packet->payload = payload; 226 packet->payload_length = length; 227 228 goto common; 229 } 230 231 if (tcode > 0x10) { 232 ext_tcode = tcode & ~0x10; 233 tcode = TCODE_LOCK_REQUEST; 234 } else 235 ext_tcode = 0; 236 237 async_header_set_retry(packet->header, RETRY_X); 238 async_header_set_tlabel(packet->header, tlabel); 239 async_header_set_tcode(packet->header, tcode); 240 async_header_set_destination(packet->header, destination_id); 241 async_header_set_source(packet->header, source_id); 242 async_header_set_offset(packet->header, offset); 243 244 switch (tcode) { 245 case TCODE_WRITE_QUADLET_REQUEST: 246 async_header_set_quadlet_data(packet->header, *(u32 *)payload); 247 packet->header_length = 16; 248 packet->payload_length = 0; 249 break; 250 251 case TCODE_LOCK_REQUEST: 252 case TCODE_WRITE_BLOCK_REQUEST: 253 async_header_set_data_length(packet->header, length); 254 async_header_set_extended_tcode(packet->header, ext_tcode); 255 packet->header_length = 16; 256 packet->payload = payload; 257 packet->payload_length = length; 258 break; 259 260 case TCODE_READ_QUADLET_REQUEST: 261 packet->header_length = 12; 262 packet->payload_length = 0; 263 break; 264 265 case TCODE_READ_BLOCK_REQUEST: 266 async_header_set_data_length(packet->header, length); 267 async_header_set_extended_tcode(packet->header, ext_tcode); 268 packet->header_length = 16; 269 packet->payload_length = 0; 270 break; 271 272 default: 273 WARN(1, "wrong tcode %d\n", tcode); 274 } 275 common: 276 packet->speed = speed; 277 packet->generation = generation; 278 packet->ack = 0; 279 packet->payload_mapped = false; 280 } 281 282 static int allocate_tlabel(struct fw_card *card) 283 { 284 int tlabel; 285 286 tlabel = card->current_tlabel; 287 while (card->tlabel_mask & (1ULL << tlabel)) { 288 tlabel = (tlabel + 1) & 0x3f; 289 if (tlabel == card->current_tlabel) 290 return -EBUSY; 291 } 292 293 card->current_tlabel = (tlabel + 1) & 0x3f; 294 card->tlabel_mask |= 1ULL << tlabel; 295 296 return tlabel; 297 } 298 299 /** 300 * __fw_send_request() - submit a request packet for transmission to generate callback for response 301 * subaction with or without time stamp. 302 * @card: interface to send the request at 303 * @t: transaction instance to which the request belongs 304 * @tcode: transaction code 305 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 306 * @generation: bus generation in which request and response are valid 307 * @speed: transmission speed 308 * @offset: 48bit wide offset into destination's address space 309 * @payload: data payload for the request subaction 310 * @length: length of the payload, in bytes 311 * @callback: union of two functions whether to receive time stamp or not for response 312 * subaction. 313 * @with_tstamp: Whether to receive time stamp or not for response subaction. 314 * @callback_data: data to be passed to the transaction completion callback 315 * 316 * Submit a request packet into the asynchronous request transmission queue. 317 * Can be called from atomic context. If you prefer a blocking API, use 318 * fw_run_transaction() in a context that can sleep. 319 * 320 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 321 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 322 * 323 * Make sure that the value in @destination_id is not older than the one in 324 * @generation. Otherwise the request is in danger to be sent to a wrong node. 325 * 326 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 327 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 328 * It will contain tag, channel, and sy data instead of a node ID then. 329 * 330 * The payload buffer at @data is going to be DMA-mapped except in case of 331 * @length <= 8 or of local (loopback) requests. Hence make sure that the 332 * buffer complies with the restrictions of the streaming DMA mapping API. 333 * @payload must not be freed before the @callback is called. 334 * 335 * In case of request types without payload, @data is NULL and @length is 0. 336 * 337 * After the transaction is completed successfully or unsuccessfully, the 338 * @callback will be called. Among its parameters is the response code which 339 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 340 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 341 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 342 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 343 * generation, or missing ACK respectively. 344 * 345 * Note some timing corner cases: fw_send_request() may complete much earlier 346 * than when the request packet actually hits the wire. On the other hand, 347 * transaction completion and hence execution of @callback may happen even 348 * before fw_send_request() returns. 349 */ 350 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 351 int destination_id, int generation, int speed, unsigned long long offset, 352 void *payload, size_t length, union fw_transaction_callback callback, 353 bool with_tstamp, void *callback_data) 354 { 355 unsigned long flags; 356 int tlabel; 357 358 /* 359 * Allocate tlabel from the bitmap and put the transaction on 360 * the list while holding the card spinlock. 361 */ 362 363 spin_lock_irqsave(&card->lock, flags); 364 365 tlabel = allocate_tlabel(card); 366 if (tlabel < 0) { 367 spin_unlock_irqrestore(&card->lock, flags); 368 if (!with_tstamp) { 369 callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 370 } else { 371 // Timestamping on behalf of hardware. 372 u32 curr_cycle_time = 0; 373 u32 tstamp; 374 375 (void)fw_card_read_cycle_time(card, &curr_cycle_time); 376 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); 377 378 callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0, 379 callback_data); 380 } 381 return; 382 } 383 384 t->node_id = destination_id; 385 t->tlabel = tlabel; 386 t->card = card; 387 t->is_split_transaction = false; 388 timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0); 389 t->callback = callback; 390 t->with_tstamp = with_tstamp; 391 t->callback_data = callback_data; 392 393 fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation, 394 speed, offset, payload, length); 395 t->packet.callback = transmit_complete_callback; 396 397 list_add_tail(&t->link, &card->transaction_list); 398 399 spin_unlock_irqrestore(&card->lock, flags); 400 401 trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed, 402 t->packet.header, payload, 403 tcode_is_read_request(tcode) ? 0 : length / 4); 404 405 card->driver->send_request(card, &t->packet); 406 } 407 EXPORT_SYMBOL_GPL(__fw_send_request); 408 409 struct transaction_callback_data { 410 struct completion done; 411 void *payload; 412 int rcode; 413 }; 414 415 static void transaction_callback(struct fw_card *card, int rcode, 416 void *payload, size_t length, void *data) 417 { 418 struct transaction_callback_data *d = data; 419 420 if (rcode == RCODE_COMPLETE) 421 memcpy(d->payload, payload, length); 422 d->rcode = rcode; 423 complete(&d->done); 424 } 425 426 /** 427 * fw_run_transaction() - send request and sleep until transaction is completed 428 * @card: card interface for this request 429 * @tcode: transaction code 430 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 431 * @generation: bus generation in which request and response are valid 432 * @speed: transmission speed 433 * @offset: 48bit wide offset into destination's address space 434 * @payload: data payload for the request subaction 435 * @length: length of the payload, in bytes 436 * 437 * Returns the RCODE. See fw_send_request() for parameter documentation. 438 * Unlike fw_send_request(), @data points to the payload of the request or/and 439 * to the payload of the response. DMA mapping restrictions apply to outbound 440 * request payloads of >= 8 bytes but not to inbound response payloads. 441 */ 442 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 443 int generation, int speed, unsigned long long offset, 444 void *payload, size_t length) 445 { 446 struct transaction_callback_data d; 447 struct fw_transaction t; 448 449 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0); 450 init_completion(&d.done); 451 d.payload = payload; 452 fw_send_request(card, &t, tcode, destination_id, generation, speed, 453 offset, payload, length, transaction_callback, &d); 454 wait_for_completion(&d.done); 455 destroy_timer_on_stack(&t.split_timeout_timer); 456 457 return d.rcode; 458 } 459 EXPORT_SYMBOL(fw_run_transaction); 460 461 static DEFINE_MUTEX(phy_config_mutex); 462 static DECLARE_COMPLETION(phy_config_done); 463 464 static void transmit_phy_packet_callback(struct fw_packet *packet, 465 struct fw_card *card, int status) 466 { 467 trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status, 468 packet->timestamp); 469 complete(&phy_config_done); 470 } 471 472 static struct fw_packet phy_config_packet = { 473 .header_length = 12, 474 .header[0] = TCODE_LINK_INTERNAL << 4, 475 .payload_length = 0, 476 .speed = SCODE_100, 477 .callback = transmit_phy_packet_callback, 478 }; 479 480 void fw_send_phy_config(struct fw_card *card, 481 int node_id, int generation, int gap_count) 482 { 483 long timeout = DIV_ROUND_UP(HZ, 10); 484 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG); 485 486 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) 487 data |= PHY_CONFIG_ROOT_ID(node_id); 488 489 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 490 gap_count = card->driver->read_phy_reg(card, 1); 491 if (gap_count < 0) 492 return; 493 494 gap_count &= 63; 495 if (gap_count == 63) 496 return; 497 } 498 data |= PHY_CONFIG_GAP_COUNT(gap_count); 499 500 mutex_lock(&phy_config_mutex); 501 502 phy_config_packet.header[1] = data; 503 phy_config_packet.header[2] = ~data; 504 phy_config_packet.generation = generation; 505 reinit_completion(&phy_config_done); 506 507 trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index, 508 phy_config_packet.generation, phy_config_packet.header[1], 509 phy_config_packet.header[2]); 510 511 card->driver->send_request(card, &phy_config_packet); 512 wait_for_completion_timeout(&phy_config_done, timeout); 513 514 mutex_unlock(&phy_config_mutex); 515 } 516 517 static struct fw_address_handler *lookup_overlapping_address_handler( 518 struct list_head *list, unsigned long long offset, size_t length) 519 { 520 struct fw_address_handler *handler; 521 522 list_for_each_entry_rcu(handler, list, link) { 523 if (handler->offset < offset + length && 524 offset < handler->offset + handler->length) 525 return handler; 526 } 527 528 return NULL; 529 } 530 531 static bool is_enclosing_handler(struct fw_address_handler *handler, 532 unsigned long long offset, size_t length) 533 { 534 return handler->offset <= offset && 535 offset + length <= handler->offset + handler->length; 536 } 537 538 static struct fw_address_handler *lookup_enclosing_address_handler( 539 struct list_head *list, unsigned long long offset, size_t length) 540 { 541 struct fw_address_handler *handler; 542 543 list_for_each_entry_rcu(handler, list, link) { 544 if (is_enclosing_handler(handler, offset, length)) 545 return handler; 546 } 547 548 return NULL; 549 } 550 551 static DEFINE_SPINLOCK(address_handler_list_lock); 552 static LIST_HEAD(address_handler_list); 553 554 const struct fw_address_region fw_high_memory_region = 555 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, }; 556 EXPORT_SYMBOL(fw_high_memory_region); 557 558 static const struct fw_address_region low_memory_region = 559 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, }; 560 561 #if 0 562 const struct fw_address_region fw_private_region = 563 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 564 const struct fw_address_region fw_csr_region = 565 { .start = CSR_REGISTER_BASE, 566 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 567 const struct fw_address_region fw_unit_space_region = 568 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 569 #endif /* 0 */ 570 571 /** 572 * fw_core_add_address_handler() - register for incoming requests 573 * @handler: callback 574 * @region: region in the IEEE 1212 node space address range 575 * 576 * region->start, ->end, and handler->length have to be quadlet-aligned. 577 * 578 * When a request is received that falls within the specified address range, 579 * the specified callback is invoked. The parameters passed to the callback 580 * give the details of the particular request. 581 * 582 * To be called in process context. 583 * Return value: 0 on success, non-zero otherwise. 584 * 585 * The start offset of the handler's address region is determined by 586 * fw_core_add_address_handler() and is returned in handler->offset. 587 * 588 * Address allocations are exclusive, except for the FCP registers. 589 */ 590 int fw_core_add_address_handler(struct fw_address_handler *handler, 591 const struct fw_address_region *region) 592 { 593 struct fw_address_handler *other; 594 int ret = -EBUSY; 595 596 if (region->start & 0xffff000000000003ULL || 597 region->start >= region->end || 598 region->end > 0x0001000000000000ULL || 599 handler->length & 3 || 600 handler->length == 0) 601 return -EINVAL; 602 603 spin_lock(&address_handler_list_lock); 604 605 handler->offset = region->start; 606 while (handler->offset + handler->length <= region->end) { 607 if (is_in_fcp_region(handler->offset, handler->length)) 608 other = NULL; 609 else 610 other = lookup_overlapping_address_handler 611 (&address_handler_list, 612 handler->offset, handler->length); 613 if (other != NULL) { 614 handler->offset += other->length; 615 } else { 616 list_add_tail_rcu(&handler->link, &address_handler_list); 617 ret = 0; 618 break; 619 } 620 } 621 622 spin_unlock(&address_handler_list_lock); 623 624 return ret; 625 } 626 EXPORT_SYMBOL(fw_core_add_address_handler); 627 628 /** 629 * fw_core_remove_address_handler() - unregister an address handler 630 * @handler: callback 631 * 632 * To be called in process context. 633 * 634 * When fw_core_remove_address_handler() returns, @handler->callback() is 635 * guaranteed to not run on any CPU anymore. 636 */ 637 void fw_core_remove_address_handler(struct fw_address_handler *handler) 638 { 639 spin_lock(&address_handler_list_lock); 640 list_del_rcu(&handler->link); 641 spin_unlock(&address_handler_list_lock); 642 synchronize_rcu(); 643 } 644 EXPORT_SYMBOL(fw_core_remove_address_handler); 645 646 struct fw_request { 647 struct kref kref; 648 struct fw_packet response; 649 u32 request_header[ASYNC_HEADER_QUADLET_COUNT]; 650 int ack; 651 u32 timestamp; 652 u32 length; 653 u32 data[]; 654 }; 655 656 void fw_request_get(struct fw_request *request) 657 { 658 kref_get(&request->kref); 659 } 660 661 static void release_request(struct kref *kref) 662 { 663 struct fw_request *request = container_of(kref, struct fw_request, kref); 664 665 kfree(request); 666 } 667 668 void fw_request_put(struct fw_request *request) 669 { 670 kref_put(&request->kref, release_request); 671 } 672 673 static void free_response_callback(struct fw_packet *packet, 674 struct fw_card *card, int status) 675 { 676 struct fw_request *request = container_of(packet, struct fw_request, response); 677 678 trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation, 679 packet->speed, status, packet->timestamp); 680 681 // Decrease the reference count since not at in-flight. 682 fw_request_put(request); 683 684 // Decrease the reference count to release the object. 685 fw_request_put(request); 686 } 687 688 int fw_get_response_length(struct fw_request *r) 689 { 690 int tcode, ext_tcode, data_length; 691 692 tcode = async_header_get_tcode(r->request_header); 693 694 switch (tcode) { 695 case TCODE_WRITE_QUADLET_REQUEST: 696 case TCODE_WRITE_BLOCK_REQUEST: 697 return 0; 698 699 case TCODE_READ_QUADLET_REQUEST: 700 return 4; 701 702 case TCODE_READ_BLOCK_REQUEST: 703 data_length = async_header_get_data_length(r->request_header); 704 return data_length; 705 706 case TCODE_LOCK_REQUEST: 707 ext_tcode = async_header_get_extended_tcode(r->request_header); 708 data_length = async_header_get_data_length(r->request_header); 709 switch (ext_tcode) { 710 case EXTCODE_FETCH_ADD: 711 case EXTCODE_LITTLE_ADD: 712 return data_length; 713 default: 714 return data_length / 2; 715 } 716 717 default: 718 WARN(1, "wrong tcode %d\n", tcode); 719 return 0; 720 } 721 } 722 723 void fw_fill_response(struct fw_packet *response, u32 *request_header, 724 int rcode, void *payload, size_t length) 725 { 726 int tcode, tlabel, extended_tcode, source, destination; 727 728 tcode = async_header_get_tcode(request_header); 729 tlabel = async_header_get_tlabel(request_header); 730 source = async_header_get_destination(request_header); // Exchange. 731 destination = async_header_get_source(request_header); // Exchange. 732 extended_tcode = async_header_get_extended_tcode(request_header); 733 734 async_header_set_retry(response->header, RETRY_1); 735 async_header_set_tlabel(response->header, tlabel); 736 async_header_set_destination(response->header, destination); 737 async_header_set_source(response->header, source); 738 async_header_set_rcode(response->header, rcode); 739 response->header[2] = 0; // The field is reserved. 740 741 switch (tcode) { 742 case TCODE_WRITE_QUADLET_REQUEST: 743 case TCODE_WRITE_BLOCK_REQUEST: 744 async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE); 745 response->header_length = 12; 746 response->payload_length = 0; 747 break; 748 749 case TCODE_READ_QUADLET_REQUEST: 750 async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE); 751 if (payload != NULL) 752 async_header_set_quadlet_data(response->header, *(u32 *)payload); 753 else 754 async_header_set_quadlet_data(response->header, 0); 755 response->header_length = 16; 756 response->payload_length = 0; 757 break; 758 759 case TCODE_READ_BLOCK_REQUEST: 760 case TCODE_LOCK_REQUEST: 761 async_header_set_tcode(response->header, tcode + 2); 762 async_header_set_data_length(response->header, length); 763 async_header_set_extended_tcode(response->header, extended_tcode); 764 response->header_length = 16; 765 response->payload = payload; 766 response->payload_length = length; 767 break; 768 769 default: 770 WARN(1, "wrong tcode %d\n", tcode); 771 } 772 773 response->payload_mapped = false; 774 } 775 EXPORT_SYMBOL(fw_fill_response); 776 777 static u32 compute_split_timeout_timestamp(struct fw_card *card, 778 u32 request_timestamp) 779 { 780 unsigned int cycles; 781 u32 timestamp; 782 783 cycles = card->split_timeout_cycles; 784 cycles += request_timestamp & 0x1fff; 785 786 timestamp = request_timestamp & ~0x1fff; 787 timestamp += (cycles / 8000) << 13; 788 timestamp |= cycles % 8000; 789 790 return timestamp; 791 } 792 793 static struct fw_request *allocate_request(struct fw_card *card, 794 struct fw_packet *p) 795 { 796 struct fw_request *request; 797 u32 *data, length; 798 int request_tcode; 799 800 request_tcode = async_header_get_tcode(p->header); 801 switch (request_tcode) { 802 case TCODE_WRITE_QUADLET_REQUEST: 803 data = &p->header[3]; 804 length = 4; 805 break; 806 807 case TCODE_WRITE_BLOCK_REQUEST: 808 case TCODE_LOCK_REQUEST: 809 data = p->payload; 810 length = async_header_get_data_length(p->header); 811 break; 812 813 case TCODE_READ_QUADLET_REQUEST: 814 data = NULL; 815 length = 4; 816 break; 817 818 case TCODE_READ_BLOCK_REQUEST: 819 data = NULL; 820 length = async_header_get_data_length(p->header); 821 break; 822 823 default: 824 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", 825 p->header[0], p->header[1], p->header[2]); 826 return NULL; 827 } 828 829 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 830 if (request == NULL) 831 return NULL; 832 kref_init(&request->kref); 833 834 request->response.speed = p->speed; 835 request->response.timestamp = 836 compute_split_timeout_timestamp(card, p->timestamp); 837 request->response.generation = p->generation; 838 request->response.ack = 0; 839 request->response.callback = free_response_callback; 840 request->ack = p->ack; 841 request->timestamp = p->timestamp; 842 request->length = length; 843 if (data) 844 memcpy(request->data, data, length); 845 846 memcpy(request->request_header, p->header, sizeof(p->header)); 847 848 return request; 849 } 850 851 /** 852 * fw_send_response: - send response packet for asynchronous transaction. 853 * @card: interface to send the response at. 854 * @request: firewire request data for the transaction. 855 * @rcode: response code to send. 856 * 857 * Submit a response packet into the asynchronous response transmission queue. The @request 858 * is going to be released when the transmission successfully finishes later. 859 */ 860 void fw_send_response(struct fw_card *card, 861 struct fw_request *request, int rcode) 862 { 863 u32 *data = NULL; 864 unsigned int data_length = 0; 865 866 /* unified transaction or broadcast transaction: don't respond */ 867 if (request->ack != ACK_PENDING || 868 HEADER_DESTINATION_IS_BROADCAST(request->request_header)) { 869 fw_request_put(request); 870 return; 871 } 872 873 if (rcode == RCODE_COMPLETE) { 874 data = request->data; 875 data_length = fw_get_response_length(request); 876 } 877 878 fw_fill_response(&request->response, request->request_header, rcode, data, data_length); 879 880 // Increase the reference count so that the object is kept during in-flight. 881 fw_request_get(request); 882 883 trace_async_response_outbound_initiate((uintptr_t)request, card->index, 884 request->response.generation, request->response.speed, 885 request->response.header, data, 886 data ? data_length / 4 : 0); 887 888 card->driver->send_response(card, &request->response); 889 } 890 EXPORT_SYMBOL(fw_send_response); 891 892 /** 893 * fw_get_request_speed() - returns speed at which the @request was received 894 * @request: firewire request data 895 */ 896 int fw_get_request_speed(struct fw_request *request) 897 { 898 return request->response.speed; 899 } 900 EXPORT_SYMBOL(fw_get_request_speed); 901 902 /** 903 * fw_request_get_timestamp: Get timestamp of the request. 904 * @request: The opaque pointer to request structure. 905 * 906 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The 907 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count 908 * field of isochronous cycle time register. 909 * 910 * Returns: timestamp of the request. 911 */ 912 u32 fw_request_get_timestamp(const struct fw_request *request) 913 { 914 return request->timestamp; 915 } 916 EXPORT_SYMBOL_GPL(fw_request_get_timestamp); 917 918 static void handle_exclusive_region_request(struct fw_card *card, 919 struct fw_packet *p, 920 struct fw_request *request, 921 unsigned long long offset) 922 { 923 struct fw_address_handler *handler; 924 int tcode, destination, source; 925 926 destination = async_header_get_destination(p->header); 927 source = async_header_get_source(p->header); 928 tcode = async_header_get_tcode(p->header); 929 if (tcode == TCODE_LOCK_REQUEST) 930 tcode = 0x10 + async_header_get_extended_tcode(p->header); 931 932 rcu_read_lock(); 933 handler = lookup_enclosing_address_handler(&address_handler_list, 934 offset, request->length); 935 if (handler) 936 handler->address_callback(card, request, 937 tcode, destination, source, 938 p->generation, offset, 939 request->data, request->length, 940 handler->callback_data); 941 rcu_read_unlock(); 942 943 if (!handler) 944 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 945 } 946 947 static void handle_fcp_region_request(struct fw_card *card, 948 struct fw_packet *p, 949 struct fw_request *request, 950 unsigned long long offset) 951 { 952 struct fw_address_handler *handler; 953 int tcode, destination, source; 954 955 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 956 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 957 request->length > 0x200) { 958 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 959 960 return; 961 } 962 963 tcode = async_header_get_tcode(p->header); 964 destination = async_header_get_destination(p->header); 965 source = async_header_get_source(p->header); 966 967 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 968 tcode != TCODE_WRITE_BLOCK_REQUEST) { 969 fw_send_response(card, request, RCODE_TYPE_ERROR); 970 971 return; 972 } 973 974 rcu_read_lock(); 975 list_for_each_entry_rcu(handler, &address_handler_list, link) { 976 if (is_enclosing_handler(handler, offset, request->length)) 977 handler->address_callback(card, request, tcode, 978 destination, source, 979 p->generation, offset, 980 request->data, 981 request->length, 982 handler->callback_data); 983 } 984 rcu_read_unlock(); 985 986 fw_send_response(card, request, RCODE_COMPLETE); 987 } 988 989 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 990 { 991 struct fw_request *request; 992 unsigned long long offset; 993 unsigned int tcode; 994 995 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 996 return; 997 998 tcode = async_header_get_tcode(p->header); 999 if (tcode_is_link_internal(tcode)) { 1000 trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp, 1001 p->header[1], p->header[2]); 1002 fw_cdev_handle_phy_packet(card, p); 1003 return; 1004 } 1005 1006 request = allocate_request(card, p); 1007 if (request == NULL) { 1008 /* FIXME: send statically allocated busy packet. */ 1009 return; 1010 } 1011 1012 trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed, 1013 p->ack, p->timestamp, p->header, request->data, 1014 tcode_is_read_request(tcode) ? 0 : request->length / 4); 1015 1016 offset = async_header_get_offset(p->header); 1017 1018 if (!is_in_fcp_region(offset, request->length)) 1019 handle_exclusive_region_request(card, p, request, offset); 1020 else 1021 handle_fcp_region_request(card, p, request, offset); 1022 1023 } 1024 EXPORT_SYMBOL(fw_core_handle_request); 1025 1026 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 1027 { 1028 struct fw_transaction *t = NULL, *iter; 1029 unsigned long flags; 1030 u32 *data; 1031 size_t data_length; 1032 int tcode, tlabel, source, rcode; 1033 1034 tcode = async_header_get_tcode(p->header); 1035 tlabel = async_header_get_tlabel(p->header); 1036 source = async_header_get_source(p->header); 1037 rcode = async_header_get_rcode(p->header); 1038 1039 // FIXME: sanity check packet, is length correct, does tcodes 1040 // and addresses match to the transaction request queried later. 1041 // 1042 // For the tracepoints event, let us decode the header here against the concern. 1043 1044 switch (tcode) { 1045 case TCODE_READ_QUADLET_RESPONSE: 1046 data = (u32 *) &p->header[3]; 1047 data_length = 4; 1048 break; 1049 1050 case TCODE_WRITE_RESPONSE: 1051 data = NULL; 1052 data_length = 0; 1053 break; 1054 1055 case TCODE_READ_BLOCK_RESPONSE: 1056 case TCODE_LOCK_RESPONSE: 1057 data = p->payload; 1058 data_length = async_header_get_data_length(p->header); 1059 break; 1060 1061 default: 1062 /* Should never happen, this is just to shut up gcc. */ 1063 data = NULL; 1064 data_length = 0; 1065 break; 1066 } 1067 1068 spin_lock_irqsave(&card->lock, flags); 1069 list_for_each_entry(iter, &card->transaction_list, link) { 1070 if (iter->node_id == source && iter->tlabel == tlabel) { 1071 if (!try_cancel_split_timeout(iter)) { 1072 spin_unlock_irqrestore(&card->lock, flags); 1073 goto timed_out; 1074 } 1075 list_del_init(&iter->link); 1076 card->tlabel_mask &= ~(1ULL << iter->tlabel); 1077 t = iter; 1078 break; 1079 } 1080 } 1081 spin_unlock_irqrestore(&card->lock, flags); 1082 1083 trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack, 1084 p->timestamp, p->header, data, data_length / 4); 1085 1086 if (!t) { 1087 timed_out: 1088 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", 1089 source, tlabel); 1090 return; 1091 } 1092 1093 /* 1094 * The response handler may be executed while the request handler 1095 * is still pending. Cancel the request handler. 1096 */ 1097 card->driver->cancel_packet(card, &t->packet); 1098 1099 if (!t->with_tstamp) { 1100 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data); 1101 } else { 1102 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data, 1103 data_length, t->callback_data); 1104 } 1105 } 1106 EXPORT_SYMBOL(fw_core_handle_response); 1107 1108 /** 1109 * fw_rcode_string - convert a firewire result code to an error description 1110 * @rcode: the result code 1111 */ 1112 const char *fw_rcode_string(int rcode) 1113 { 1114 static const char *const names[] = { 1115 [RCODE_COMPLETE] = "no error", 1116 [RCODE_CONFLICT_ERROR] = "conflict error", 1117 [RCODE_DATA_ERROR] = "data error", 1118 [RCODE_TYPE_ERROR] = "type error", 1119 [RCODE_ADDRESS_ERROR] = "address error", 1120 [RCODE_SEND_ERROR] = "send error", 1121 [RCODE_CANCELLED] = "timeout", 1122 [RCODE_BUSY] = "busy", 1123 [RCODE_GENERATION] = "bus reset", 1124 [RCODE_NO_ACK] = "no ack", 1125 }; 1126 1127 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode]) 1128 return names[rcode]; 1129 else 1130 return "unknown"; 1131 } 1132 EXPORT_SYMBOL(fw_rcode_string); 1133 1134 static const struct fw_address_region topology_map_region = 1135 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 1136 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 1137 1138 static void handle_topology_map(struct fw_card *card, struct fw_request *request, 1139 int tcode, int destination, int source, int generation, 1140 unsigned long long offset, void *payload, size_t length, 1141 void *callback_data) 1142 { 1143 int start; 1144 1145 if (!tcode_is_read_request(tcode)) { 1146 fw_send_response(card, request, RCODE_TYPE_ERROR); 1147 return; 1148 } 1149 1150 if ((offset & 3) > 0 || (length & 3) > 0) { 1151 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1152 return; 1153 } 1154 1155 start = (offset - topology_map_region.start) / 4; 1156 memcpy(payload, &card->topology_map[start], length); 1157 1158 fw_send_response(card, request, RCODE_COMPLETE); 1159 } 1160 1161 static struct fw_address_handler topology_map = { 1162 .length = 0x400, 1163 .address_callback = handle_topology_map, 1164 }; 1165 1166 static const struct fw_address_region registers_region = 1167 { .start = CSR_REGISTER_BASE, 1168 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1169 1170 static void update_split_timeout(struct fw_card *card) 1171 { 1172 unsigned int cycles; 1173 1174 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); 1175 1176 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ 1177 cycles = clamp(cycles, 800u, 3u * 8000u); 1178 1179 card->split_timeout_cycles = cycles; 1180 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); 1181 } 1182 1183 static void handle_registers(struct fw_card *card, struct fw_request *request, 1184 int tcode, int destination, int source, int generation, 1185 unsigned long long offset, void *payload, size_t length, 1186 void *callback_data) 1187 { 1188 int reg = offset & ~CSR_REGISTER_BASE; 1189 __be32 *data = payload; 1190 int rcode = RCODE_COMPLETE; 1191 unsigned long flags; 1192 1193 switch (reg) { 1194 case CSR_PRIORITY_BUDGET: 1195 if (!card->priority_budget_implemented) { 1196 rcode = RCODE_ADDRESS_ERROR; 1197 break; 1198 } 1199 fallthrough; 1200 1201 case CSR_NODE_IDS: 1202 /* 1203 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1204 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1205 */ 1206 fallthrough; 1207 1208 case CSR_STATE_CLEAR: 1209 case CSR_STATE_SET: 1210 case CSR_CYCLE_TIME: 1211 case CSR_BUS_TIME: 1212 case CSR_BUSY_TIMEOUT: 1213 if (tcode == TCODE_READ_QUADLET_REQUEST) 1214 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1215 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1216 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1217 else 1218 rcode = RCODE_TYPE_ERROR; 1219 break; 1220 1221 case CSR_RESET_START: 1222 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1223 card->driver->write_csr(card, CSR_STATE_CLEAR, 1224 CSR_STATE_BIT_ABDICATE); 1225 else 1226 rcode = RCODE_TYPE_ERROR; 1227 break; 1228 1229 case CSR_SPLIT_TIMEOUT_HI: 1230 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1231 *data = cpu_to_be32(card->split_timeout_hi); 1232 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1233 spin_lock_irqsave(&card->lock, flags); 1234 card->split_timeout_hi = be32_to_cpu(*data) & 7; 1235 update_split_timeout(card); 1236 spin_unlock_irqrestore(&card->lock, flags); 1237 } else { 1238 rcode = RCODE_TYPE_ERROR; 1239 } 1240 break; 1241 1242 case CSR_SPLIT_TIMEOUT_LO: 1243 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1244 *data = cpu_to_be32(card->split_timeout_lo); 1245 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1246 spin_lock_irqsave(&card->lock, flags); 1247 card->split_timeout_lo = 1248 be32_to_cpu(*data) & 0xfff80000; 1249 update_split_timeout(card); 1250 spin_unlock_irqrestore(&card->lock, flags); 1251 } else { 1252 rcode = RCODE_TYPE_ERROR; 1253 } 1254 break; 1255 1256 case CSR_MAINT_UTILITY: 1257 if (tcode == TCODE_READ_QUADLET_REQUEST) 1258 *data = card->maint_utility_register; 1259 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1260 card->maint_utility_register = *data; 1261 else 1262 rcode = RCODE_TYPE_ERROR; 1263 break; 1264 1265 case CSR_BROADCAST_CHANNEL: 1266 if (tcode == TCODE_READ_QUADLET_REQUEST) 1267 *data = cpu_to_be32(card->broadcast_channel); 1268 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1269 card->broadcast_channel = 1270 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1271 BROADCAST_CHANNEL_INITIAL; 1272 else 1273 rcode = RCODE_TYPE_ERROR; 1274 break; 1275 1276 case CSR_BUS_MANAGER_ID: 1277 case CSR_BANDWIDTH_AVAILABLE: 1278 case CSR_CHANNELS_AVAILABLE_HI: 1279 case CSR_CHANNELS_AVAILABLE_LO: 1280 /* 1281 * FIXME: these are handled by the OHCI hardware and 1282 * the stack never sees these request. If we add 1283 * support for a new type of controller that doesn't 1284 * handle this in hardware we need to deal with these 1285 * transactions. 1286 */ 1287 BUG(); 1288 break; 1289 1290 default: 1291 rcode = RCODE_ADDRESS_ERROR; 1292 break; 1293 } 1294 1295 fw_send_response(card, request, rcode); 1296 } 1297 1298 static struct fw_address_handler registers = { 1299 .length = 0x400, 1300 .address_callback = handle_registers, 1301 }; 1302 1303 static void handle_low_memory(struct fw_card *card, struct fw_request *request, 1304 int tcode, int destination, int source, int generation, 1305 unsigned long long offset, void *payload, size_t length, 1306 void *callback_data) 1307 { 1308 /* 1309 * This catches requests not handled by the physical DMA unit, 1310 * i.e., wrong transaction types or unauthorized source nodes. 1311 */ 1312 fw_send_response(card, request, RCODE_TYPE_ERROR); 1313 } 1314 1315 static struct fw_address_handler low_memory = { 1316 .length = FW_MAX_PHYSICAL_RANGE, 1317 .address_callback = handle_low_memory, 1318 }; 1319 1320 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1321 MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1322 MODULE_LICENSE("GPL"); 1323 1324 static const u32 vendor_textual_descriptor[] = { 1325 /* textual descriptor leaf () */ 1326 0x00060000, 1327 0x00000000, 1328 0x00000000, 1329 0x4c696e75, /* L i n u */ 1330 0x78204669, /* x F i */ 1331 0x72657769, /* r e w i */ 1332 0x72650000, /* r e */ 1333 }; 1334 1335 static const u32 model_textual_descriptor[] = { 1336 /* model descriptor leaf () */ 1337 0x00030000, 1338 0x00000000, 1339 0x00000000, 1340 0x4a756a75, /* J u j u */ 1341 }; 1342 1343 static struct fw_descriptor vendor_id_descriptor = { 1344 .length = ARRAY_SIZE(vendor_textual_descriptor), 1345 .immediate = 0x03001f11, 1346 .key = 0x81000000, 1347 .data = vendor_textual_descriptor, 1348 }; 1349 1350 static struct fw_descriptor model_id_descriptor = { 1351 .length = ARRAY_SIZE(model_textual_descriptor), 1352 .immediate = 0x17023901, 1353 .key = 0x81000000, 1354 .data = model_textual_descriptor, 1355 }; 1356 1357 static int __init fw_core_init(void) 1358 { 1359 int ret; 1360 1361 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0); 1362 if (!fw_workqueue) 1363 return -ENOMEM; 1364 1365 ret = bus_register(&fw_bus_type); 1366 if (ret < 0) { 1367 destroy_workqueue(fw_workqueue); 1368 return ret; 1369 } 1370 1371 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1372 if (fw_cdev_major < 0) { 1373 bus_unregister(&fw_bus_type); 1374 destroy_workqueue(fw_workqueue); 1375 return fw_cdev_major; 1376 } 1377 1378 fw_core_add_address_handler(&topology_map, &topology_map_region); 1379 fw_core_add_address_handler(®isters, ®isters_region); 1380 fw_core_add_address_handler(&low_memory, &low_memory_region); 1381 fw_core_add_descriptor(&vendor_id_descriptor); 1382 fw_core_add_descriptor(&model_id_descriptor); 1383 1384 return 0; 1385 } 1386 1387 static void __exit fw_core_cleanup(void) 1388 { 1389 unregister_chrdev(fw_cdev_major, "firewire"); 1390 bus_unregister(&fw_bus_type); 1391 destroy_workqueue(fw_workqueue); 1392 idr_destroy(&fw_device_idr); 1393 } 1394 1395 module_init(fw_core_init); 1396 module_exit(fw_core_cleanup); 1397