1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core IEEE1394 transaction logic 4 * 5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/completion.h> 10 #include <linux/device.h> 11 #include <linux/errno.h> 12 #include <linux/firewire.h> 13 #include <linux/firewire-constants.h> 14 #include <linux/fs.h> 15 #include <linux/init.h> 16 #include <linux/jiffies.h> 17 #include <linux/kernel.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/rculist.h> 21 #include <linux/slab.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/timer.h> 25 #include <linux/types.h> 26 #include <linux/workqueue.h> 27 28 #include <asm/byteorder.h> 29 30 #include "core.h" 31 #include "packet-header-definitions.h" 32 #include "phy-packet-definitions.h" 33 #include <trace/events/firewire.h> 34 35 #define HEADER_DESTINATION_IS_BROADCAST(header) \ 36 ((async_header_get_destination(header) & 0x3f) == 0x3f) 37 38 /* returns 0 if the split timeout handler is already running */ 39 static int try_cancel_split_timeout(struct fw_transaction *t) 40 { 41 if (t->is_split_transaction) 42 return del_timer(&t->split_timeout_timer); 43 else 44 return 1; 45 } 46 47 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode, 48 u32 response_tstamp) 49 { 50 struct fw_transaction *t = NULL, *iter; 51 52 scoped_guard(spinlock_irqsave, &card->lock) { 53 list_for_each_entry(iter, &card->transaction_list, link) { 54 if (iter == transaction) { 55 if (try_cancel_split_timeout(iter)) { 56 list_del_init(&iter->link); 57 card->tlabel_mask &= ~(1ULL << iter->tlabel); 58 t = iter; 59 } 60 break; 61 } 62 } 63 } 64 65 if (!t) 66 return -ENOENT; 67 68 if (!t->with_tstamp) { 69 t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data); 70 } else { 71 t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0, 72 t->callback_data); 73 } 74 75 return 0; 76 } 77 78 /* 79 * Only valid for transactions that are potentially pending (ie have 80 * been sent). 81 */ 82 int fw_cancel_transaction(struct fw_card *card, 83 struct fw_transaction *transaction) 84 { 85 u32 tstamp; 86 87 /* 88 * Cancel the packet transmission if it's still queued. That 89 * will call the packet transmission callback which cancels 90 * the transaction. 91 */ 92 93 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 94 return 0; 95 96 /* 97 * If the request packet has already been sent, we need to see 98 * if the transaction is still pending and remove it in that case. 99 */ 100 101 if (transaction->packet.ack == 0) { 102 // The timestamp is reused since it was just read now. 103 tstamp = transaction->packet.timestamp; 104 } else { 105 u32 curr_cycle_time = 0; 106 107 (void)fw_card_read_cycle_time(card, &curr_cycle_time); 108 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); 109 } 110 111 return close_transaction(transaction, card, RCODE_CANCELLED, tstamp); 112 } 113 EXPORT_SYMBOL(fw_cancel_transaction); 114 115 static void split_transaction_timeout_callback(struct timer_list *timer) 116 { 117 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer); 118 struct fw_card *card = t->card; 119 120 scoped_guard(spinlock_irqsave, &card->lock) { 121 if (list_empty(&t->link)) 122 return; 123 list_del(&t->link); 124 card->tlabel_mask &= ~(1ULL << t->tlabel); 125 } 126 127 if (!t->with_tstamp) { 128 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 129 } else { 130 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, 131 t->split_timeout_cycle, NULL, 0, t->callback_data); 132 } 133 } 134 135 static void start_split_transaction_timeout(struct fw_transaction *t, 136 struct fw_card *card) 137 { 138 guard(spinlock_irqsave)(&card->lock); 139 140 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) 141 return; 142 143 t->is_split_transaction = true; 144 mod_timer(&t->split_timeout_timer, 145 jiffies + card->split_timeout_jiffies); 146 } 147 148 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp); 149 150 static void transmit_complete_callback(struct fw_packet *packet, 151 struct fw_card *card, int status) 152 { 153 struct fw_transaction *t = 154 container_of(packet, struct fw_transaction, packet); 155 156 trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation, 157 packet->speed, status, packet->timestamp); 158 159 switch (status) { 160 case ACK_COMPLETE: 161 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp); 162 break; 163 case ACK_PENDING: 164 { 165 t->split_timeout_cycle = 166 compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff; 167 start_split_transaction_timeout(t, card); 168 break; 169 } 170 case ACK_BUSY_X: 171 case ACK_BUSY_A: 172 case ACK_BUSY_B: 173 close_transaction(t, card, RCODE_BUSY, packet->timestamp); 174 break; 175 case ACK_DATA_ERROR: 176 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp); 177 break; 178 case ACK_TYPE_ERROR: 179 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp); 180 break; 181 default: 182 /* 183 * In this case the ack is really a juju specific 184 * rcode, so just forward that to the callback. 185 */ 186 close_transaction(t, card, status, packet->timestamp); 187 break; 188 } 189 } 190 191 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 192 int destination_id, int source_id, int generation, int speed, 193 unsigned long long offset, void *payload, size_t length) 194 { 195 int ext_tcode; 196 197 if (tcode == TCODE_STREAM_DATA) { 198 // The value of destination_id argument should include tag, channel, and sy fields 199 // as isochronous packet header has. 200 packet->header[0] = destination_id; 201 isoc_header_set_data_length(packet->header, length); 202 isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA); 203 packet->header_length = 4; 204 packet->payload = payload; 205 packet->payload_length = length; 206 207 goto common; 208 } 209 210 if (tcode > 0x10) { 211 ext_tcode = tcode & ~0x10; 212 tcode = TCODE_LOCK_REQUEST; 213 } else 214 ext_tcode = 0; 215 216 async_header_set_retry(packet->header, RETRY_X); 217 async_header_set_tlabel(packet->header, tlabel); 218 async_header_set_tcode(packet->header, tcode); 219 async_header_set_destination(packet->header, destination_id); 220 async_header_set_source(packet->header, source_id); 221 async_header_set_offset(packet->header, offset); 222 223 switch (tcode) { 224 case TCODE_WRITE_QUADLET_REQUEST: 225 async_header_set_quadlet_data(packet->header, *(u32 *)payload); 226 packet->header_length = 16; 227 packet->payload_length = 0; 228 break; 229 230 case TCODE_LOCK_REQUEST: 231 case TCODE_WRITE_BLOCK_REQUEST: 232 async_header_set_data_length(packet->header, length); 233 async_header_set_extended_tcode(packet->header, ext_tcode); 234 packet->header_length = 16; 235 packet->payload = payload; 236 packet->payload_length = length; 237 break; 238 239 case TCODE_READ_QUADLET_REQUEST: 240 packet->header_length = 12; 241 packet->payload_length = 0; 242 break; 243 244 case TCODE_READ_BLOCK_REQUEST: 245 async_header_set_data_length(packet->header, length); 246 async_header_set_extended_tcode(packet->header, ext_tcode); 247 packet->header_length = 16; 248 packet->payload_length = 0; 249 break; 250 251 default: 252 WARN(1, "wrong tcode %d\n", tcode); 253 } 254 common: 255 packet->speed = speed; 256 packet->generation = generation; 257 packet->ack = 0; 258 packet->payload_mapped = false; 259 } 260 261 static int allocate_tlabel(struct fw_card *card) 262 { 263 int tlabel; 264 265 tlabel = card->current_tlabel; 266 while (card->tlabel_mask & (1ULL << tlabel)) { 267 tlabel = (tlabel + 1) & 0x3f; 268 if (tlabel == card->current_tlabel) 269 return -EBUSY; 270 } 271 272 card->current_tlabel = (tlabel + 1) & 0x3f; 273 card->tlabel_mask |= 1ULL << tlabel; 274 275 return tlabel; 276 } 277 278 /** 279 * __fw_send_request() - submit a request packet for transmission to generate callback for response 280 * subaction with or without time stamp. 281 * @card: interface to send the request at 282 * @t: transaction instance to which the request belongs 283 * @tcode: transaction code 284 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 285 * @generation: bus generation in which request and response are valid 286 * @speed: transmission speed 287 * @offset: 48bit wide offset into destination's address space 288 * @payload: data payload for the request subaction 289 * @length: length of the payload, in bytes 290 * @callback: union of two functions whether to receive time stamp or not for response 291 * subaction. 292 * @with_tstamp: Whether to receive time stamp or not for response subaction. 293 * @callback_data: data to be passed to the transaction completion callback 294 * 295 * Submit a request packet into the asynchronous request transmission queue. 296 * Can be called from atomic context. If you prefer a blocking API, use 297 * fw_run_transaction() in a context that can sleep. 298 * 299 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 300 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 301 * 302 * Make sure that the value in @destination_id is not older than the one in 303 * @generation. Otherwise the request is in danger to be sent to a wrong node. 304 * 305 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 306 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 307 * It will contain tag, channel, and sy data instead of a node ID then. 308 * 309 * The payload buffer at @data is going to be DMA-mapped except in case of 310 * @length <= 8 or of local (loopback) requests. Hence make sure that the 311 * buffer complies with the restrictions of the streaming DMA mapping API. 312 * @payload must not be freed before the @callback is called. 313 * 314 * In case of request types without payload, @data is NULL and @length is 0. 315 * 316 * After the transaction is completed successfully or unsuccessfully, the 317 * @callback will be called. Among its parameters is the response code which 318 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 319 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 320 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 321 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 322 * generation, or missing ACK respectively. 323 * 324 * Note some timing corner cases: fw_send_request() may complete much earlier 325 * than when the request packet actually hits the wire. On the other hand, 326 * transaction completion and hence execution of @callback may happen even 327 * before fw_send_request() returns. 328 */ 329 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 330 int destination_id, int generation, int speed, unsigned long long offset, 331 void *payload, size_t length, union fw_transaction_callback callback, 332 bool with_tstamp, void *callback_data) 333 { 334 unsigned long flags; 335 int tlabel; 336 337 /* 338 * Allocate tlabel from the bitmap and put the transaction on 339 * the list while holding the card spinlock. 340 */ 341 342 spin_lock_irqsave(&card->lock, flags); 343 344 tlabel = allocate_tlabel(card); 345 if (tlabel < 0) { 346 spin_unlock_irqrestore(&card->lock, flags); 347 if (!with_tstamp) { 348 callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 349 } else { 350 // Timestamping on behalf of hardware. 351 u32 curr_cycle_time = 0; 352 u32 tstamp; 353 354 (void)fw_card_read_cycle_time(card, &curr_cycle_time); 355 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); 356 357 callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0, 358 callback_data); 359 } 360 return; 361 } 362 363 t->node_id = destination_id; 364 t->tlabel = tlabel; 365 t->card = card; 366 t->is_split_transaction = false; 367 timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0); 368 t->callback = callback; 369 t->with_tstamp = with_tstamp; 370 t->callback_data = callback_data; 371 372 fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation, 373 speed, offset, payload, length); 374 t->packet.callback = transmit_complete_callback; 375 376 list_add_tail(&t->link, &card->transaction_list); 377 378 spin_unlock_irqrestore(&card->lock, flags); 379 380 trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed, 381 t->packet.header, payload, 382 tcode_is_read_request(tcode) ? 0 : length / 4); 383 384 card->driver->send_request(card, &t->packet); 385 } 386 EXPORT_SYMBOL_GPL(__fw_send_request); 387 388 struct transaction_callback_data { 389 struct completion done; 390 void *payload; 391 int rcode; 392 }; 393 394 static void transaction_callback(struct fw_card *card, int rcode, 395 void *payload, size_t length, void *data) 396 { 397 struct transaction_callback_data *d = data; 398 399 if (rcode == RCODE_COMPLETE) 400 memcpy(d->payload, payload, length); 401 d->rcode = rcode; 402 complete(&d->done); 403 } 404 405 /** 406 * fw_run_transaction() - send request and sleep until transaction is completed 407 * @card: card interface for this request 408 * @tcode: transaction code 409 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 410 * @generation: bus generation in which request and response are valid 411 * @speed: transmission speed 412 * @offset: 48bit wide offset into destination's address space 413 * @payload: data payload for the request subaction 414 * @length: length of the payload, in bytes 415 * 416 * Returns the RCODE. See fw_send_request() for parameter documentation. 417 * Unlike fw_send_request(), @data points to the payload of the request or/and 418 * to the payload of the response. DMA mapping restrictions apply to outbound 419 * request payloads of >= 8 bytes but not to inbound response payloads. 420 */ 421 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 422 int generation, int speed, unsigned long long offset, 423 void *payload, size_t length) 424 { 425 struct transaction_callback_data d; 426 struct fw_transaction t; 427 428 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0); 429 init_completion(&d.done); 430 d.payload = payload; 431 fw_send_request(card, &t, tcode, destination_id, generation, speed, 432 offset, payload, length, transaction_callback, &d); 433 wait_for_completion(&d.done); 434 destroy_timer_on_stack(&t.split_timeout_timer); 435 436 return d.rcode; 437 } 438 EXPORT_SYMBOL(fw_run_transaction); 439 440 static DEFINE_MUTEX(phy_config_mutex); 441 static DECLARE_COMPLETION(phy_config_done); 442 443 static void transmit_phy_packet_callback(struct fw_packet *packet, 444 struct fw_card *card, int status) 445 { 446 trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status, 447 packet->timestamp); 448 complete(&phy_config_done); 449 } 450 451 static struct fw_packet phy_config_packet = { 452 .header_length = 12, 453 .payload_length = 0, 454 .speed = SCODE_100, 455 .callback = transmit_phy_packet_callback, 456 }; 457 458 void fw_send_phy_config(struct fw_card *card, 459 int node_id, int generation, int gap_count) 460 { 461 long timeout = DIV_ROUND_UP(HZ, 10); 462 u32 data = 0; 463 464 phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG); 465 466 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) { 467 phy_packet_phy_config_set_root_id(&data, node_id); 468 phy_packet_phy_config_set_force_root_node(&data, true); 469 } 470 471 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 472 gap_count = card->driver->read_phy_reg(card, 1); 473 if (gap_count < 0) 474 return; 475 476 gap_count &= 63; 477 if (gap_count == 63) 478 return; 479 } 480 phy_packet_phy_config_set_gap_count(&data, gap_count); 481 phy_packet_phy_config_set_gap_count_optimization(&data, true); 482 483 guard(mutex)(&phy_config_mutex); 484 485 async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL); 486 phy_config_packet.header[1] = data; 487 phy_config_packet.header[2] = ~data; 488 phy_config_packet.generation = generation; 489 reinit_completion(&phy_config_done); 490 491 trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index, 492 phy_config_packet.generation, phy_config_packet.header[1], 493 phy_config_packet.header[2]); 494 495 card->driver->send_request(card, &phy_config_packet); 496 wait_for_completion_timeout(&phy_config_done, timeout); 497 } 498 499 static struct fw_address_handler *lookup_overlapping_address_handler( 500 struct list_head *list, unsigned long long offset, size_t length) 501 { 502 struct fw_address_handler *handler; 503 504 list_for_each_entry_rcu(handler, list, link) { 505 if (handler->offset < offset + length && 506 offset < handler->offset + handler->length) 507 return handler; 508 } 509 510 return NULL; 511 } 512 513 static bool is_enclosing_handler(struct fw_address_handler *handler, 514 unsigned long long offset, size_t length) 515 { 516 return handler->offset <= offset && 517 offset + length <= handler->offset + handler->length; 518 } 519 520 static struct fw_address_handler *lookup_enclosing_address_handler( 521 struct list_head *list, unsigned long long offset, size_t length) 522 { 523 struct fw_address_handler *handler; 524 525 list_for_each_entry_rcu(handler, list, link) { 526 if (is_enclosing_handler(handler, offset, length)) 527 return handler; 528 } 529 530 return NULL; 531 } 532 533 static DEFINE_SPINLOCK(address_handler_list_lock); 534 static LIST_HEAD(address_handler_list); 535 536 const struct fw_address_region fw_high_memory_region = 537 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, }; 538 EXPORT_SYMBOL(fw_high_memory_region); 539 540 static const struct fw_address_region low_memory_region = 541 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, }; 542 543 #if 0 544 const struct fw_address_region fw_private_region = 545 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 546 const struct fw_address_region fw_csr_region = 547 { .start = CSR_REGISTER_BASE, 548 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 549 const struct fw_address_region fw_unit_space_region = 550 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 551 #endif /* 0 */ 552 553 /** 554 * fw_core_add_address_handler() - register for incoming requests 555 * @handler: callback 556 * @region: region in the IEEE 1212 node space address range 557 * 558 * region->start, ->end, and handler->length have to be quadlet-aligned. 559 * 560 * When a request is received that falls within the specified address range, 561 * the specified callback is invoked. The parameters passed to the callback 562 * give the details of the particular request. 563 * 564 * To be called in process context. 565 * Return value: 0 on success, non-zero otherwise. 566 * 567 * The start offset of the handler's address region is determined by 568 * fw_core_add_address_handler() and is returned in handler->offset. 569 * 570 * Address allocations are exclusive, except for the FCP registers. 571 */ 572 int fw_core_add_address_handler(struct fw_address_handler *handler, 573 const struct fw_address_region *region) 574 { 575 struct fw_address_handler *other; 576 int ret = -EBUSY; 577 578 if (region->start & 0xffff000000000003ULL || 579 region->start >= region->end || 580 region->end > 0x0001000000000000ULL || 581 handler->length & 3 || 582 handler->length == 0) 583 return -EINVAL; 584 585 guard(spinlock)(&address_handler_list_lock); 586 587 handler->offset = region->start; 588 while (handler->offset + handler->length <= region->end) { 589 if (is_in_fcp_region(handler->offset, handler->length)) 590 other = NULL; 591 else 592 other = lookup_overlapping_address_handler 593 (&address_handler_list, 594 handler->offset, handler->length); 595 if (other != NULL) { 596 handler->offset += other->length; 597 } else { 598 list_add_tail_rcu(&handler->link, &address_handler_list); 599 ret = 0; 600 break; 601 } 602 } 603 604 return ret; 605 } 606 EXPORT_SYMBOL(fw_core_add_address_handler); 607 608 /** 609 * fw_core_remove_address_handler() - unregister an address handler 610 * @handler: callback 611 * 612 * To be called in process context. 613 * 614 * When fw_core_remove_address_handler() returns, @handler->callback() is 615 * guaranteed to not run on any CPU anymore. 616 */ 617 void fw_core_remove_address_handler(struct fw_address_handler *handler) 618 { 619 scoped_guard(spinlock, &address_handler_list_lock) 620 list_del_rcu(&handler->link); 621 622 synchronize_rcu(); 623 } 624 EXPORT_SYMBOL(fw_core_remove_address_handler); 625 626 struct fw_request { 627 struct kref kref; 628 struct fw_packet response; 629 u32 request_header[ASYNC_HEADER_QUADLET_COUNT]; 630 int ack; 631 u32 timestamp; 632 u32 length; 633 u32 data[]; 634 }; 635 636 void fw_request_get(struct fw_request *request) 637 { 638 kref_get(&request->kref); 639 } 640 641 static void release_request(struct kref *kref) 642 { 643 struct fw_request *request = container_of(kref, struct fw_request, kref); 644 645 kfree(request); 646 } 647 648 void fw_request_put(struct fw_request *request) 649 { 650 kref_put(&request->kref, release_request); 651 } 652 653 static void free_response_callback(struct fw_packet *packet, 654 struct fw_card *card, int status) 655 { 656 struct fw_request *request = container_of(packet, struct fw_request, response); 657 658 trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation, 659 packet->speed, status, packet->timestamp); 660 661 // Decrease the reference count since not at in-flight. 662 fw_request_put(request); 663 664 // Decrease the reference count to release the object. 665 fw_request_put(request); 666 } 667 668 int fw_get_response_length(struct fw_request *r) 669 { 670 int tcode, ext_tcode, data_length; 671 672 tcode = async_header_get_tcode(r->request_header); 673 674 switch (tcode) { 675 case TCODE_WRITE_QUADLET_REQUEST: 676 case TCODE_WRITE_BLOCK_REQUEST: 677 return 0; 678 679 case TCODE_READ_QUADLET_REQUEST: 680 return 4; 681 682 case TCODE_READ_BLOCK_REQUEST: 683 data_length = async_header_get_data_length(r->request_header); 684 return data_length; 685 686 case TCODE_LOCK_REQUEST: 687 ext_tcode = async_header_get_extended_tcode(r->request_header); 688 data_length = async_header_get_data_length(r->request_header); 689 switch (ext_tcode) { 690 case EXTCODE_FETCH_ADD: 691 case EXTCODE_LITTLE_ADD: 692 return data_length; 693 default: 694 return data_length / 2; 695 } 696 697 default: 698 WARN(1, "wrong tcode %d\n", tcode); 699 return 0; 700 } 701 } 702 703 void fw_fill_response(struct fw_packet *response, u32 *request_header, 704 int rcode, void *payload, size_t length) 705 { 706 int tcode, tlabel, extended_tcode, source, destination; 707 708 tcode = async_header_get_tcode(request_header); 709 tlabel = async_header_get_tlabel(request_header); 710 source = async_header_get_destination(request_header); // Exchange. 711 destination = async_header_get_source(request_header); // Exchange. 712 extended_tcode = async_header_get_extended_tcode(request_header); 713 714 async_header_set_retry(response->header, RETRY_1); 715 async_header_set_tlabel(response->header, tlabel); 716 async_header_set_destination(response->header, destination); 717 async_header_set_source(response->header, source); 718 async_header_set_rcode(response->header, rcode); 719 response->header[2] = 0; // The field is reserved. 720 721 switch (tcode) { 722 case TCODE_WRITE_QUADLET_REQUEST: 723 case TCODE_WRITE_BLOCK_REQUEST: 724 async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE); 725 response->header_length = 12; 726 response->payload_length = 0; 727 break; 728 729 case TCODE_READ_QUADLET_REQUEST: 730 async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE); 731 if (payload != NULL) 732 async_header_set_quadlet_data(response->header, *(u32 *)payload); 733 else 734 async_header_set_quadlet_data(response->header, 0); 735 response->header_length = 16; 736 response->payload_length = 0; 737 break; 738 739 case TCODE_READ_BLOCK_REQUEST: 740 case TCODE_LOCK_REQUEST: 741 async_header_set_tcode(response->header, tcode + 2); 742 async_header_set_data_length(response->header, length); 743 async_header_set_extended_tcode(response->header, extended_tcode); 744 response->header_length = 16; 745 response->payload = payload; 746 response->payload_length = length; 747 break; 748 749 default: 750 WARN(1, "wrong tcode %d\n", tcode); 751 } 752 753 response->payload_mapped = false; 754 } 755 EXPORT_SYMBOL(fw_fill_response); 756 757 static u32 compute_split_timeout_timestamp(struct fw_card *card, 758 u32 request_timestamp) 759 { 760 unsigned int cycles; 761 u32 timestamp; 762 763 cycles = card->split_timeout_cycles; 764 cycles += request_timestamp & 0x1fff; 765 766 timestamp = request_timestamp & ~0x1fff; 767 timestamp += (cycles / 8000) << 13; 768 timestamp |= cycles % 8000; 769 770 return timestamp; 771 } 772 773 static struct fw_request *allocate_request(struct fw_card *card, 774 struct fw_packet *p) 775 { 776 struct fw_request *request; 777 u32 *data, length; 778 int request_tcode; 779 780 request_tcode = async_header_get_tcode(p->header); 781 switch (request_tcode) { 782 case TCODE_WRITE_QUADLET_REQUEST: 783 data = &p->header[3]; 784 length = 4; 785 break; 786 787 case TCODE_WRITE_BLOCK_REQUEST: 788 case TCODE_LOCK_REQUEST: 789 data = p->payload; 790 length = async_header_get_data_length(p->header); 791 break; 792 793 case TCODE_READ_QUADLET_REQUEST: 794 data = NULL; 795 length = 4; 796 break; 797 798 case TCODE_READ_BLOCK_REQUEST: 799 data = NULL; 800 length = async_header_get_data_length(p->header); 801 break; 802 803 default: 804 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", 805 p->header[0], p->header[1], p->header[2]); 806 return NULL; 807 } 808 809 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 810 if (request == NULL) 811 return NULL; 812 kref_init(&request->kref); 813 814 request->response.speed = p->speed; 815 request->response.timestamp = 816 compute_split_timeout_timestamp(card, p->timestamp); 817 request->response.generation = p->generation; 818 request->response.ack = 0; 819 request->response.callback = free_response_callback; 820 request->ack = p->ack; 821 request->timestamp = p->timestamp; 822 request->length = length; 823 if (data) 824 memcpy(request->data, data, length); 825 826 memcpy(request->request_header, p->header, sizeof(p->header)); 827 828 return request; 829 } 830 831 /** 832 * fw_send_response: - send response packet for asynchronous transaction. 833 * @card: interface to send the response at. 834 * @request: firewire request data for the transaction. 835 * @rcode: response code to send. 836 * 837 * Submit a response packet into the asynchronous response transmission queue. The @request 838 * is going to be released when the transmission successfully finishes later. 839 */ 840 void fw_send_response(struct fw_card *card, 841 struct fw_request *request, int rcode) 842 { 843 u32 *data = NULL; 844 unsigned int data_length = 0; 845 846 /* unified transaction or broadcast transaction: don't respond */ 847 if (request->ack != ACK_PENDING || 848 HEADER_DESTINATION_IS_BROADCAST(request->request_header)) { 849 fw_request_put(request); 850 return; 851 } 852 853 if (rcode == RCODE_COMPLETE) { 854 data = request->data; 855 data_length = fw_get_response_length(request); 856 } 857 858 fw_fill_response(&request->response, request->request_header, rcode, data, data_length); 859 860 // Increase the reference count so that the object is kept during in-flight. 861 fw_request_get(request); 862 863 trace_async_response_outbound_initiate((uintptr_t)request, card->index, 864 request->response.generation, request->response.speed, 865 request->response.header, data, 866 data ? data_length / 4 : 0); 867 868 card->driver->send_response(card, &request->response); 869 } 870 EXPORT_SYMBOL(fw_send_response); 871 872 /** 873 * fw_get_request_speed() - returns speed at which the @request was received 874 * @request: firewire request data 875 */ 876 int fw_get_request_speed(struct fw_request *request) 877 { 878 return request->response.speed; 879 } 880 EXPORT_SYMBOL(fw_get_request_speed); 881 882 /** 883 * fw_request_get_timestamp: Get timestamp of the request. 884 * @request: The opaque pointer to request structure. 885 * 886 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The 887 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count 888 * field of isochronous cycle time register. 889 * 890 * Returns: timestamp of the request. 891 */ 892 u32 fw_request_get_timestamp(const struct fw_request *request) 893 { 894 return request->timestamp; 895 } 896 EXPORT_SYMBOL_GPL(fw_request_get_timestamp); 897 898 static void handle_exclusive_region_request(struct fw_card *card, 899 struct fw_packet *p, 900 struct fw_request *request, 901 unsigned long long offset) 902 { 903 struct fw_address_handler *handler; 904 int tcode, destination, source; 905 906 destination = async_header_get_destination(p->header); 907 source = async_header_get_source(p->header); 908 tcode = async_header_get_tcode(p->header); 909 if (tcode == TCODE_LOCK_REQUEST) 910 tcode = 0x10 + async_header_get_extended_tcode(p->header); 911 912 scoped_guard(rcu) { 913 handler = lookup_enclosing_address_handler(&address_handler_list, offset, 914 request->length); 915 if (handler) 916 handler->address_callback(card, request, tcode, destination, source, 917 p->generation, offset, request->data, 918 request->length, handler->callback_data); 919 } 920 921 if (!handler) 922 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 923 } 924 925 static void handle_fcp_region_request(struct fw_card *card, 926 struct fw_packet *p, 927 struct fw_request *request, 928 unsigned long long offset) 929 { 930 struct fw_address_handler *handler; 931 int tcode, destination, source; 932 933 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 934 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 935 request->length > 0x200) { 936 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 937 938 return; 939 } 940 941 tcode = async_header_get_tcode(p->header); 942 destination = async_header_get_destination(p->header); 943 source = async_header_get_source(p->header); 944 945 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 946 tcode != TCODE_WRITE_BLOCK_REQUEST) { 947 fw_send_response(card, request, RCODE_TYPE_ERROR); 948 949 return; 950 } 951 952 scoped_guard(rcu) { 953 list_for_each_entry_rcu(handler, &address_handler_list, link) { 954 if (is_enclosing_handler(handler, offset, request->length)) 955 handler->address_callback(card, request, tcode, destination, source, 956 p->generation, offset, request->data, 957 request->length, handler->callback_data); 958 } 959 } 960 961 fw_send_response(card, request, RCODE_COMPLETE); 962 } 963 964 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 965 { 966 struct fw_request *request; 967 unsigned long long offset; 968 unsigned int tcode; 969 970 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 971 return; 972 973 tcode = async_header_get_tcode(p->header); 974 if (tcode_is_link_internal(tcode)) { 975 trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp, 976 p->header[1], p->header[2]); 977 fw_cdev_handle_phy_packet(card, p); 978 return; 979 } 980 981 request = allocate_request(card, p); 982 if (request == NULL) { 983 /* FIXME: send statically allocated busy packet. */ 984 return; 985 } 986 987 trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed, 988 p->ack, p->timestamp, p->header, request->data, 989 tcode_is_read_request(tcode) ? 0 : request->length / 4); 990 991 offset = async_header_get_offset(p->header); 992 993 if (!is_in_fcp_region(offset, request->length)) 994 handle_exclusive_region_request(card, p, request, offset); 995 else 996 handle_fcp_region_request(card, p, request, offset); 997 998 } 999 EXPORT_SYMBOL(fw_core_handle_request); 1000 1001 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 1002 { 1003 struct fw_transaction *t = NULL, *iter; 1004 u32 *data; 1005 size_t data_length; 1006 int tcode, tlabel, source, rcode; 1007 1008 tcode = async_header_get_tcode(p->header); 1009 tlabel = async_header_get_tlabel(p->header); 1010 source = async_header_get_source(p->header); 1011 rcode = async_header_get_rcode(p->header); 1012 1013 // FIXME: sanity check packet, is length correct, does tcodes 1014 // and addresses match to the transaction request queried later. 1015 // 1016 // For the tracepoints event, let us decode the header here against the concern. 1017 1018 switch (tcode) { 1019 case TCODE_READ_QUADLET_RESPONSE: 1020 data = (u32 *) &p->header[3]; 1021 data_length = 4; 1022 break; 1023 1024 case TCODE_WRITE_RESPONSE: 1025 data = NULL; 1026 data_length = 0; 1027 break; 1028 1029 case TCODE_READ_BLOCK_RESPONSE: 1030 case TCODE_LOCK_RESPONSE: 1031 data = p->payload; 1032 data_length = async_header_get_data_length(p->header); 1033 break; 1034 1035 default: 1036 /* Should never happen, this is just to shut up gcc. */ 1037 data = NULL; 1038 data_length = 0; 1039 break; 1040 } 1041 1042 scoped_guard(spinlock_irqsave, &card->lock) { 1043 list_for_each_entry(iter, &card->transaction_list, link) { 1044 if (iter->node_id == source && iter->tlabel == tlabel) { 1045 if (try_cancel_split_timeout(iter)) { 1046 list_del_init(&iter->link); 1047 card->tlabel_mask &= ~(1ULL << iter->tlabel); 1048 t = iter; 1049 } 1050 break; 1051 } 1052 } 1053 } 1054 1055 trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack, 1056 p->timestamp, p->header, data, data_length / 4); 1057 1058 if (!t) { 1059 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", 1060 source, tlabel); 1061 return; 1062 } 1063 1064 /* 1065 * The response handler may be executed while the request handler 1066 * is still pending. Cancel the request handler. 1067 */ 1068 card->driver->cancel_packet(card, &t->packet); 1069 1070 if (!t->with_tstamp) { 1071 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data); 1072 } else { 1073 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data, 1074 data_length, t->callback_data); 1075 } 1076 } 1077 EXPORT_SYMBOL(fw_core_handle_response); 1078 1079 /** 1080 * fw_rcode_string - convert a firewire result code to an error description 1081 * @rcode: the result code 1082 */ 1083 const char *fw_rcode_string(int rcode) 1084 { 1085 static const char *const names[] = { 1086 [RCODE_COMPLETE] = "no error", 1087 [RCODE_CONFLICT_ERROR] = "conflict error", 1088 [RCODE_DATA_ERROR] = "data error", 1089 [RCODE_TYPE_ERROR] = "type error", 1090 [RCODE_ADDRESS_ERROR] = "address error", 1091 [RCODE_SEND_ERROR] = "send error", 1092 [RCODE_CANCELLED] = "timeout", 1093 [RCODE_BUSY] = "busy", 1094 [RCODE_GENERATION] = "bus reset", 1095 [RCODE_NO_ACK] = "no ack", 1096 }; 1097 1098 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode]) 1099 return names[rcode]; 1100 else 1101 return "unknown"; 1102 } 1103 EXPORT_SYMBOL(fw_rcode_string); 1104 1105 static const struct fw_address_region topology_map_region = 1106 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 1107 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 1108 1109 static void handle_topology_map(struct fw_card *card, struct fw_request *request, 1110 int tcode, int destination, int source, int generation, 1111 unsigned long long offset, void *payload, size_t length, 1112 void *callback_data) 1113 { 1114 int start; 1115 1116 if (!tcode_is_read_request(tcode)) { 1117 fw_send_response(card, request, RCODE_TYPE_ERROR); 1118 return; 1119 } 1120 1121 if ((offset & 3) > 0 || (length & 3) > 0) { 1122 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1123 return; 1124 } 1125 1126 start = (offset - topology_map_region.start) / 4; 1127 memcpy(payload, &card->topology_map[start], length); 1128 1129 fw_send_response(card, request, RCODE_COMPLETE); 1130 } 1131 1132 static struct fw_address_handler topology_map = { 1133 .length = 0x400, 1134 .address_callback = handle_topology_map, 1135 }; 1136 1137 static const struct fw_address_region registers_region = 1138 { .start = CSR_REGISTER_BASE, 1139 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1140 1141 static void update_split_timeout(struct fw_card *card) 1142 { 1143 unsigned int cycles; 1144 1145 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); 1146 1147 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ 1148 cycles = clamp(cycles, 800u, 3u * 8000u); 1149 1150 card->split_timeout_cycles = cycles; 1151 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); 1152 } 1153 1154 static void handle_registers(struct fw_card *card, struct fw_request *request, 1155 int tcode, int destination, int source, int generation, 1156 unsigned long long offset, void *payload, size_t length, 1157 void *callback_data) 1158 { 1159 int reg = offset & ~CSR_REGISTER_BASE; 1160 __be32 *data = payload; 1161 int rcode = RCODE_COMPLETE; 1162 1163 switch (reg) { 1164 case CSR_PRIORITY_BUDGET: 1165 if (!card->priority_budget_implemented) { 1166 rcode = RCODE_ADDRESS_ERROR; 1167 break; 1168 } 1169 fallthrough; 1170 1171 case CSR_NODE_IDS: 1172 /* 1173 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1174 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1175 */ 1176 fallthrough; 1177 1178 case CSR_STATE_CLEAR: 1179 case CSR_STATE_SET: 1180 case CSR_CYCLE_TIME: 1181 case CSR_BUS_TIME: 1182 case CSR_BUSY_TIMEOUT: 1183 if (tcode == TCODE_READ_QUADLET_REQUEST) 1184 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1185 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1186 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1187 else 1188 rcode = RCODE_TYPE_ERROR; 1189 break; 1190 1191 case CSR_RESET_START: 1192 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1193 card->driver->write_csr(card, CSR_STATE_CLEAR, 1194 CSR_STATE_BIT_ABDICATE); 1195 else 1196 rcode = RCODE_TYPE_ERROR; 1197 break; 1198 1199 case CSR_SPLIT_TIMEOUT_HI: 1200 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1201 *data = cpu_to_be32(card->split_timeout_hi); 1202 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1203 guard(spinlock_irqsave)(&card->lock); 1204 1205 card->split_timeout_hi = be32_to_cpu(*data) & 7; 1206 update_split_timeout(card); 1207 } else { 1208 rcode = RCODE_TYPE_ERROR; 1209 } 1210 break; 1211 1212 case CSR_SPLIT_TIMEOUT_LO: 1213 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1214 *data = cpu_to_be32(card->split_timeout_lo); 1215 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1216 guard(spinlock_irqsave)(&card->lock); 1217 1218 card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000; 1219 update_split_timeout(card); 1220 } else { 1221 rcode = RCODE_TYPE_ERROR; 1222 } 1223 break; 1224 1225 case CSR_MAINT_UTILITY: 1226 if (tcode == TCODE_READ_QUADLET_REQUEST) 1227 *data = card->maint_utility_register; 1228 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1229 card->maint_utility_register = *data; 1230 else 1231 rcode = RCODE_TYPE_ERROR; 1232 break; 1233 1234 case CSR_BROADCAST_CHANNEL: 1235 if (tcode == TCODE_READ_QUADLET_REQUEST) 1236 *data = cpu_to_be32(card->broadcast_channel); 1237 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1238 card->broadcast_channel = 1239 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1240 BROADCAST_CHANNEL_INITIAL; 1241 else 1242 rcode = RCODE_TYPE_ERROR; 1243 break; 1244 1245 case CSR_BUS_MANAGER_ID: 1246 case CSR_BANDWIDTH_AVAILABLE: 1247 case CSR_CHANNELS_AVAILABLE_HI: 1248 case CSR_CHANNELS_AVAILABLE_LO: 1249 /* 1250 * FIXME: these are handled by the OHCI hardware and 1251 * the stack never sees these request. If we add 1252 * support for a new type of controller that doesn't 1253 * handle this in hardware we need to deal with these 1254 * transactions. 1255 */ 1256 BUG(); 1257 break; 1258 1259 default: 1260 rcode = RCODE_ADDRESS_ERROR; 1261 break; 1262 } 1263 1264 fw_send_response(card, request, rcode); 1265 } 1266 1267 static struct fw_address_handler registers = { 1268 .length = 0x400, 1269 .address_callback = handle_registers, 1270 }; 1271 1272 static void handle_low_memory(struct fw_card *card, struct fw_request *request, 1273 int tcode, int destination, int source, int generation, 1274 unsigned long long offset, void *payload, size_t length, 1275 void *callback_data) 1276 { 1277 /* 1278 * This catches requests not handled by the physical DMA unit, 1279 * i.e., wrong transaction types or unauthorized source nodes. 1280 */ 1281 fw_send_response(card, request, RCODE_TYPE_ERROR); 1282 } 1283 1284 static struct fw_address_handler low_memory = { 1285 .length = FW_MAX_PHYSICAL_RANGE, 1286 .address_callback = handle_low_memory, 1287 }; 1288 1289 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1290 MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1291 MODULE_LICENSE("GPL"); 1292 1293 static const u32 vendor_textual_descriptor[] = { 1294 /* textual descriptor leaf () */ 1295 0x00060000, 1296 0x00000000, 1297 0x00000000, 1298 0x4c696e75, /* L i n u */ 1299 0x78204669, /* x F i */ 1300 0x72657769, /* r e w i */ 1301 0x72650000, /* r e */ 1302 }; 1303 1304 static const u32 model_textual_descriptor[] = { 1305 /* model descriptor leaf () */ 1306 0x00030000, 1307 0x00000000, 1308 0x00000000, 1309 0x4a756a75, /* J u j u */ 1310 }; 1311 1312 static struct fw_descriptor vendor_id_descriptor = { 1313 .length = ARRAY_SIZE(vendor_textual_descriptor), 1314 .immediate = 0x03001f11, 1315 .key = 0x81000000, 1316 .data = vendor_textual_descriptor, 1317 }; 1318 1319 static struct fw_descriptor model_id_descriptor = { 1320 .length = ARRAY_SIZE(model_textual_descriptor), 1321 .immediate = 0x17023901, 1322 .key = 0x81000000, 1323 .data = model_textual_descriptor, 1324 }; 1325 1326 static int __init fw_core_init(void) 1327 { 1328 int ret; 1329 1330 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0); 1331 if (!fw_workqueue) 1332 return -ENOMEM; 1333 1334 ret = bus_register(&fw_bus_type); 1335 if (ret < 0) { 1336 destroy_workqueue(fw_workqueue); 1337 return ret; 1338 } 1339 1340 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1341 if (fw_cdev_major < 0) { 1342 bus_unregister(&fw_bus_type); 1343 destroy_workqueue(fw_workqueue); 1344 return fw_cdev_major; 1345 } 1346 1347 fw_core_add_address_handler(&topology_map, &topology_map_region); 1348 fw_core_add_address_handler(®isters, ®isters_region); 1349 fw_core_add_address_handler(&low_memory, &low_memory_region); 1350 fw_core_add_descriptor(&vendor_id_descriptor); 1351 fw_core_add_descriptor(&model_id_descriptor); 1352 1353 return 0; 1354 } 1355 1356 static void __exit fw_core_cleanup(void) 1357 { 1358 unregister_chrdev(fw_cdev_major, "firewire"); 1359 bus_unregister(&fw_bus_type); 1360 destroy_workqueue(fw_workqueue); 1361 xa_destroy(&fw_device_xa); 1362 } 1363 1364 module_init(fw_core_init); 1365 module_exit(fw_core_cleanup); 1366