xref: /linux/drivers/firewire/core-transaction.c (revision 5a558f369ef89c6fd8170ee1137274fcc08517ae)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core IEEE1394 transaction logic
4  *
5  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/idr.h>
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rculist.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28 
29 #include <asm/byteorder.h>
30 
31 #include "core.h"
32 #include <trace/events/firewire.h>
33 #include "packet-header-definitions.h"
34 
35 #define HEADER_DESTINATION_IS_BROADCAST(header) \
36 	((async_header_get_destination(header) & 0x3f) == 0x3f)
37 
38 #define PHY_PACKET_CONFIG	0x0
39 #define PHY_PACKET_LINK_ON	0x1
40 #define PHY_PACKET_SELF_ID	0x2
41 
42 #define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
43 #define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
44 #define PHY_IDENTIFIER(id)		((id) << 30)
45 
46 /* returns 0 if the split timeout handler is already running */
47 static int try_cancel_split_timeout(struct fw_transaction *t)
48 {
49 	if (t->is_split_transaction)
50 		return del_timer(&t->split_timeout_timer);
51 	else
52 		return 1;
53 }
54 
55 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
56 			     u32 response_tstamp)
57 {
58 	struct fw_transaction *t = NULL, *iter;
59 	unsigned long flags;
60 
61 	spin_lock_irqsave(&card->lock, flags);
62 	list_for_each_entry(iter, &card->transaction_list, link) {
63 		if (iter == transaction) {
64 			if (!try_cancel_split_timeout(iter)) {
65 				spin_unlock_irqrestore(&card->lock, flags);
66 				goto timed_out;
67 			}
68 			list_del_init(&iter->link);
69 			card->tlabel_mask &= ~(1ULL << iter->tlabel);
70 			t = iter;
71 			break;
72 		}
73 	}
74 	spin_unlock_irqrestore(&card->lock, flags);
75 
76 	if (t) {
77 		if (!t->with_tstamp) {
78 			t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
79 		} else {
80 			t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp,
81 						NULL, 0, t->callback_data);
82 		}
83 		return 0;
84 	}
85 
86  timed_out:
87 	return -ENOENT;
88 }
89 
90 /*
91  * Only valid for transactions that are potentially pending (ie have
92  * been sent).
93  */
94 int fw_cancel_transaction(struct fw_card *card,
95 			  struct fw_transaction *transaction)
96 {
97 	u32 tstamp;
98 
99 	/*
100 	 * Cancel the packet transmission if it's still queued.  That
101 	 * will call the packet transmission callback which cancels
102 	 * the transaction.
103 	 */
104 
105 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
106 		return 0;
107 
108 	/*
109 	 * If the request packet has already been sent, we need to see
110 	 * if the transaction is still pending and remove it in that case.
111 	 */
112 
113 	if (transaction->packet.ack == 0) {
114 		// The timestamp is reused since it was just read now.
115 		tstamp = transaction->packet.timestamp;
116 	} else {
117 		u32 curr_cycle_time = 0;
118 
119 		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
120 		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
121 	}
122 
123 	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
124 }
125 EXPORT_SYMBOL(fw_cancel_transaction);
126 
127 static void split_transaction_timeout_callback(struct timer_list *timer)
128 {
129 	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
130 	struct fw_card *card = t->card;
131 	unsigned long flags;
132 
133 	spin_lock_irqsave(&card->lock, flags);
134 	if (list_empty(&t->link)) {
135 		spin_unlock_irqrestore(&card->lock, flags);
136 		return;
137 	}
138 	list_del(&t->link);
139 	card->tlabel_mask &= ~(1ULL << t->tlabel);
140 	spin_unlock_irqrestore(&card->lock, flags);
141 
142 	if (!t->with_tstamp) {
143 		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
144 	} else {
145 		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
146 					t->split_timeout_cycle, NULL, 0, t->callback_data);
147 	}
148 }
149 
150 static void start_split_transaction_timeout(struct fw_transaction *t,
151 					    struct fw_card *card)
152 {
153 	unsigned long flags;
154 
155 	spin_lock_irqsave(&card->lock, flags);
156 
157 	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
158 		spin_unlock_irqrestore(&card->lock, flags);
159 		return;
160 	}
161 
162 	t->is_split_transaction = true;
163 	mod_timer(&t->split_timeout_timer,
164 		  jiffies + card->split_timeout_jiffies);
165 
166 	spin_unlock_irqrestore(&card->lock, flags);
167 }
168 
169 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
170 
171 static void transmit_complete_callback(struct fw_packet *packet,
172 				       struct fw_card *card, int status)
173 {
174 	struct fw_transaction *t =
175 	    container_of(packet, struct fw_transaction, packet);
176 
177 	trace_async_request_outbound_complete((uintptr_t)t, packet->generation, packet->speed,
178 					      status, packet->timestamp);
179 
180 	switch (status) {
181 	case ACK_COMPLETE:
182 		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
183 		break;
184 	case ACK_PENDING:
185 	{
186 		t->split_timeout_cycle =
187 			compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
188 		start_split_transaction_timeout(t, card);
189 		break;
190 	}
191 	case ACK_BUSY_X:
192 	case ACK_BUSY_A:
193 	case ACK_BUSY_B:
194 		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
195 		break;
196 	case ACK_DATA_ERROR:
197 		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
198 		break;
199 	case ACK_TYPE_ERROR:
200 		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
201 		break;
202 	default:
203 		/*
204 		 * In this case the ack is really a juju specific
205 		 * rcode, so just forward that to the callback.
206 		 */
207 		close_transaction(t, card, status, packet->timestamp);
208 		break;
209 	}
210 }
211 
212 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
213 		int destination_id, int source_id, int generation, int speed,
214 		unsigned long long offset, void *payload, size_t length)
215 {
216 	int ext_tcode;
217 
218 	if (tcode == TCODE_STREAM_DATA) {
219 		// The value of destination_id argument should include tag, channel, and sy fields
220 		// as isochronous packet header has.
221 		packet->header[0] = destination_id;
222 		isoc_header_set_data_length(packet->header, length);
223 		isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
224 		packet->header_length = 4;
225 		packet->payload = payload;
226 		packet->payload_length = length;
227 
228 		goto common;
229 	}
230 
231 	if (tcode > 0x10) {
232 		ext_tcode = tcode & ~0x10;
233 		tcode = TCODE_LOCK_REQUEST;
234 	} else
235 		ext_tcode = 0;
236 
237 	async_header_set_retry(packet->header, RETRY_X);
238 	async_header_set_tlabel(packet->header, tlabel);
239 	async_header_set_tcode(packet->header, tcode);
240 	async_header_set_destination(packet->header, destination_id);
241 	async_header_set_source(packet->header, source_id);
242 	async_header_set_offset(packet->header, offset);
243 
244 	switch (tcode) {
245 	case TCODE_WRITE_QUADLET_REQUEST:
246 		async_header_set_quadlet_data(packet->header, *(u32 *)payload);
247 		packet->header_length = 16;
248 		packet->payload_length = 0;
249 		break;
250 
251 	case TCODE_LOCK_REQUEST:
252 	case TCODE_WRITE_BLOCK_REQUEST:
253 		async_header_set_data_length(packet->header, length);
254 		async_header_set_extended_tcode(packet->header, ext_tcode);
255 		packet->header_length = 16;
256 		packet->payload = payload;
257 		packet->payload_length = length;
258 		break;
259 
260 	case TCODE_READ_QUADLET_REQUEST:
261 		packet->header_length = 12;
262 		packet->payload_length = 0;
263 		break;
264 
265 	case TCODE_READ_BLOCK_REQUEST:
266 		async_header_set_data_length(packet->header, length);
267 		async_header_set_extended_tcode(packet->header, ext_tcode);
268 		packet->header_length = 16;
269 		packet->payload_length = 0;
270 		break;
271 
272 	default:
273 		WARN(1, "wrong tcode %d\n", tcode);
274 	}
275  common:
276 	packet->speed = speed;
277 	packet->generation = generation;
278 	packet->ack = 0;
279 	packet->payload_mapped = false;
280 }
281 
282 static int allocate_tlabel(struct fw_card *card)
283 {
284 	int tlabel;
285 
286 	tlabel = card->current_tlabel;
287 	while (card->tlabel_mask & (1ULL << tlabel)) {
288 		tlabel = (tlabel + 1) & 0x3f;
289 		if (tlabel == card->current_tlabel)
290 			return -EBUSY;
291 	}
292 
293 	card->current_tlabel = (tlabel + 1) & 0x3f;
294 	card->tlabel_mask |= 1ULL << tlabel;
295 
296 	return tlabel;
297 }
298 
299 /**
300  * __fw_send_request() - submit a request packet for transmission to generate callback for response
301  *			 subaction with or without time stamp.
302  * @card:		interface to send the request at
303  * @t:			transaction instance to which the request belongs
304  * @tcode:		transaction code
305  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
306  * @generation:		bus generation in which request and response are valid
307  * @speed:		transmission speed
308  * @offset:		48bit wide offset into destination's address space
309  * @payload:		data payload for the request subaction
310  * @length:		length of the payload, in bytes
311  * @callback:		union of two functions whether to receive time stamp or not for response
312  *			subaction.
313  * @with_tstamp:	Whether to receive time stamp or not for response subaction.
314  * @callback_data:	data to be passed to the transaction completion callback
315  *
316  * Submit a request packet into the asynchronous request transmission queue.
317  * Can be called from atomic context.  If you prefer a blocking API, use
318  * fw_run_transaction() in a context that can sleep.
319  *
320  * In case of lock requests, specify one of the firewire-core specific %TCODE_
321  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
322  *
323  * Make sure that the value in @destination_id is not older than the one in
324  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
325  *
326  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
327  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
328  * It will contain tag, channel, and sy data instead of a node ID then.
329  *
330  * The payload buffer at @data is going to be DMA-mapped except in case of
331  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
332  * buffer complies with the restrictions of the streaming DMA mapping API.
333  * @payload must not be freed before the @callback is called.
334  *
335  * In case of request types without payload, @data is NULL and @length is 0.
336  *
337  * After the transaction is completed successfully or unsuccessfully, the
338  * @callback will be called.  Among its parameters is the response code which
339  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
340  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
341  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
342  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
343  * generation, or missing ACK respectively.
344  *
345  * Note some timing corner cases:  fw_send_request() may complete much earlier
346  * than when the request packet actually hits the wire.  On the other hand,
347  * transaction completion and hence execution of @callback may happen even
348  * before fw_send_request() returns.
349  */
350 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
351 		int destination_id, int generation, int speed, unsigned long long offset,
352 		void *payload, size_t length, union fw_transaction_callback callback,
353 		bool with_tstamp, void *callback_data)
354 {
355 	unsigned long flags;
356 	int tlabel;
357 
358 	/*
359 	 * Allocate tlabel from the bitmap and put the transaction on
360 	 * the list while holding the card spinlock.
361 	 */
362 
363 	spin_lock_irqsave(&card->lock, flags);
364 
365 	tlabel = allocate_tlabel(card);
366 	if (tlabel < 0) {
367 		spin_unlock_irqrestore(&card->lock, flags);
368 		if (!with_tstamp) {
369 			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
370 		} else {
371 			// Timestamping on behalf of hardware.
372 			u32 curr_cycle_time = 0;
373 			u32 tstamp;
374 
375 			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
376 			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
377 
378 			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
379 					     callback_data);
380 		}
381 		return;
382 	}
383 
384 	t->node_id = destination_id;
385 	t->tlabel = tlabel;
386 	t->card = card;
387 	t->is_split_transaction = false;
388 	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
389 	t->callback = callback;
390 	t->with_tstamp = with_tstamp;
391 	t->callback_data = callback_data;
392 
393 	fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
394 			speed, offset, payload, length);
395 	t->packet.callback = transmit_complete_callback;
396 
397 	list_add_tail(&t->link, &card->transaction_list);
398 
399 	spin_unlock_irqrestore(&card->lock, flags);
400 
401 	trace_async_request_outbound_initiate((uintptr_t)t, generation, speed, t->packet.header, payload,
402 					      tcode_is_read_request(tcode) ? 0 : length / 4);
403 
404 	card->driver->send_request(card, &t->packet);
405 }
406 EXPORT_SYMBOL_GPL(__fw_send_request);
407 
408 struct transaction_callback_data {
409 	struct completion done;
410 	void *payload;
411 	int rcode;
412 };
413 
414 static void transaction_callback(struct fw_card *card, int rcode,
415 				 void *payload, size_t length, void *data)
416 {
417 	struct transaction_callback_data *d = data;
418 
419 	if (rcode == RCODE_COMPLETE)
420 		memcpy(d->payload, payload, length);
421 	d->rcode = rcode;
422 	complete(&d->done);
423 }
424 
425 /**
426  * fw_run_transaction() - send request and sleep until transaction is completed
427  * @card:		card interface for this request
428  * @tcode:		transaction code
429  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
430  * @generation:		bus generation in which request and response are valid
431  * @speed:		transmission speed
432  * @offset:		48bit wide offset into destination's address space
433  * @payload:		data payload for the request subaction
434  * @length:		length of the payload, in bytes
435  *
436  * Returns the RCODE.  See fw_send_request() for parameter documentation.
437  * Unlike fw_send_request(), @data points to the payload of the request or/and
438  * to the payload of the response.  DMA mapping restrictions apply to outbound
439  * request payloads of >= 8 bytes but not to inbound response payloads.
440  */
441 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
442 		       int generation, int speed, unsigned long long offset,
443 		       void *payload, size_t length)
444 {
445 	struct transaction_callback_data d;
446 	struct fw_transaction t;
447 
448 	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
449 	init_completion(&d.done);
450 	d.payload = payload;
451 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
452 			offset, payload, length, transaction_callback, &d);
453 	wait_for_completion(&d.done);
454 	destroy_timer_on_stack(&t.split_timeout_timer);
455 
456 	return d.rcode;
457 }
458 EXPORT_SYMBOL(fw_run_transaction);
459 
460 static DEFINE_MUTEX(phy_config_mutex);
461 static DECLARE_COMPLETION(phy_config_done);
462 
463 static void transmit_phy_packet_callback(struct fw_packet *packet,
464 					 struct fw_card *card, int status)
465 {
466 	trace_async_phy_outbound_complete((uintptr_t)packet, packet->generation, status,
467 					  packet->timestamp);
468 	complete(&phy_config_done);
469 }
470 
471 static struct fw_packet phy_config_packet = {
472 	.header_length	= 12,
473 	.header[0]	= TCODE_LINK_INTERNAL << 4,
474 	.payload_length	= 0,
475 	.speed		= SCODE_100,
476 	.callback	= transmit_phy_packet_callback,
477 };
478 
479 void fw_send_phy_config(struct fw_card *card,
480 			int node_id, int generation, int gap_count)
481 {
482 	long timeout = DIV_ROUND_UP(HZ, 10);
483 	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
484 
485 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
486 		data |= PHY_CONFIG_ROOT_ID(node_id);
487 
488 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
489 		gap_count = card->driver->read_phy_reg(card, 1);
490 		if (gap_count < 0)
491 			return;
492 
493 		gap_count &= 63;
494 		if (gap_count == 63)
495 			return;
496 	}
497 	data |= PHY_CONFIG_GAP_COUNT(gap_count);
498 
499 	mutex_lock(&phy_config_mutex);
500 
501 	phy_config_packet.header[1] = data;
502 	phy_config_packet.header[2] = ~data;
503 	phy_config_packet.generation = generation;
504 	reinit_completion(&phy_config_done);
505 
506 	trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet,
507 					  phy_config_packet.generation, phy_config_packet.header[1],
508 					  phy_config_packet.header[2]);
509 
510 	card->driver->send_request(card, &phy_config_packet);
511 	wait_for_completion_timeout(&phy_config_done, timeout);
512 
513 	mutex_unlock(&phy_config_mutex);
514 }
515 
516 static struct fw_address_handler *lookup_overlapping_address_handler(
517 	struct list_head *list, unsigned long long offset, size_t length)
518 {
519 	struct fw_address_handler *handler;
520 
521 	list_for_each_entry_rcu(handler, list, link) {
522 		if (handler->offset < offset + length &&
523 		    offset < handler->offset + handler->length)
524 			return handler;
525 	}
526 
527 	return NULL;
528 }
529 
530 static bool is_enclosing_handler(struct fw_address_handler *handler,
531 				 unsigned long long offset, size_t length)
532 {
533 	return handler->offset <= offset &&
534 		offset + length <= handler->offset + handler->length;
535 }
536 
537 static struct fw_address_handler *lookup_enclosing_address_handler(
538 	struct list_head *list, unsigned long long offset, size_t length)
539 {
540 	struct fw_address_handler *handler;
541 
542 	list_for_each_entry_rcu(handler, list, link) {
543 		if (is_enclosing_handler(handler, offset, length))
544 			return handler;
545 	}
546 
547 	return NULL;
548 }
549 
550 static DEFINE_SPINLOCK(address_handler_list_lock);
551 static LIST_HEAD(address_handler_list);
552 
553 const struct fw_address_region fw_high_memory_region =
554 	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
555 EXPORT_SYMBOL(fw_high_memory_region);
556 
557 static const struct fw_address_region low_memory_region =
558 	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
559 
560 #if 0
561 const struct fw_address_region fw_private_region =
562 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
563 const struct fw_address_region fw_csr_region =
564 	{ .start = CSR_REGISTER_BASE,
565 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
566 const struct fw_address_region fw_unit_space_region =
567 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
568 #endif  /*  0  */
569 
570 /**
571  * fw_core_add_address_handler() - register for incoming requests
572  * @handler:	callback
573  * @region:	region in the IEEE 1212 node space address range
574  *
575  * region->start, ->end, and handler->length have to be quadlet-aligned.
576  *
577  * When a request is received that falls within the specified address range,
578  * the specified callback is invoked.  The parameters passed to the callback
579  * give the details of the particular request.
580  *
581  * To be called in process context.
582  * Return value:  0 on success, non-zero otherwise.
583  *
584  * The start offset of the handler's address region is determined by
585  * fw_core_add_address_handler() and is returned in handler->offset.
586  *
587  * Address allocations are exclusive, except for the FCP registers.
588  */
589 int fw_core_add_address_handler(struct fw_address_handler *handler,
590 				const struct fw_address_region *region)
591 {
592 	struct fw_address_handler *other;
593 	int ret = -EBUSY;
594 
595 	if (region->start & 0xffff000000000003ULL ||
596 	    region->start >= region->end ||
597 	    region->end   > 0x0001000000000000ULL ||
598 	    handler->length & 3 ||
599 	    handler->length == 0)
600 		return -EINVAL;
601 
602 	spin_lock(&address_handler_list_lock);
603 
604 	handler->offset = region->start;
605 	while (handler->offset + handler->length <= region->end) {
606 		if (is_in_fcp_region(handler->offset, handler->length))
607 			other = NULL;
608 		else
609 			other = lookup_overlapping_address_handler
610 					(&address_handler_list,
611 					 handler->offset, handler->length);
612 		if (other != NULL) {
613 			handler->offset += other->length;
614 		} else {
615 			list_add_tail_rcu(&handler->link, &address_handler_list);
616 			ret = 0;
617 			break;
618 		}
619 	}
620 
621 	spin_unlock(&address_handler_list_lock);
622 
623 	return ret;
624 }
625 EXPORT_SYMBOL(fw_core_add_address_handler);
626 
627 /**
628  * fw_core_remove_address_handler() - unregister an address handler
629  * @handler: callback
630  *
631  * To be called in process context.
632  *
633  * When fw_core_remove_address_handler() returns, @handler->callback() is
634  * guaranteed to not run on any CPU anymore.
635  */
636 void fw_core_remove_address_handler(struct fw_address_handler *handler)
637 {
638 	spin_lock(&address_handler_list_lock);
639 	list_del_rcu(&handler->link);
640 	spin_unlock(&address_handler_list_lock);
641 	synchronize_rcu();
642 }
643 EXPORT_SYMBOL(fw_core_remove_address_handler);
644 
645 struct fw_request {
646 	struct kref kref;
647 	struct fw_packet response;
648 	u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
649 	int ack;
650 	u32 timestamp;
651 	u32 length;
652 	u32 data[];
653 };
654 
655 void fw_request_get(struct fw_request *request)
656 {
657 	kref_get(&request->kref);
658 }
659 
660 static void release_request(struct kref *kref)
661 {
662 	struct fw_request *request = container_of(kref, struct fw_request, kref);
663 
664 	kfree(request);
665 }
666 
667 void fw_request_put(struct fw_request *request)
668 {
669 	kref_put(&request->kref, release_request);
670 }
671 
672 static void free_response_callback(struct fw_packet *packet,
673 				   struct fw_card *card, int status)
674 {
675 	struct fw_request *request = container_of(packet, struct fw_request, response);
676 
677 	trace_async_response_outbound_complete((uintptr_t)request, packet->generation,
678 					       packet->speed, status, packet->timestamp);
679 
680 	// Decrease the reference count since not at in-flight.
681 	fw_request_put(request);
682 
683 	// Decrease the reference count to release the object.
684 	fw_request_put(request);
685 }
686 
687 int fw_get_response_length(struct fw_request *r)
688 {
689 	int tcode, ext_tcode, data_length;
690 
691 	tcode = async_header_get_tcode(r->request_header);
692 
693 	switch (tcode) {
694 	case TCODE_WRITE_QUADLET_REQUEST:
695 	case TCODE_WRITE_BLOCK_REQUEST:
696 		return 0;
697 
698 	case TCODE_READ_QUADLET_REQUEST:
699 		return 4;
700 
701 	case TCODE_READ_BLOCK_REQUEST:
702 		data_length = async_header_get_data_length(r->request_header);
703 		return data_length;
704 
705 	case TCODE_LOCK_REQUEST:
706 		ext_tcode = async_header_get_extended_tcode(r->request_header);
707 		data_length = async_header_get_data_length(r->request_header);
708 		switch (ext_tcode) {
709 		case EXTCODE_FETCH_ADD:
710 		case EXTCODE_LITTLE_ADD:
711 			return data_length;
712 		default:
713 			return data_length / 2;
714 		}
715 
716 	default:
717 		WARN(1, "wrong tcode %d\n", tcode);
718 		return 0;
719 	}
720 }
721 
722 void fw_fill_response(struct fw_packet *response, u32 *request_header,
723 		      int rcode, void *payload, size_t length)
724 {
725 	int tcode, tlabel, extended_tcode, source, destination;
726 
727 	tcode = async_header_get_tcode(request_header);
728 	tlabel = async_header_get_tlabel(request_header);
729 	source = async_header_get_destination(request_header); // Exchange.
730 	destination = async_header_get_source(request_header); // Exchange.
731 	extended_tcode = async_header_get_extended_tcode(request_header);
732 
733 	async_header_set_retry(response->header, RETRY_1);
734 	async_header_set_tlabel(response->header, tlabel);
735 	async_header_set_destination(response->header, destination);
736 	async_header_set_source(response->header, source);
737 	async_header_set_rcode(response->header, rcode);
738 	response->header[2] = 0;	// The field is reserved.
739 
740 	switch (tcode) {
741 	case TCODE_WRITE_QUADLET_REQUEST:
742 	case TCODE_WRITE_BLOCK_REQUEST:
743 		async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
744 		response->header_length = 12;
745 		response->payload_length = 0;
746 		break;
747 
748 	case TCODE_READ_QUADLET_REQUEST:
749 		async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
750 		if (payload != NULL)
751 			async_header_set_quadlet_data(response->header, *(u32 *)payload);
752 		else
753 			async_header_set_quadlet_data(response->header, 0);
754 		response->header_length = 16;
755 		response->payload_length = 0;
756 		break;
757 
758 	case TCODE_READ_BLOCK_REQUEST:
759 	case TCODE_LOCK_REQUEST:
760 		async_header_set_tcode(response->header, tcode + 2);
761 		async_header_set_data_length(response->header, length);
762 		async_header_set_extended_tcode(response->header, extended_tcode);
763 		response->header_length = 16;
764 		response->payload = payload;
765 		response->payload_length = length;
766 		break;
767 
768 	default:
769 		WARN(1, "wrong tcode %d\n", tcode);
770 	}
771 
772 	response->payload_mapped = false;
773 }
774 EXPORT_SYMBOL(fw_fill_response);
775 
776 static u32 compute_split_timeout_timestamp(struct fw_card *card,
777 					   u32 request_timestamp)
778 {
779 	unsigned int cycles;
780 	u32 timestamp;
781 
782 	cycles = card->split_timeout_cycles;
783 	cycles += request_timestamp & 0x1fff;
784 
785 	timestamp = request_timestamp & ~0x1fff;
786 	timestamp += (cycles / 8000) << 13;
787 	timestamp |= cycles % 8000;
788 
789 	return timestamp;
790 }
791 
792 static struct fw_request *allocate_request(struct fw_card *card,
793 					   struct fw_packet *p)
794 {
795 	struct fw_request *request;
796 	u32 *data, length;
797 	int request_tcode;
798 
799 	request_tcode = async_header_get_tcode(p->header);
800 	switch (request_tcode) {
801 	case TCODE_WRITE_QUADLET_REQUEST:
802 		data = &p->header[3];
803 		length = 4;
804 		break;
805 
806 	case TCODE_WRITE_BLOCK_REQUEST:
807 	case TCODE_LOCK_REQUEST:
808 		data = p->payload;
809 		length = async_header_get_data_length(p->header);
810 		break;
811 
812 	case TCODE_READ_QUADLET_REQUEST:
813 		data = NULL;
814 		length = 4;
815 		break;
816 
817 	case TCODE_READ_BLOCK_REQUEST:
818 		data = NULL;
819 		length = async_header_get_data_length(p->header);
820 		break;
821 
822 	default:
823 		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
824 			 p->header[0], p->header[1], p->header[2]);
825 		return NULL;
826 	}
827 
828 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
829 	if (request == NULL)
830 		return NULL;
831 	kref_init(&request->kref);
832 
833 	request->response.speed = p->speed;
834 	request->response.timestamp =
835 			compute_split_timeout_timestamp(card, p->timestamp);
836 	request->response.generation = p->generation;
837 	request->response.ack = 0;
838 	request->response.callback = free_response_callback;
839 	request->ack = p->ack;
840 	request->timestamp = p->timestamp;
841 	request->length = length;
842 	if (data)
843 		memcpy(request->data, data, length);
844 
845 	memcpy(request->request_header, p->header, sizeof(p->header));
846 
847 	return request;
848 }
849 
850 /**
851  * fw_send_response: - send response packet for asynchronous transaction.
852  * @card:	interface to send the response at.
853  * @request:	firewire request data for the transaction.
854  * @rcode:	response code to send.
855  *
856  * Submit a response packet into the asynchronous response transmission queue. The @request
857  * is going to be released when the transmission successfully finishes later.
858  */
859 void fw_send_response(struct fw_card *card,
860 		      struct fw_request *request, int rcode)
861 {
862 	u32 *data = NULL;
863 	unsigned int data_length = 0;
864 
865 	/* unified transaction or broadcast transaction: don't respond */
866 	if (request->ack != ACK_PENDING ||
867 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
868 		fw_request_put(request);
869 		return;
870 	}
871 
872 	if (rcode == RCODE_COMPLETE) {
873 		data = request->data;
874 		data_length = fw_get_response_length(request);
875 	}
876 
877 	fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
878 
879 	// Increase the reference count so that the object is kept during in-flight.
880 	fw_request_get(request);
881 
882 	trace_async_response_outbound_initiate((uintptr_t)request, request->response.generation,
883 					       request->response.speed, request->response.header,
884 					       data, data ? data_length / 4 : 0);
885 
886 	card->driver->send_response(card, &request->response);
887 }
888 EXPORT_SYMBOL(fw_send_response);
889 
890 /**
891  * fw_get_request_speed() - returns speed at which the @request was received
892  * @request: firewire request data
893  */
894 int fw_get_request_speed(struct fw_request *request)
895 {
896 	return request->response.speed;
897 }
898 EXPORT_SYMBOL(fw_get_request_speed);
899 
900 /**
901  * fw_request_get_timestamp: Get timestamp of the request.
902  * @request: The opaque pointer to request structure.
903  *
904  * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
905  * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
906  * field of isochronous cycle time register.
907  *
908  * Returns: timestamp of the request.
909  */
910 u32 fw_request_get_timestamp(const struct fw_request *request)
911 {
912 	return request->timestamp;
913 }
914 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
915 
916 static void handle_exclusive_region_request(struct fw_card *card,
917 					    struct fw_packet *p,
918 					    struct fw_request *request,
919 					    unsigned long long offset)
920 {
921 	struct fw_address_handler *handler;
922 	int tcode, destination, source;
923 
924 	destination = async_header_get_destination(p->header);
925 	source = async_header_get_source(p->header);
926 	tcode = async_header_get_tcode(p->header);
927 	if (tcode == TCODE_LOCK_REQUEST)
928 		tcode = 0x10 + async_header_get_extended_tcode(p->header);
929 
930 	rcu_read_lock();
931 	handler = lookup_enclosing_address_handler(&address_handler_list,
932 						   offset, request->length);
933 	if (handler)
934 		handler->address_callback(card, request,
935 					  tcode, destination, source,
936 					  p->generation, offset,
937 					  request->data, request->length,
938 					  handler->callback_data);
939 	rcu_read_unlock();
940 
941 	if (!handler)
942 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
943 }
944 
945 static void handle_fcp_region_request(struct fw_card *card,
946 				      struct fw_packet *p,
947 				      struct fw_request *request,
948 				      unsigned long long offset)
949 {
950 	struct fw_address_handler *handler;
951 	int tcode, destination, source;
952 
953 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
954 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
955 	    request->length > 0x200) {
956 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
957 
958 		return;
959 	}
960 
961 	tcode = async_header_get_tcode(p->header);
962 	destination = async_header_get_destination(p->header);
963 	source = async_header_get_source(p->header);
964 
965 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
966 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
967 		fw_send_response(card, request, RCODE_TYPE_ERROR);
968 
969 		return;
970 	}
971 
972 	rcu_read_lock();
973 	list_for_each_entry_rcu(handler, &address_handler_list, link) {
974 		if (is_enclosing_handler(handler, offset, request->length))
975 			handler->address_callback(card, request, tcode,
976 						  destination, source,
977 						  p->generation, offset,
978 						  request->data,
979 						  request->length,
980 						  handler->callback_data);
981 	}
982 	rcu_read_unlock();
983 
984 	fw_send_response(card, request, RCODE_COMPLETE);
985 }
986 
987 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
988 {
989 	struct fw_request *request;
990 	unsigned long long offset;
991 	unsigned int tcode;
992 
993 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
994 		return;
995 
996 	tcode = async_header_get_tcode(p->header);
997 	if (tcode_is_link_internal(tcode)) {
998 		trace_async_phy_inbound((uintptr_t)p, p->generation, p->ack, p->timestamp,
999 					 p->header[1], p->header[2]);
1000 		fw_cdev_handle_phy_packet(card, p);
1001 		return;
1002 	}
1003 
1004 	request = allocate_request(card, p);
1005 	if (request == NULL) {
1006 		/* FIXME: send statically allocated busy packet. */
1007 		return;
1008 	}
1009 
1010 	trace_async_request_inbound((uintptr_t)request, p->generation, p->speed, p->ack,
1011 				    p->timestamp, p->header, request->data,
1012 				    tcode_is_read_request(tcode) ? 0 : request->length / 4);
1013 
1014 	offset = async_header_get_offset(p->header);
1015 
1016 	if (!is_in_fcp_region(offset, request->length))
1017 		handle_exclusive_region_request(card, p, request, offset);
1018 	else
1019 		handle_fcp_region_request(card, p, request, offset);
1020 
1021 }
1022 EXPORT_SYMBOL(fw_core_handle_request);
1023 
1024 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1025 {
1026 	struct fw_transaction *t = NULL, *iter;
1027 	unsigned long flags;
1028 	u32 *data;
1029 	size_t data_length;
1030 	int tcode, tlabel, source, rcode;
1031 
1032 	tcode = async_header_get_tcode(p->header);
1033 	tlabel = async_header_get_tlabel(p->header);
1034 	source = async_header_get_source(p->header);
1035 	rcode = async_header_get_rcode(p->header);
1036 
1037 	// FIXME: sanity check packet, is length correct, does tcodes
1038 	// and addresses match to the transaction request queried later.
1039 	//
1040 	// For the tracepoints event, let us decode the header here against the concern.
1041 
1042 	switch (tcode) {
1043 	case TCODE_READ_QUADLET_RESPONSE:
1044 		data = (u32 *) &p->header[3];
1045 		data_length = 4;
1046 		break;
1047 
1048 	case TCODE_WRITE_RESPONSE:
1049 		data = NULL;
1050 		data_length = 0;
1051 		break;
1052 
1053 	case TCODE_READ_BLOCK_RESPONSE:
1054 	case TCODE_LOCK_RESPONSE:
1055 		data = p->payload;
1056 		data_length = async_header_get_data_length(p->header);
1057 		break;
1058 
1059 	default:
1060 		/* Should never happen, this is just to shut up gcc. */
1061 		data = NULL;
1062 		data_length = 0;
1063 		break;
1064 	}
1065 
1066 	spin_lock_irqsave(&card->lock, flags);
1067 	list_for_each_entry(iter, &card->transaction_list, link) {
1068 		if (iter->node_id == source && iter->tlabel == tlabel) {
1069 			if (!try_cancel_split_timeout(iter)) {
1070 				spin_unlock_irqrestore(&card->lock, flags);
1071 				goto timed_out;
1072 			}
1073 			list_del_init(&iter->link);
1074 			card->tlabel_mask &= ~(1ULL << iter->tlabel);
1075 			t = iter;
1076 			break;
1077 		}
1078 	}
1079 	spin_unlock_irqrestore(&card->lock, flags);
1080 
1081 	trace_async_response_inbound((uintptr_t)t, p->generation, p->speed, p->ack, p->timestamp,
1082 				     p->header, data, data_length / 4);
1083 
1084 	if (!t) {
1085  timed_out:
1086 		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1087 			  source, tlabel);
1088 		return;
1089 	}
1090 
1091 	/*
1092 	 * The response handler may be executed while the request handler
1093 	 * is still pending.  Cancel the request handler.
1094 	 */
1095 	card->driver->cancel_packet(card, &t->packet);
1096 
1097 	if (!t->with_tstamp) {
1098 		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1099 	} else {
1100 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1101 					data_length, t->callback_data);
1102 	}
1103 }
1104 EXPORT_SYMBOL(fw_core_handle_response);
1105 
1106 /**
1107  * fw_rcode_string - convert a firewire result code to an error description
1108  * @rcode: the result code
1109  */
1110 const char *fw_rcode_string(int rcode)
1111 {
1112 	static const char *const names[] = {
1113 		[RCODE_COMPLETE]       = "no error",
1114 		[RCODE_CONFLICT_ERROR] = "conflict error",
1115 		[RCODE_DATA_ERROR]     = "data error",
1116 		[RCODE_TYPE_ERROR]     = "type error",
1117 		[RCODE_ADDRESS_ERROR]  = "address error",
1118 		[RCODE_SEND_ERROR]     = "send error",
1119 		[RCODE_CANCELLED]      = "timeout",
1120 		[RCODE_BUSY]           = "busy",
1121 		[RCODE_GENERATION]     = "bus reset",
1122 		[RCODE_NO_ACK]         = "no ack",
1123 	};
1124 
1125 	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1126 		return names[rcode];
1127 	else
1128 		return "unknown";
1129 }
1130 EXPORT_SYMBOL(fw_rcode_string);
1131 
1132 static const struct fw_address_region topology_map_region =
1133 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1134 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1135 
1136 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1137 		int tcode, int destination, int source, int generation,
1138 		unsigned long long offset, void *payload, size_t length,
1139 		void *callback_data)
1140 {
1141 	int start;
1142 
1143 	if (!tcode_is_read_request(tcode)) {
1144 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1145 		return;
1146 	}
1147 
1148 	if ((offset & 3) > 0 || (length & 3) > 0) {
1149 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1150 		return;
1151 	}
1152 
1153 	start = (offset - topology_map_region.start) / 4;
1154 	memcpy(payload, &card->topology_map[start], length);
1155 
1156 	fw_send_response(card, request, RCODE_COMPLETE);
1157 }
1158 
1159 static struct fw_address_handler topology_map = {
1160 	.length			= 0x400,
1161 	.address_callback	= handle_topology_map,
1162 };
1163 
1164 static const struct fw_address_region registers_region =
1165 	{ .start = CSR_REGISTER_BASE,
1166 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1167 
1168 static void update_split_timeout(struct fw_card *card)
1169 {
1170 	unsigned int cycles;
1171 
1172 	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1173 
1174 	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1175 	cycles = clamp(cycles, 800u, 3u * 8000u);
1176 
1177 	card->split_timeout_cycles = cycles;
1178 	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1179 }
1180 
1181 static void handle_registers(struct fw_card *card, struct fw_request *request,
1182 		int tcode, int destination, int source, int generation,
1183 		unsigned long long offset, void *payload, size_t length,
1184 		void *callback_data)
1185 {
1186 	int reg = offset & ~CSR_REGISTER_BASE;
1187 	__be32 *data = payload;
1188 	int rcode = RCODE_COMPLETE;
1189 	unsigned long flags;
1190 
1191 	switch (reg) {
1192 	case CSR_PRIORITY_BUDGET:
1193 		if (!card->priority_budget_implemented) {
1194 			rcode = RCODE_ADDRESS_ERROR;
1195 			break;
1196 		}
1197 		fallthrough;
1198 
1199 	case CSR_NODE_IDS:
1200 		/*
1201 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1202 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1203 		 */
1204 		fallthrough;
1205 
1206 	case CSR_STATE_CLEAR:
1207 	case CSR_STATE_SET:
1208 	case CSR_CYCLE_TIME:
1209 	case CSR_BUS_TIME:
1210 	case CSR_BUSY_TIMEOUT:
1211 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1212 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1213 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1214 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1215 		else
1216 			rcode = RCODE_TYPE_ERROR;
1217 		break;
1218 
1219 	case CSR_RESET_START:
1220 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1221 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1222 						CSR_STATE_BIT_ABDICATE);
1223 		else
1224 			rcode = RCODE_TYPE_ERROR;
1225 		break;
1226 
1227 	case CSR_SPLIT_TIMEOUT_HI:
1228 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1229 			*data = cpu_to_be32(card->split_timeout_hi);
1230 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1231 			spin_lock_irqsave(&card->lock, flags);
1232 			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1233 			update_split_timeout(card);
1234 			spin_unlock_irqrestore(&card->lock, flags);
1235 		} else {
1236 			rcode = RCODE_TYPE_ERROR;
1237 		}
1238 		break;
1239 
1240 	case CSR_SPLIT_TIMEOUT_LO:
1241 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1242 			*data = cpu_to_be32(card->split_timeout_lo);
1243 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1244 			spin_lock_irqsave(&card->lock, flags);
1245 			card->split_timeout_lo =
1246 					be32_to_cpu(*data) & 0xfff80000;
1247 			update_split_timeout(card);
1248 			spin_unlock_irqrestore(&card->lock, flags);
1249 		} else {
1250 			rcode = RCODE_TYPE_ERROR;
1251 		}
1252 		break;
1253 
1254 	case CSR_MAINT_UTILITY:
1255 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1256 			*data = card->maint_utility_register;
1257 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1258 			card->maint_utility_register = *data;
1259 		else
1260 			rcode = RCODE_TYPE_ERROR;
1261 		break;
1262 
1263 	case CSR_BROADCAST_CHANNEL:
1264 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1265 			*data = cpu_to_be32(card->broadcast_channel);
1266 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1267 			card->broadcast_channel =
1268 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1269 			    BROADCAST_CHANNEL_INITIAL;
1270 		else
1271 			rcode = RCODE_TYPE_ERROR;
1272 		break;
1273 
1274 	case CSR_BUS_MANAGER_ID:
1275 	case CSR_BANDWIDTH_AVAILABLE:
1276 	case CSR_CHANNELS_AVAILABLE_HI:
1277 	case CSR_CHANNELS_AVAILABLE_LO:
1278 		/*
1279 		 * FIXME: these are handled by the OHCI hardware and
1280 		 * the stack never sees these request. If we add
1281 		 * support for a new type of controller that doesn't
1282 		 * handle this in hardware we need to deal with these
1283 		 * transactions.
1284 		 */
1285 		BUG();
1286 		break;
1287 
1288 	default:
1289 		rcode = RCODE_ADDRESS_ERROR;
1290 		break;
1291 	}
1292 
1293 	fw_send_response(card, request, rcode);
1294 }
1295 
1296 static struct fw_address_handler registers = {
1297 	.length			= 0x400,
1298 	.address_callback	= handle_registers,
1299 };
1300 
1301 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1302 		int tcode, int destination, int source, int generation,
1303 		unsigned long long offset, void *payload, size_t length,
1304 		void *callback_data)
1305 {
1306 	/*
1307 	 * This catches requests not handled by the physical DMA unit,
1308 	 * i.e., wrong transaction types or unauthorized source nodes.
1309 	 */
1310 	fw_send_response(card, request, RCODE_TYPE_ERROR);
1311 }
1312 
1313 static struct fw_address_handler low_memory = {
1314 	.length			= FW_MAX_PHYSICAL_RANGE,
1315 	.address_callback	= handle_low_memory,
1316 };
1317 
1318 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1319 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1320 MODULE_LICENSE("GPL");
1321 
1322 static const u32 vendor_textual_descriptor[] = {
1323 	/* textual descriptor leaf () */
1324 	0x00060000,
1325 	0x00000000,
1326 	0x00000000,
1327 	0x4c696e75,		/* L i n u */
1328 	0x78204669,		/* x   F i */
1329 	0x72657769,		/* r e w i */
1330 	0x72650000,		/* r e     */
1331 };
1332 
1333 static const u32 model_textual_descriptor[] = {
1334 	/* model descriptor leaf () */
1335 	0x00030000,
1336 	0x00000000,
1337 	0x00000000,
1338 	0x4a756a75,		/* J u j u */
1339 };
1340 
1341 static struct fw_descriptor vendor_id_descriptor = {
1342 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1343 	.immediate = 0x03001f11,
1344 	.key = 0x81000000,
1345 	.data = vendor_textual_descriptor,
1346 };
1347 
1348 static struct fw_descriptor model_id_descriptor = {
1349 	.length = ARRAY_SIZE(model_textual_descriptor),
1350 	.immediate = 0x17023901,
1351 	.key = 0x81000000,
1352 	.data = model_textual_descriptor,
1353 };
1354 
1355 static int __init fw_core_init(void)
1356 {
1357 	int ret;
1358 
1359 	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1360 	if (!fw_workqueue)
1361 		return -ENOMEM;
1362 
1363 	ret = bus_register(&fw_bus_type);
1364 	if (ret < 0) {
1365 		destroy_workqueue(fw_workqueue);
1366 		return ret;
1367 	}
1368 
1369 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1370 	if (fw_cdev_major < 0) {
1371 		bus_unregister(&fw_bus_type);
1372 		destroy_workqueue(fw_workqueue);
1373 		return fw_cdev_major;
1374 	}
1375 
1376 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1377 	fw_core_add_address_handler(&registers, &registers_region);
1378 	fw_core_add_address_handler(&low_memory, &low_memory_region);
1379 	fw_core_add_descriptor(&vendor_id_descriptor);
1380 	fw_core_add_descriptor(&model_id_descriptor);
1381 
1382 	return 0;
1383 }
1384 
1385 static void __exit fw_core_cleanup(void)
1386 {
1387 	unregister_chrdev(fw_cdev_major, "firewire");
1388 	bus_unregister(&fw_bus_type);
1389 	destroy_workqueue(fw_workqueue);
1390 	idr_destroy(&fw_device_idr);
1391 }
1392 
1393 module_init(fw_core_init);
1394 module_exit(fw_core_cleanup);
1395