1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core IEEE1394 transaction logic 4 * 5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/completion.h> 10 #include <linux/device.h> 11 #include <linux/errno.h> 12 #include <linux/firewire.h> 13 #include <linux/firewire-constants.h> 14 #include <linux/fs.h> 15 #include <linux/init.h> 16 #include <linux/idr.h> 17 #include <linux/jiffies.h> 18 #include <linux/kernel.h> 19 #include <linux/list.h> 20 #include <linux/module.h> 21 #include <linux/rculist.h> 22 #include <linux/slab.h> 23 #include <linux/spinlock.h> 24 #include <linux/string.h> 25 #include <linux/timer.h> 26 #include <linux/types.h> 27 #include <linux/workqueue.h> 28 29 #include <asm/byteorder.h> 30 31 #include "core.h" 32 33 #define HEADER_PRI(pri) ((pri) << 0) 34 #define HEADER_TCODE(tcode) ((tcode) << 4) 35 #define HEADER_RETRY(retry) ((retry) << 8) 36 #define HEADER_TLABEL(tlabel) ((tlabel) << 10) 37 #define HEADER_DESTINATION(destination) ((destination) << 16) 38 #define HEADER_SOURCE(source) ((source) << 16) 39 #define HEADER_RCODE(rcode) ((rcode) << 12) 40 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0) 41 #define HEADER_DATA_LENGTH(length) ((length) << 16) 42 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0) 43 44 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) 45 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f) 46 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f) 47 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) 48 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff) 49 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) 50 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) 51 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) 52 53 #define HEADER_DESTINATION_IS_BROADCAST(q) \ 54 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f)) 55 56 #define PHY_PACKET_CONFIG 0x0 57 #define PHY_PACKET_LINK_ON 0x1 58 #define PHY_PACKET_SELF_ID 0x2 59 60 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22)) 61 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23)) 62 #define PHY_IDENTIFIER(id) ((id) << 30) 63 64 /* returns 0 if the split timeout handler is already running */ 65 static int try_cancel_split_timeout(struct fw_transaction *t) 66 { 67 if (t->is_split_transaction) 68 return del_timer(&t->split_timeout_timer); 69 else 70 return 1; 71 } 72 73 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode, 74 u32 response_tstamp) 75 { 76 struct fw_transaction *t = NULL, *iter; 77 unsigned long flags; 78 79 spin_lock_irqsave(&card->lock, flags); 80 list_for_each_entry(iter, &card->transaction_list, link) { 81 if (iter == transaction) { 82 if (!try_cancel_split_timeout(iter)) { 83 spin_unlock_irqrestore(&card->lock, flags); 84 goto timed_out; 85 } 86 list_del_init(&iter->link); 87 card->tlabel_mask &= ~(1ULL << iter->tlabel); 88 t = iter; 89 break; 90 } 91 } 92 spin_unlock_irqrestore(&card->lock, flags); 93 94 if (t) { 95 if (!t->with_tstamp) { 96 t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data); 97 } else { 98 t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, 99 NULL, 0, t->callback_data); 100 } 101 return 0; 102 } 103 104 timed_out: 105 return -ENOENT; 106 } 107 108 /* 109 * Only valid for transactions that are potentially pending (ie have 110 * been sent). 111 */ 112 int fw_cancel_transaction(struct fw_card *card, 113 struct fw_transaction *transaction) 114 { 115 u32 tstamp; 116 117 /* 118 * Cancel the packet transmission if it's still queued. That 119 * will call the packet transmission callback which cancels 120 * the transaction. 121 */ 122 123 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 124 return 0; 125 126 /* 127 * If the request packet has already been sent, we need to see 128 * if the transaction is still pending and remove it in that case. 129 */ 130 131 if (transaction->packet.ack == 0) { 132 // The timestamp is reused since it was just read now. 133 tstamp = transaction->packet.timestamp; 134 } else { 135 u32 curr_cycle_time = 0; 136 137 (void)fw_card_read_cycle_time(card, &curr_cycle_time); 138 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); 139 } 140 141 return close_transaction(transaction, card, RCODE_CANCELLED, tstamp); 142 } 143 EXPORT_SYMBOL(fw_cancel_transaction); 144 145 static void split_transaction_timeout_callback(struct timer_list *timer) 146 { 147 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer); 148 struct fw_card *card = t->card; 149 unsigned long flags; 150 151 spin_lock_irqsave(&card->lock, flags); 152 if (list_empty(&t->link)) { 153 spin_unlock_irqrestore(&card->lock, flags); 154 return; 155 } 156 list_del(&t->link); 157 card->tlabel_mask &= ~(1ULL << t->tlabel); 158 spin_unlock_irqrestore(&card->lock, flags); 159 160 if (!t->with_tstamp) { 161 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 162 } else { 163 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, 164 t->split_timeout_cycle, NULL, 0, t->callback_data); 165 } 166 } 167 168 static void start_split_transaction_timeout(struct fw_transaction *t, 169 struct fw_card *card) 170 { 171 unsigned long flags; 172 173 spin_lock_irqsave(&card->lock, flags); 174 175 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) { 176 spin_unlock_irqrestore(&card->lock, flags); 177 return; 178 } 179 180 t->is_split_transaction = true; 181 mod_timer(&t->split_timeout_timer, 182 jiffies + card->split_timeout_jiffies); 183 184 spin_unlock_irqrestore(&card->lock, flags); 185 } 186 187 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp); 188 189 static void transmit_complete_callback(struct fw_packet *packet, 190 struct fw_card *card, int status) 191 { 192 struct fw_transaction *t = 193 container_of(packet, struct fw_transaction, packet); 194 195 switch (status) { 196 case ACK_COMPLETE: 197 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp); 198 break; 199 case ACK_PENDING: 200 { 201 t->split_timeout_cycle = 202 compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff; 203 start_split_transaction_timeout(t, card); 204 break; 205 } 206 case ACK_BUSY_X: 207 case ACK_BUSY_A: 208 case ACK_BUSY_B: 209 close_transaction(t, card, RCODE_BUSY, packet->timestamp); 210 break; 211 case ACK_DATA_ERROR: 212 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp); 213 break; 214 case ACK_TYPE_ERROR: 215 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp); 216 break; 217 default: 218 /* 219 * In this case the ack is really a juju specific 220 * rcode, so just forward that to the callback. 221 */ 222 close_transaction(t, card, status, packet->timestamp); 223 break; 224 } 225 } 226 227 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 228 int destination_id, int source_id, int generation, int speed, 229 unsigned long long offset, void *payload, size_t length) 230 { 231 int ext_tcode; 232 233 if (tcode == TCODE_STREAM_DATA) { 234 packet->header[0] = 235 HEADER_DATA_LENGTH(length) | 236 destination_id | 237 HEADER_TCODE(TCODE_STREAM_DATA); 238 packet->header_length = 4; 239 packet->payload = payload; 240 packet->payload_length = length; 241 242 goto common; 243 } 244 245 if (tcode > 0x10) { 246 ext_tcode = tcode & ~0x10; 247 tcode = TCODE_LOCK_REQUEST; 248 } else 249 ext_tcode = 0; 250 251 packet->header[0] = 252 HEADER_RETRY(RETRY_X) | 253 HEADER_TLABEL(tlabel) | 254 HEADER_TCODE(tcode) | 255 HEADER_DESTINATION(destination_id); 256 packet->header[1] = 257 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id); 258 packet->header[2] = 259 offset; 260 261 switch (tcode) { 262 case TCODE_WRITE_QUADLET_REQUEST: 263 packet->header[3] = *(u32 *)payload; 264 packet->header_length = 16; 265 packet->payload_length = 0; 266 break; 267 268 case TCODE_LOCK_REQUEST: 269 case TCODE_WRITE_BLOCK_REQUEST: 270 packet->header[3] = 271 HEADER_DATA_LENGTH(length) | 272 HEADER_EXTENDED_TCODE(ext_tcode); 273 packet->header_length = 16; 274 packet->payload = payload; 275 packet->payload_length = length; 276 break; 277 278 case TCODE_READ_QUADLET_REQUEST: 279 packet->header_length = 12; 280 packet->payload_length = 0; 281 break; 282 283 case TCODE_READ_BLOCK_REQUEST: 284 packet->header[3] = 285 HEADER_DATA_LENGTH(length) | 286 HEADER_EXTENDED_TCODE(ext_tcode); 287 packet->header_length = 16; 288 packet->payload_length = 0; 289 break; 290 291 default: 292 WARN(1, "wrong tcode %d\n", tcode); 293 } 294 common: 295 packet->speed = speed; 296 packet->generation = generation; 297 packet->ack = 0; 298 packet->payload_mapped = false; 299 } 300 301 static int allocate_tlabel(struct fw_card *card) 302 { 303 int tlabel; 304 305 tlabel = card->current_tlabel; 306 while (card->tlabel_mask & (1ULL << tlabel)) { 307 tlabel = (tlabel + 1) & 0x3f; 308 if (tlabel == card->current_tlabel) 309 return -EBUSY; 310 } 311 312 card->current_tlabel = (tlabel + 1) & 0x3f; 313 card->tlabel_mask |= 1ULL << tlabel; 314 315 return tlabel; 316 } 317 318 /** 319 * __fw_send_request() - submit a request packet for transmission to generate callback for response 320 * subaction with or without time stamp. 321 * @card: interface to send the request at 322 * @t: transaction instance to which the request belongs 323 * @tcode: transaction code 324 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 325 * @generation: bus generation in which request and response are valid 326 * @speed: transmission speed 327 * @offset: 48bit wide offset into destination's address space 328 * @payload: data payload for the request subaction 329 * @length: length of the payload, in bytes 330 * @callback: union of two functions whether to receive time stamp or not for response 331 * subaction. 332 * @with_tstamp: Whether to receive time stamp or not for response subaction. 333 * @callback_data: data to be passed to the transaction completion callback 334 * 335 * Submit a request packet into the asynchronous request transmission queue. 336 * Can be called from atomic context. If you prefer a blocking API, use 337 * fw_run_transaction() in a context that can sleep. 338 * 339 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 340 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 341 * 342 * Make sure that the value in @destination_id is not older than the one in 343 * @generation. Otherwise the request is in danger to be sent to a wrong node. 344 * 345 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 346 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 347 * It will contain tag, channel, and sy data instead of a node ID then. 348 * 349 * The payload buffer at @data is going to be DMA-mapped except in case of 350 * @length <= 8 or of local (loopback) requests. Hence make sure that the 351 * buffer complies with the restrictions of the streaming DMA mapping API. 352 * @payload must not be freed before the @callback is called. 353 * 354 * In case of request types without payload, @data is NULL and @length is 0. 355 * 356 * After the transaction is completed successfully or unsuccessfully, the 357 * @callback will be called. Among its parameters is the response code which 358 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 359 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 360 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 361 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 362 * generation, or missing ACK respectively. 363 * 364 * Note some timing corner cases: fw_send_request() may complete much earlier 365 * than when the request packet actually hits the wire. On the other hand, 366 * transaction completion and hence execution of @callback may happen even 367 * before fw_send_request() returns. 368 */ 369 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 370 int destination_id, int generation, int speed, unsigned long long offset, 371 void *payload, size_t length, union fw_transaction_callback callback, 372 bool with_tstamp, void *callback_data) 373 { 374 unsigned long flags; 375 int tlabel; 376 377 /* 378 * Allocate tlabel from the bitmap and put the transaction on 379 * the list while holding the card spinlock. 380 */ 381 382 spin_lock_irqsave(&card->lock, flags); 383 384 tlabel = allocate_tlabel(card); 385 if (tlabel < 0) { 386 spin_unlock_irqrestore(&card->lock, flags); 387 if (!with_tstamp) { 388 callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 389 } else { 390 // Timestamping on behalf of hardware. 391 u32 curr_cycle_time = 0; 392 u32 tstamp; 393 394 (void)fw_card_read_cycle_time(card, &curr_cycle_time); 395 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); 396 397 callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0, 398 callback_data); 399 } 400 return; 401 } 402 403 t->node_id = destination_id; 404 t->tlabel = tlabel; 405 t->card = card; 406 t->is_split_transaction = false; 407 timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0); 408 t->callback = callback; 409 t->with_tstamp = with_tstamp; 410 t->callback_data = callback_data; 411 412 fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation, 413 speed, offset, payload, length); 414 t->packet.callback = transmit_complete_callback; 415 416 list_add_tail(&t->link, &card->transaction_list); 417 418 spin_unlock_irqrestore(&card->lock, flags); 419 420 card->driver->send_request(card, &t->packet); 421 } 422 EXPORT_SYMBOL_GPL(__fw_send_request); 423 424 struct transaction_callback_data { 425 struct completion done; 426 void *payload; 427 int rcode; 428 }; 429 430 static void transaction_callback(struct fw_card *card, int rcode, 431 void *payload, size_t length, void *data) 432 { 433 struct transaction_callback_data *d = data; 434 435 if (rcode == RCODE_COMPLETE) 436 memcpy(d->payload, payload, length); 437 d->rcode = rcode; 438 complete(&d->done); 439 } 440 441 /** 442 * fw_run_transaction() - send request and sleep until transaction is completed 443 * @card: card interface for this request 444 * @tcode: transaction code 445 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 446 * @generation: bus generation in which request and response are valid 447 * @speed: transmission speed 448 * @offset: 48bit wide offset into destination's address space 449 * @payload: data payload for the request subaction 450 * @length: length of the payload, in bytes 451 * 452 * Returns the RCODE. See fw_send_request() for parameter documentation. 453 * Unlike fw_send_request(), @data points to the payload of the request or/and 454 * to the payload of the response. DMA mapping restrictions apply to outbound 455 * request payloads of >= 8 bytes but not to inbound response payloads. 456 */ 457 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 458 int generation, int speed, unsigned long long offset, 459 void *payload, size_t length) 460 { 461 struct transaction_callback_data d; 462 struct fw_transaction t; 463 464 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0); 465 init_completion(&d.done); 466 d.payload = payload; 467 fw_send_request(card, &t, tcode, destination_id, generation, speed, 468 offset, payload, length, transaction_callback, &d); 469 wait_for_completion(&d.done); 470 destroy_timer_on_stack(&t.split_timeout_timer); 471 472 return d.rcode; 473 } 474 EXPORT_SYMBOL(fw_run_transaction); 475 476 static DEFINE_MUTEX(phy_config_mutex); 477 static DECLARE_COMPLETION(phy_config_done); 478 479 static void transmit_phy_packet_callback(struct fw_packet *packet, 480 struct fw_card *card, int status) 481 { 482 complete(&phy_config_done); 483 } 484 485 static struct fw_packet phy_config_packet = { 486 .header_length = 12, 487 .header[0] = TCODE_LINK_INTERNAL << 4, 488 .payload_length = 0, 489 .speed = SCODE_100, 490 .callback = transmit_phy_packet_callback, 491 }; 492 493 void fw_send_phy_config(struct fw_card *card, 494 int node_id, int generation, int gap_count) 495 { 496 long timeout = DIV_ROUND_UP(HZ, 10); 497 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG); 498 499 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) 500 data |= PHY_CONFIG_ROOT_ID(node_id); 501 502 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 503 gap_count = card->driver->read_phy_reg(card, 1); 504 if (gap_count < 0) 505 return; 506 507 gap_count &= 63; 508 if (gap_count == 63) 509 return; 510 } 511 data |= PHY_CONFIG_GAP_COUNT(gap_count); 512 513 mutex_lock(&phy_config_mutex); 514 515 phy_config_packet.header[1] = data; 516 phy_config_packet.header[2] = ~data; 517 phy_config_packet.generation = generation; 518 reinit_completion(&phy_config_done); 519 520 card->driver->send_request(card, &phy_config_packet); 521 wait_for_completion_timeout(&phy_config_done, timeout); 522 523 mutex_unlock(&phy_config_mutex); 524 } 525 526 static struct fw_address_handler *lookup_overlapping_address_handler( 527 struct list_head *list, unsigned long long offset, size_t length) 528 { 529 struct fw_address_handler *handler; 530 531 list_for_each_entry_rcu(handler, list, link) { 532 if (handler->offset < offset + length && 533 offset < handler->offset + handler->length) 534 return handler; 535 } 536 537 return NULL; 538 } 539 540 static bool is_enclosing_handler(struct fw_address_handler *handler, 541 unsigned long long offset, size_t length) 542 { 543 return handler->offset <= offset && 544 offset + length <= handler->offset + handler->length; 545 } 546 547 static struct fw_address_handler *lookup_enclosing_address_handler( 548 struct list_head *list, unsigned long long offset, size_t length) 549 { 550 struct fw_address_handler *handler; 551 552 list_for_each_entry_rcu(handler, list, link) { 553 if (is_enclosing_handler(handler, offset, length)) 554 return handler; 555 } 556 557 return NULL; 558 } 559 560 static DEFINE_SPINLOCK(address_handler_list_lock); 561 static LIST_HEAD(address_handler_list); 562 563 const struct fw_address_region fw_high_memory_region = 564 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, }; 565 EXPORT_SYMBOL(fw_high_memory_region); 566 567 static const struct fw_address_region low_memory_region = 568 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, }; 569 570 #if 0 571 const struct fw_address_region fw_private_region = 572 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 573 const struct fw_address_region fw_csr_region = 574 { .start = CSR_REGISTER_BASE, 575 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 576 const struct fw_address_region fw_unit_space_region = 577 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 578 #endif /* 0 */ 579 580 /** 581 * fw_core_add_address_handler() - register for incoming requests 582 * @handler: callback 583 * @region: region in the IEEE 1212 node space address range 584 * 585 * region->start, ->end, and handler->length have to be quadlet-aligned. 586 * 587 * When a request is received that falls within the specified address range, 588 * the specified callback is invoked. The parameters passed to the callback 589 * give the details of the particular request. 590 * 591 * To be called in process context. 592 * Return value: 0 on success, non-zero otherwise. 593 * 594 * The start offset of the handler's address region is determined by 595 * fw_core_add_address_handler() and is returned in handler->offset. 596 * 597 * Address allocations are exclusive, except for the FCP registers. 598 */ 599 int fw_core_add_address_handler(struct fw_address_handler *handler, 600 const struct fw_address_region *region) 601 { 602 struct fw_address_handler *other; 603 int ret = -EBUSY; 604 605 if (region->start & 0xffff000000000003ULL || 606 region->start >= region->end || 607 region->end > 0x0001000000000000ULL || 608 handler->length & 3 || 609 handler->length == 0) 610 return -EINVAL; 611 612 spin_lock(&address_handler_list_lock); 613 614 handler->offset = region->start; 615 while (handler->offset + handler->length <= region->end) { 616 if (is_in_fcp_region(handler->offset, handler->length)) 617 other = NULL; 618 else 619 other = lookup_overlapping_address_handler 620 (&address_handler_list, 621 handler->offset, handler->length); 622 if (other != NULL) { 623 handler->offset += other->length; 624 } else { 625 list_add_tail_rcu(&handler->link, &address_handler_list); 626 ret = 0; 627 break; 628 } 629 } 630 631 spin_unlock(&address_handler_list_lock); 632 633 return ret; 634 } 635 EXPORT_SYMBOL(fw_core_add_address_handler); 636 637 /** 638 * fw_core_remove_address_handler() - unregister an address handler 639 * @handler: callback 640 * 641 * To be called in process context. 642 * 643 * When fw_core_remove_address_handler() returns, @handler->callback() is 644 * guaranteed to not run on any CPU anymore. 645 */ 646 void fw_core_remove_address_handler(struct fw_address_handler *handler) 647 { 648 spin_lock(&address_handler_list_lock); 649 list_del_rcu(&handler->link); 650 spin_unlock(&address_handler_list_lock); 651 synchronize_rcu(); 652 } 653 EXPORT_SYMBOL(fw_core_remove_address_handler); 654 655 struct fw_request { 656 struct kref kref; 657 struct fw_packet response; 658 u32 request_header[4]; 659 int ack; 660 u32 timestamp; 661 u32 length; 662 u32 data[]; 663 }; 664 665 void fw_request_get(struct fw_request *request) 666 { 667 kref_get(&request->kref); 668 } 669 670 static void release_request(struct kref *kref) 671 { 672 struct fw_request *request = container_of(kref, struct fw_request, kref); 673 674 kfree(request); 675 } 676 677 void fw_request_put(struct fw_request *request) 678 { 679 kref_put(&request->kref, release_request); 680 } 681 682 static void free_response_callback(struct fw_packet *packet, 683 struct fw_card *card, int status) 684 { 685 struct fw_request *request = container_of(packet, struct fw_request, response); 686 687 // Decrease the reference count since not at in-flight. 688 fw_request_put(request); 689 690 // Decrease the reference count to release the object. 691 fw_request_put(request); 692 } 693 694 int fw_get_response_length(struct fw_request *r) 695 { 696 int tcode, ext_tcode, data_length; 697 698 tcode = HEADER_GET_TCODE(r->request_header[0]); 699 700 switch (tcode) { 701 case TCODE_WRITE_QUADLET_REQUEST: 702 case TCODE_WRITE_BLOCK_REQUEST: 703 return 0; 704 705 case TCODE_READ_QUADLET_REQUEST: 706 return 4; 707 708 case TCODE_READ_BLOCK_REQUEST: 709 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 710 return data_length; 711 712 case TCODE_LOCK_REQUEST: 713 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]); 714 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 715 switch (ext_tcode) { 716 case EXTCODE_FETCH_ADD: 717 case EXTCODE_LITTLE_ADD: 718 return data_length; 719 default: 720 return data_length / 2; 721 } 722 723 default: 724 WARN(1, "wrong tcode %d\n", tcode); 725 return 0; 726 } 727 } 728 729 void fw_fill_response(struct fw_packet *response, u32 *request_header, 730 int rcode, void *payload, size_t length) 731 { 732 int tcode, tlabel, extended_tcode, source, destination; 733 734 tcode = HEADER_GET_TCODE(request_header[0]); 735 tlabel = HEADER_GET_TLABEL(request_header[0]); 736 source = HEADER_GET_DESTINATION(request_header[0]); 737 destination = HEADER_GET_SOURCE(request_header[1]); 738 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]); 739 740 response->header[0] = 741 HEADER_RETRY(RETRY_1) | 742 HEADER_TLABEL(tlabel) | 743 HEADER_DESTINATION(destination); 744 response->header[1] = 745 HEADER_SOURCE(source) | 746 HEADER_RCODE(rcode); 747 response->header[2] = 0; 748 749 switch (tcode) { 750 case TCODE_WRITE_QUADLET_REQUEST: 751 case TCODE_WRITE_BLOCK_REQUEST: 752 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE); 753 response->header_length = 12; 754 response->payload_length = 0; 755 break; 756 757 case TCODE_READ_QUADLET_REQUEST: 758 response->header[0] |= 759 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE); 760 if (payload != NULL) 761 response->header[3] = *(u32 *)payload; 762 else 763 response->header[3] = 0; 764 response->header_length = 16; 765 response->payload_length = 0; 766 break; 767 768 case TCODE_READ_BLOCK_REQUEST: 769 case TCODE_LOCK_REQUEST: 770 response->header[0] |= HEADER_TCODE(tcode + 2); 771 response->header[3] = 772 HEADER_DATA_LENGTH(length) | 773 HEADER_EXTENDED_TCODE(extended_tcode); 774 response->header_length = 16; 775 response->payload = payload; 776 response->payload_length = length; 777 break; 778 779 default: 780 WARN(1, "wrong tcode %d\n", tcode); 781 } 782 783 response->payload_mapped = false; 784 } 785 EXPORT_SYMBOL(fw_fill_response); 786 787 static u32 compute_split_timeout_timestamp(struct fw_card *card, 788 u32 request_timestamp) 789 { 790 unsigned int cycles; 791 u32 timestamp; 792 793 cycles = card->split_timeout_cycles; 794 cycles += request_timestamp & 0x1fff; 795 796 timestamp = request_timestamp & ~0x1fff; 797 timestamp += (cycles / 8000) << 13; 798 timestamp |= cycles % 8000; 799 800 return timestamp; 801 } 802 803 static struct fw_request *allocate_request(struct fw_card *card, 804 struct fw_packet *p) 805 { 806 struct fw_request *request; 807 u32 *data, length; 808 int request_tcode; 809 810 request_tcode = HEADER_GET_TCODE(p->header[0]); 811 switch (request_tcode) { 812 case TCODE_WRITE_QUADLET_REQUEST: 813 data = &p->header[3]; 814 length = 4; 815 break; 816 817 case TCODE_WRITE_BLOCK_REQUEST: 818 case TCODE_LOCK_REQUEST: 819 data = p->payload; 820 length = HEADER_GET_DATA_LENGTH(p->header[3]); 821 break; 822 823 case TCODE_READ_QUADLET_REQUEST: 824 data = NULL; 825 length = 4; 826 break; 827 828 case TCODE_READ_BLOCK_REQUEST: 829 data = NULL; 830 length = HEADER_GET_DATA_LENGTH(p->header[3]); 831 break; 832 833 default: 834 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", 835 p->header[0], p->header[1], p->header[2]); 836 return NULL; 837 } 838 839 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 840 if (request == NULL) 841 return NULL; 842 kref_init(&request->kref); 843 844 request->response.speed = p->speed; 845 request->response.timestamp = 846 compute_split_timeout_timestamp(card, p->timestamp); 847 request->response.generation = p->generation; 848 request->response.ack = 0; 849 request->response.callback = free_response_callback; 850 request->ack = p->ack; 851 request->timestamp = p->timestamp; 852 request->length = length; 853 if (data) 854 memcpy(request->data, data, length); 855 856 memcpy(request->request_header, p->header, sizeof(p->header)); 857 858 return request; 859 } 860 861 /** 862 * fw_send_response: - send response packet for asynchronous transaction. 863 * @card: interface to send the response at. 864 * @request: firewire request data for the transaction. 865 * @rcode: response code to send. 866 * 867 * Submit a response packet into the asynchronous response transmission queue. The @request 868 * is going to be released when the transmission successfully finishes later. 869 */ 870 void fw_send_response(struct fw_card *card, 871 struct fw_request *request, int rcode) 872 { 873 /* unified transaction or broadcast transaction: don't respond */ 874 if (request->ack != ACK_PENDING || 875 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) { 876 fw_request_put(request); 877 return; 878 } 879 880 if (rcode == RCODE_COMPLETE) 881 fw_fill_response(&request->response, request->request_header, 882 rcode, request->data, 883 fw_get_response_length(request)); 884 else 885 fw_fill_response(&request->response, request->request_header, 886 rcode, NULL, 0); 887 888 // Increase the reference count so that the object is kept during in-flight. 889 fw_request_get(request); 890 891 card->driver->send_response(card, &request->response); 892 } 893 EXPORT_SYMBOL(fw_send_response); 894 895 /** 896 * fw_get_request_speed() - returns speed at which the @request was received 897 * @request: firewire request data 898 */ 899 int fw_get_request_speed(struct fw_request *request) 900 { 901 return request->response.speed; 902 } 903 EXPORT_SYMBOL(fw_get_request_speed); 904 905 /** 906 * fw_request_get_timestamp: Get timestamp of the request. 907 * @request: The opaque pointer to request structure. 908 * 909 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The 910 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count 911 * field of isochronous cycle time register. 912 * 913 * Returns: timestamp of the request. 914 */ 915 u32 fw_request_get_timestamp(const struct fw_request *request) 916 { 917 return request->timestamp; 918 } 919 EXPORT_SYMBOL_GPL(fw_request_get_timestamp); 920 921 static void handle_exclusive_region_request(struct fw_card *card, 922 struct fw_packet *p, 923 struct fw_request *request, 924 unsigned long long offset) 925 { 926 struct fw_address_handler *handler; 927 int tcode, destination, source; 928 929 destination = HEADER_GET_DESTINATION(p->header[0]); 930 source = HEADER_GET_SOURCE(p->header[1]); 931 tcode = HEADER_GET_TCODE(p->header[0]); 932 if (tcode == TCODE_LOCK_REQUEST) 933 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]); 934 935 rcu_read_lock(); 936 handler = lookup_enclosing_address_handler(&address_handler_list, 937 offset, request->length); 938 if (handler) 939 handler->address_callback(card, request, 940 tcode, destination, source, 941 p->generation, offset, 942 request->data, request->length, 943 handler->callback_data); 944 rcu_read_unlock(); 945 946 if (!handler) 947 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 948 } 949 950 static void handle_fcp_region_request(struct fw_card *card, 951 struct fw_packet *p, 952 struct fw_request *request, 953 unsigned long long offset) 954 { 955 struct fw_address_handler *handler; 956 int tcode, destination, source; 957 958 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 959 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 960 request->length > 0x200) { 961 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 962 963 return; 964 } 965 966 tcode = HEADER_GET_TCODE(p->header[0]); 967 destination = HEADER_GET_DESTINATION(p->header[0]); 968 source = HEADER_GET_SOURCE(p->header[1]); 969 970 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 971 tcode != TCODE_WRITE_BLOCK_REQUEST) { 972 fw_send_response(card, request, RCODE_TYPE_ERROR); 973 974 return; 975 } 976 977 rcu_read_lock(); 978 list_for_each_entry_rcu(handler, &address_handler_list, link) { 979 if (is_enclosing_handler(handler, offset, request->length)) 980 handler->address_callback(card, request, tcode, 981 destination, source, 982 p->generation, offset, 983 request->data, 984 request->length, 985 handler->callback_data); 986 } 987 rcu_read_unlock(); 988 989 fw_send_response(card, request, RCODE_COMPLETE); 990 } 991 992 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 993 { 994 struct fw_request *request; 995 unsigned long long offset; 996 997 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 998 return; 999 1000 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) { 1001 fw_cdev_handle_phy_packet(card, p); 1002 return; 1003 } 1004 1005 request = allocate_request(card, p); 1006 if (request == NULL) { 1007 /* FIXME: send statically allocated busy packet. */ 1008 return; 1009 } 1010 1011 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | 1012 p->header[2]; 1013 1014 if (!is_in_fcp_region(offset, request->length)) 1015 handle_exclusive_region_request(card, p, request, offset); 1016 else 1017 handle_fcp_region_request(card, p, request, offset); 1018 1019 } 1020 EXPORT_SYMBOL(fw_core_handle_request); 1021 1022 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 1023 { 1024 struct fw_transaction *t = NULL, *iter; 1025 unsigned long flags; 1026 u32 *data; 1027 size_t data_length; 1028 int tcode, tlabel, source, rcode; 1029 1030 tcode = HEADER_GET_TCODE(p->header[0]); 1031 tlabel = HEADER_GET_TLABEL(p->header[0]); 1032 source = HEADER_GET_SOURCE(p->header[1]); 1033 rcode = HEADER_GET_RCODE(p->header[1]); 1034 1035 spin_lock_irqsave(&card->lock, flags); 1036 list_for_each_entry(iter, &card->transaction_list, link) { 1037 if (iter->node_id == source && iter->tlabel == tlabel) { 1038 if (!try_cancel_split_timeout(iter)) { 1039 spin_unlock_irqrestore(&card->lock, flags); 1040 goto timed_out; 1041 } 1042 list_del_init(&iter->link); 1043 card->tlabel_mask &= ~(1ULL << iter->tlabel); 1044 t = iter; 1045 break; 1046 } 1047 } 1048 spin_unlock_irqrestore(&card->lock, flags); 1049 1050 if (!t) { 1051 timed_out: 1052 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", 1053 source, tlabel); 1054 return; 1055 } 1056 1057 /* 1058 * FIXME: sanity check packet, is length correct, does tcodes 1059 * and addresses match. 1060 */ 1061 1062 switch (tcode) { 1063 case TCODE_READ_QUADLET_RESPONSE: 1064 data = (u32 *) &p->header[3]; 1065 data_length = 4; 1066 break; 1067 1068 case TCODE_WRITE_RESPONSE: 1069 data = NULL; 1070 data_length = 0; 1071 break; 1072 1073 case TCODE_READ_BLOCK_RESPONSE: 1074 case TCODE_LOCK_RESPONSE: 1075 data = p->payload; 1076 data_length = HEADER_GET_DATA_LENGTH(p->header[3]); 1077 break; 1078 1079 default: 1080 /* Should never happen, this is just to shut up gcc. */ 1081 data = NULL; 1082 data_length = 0; 1083 break; 1084 } 1085 1086 /* 1087 * The response handler may be executed while the request handler 1088 * is still pending. Cancel the request handler. 1089 */ 1090 card->driver->cancel_packet(card, &t->packet); 1091 1092 if (!t->with_tstamp) { 1093 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data); 1094 } else { 1095 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data, 1096 data_length, t->callback_data); 1097 } 1098 } 1099 EXPORT_SYMBOL(fw_core_handle_response); 1100 1101 /** 1102 * fw_rcode_string - convert a firewire result code to an error description 1103 * @rcode: the result code 1104 */ 1105 const char *fw_rcode_string(int rcode) 1106 { 1107 static const char *const names[] = { 1108 [RCODE_COMPLETE] = "no error", 1109 [RCODE_CONFLICT_ERROR] = "conflict error", 1110 [RCODE_DATA_ERROR] = "data error", 1111 [RCODE_TYPE_ERROR] = "type error", 1112 [RCODE_ADDRESS_ERROR] = "address error", 1113 [RCODE_SEND_ERROR] = "send error", 1114 [RCODE_CANCELLED] = "timeout", 1115 [RCODE_BUSY] = "busy", 1116 [RCODE_GENERATION] = "bus reset", 1117 [RCODE_NO_ACK] = "no ack", 1118 }; 1119 1120 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode]) 1121 return names[rcode]; 1122 else 1123 return "unknown"; 1124 } 1125 EXPORT_SYMBOL(fw_rcode_string); 1126 1127 static const struct fw_address_region topology_map_region = 1128 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 1129 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 1130 1131 static void handle_topology_map(struct fw_card *card, struct fw_request *request, 1132 int tcode, int destination, int source, int generation, 1133 unsigned long long offset, void *payload, size_t length, 1134 void *callback_data) 1135 { 1136 int start; 1137 1138 if (!TCODE_IS_READ_REQUEST(tcode)) { 1139 fw_send_response(card, request, RCODE_TYPE_ERROR); 1140 return; 1141 } 1142 1143 if ((offset & 3) > 0 || (length & 3) > 0) { 1144 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1145 return; 1146 } 1147 1148 start = (offset - topology_map_region.start) / 4; 1149 memcpy(payload, &card->topology_map[start], length); 1150 1151 fw_send_response(card, request, RCODE_COMPLETE); 1152 } 1153 1154 static struct fw_address_handler topology_map = { 1155 .length = 0x400, 1156 .address_callback = handle_topology_map, 1157 }; 1158 1159 static const struct fw_address_region registers_region = 1160 { .start = CSR_REGISTER_BASE, 1161 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1162 1163 static void update_split_timeout(struct fw_card *card) 1164 { 1165 unsigned int cycles; 1166 1167 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); 1168 1169 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ 1170 cycles = clamp(cycles, 800u, 3u * 8000u); 1171 1172 card->split_timeout_cycles = cycles; 1173 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); 1174 } 1175 1176 static void handle_registers(struct fw_card *card, struct fw_request *request, 1177 int tcode, int destination, int source, int generation, 1178 unsigned long long offset, void *payload, size_t length, 1179 void *callback_data) 1180 { 1181 int reg = offset & ~CSR_REGISTER_BASE; 1182 __be32 *data = payload; 1183 int rcode = RCODE_COMPLETE; 1184 unsigned long flags; 1185 1186 switch (reg) { 1187 case CSR_PRIORITY_BUDGET: 1188 if (!card->priority_budget_implemented) { 1189 rcode = RCODE_ADDRESS_ERROR; 1190 break; 1191 } 1192 fallthrough; 1193 1194 case CSR_NODE_IDS: 1195 /* 1196 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1197 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1198 */ 1199 fallthrough; 1200 1201 case CSR_STATE_CLEAR: 1202 case CSR_STATE_SET: 1203 case CSR_CYCLE_TIME: 1204 case CSR_BUS_TIME: 1205 case CSR_BUSY_TIMEOUT: 1206 if (tcode == TCODE_READ_QUADLET_REQUEST) 1207 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1208 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1209 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1210 else 1211 rcode = RCODE_TYPE_ERROR; 1212 break; 1213 1214 case CSR_RESET_START: 1215 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1216 card->driver->write_csr(card, CSR_STATE_CLEAR, 1217 CSR_STATE_BIT_ABDICATE); 1218 else 1219 rcode = RCODE_TYPE_ERROR; 1220 break; 1221 1222 case CSR_SPLIT_TIMEOUT_HI: 1223 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1224 *data = cpu_to_be32(card->split_timeout_hi); 1225 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1226 spin_lock_irqsave(&card->lock, flags); 1227 card->split_timeout_hi = be32_to_cpu(*data) & 7; 1228 update_split_timeout(card); 1229 spin_unlock_irqrestore(&card->lock, flags); 1230 } else { 1231 rcode = RCODE_TYPE_ERROR; 1232 } 1233 break; 1234 1235 case CSR_SPLIT_TIMEOUT_LO: 1236 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1237 *data = cpu_to_be32(card->split_timeout_lo); 1238 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1239 spin_lock_irqsave(&card->lock, flags); 1240 card->split_timeout_lo = 1241 be32_to_cpu(*data) & 0xfff80000; 1242 update_split_timeout(card); 1243 spin_unlock_irqrestore(&card->lock, flags); 1244 } else { 1245 rcode = RCODE_TYPE_ERROR; 1246 } 1247 break; 1248 1249 case CSR_MAINT_UTILITY: 1250 if (tcode == TCODE_READ_QUADLET_REQUEST) 1251 *data = card->maint_utility_register; 1252 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1253 card->maint_utility_register = *data; 1254 else 1255 rcode = RCODE_TYPE_ERROR; 1256 break; 1257 1258 case CSR_BROADCAST_CHANNEL: 1259 if (tcode == TCODE_READ_QUADLET_REQUEST) 1260 *data = cpu_to_be32(card->broadcast_channel); 1261 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1262 card->broadcast_channel = 1263 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1264 BROADCAST_CHANNEL_INITIAL; 1265 else 1266 rcode = RCODE_TYPE_ERROR; 1267 break; 1268 1269 case CSR_BUS_MANAGER_ID: 1270 case CSR_BANDWIDTH_AVAILABLE: 1271 case CSR_CHANNELS_AVAILABLE_HI: 1272 case CSR_CHANNELS_AVAILABLE_LO: 1273 /* 1274 * FIXME: these are handled by the OHCI hardware and 1275 * the stack never sees these request. If we add 1276 * support for a new type of controller that doesn't 1277 * handle this in hardware we need to deal with these 1278 * transactions. 1279 */ 1280 BUG(); 1281 break; 1282 1283 default: 1284 rcode = RCODE_ADDRESS_ERROR; 1285 break; 1286 } 1287 1288 fw_send_response(card, request, rcode); 1289 } 1290 1291 static struct fw_address_handler registers = { 1292 .length = 0x400, 1293 .address_callback = handle_registers, 1294 }; 1295 1296 static void handle_low_memory(struct fw_card *card, struct fw_request *request, 1297 int tcode, int destination, int source, int generation, 1298 unsigned long long offset, void *payload, size_t length, 1299 void *callback_data) 1300 { 1301 /* 1302 * This catches requests not handled by the physical DMA unit, 1303 * i.e., wrong transaction types or unauthorized source nodes. 1304 */ 1305 fw_send_response(card, request, RCODE_TYPE_ERROR); 1306 } 1307 1308 static struct fw_address_handler low_memory = { 1309 .length = FW_MAX_PHYSICAL_RANGE, 1310 .address_callback = handle_low_memory, 1311 }; 1312 1313 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1314 MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1315 MODULE_LICENSE("GPL"); 1316 1317 static const u32 vendor_textual_descriptor[] = { 1318 /* textual descriptor leaf () */ 1319 0x00060000, 1320 0x00000000, 1321 0x00000000, 1322 0x4c696e75, /* L i n u */ 1323 0x78204669, /* x F i */ 1324 0x72657769, /* r e w i */ 1325 0x72650000, /* r e */ 1326 }; 1327 1328 static const u32 model_textual_descriptor[] = { 1329 /* model descriptor leaf () */ 1330 0x00030000, 1331 0x00000000, 1332 0x00000000, 1333 0x4a756a75, /* J u j u */ 1334 }; 1335 1336 static struct fw_descriptor vendor_id_descriptor = { 1337 .length = ARRAY_SIZE(vendor_textual_descriptor), 1338 .immediate = 0x03001f11, 1339 .key = 0x81000000, 1340 .data = vendor_textual_descriptor, 1341 }; 1342 1343 static struct fw_descriptor model_id_descriptor = { 1344 .length = ARRAY_SIZE(model_textual_descriptor), 1345 .immediate = 0x17023901, 1346 .key = 0x81000000, 1347 .data = model_textual_descriptor, 1348 }; 1349 1350 static int __init fw_core_init(void) 1351 { 1352 int ret; 1353 1354 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0); 1355 if (!fw_workqueue) 1356 return -ENOMEM; 1357 1358 ret = bus_register(&fw_bus_type); 1359 if (ret < 0) { 1360 destroy_workqueue(fw_workqueue); 1361 return ret; 1362 } 1363 1364 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1365 if (fw_cdev_major < 0) { 1366 bus_unregister(&fw_bus_type); 1367 destroy_workqueue(fw_workqueue); 1368 return fw_cdev_major; 1369 } 1370 1371 fw_core_add_address_handler(&topology_map, &topology_map_region); 1372 fw_core_add_address_handler(®isters, ®isters_region); 1373 fw_core_add_address_handler(&low_memory, &low_memory_region); 1374 fw_core_add_descriptor(&vendor_id_descriptor); 1375 fw_core_add_descriptor(&model_id_descriptor); 1376 1377 return 0; 1378 } 1379 1380 static void __exit fw_core_cleanup(void) 1381 { 1382 unregister_chrdev(fw_cdev_major, "firewire"); 1383 bus_unregister(&fw_bus_type); 1384 destroy_workqueue(fw_workqueue); 1385 idr_destroy(&fw_device_idr); 1386 } 1387 1388 module_init(fw_core_init); 1389 module_exit(fw_core_cleanup); 1390