xref: /linux/drivers/firewire/core-transaction.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core IEEE1394 transaction logic
4  *
5  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/rculist.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/timer.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27 
28 #include <asm/byteorder.h>
29 
30 #include "core.h"
31 #include "packet-header-definitions.h"
32 #include "phy-packet-definitions.h"
33 #include <trace/events/firewire.h>
34 
35 #define HEADER_DESTINATION_IS_BROADCAST(header) \
36 	((async_header_get_destination(header) & 0x3f) == 0x3f)
37 
38 /* returns 0 if the split timeout handler is already running */
39 static int try_cancel_split_timeout(struct fw_transaction *t)
40 {
41 	if (t->is_split_transaction)
42 		return timer_delete(&t->split_timeout_timer);
43 	else
44 		return 1;
45 }
46 
47 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
48 			     u32 response_tstamp)
49 {
50 	struct fw_transaction *t = NULL, *iter;
51 
52 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
53 	// local destination never runs in any type of IRQ context.
54 	scoped_guard(spinlock_irqsave, &card->transactions.lock) {
55 		list_for_each_entry(iter, &card->transactions.list, link) {
56 			if (iter == transaction) {
57 				if (try_cancel_split_timeout(iter)) {
58 					list_del_init(&iter->link);
59 					card->transactions.tlabel_mask &= ~(1ULL << iter->tlabel);
60 					t = iter;
61 				}
62 				break;
63 			}
64 		}
65 	}
66 
67 	if (!t)
68 		return -ENOENT;
69 
70 	if (!t->with_tstamp) {
71 		t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
72 	} else {
73 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
74 					t->callback_data);
75 	}
76 
77 	return 0;
78 }
79 
80 /*
81  * Only valid for transactions that are potentially pending (ie have
82  * been sent).
83  */
84 int fw_cancel_transaction(struct fw_card *card,
85 			  struct fw_transaction *transaction)
86 {
87 	u32 tstamp;
88 
89 	/*
90 	 * Cancel the packet transmission if it's still queued.  That
91 	 * will call the packet transmission callback which cancels
92 	 * the transaction.
93 	 */
94 
95 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
96 		return 0;
97 
98 	/*
99 	 * If the request packet has already been sent, we need to see
100 	 * if the transaction is still pending and remove it in that case.
101 	 */
102 
103 	if (transaction->packet.ack == 0) {
104 		// The timestamp is reused since it was just read now.
105 		tstamp = transaction->packet.timestamp;
106 	} else {
107 		u32 curr_cycle_time = 0;
108 
109 		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
110 		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
111 	}
112 
113 	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
114 }
115 EXPORT_SYMBOL(fw_cancel_transaction);
116 
117 static void split_transaction_timeout_callback(struct timer_list *timer)
118 {
119 	struct fw_transaction *t = timer_container_of(t, timer, split_timeout_timer);
120 	struct fw_card *card = t->card;
121 
122 	scoped_guard(spinlock_irqsave, &card->transactions.lock) {
123 		if (list_empty(&t->link))
124 			return;
125 		list_del(&t->link);
126 		card->transactions.tlabel_mask &= ~(1ULL << t->tlabel);
127 	}
128 
129 	if (!t->with_tstamp) {
130 		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
131 	} else {
132 		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
133 					t->split_timeout_cycle, NULL, 0, t->callback_data);
134 	}
135 }
136 
137 static void start_split_transaction_timeout(struct fw_transaction *t,
138 					    struct fw_card *card)
139 {
140 	unsigned long delta;
141 
142 	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
143 		return;
144 
145 	t->is_split_transaction = true;
146 
147 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
148 	// local destination never runs in any type of IRQ context.
149 	scoped_guard(spinlock_irqsave, &card->split_timeout.lock)
150 		delta = card->split_timeout.jiffies;
151 	mod_timer(&t->split_timeout_timer, jiffies + delta);
152 }
153 
154 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
155 
156 static void transmit_complete_callback(struct fw_packet *packet,
157 				       struct fw_card *card, int status)
158 {
159 	struct fw_transaction *t =
160 	    container_of(packet, struct fw_transaction, packet);
161 
162 	trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
163 					      packet->speed, status, packet->timestamp);
164 
165 	switch (status) {
166 	case ACK_COMPLETE:
167 		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
168 		break;
169 	case ACK_PENDING:
170 	{
171 		// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
172 		// local destination never runs in any type of IRQ context.
173 		scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
174 			t->split_timeout_cycle =
175 				compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
176 		}
177 		start_split_transaction_timeout(t, card);
178 		break;
179 	}
180 	case ACK_BUSY_X:
181 	case ACK_BUSY_A:
182 	case ACK_BUSY_B:
183 		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
184 		break;
185 	case ACK_DATA_ERROR:
186 		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
187 		break;
188 	case ACK_TYPE_ERROR:
189 		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
190 		break;
191 	default:
192 		/*
193 		 * In this case the ack is really a juju specific
194 		 * rcode, so just forward that to the callback.
195 		 */
196 		close_transaction(t, card, status, packet->timestamp);
197 		break;
198 	}
199 }
200 
201 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
202 		int destination_id, int source_id, int generation, int speed,
203 		unsigned long long offset, void *payload, size_t length)
204 {
205 	int ext_tcode;
206 
207 	if (tcode == TCODE_STREAM_DATA) {
208 		// The value of destination_id argument should include tag, channel, and sy fields
209 		// as isochronous packet header has.
210 		packet->header[0] = destination_id;
211 		isoc_header_set_data_length(packet->header, length);
212 		isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
213 		packet->header_length = 4;
214 		packet->payload = payload;
215 		packet->payload_length = length;
216 
217 		goto common;
218 	}
219 
220 	if (tcode > 0x10) {
221 		ext_tcode = tcode & ~0x10;
222 		tcode = TCODE_LOCK_REQUEST;
223 	} else
224 		ext_tcode = 0;
225 
226 	async_header_set_retry(packet->header, RETRY_X);
227 	async_header_set_tlabel(packet->header, tlabel);
228 	async_header_set_tcode(packet->header, tcode);
229 	async_header_set_destination(packet->header, destination_id);
230 	async_header_set_source(packet->header, source_id);
231 	async_header_set_offset(packet->header, offset);
232 
233 	switch (tcode) {
234 	case TCODE_WRITE_QUADLET_REQUEST:
235 		async_header_set_quadlet_data(packet->header, *(u32 *)payload);
236 		packet->header_length = 16;
237 		packet->payload_length = 0;
238 		break;
239 
240 	case TCODE_LOCK_REQUEST:
241 	case TCODE_WRITE_BLOCK_REQUEST:
242 		async_header_set_data_length(packet->header, length);
243 		async_header_set_extended_tcode(packet->header, ext_tcode);
244 		packet->header_length = 16;
245 		packet->payload = payload;
246 		packet->payload_length = length;
247 		break;
248 
249 	case TCODE_READ_QUADLET_REQUEST:
250 		packet->header_length = 12;
251 		packet->payload_length = 0;
252 		break;
253 
254 	case TCODE_READ_BLOCK_REQUEST:
255 		async_header_set_data_length(packet->header, length);
256 		async_header_set_extended_tcode(packet->header, ext_tcode);
257 		packet->header_length = 16;
258 		packet->payload_length = 0;
259 		break;
260 
261 	default:
262 		WARN(1, "wrong tcode %d\n", tcode);
263 	}
264  common:
265 	packet->speed = speed;
266 	packet->generation = generation;
267 	packet->ack = 0;
268 	packet->payload_mapped = false;
269 }
270 
271 static int allocate_tlabel(struct fw_card *card)
272 __must_hold(&card->transactions_lock)
273 {
274 	int tlabel;
275 
276 	lockdep_assert_held(&card->transactions.lock);
277 
278 	tlabel = card->transactions.current_tlabel;
279 	while (card->transactions.tlabel_mask & (1ULL << tlabel)) {
280 		tlabel = (tlabel + 1) & 0x3f;
281 		if (tlabel == card->transactions.current_tlabel)
282 			return -EBUSY;
283 	}
284 
285 	card->transactions.current_tlabel = (tlabel + 1) & 0x3f;
286 	card->transactions.tlabel_mask |= 1ULL << tlabel;
287 
288 	return tlabel;
289 }
290 
291 /**
292  * __fw_send_request() - submit a request packet for transmission to generate callback for response
293  *			 subaction with or without time stamp.
294  * @card:		interface to send the request at
295  * @t:			transaction instance to which the request belongs
296  * @tcode:		transaction code
297  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
298  * @generation:		bus generation in which request and response are valid
299  * @speed:		transmission speed
300  * @offset:		48bit wide offset into destination's address space
301  * @payload:		data payload for the request subaction
302  * @length:		length of the payload, in bytes
303  * @callback:		union of two functions whether to receive time stamp or not for response
304  *			subaction.
305  * @with_tstamp:	Whether to receive time stamp or not for response subaction.
306  * @callback_data:	data to be passed to the transaction completion callback
307  *
308  * Submit a request packet into the asynchronous request transmission queue.
309  * Can be called from atomic context.  If you prefer a blocking API, use
310  * fw_run_transaction() in a context that can sleep.
311  *
312  * In case of lock requests, specify one of the firewire-core specific %TCODE_
313  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
314  *
315  * Make sure that the value in @destination_id is not older than the one in
316  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
317  *
318  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
319  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
320  * It will contain tag, channel, and sy data instead of a node ID then.
321  *
322  * The payload buffer at @data is going to be DMA-mapped except in case of
323  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
324  * buffer complies with the restrictions of the streaming DMA mapping API.
325  * @payload must not be freed before the @callback is called.
326  *
327  * In case of request types without payload, @data is NULL and @length is 0.
328  *
329  * After the transaction is completed successfully or unsuccessfully, the
330  * @callback will be called.  Among its parameters is the response code which
331  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
332  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
333  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
334  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
335  * generation, or missing ACK respectively.
336  *
337  * Note some timing corner cases:  fw_send_request() may complete much earlier
338  * than when the request packet actually hits the wire.  On the other hand,
339  * transaction completion and hence execution of @callback may happen even
340  * before fw_send_request() returns.
341  */
342 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
343 		int destination_id, int generation, int speed, unsigned long long offset,
344 		void *payload, size_t length, union fw_transaction_callback callback,
345 		bool with_tstamp, void *callback_data)
346 {
347 	int tlabel;
348 
349 	/*
350 	 * Allocate tlabel from the bitmap and put the transaction on
351 	 * the list while holding the card spinlock.
352 	 */
353 
354 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
355 	// local destination never runs in any type of IRQ context.
356 	scoped_guard(spinlock_irqsave, &card->transactions.lock)
357 		tlabel = allocate_tlabel(card);
358 	if (tlabel < 0) {
359 		if (!with_tstamp) {
360 			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
361 		} else {
362 			// Timestamping on behalf of hardware.
363 			u32 curr_cycle_time = 0;
364 			u32 tstamp;
365 
366 			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
367 			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
368 
369 			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
370 					     callback_data);
371 		}
372 		return;
373 	}
374 
375 	t->node_id = destination_id;
376 	t->tlabel = tlabel;
377 	t->card = card;
378 	t->is_split_transaction = false;
379 	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
380 	t->callback = callback;
381 	t->with_tstamp = with_tstamp;
382 	t->callback_data = callback_data;
383 	t->packet.callback = transmit_complete_callback;
384 
385 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
386 	// local destination never runs in any type of IRQ context.
387 	scoped_guard(spinlock_irqsave, &card->lock) {
388 		// The node_id field of fw_card can be updated when handling SelfIDComplete.
389 		fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id,
390 				generation, speed, offset, payload, length);
391 	}
392 
393 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
394 	// local destination never runs in any type of IRQ context.
395 	scoped_guard(spinlock_irqsave, &card->transactions.lock)
396 		list_add_tail(&t->link, &card->transactions.list);
397 
398 	// Safe with no lock, since the index field of fw_card is immutable once assigned.
399 	trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
400 					      t->packet.header, payload,
401 					      tcode_is_read_request(tcode) ? 0 : length / 4);
402 
403 	card->driver->send_request(card, &t->packet);
404 }
405 EXPORT_SYMBOL_GPL(__fw_send_request);
406 
407 struct transaction_callback_data {
408 	struct completion done;
409 	void *payload;
410 	int rcode;
411 };
412 
413 static void transaction_callback(struct fw_card *card, int rcode,
414 				 void *payload, size_t length, void *data)
415 {
416 	struct transaction_callback_data *d = data;
417 
418 	if (rcode == RCODE_COMPLETE)
419 		memcpy(d->payload, payload, length);
420 	d->rcode = rcode;
421 	complete(&d->done);
422 }
423 
424 /**
425  * fw_run_transaction() - send request and sleep until transaction is completed
426  * @card:		card interface for this request
427  * @tcode:		transaction code
428  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
429  * @generation:		bus generation in which request and response are valid
430  * @speed:		transmission speed
431  * @offset:		48bit wide offset into destination's address space
432  * @payload:		data payload for the request subaction
433  * @length:		length of the payload, in bytes
434  *
435  * Returns the RCODE.  See fw_send_request() for parameter documentation.
436  * Unlike fw_send_request(), @data points to the payload of the request or/and
437  * to the payload of the response.  DMA mapping restrictions apply to outbound
438  * request payloads of >= 8 bytes but not to inbound response payloads.
439  */
440 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
441 		       int generation, int speed, unsigned long long offset,
442 		       void *payload, size_t length)
443 {
444 	struct transaction_callback_data d;
445 	struct fw_transaction t;
446 
447 	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
448 	init_completion(&d.done);
449 	d.payload = payload;
450 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
451 			offset, payload, length, transaction_callback, &d);
452 	wait_for_completion(&d.done);
453 	timer_destroy_on_stack(&t.split_timeout_timer);
454 
455 	return d.rcode;
456 }
457 EXPORT_SYMBOL(fw_run_transaction);
458 
459 static DEFINE_MUTEX(phy_config_mutex);
460 static DECLARE_COMPLETION(phy_config_done);
461 
462 static void transmit_phy_packet_callback(struct fw_packet *packet,
463 					 struct fw_card *card, int status)
464 {
465 	trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
466 					  packet->timestamp);
467 	complete(&phy_config_done);
468 }
469 
470 static struct fw_packet phy_config_packet = {
471 	.header_length	= 12,
472 	.payload_length	= 0,
473 	.speed		= SCODE_100,
474 	.callback	= transmit_phy_packet_callback,
475 };
476 
477 void fw_send_phy_config(struct fw_card *card,
478 			int node_id, int generation, int gap_count)
479 {
480 	long timeout = msecs_to_jiffies(100);
481 	u32 data = 0;
482 
483 	phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
484 
485 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
486 		phy_packet_phy_config_set_root_id(&data, node_id);
487 		phy_packet_phy_config_set_force_root_node(&data, true);
488 	}
489 
490 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
491 		gap_count = card->driver->read_phy_reg(card, 1);
492 		if (gap_count < 0)
493 			return;
494 
495 		gap_count &= 63;
496 		if (gap_count == 63)
497 			return;
498 	}
499 	phy_packet_phy_config_set_gap_count(&data, gap_count);
500 	phy_packet_phy_config_set_gap_count_optimization(&data, true);
501 
502 	guard(mutex)(&phy_config_mutex);
503 
504 	async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
505 	phy_config_packet.header[1] = data;
506 	phy_config_packet.header[2] = ~data;
507 	phy_config_packet.generation = generation;
508 	reinit_completion(&phy_config_done);
509 
510 	trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
511 					  phy_config_packet.generation, phy_config_packet.header[1],
512 					  phy_config_packet.header[2]);
513 
514 	card->driver->send_request(card, &phy_config_packet);
515 	wait_for_completion_timeout(&phy_config_done, timeout);
516 }
517 
518 static struct fw_address_handler *lookup_overlapping_address_handler(
519 	struct list_head *list, unsigned long long offset, size_t length)
520 {
521 	struct fw_address_handler *handler;
522 
523 	list_for_each_entry_rcu(handler, list, link) {
524 		if (handler->offset < offset + length &&
525 		    offset < handler->offset + handler->length)
526 			return handler;
527 	}
528 
529 	return NULL;
530 }
531 
532 static bool is_enclosing_handler(struct fw_address_handler *handler,
533 				 unsigned long long offset, size_t length)
534 {
535 	return handler->offset <= offset &&
536 		offset + length <= handler->offset + handler->length;
537 }
538 
539 static struct fw_address_handler *lookup_enclosing_address_handler(
540 	struct list_head *list, unsigned long long offset, size_t length)
541 {
542 	struct fw_address_handler *handler;
543 
544 	list_for_each_entry_rcu(handler, list, link) {
545 		if (is_enclosing_handler(handler, offset, length))
546 			return handler;
547 	}
548 
549 	return NULL;
550 }
551 
552 static DEFINE_SPINLOCK(address_handler_list_lock);
553 static LIST_HEAD(address_handler_list);
554 
555 const struct fw_address_region fw_high_memory_region =
556 	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
557 EXPORT_SYMBOL(fw_high_memory_region);
558 
559 static const struct fw_address_region low_memory_region =
560 	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
561 
562 #if 0
563 const struct fw_address_region fw_private_region =
564 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
565 const struct fw_address_region fw_csr_region =
566 	{ .start = CSR_REGISTER_BASE,
567 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
568 const struct fw_address_region fw_unit_space_region =
569 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
570 #endif  /*  0  */
571 
572 static void complete_address_handler(struct kref *kref)
573 {
574 	struct fw_address_handler *handler = container_of(kref, struct fw_address_handler, kref);
575 
576 	complete(&handler->done);
577 }
578 
579 static void get_address_handler(struct fw_address_handler *handler)
580 {
581 	kref_get(&handler->kref);
582 }
583 
584 static int put_address_handler(struct fw_address_handler *handler)
585 {
586 	return kref_put(&handler->kref, complete_address_handler);
587 }
588 
589 /**
590  * fw_core_add_address_handler() - register for incoming requests
591  * @handler:	callback
592  * @region:	region in the IEEE 1212 node space address range
593  *
594  * region->start, ->end, and handler->length have to be quadlet-aligned.
595  *
596  * When a request is received that falls within the specified address range, the specified callback
597  * is invoked.  The parameters passed to the callback give the details of the particular request.
598  * The callback is invoked in the workqueue context in most cases. However, if the request is
599  * initiated by the local node, the callback is invoked in the initiator's context.
600  *
601  * To be called in process context.
602  * Return value:  0 on success, non-zero otherwise.
603  *
604  * The start offset of the handler's address region is determined by
605  * fw_core_add_address_handler() and is returned in handler->offset.
606  *
607  * Address allocations are exclusive, except for the FCP registers.
608  */
609 int fw_core_add_address_handler(struct fw_address_handler *handler,
610 				const struct fw_address_region *region)
611 {
612 	struct fw_address_handler *other;
613 	int ret = -EBUSY;
614 
615 	if (region->start & 0xffff000000000003ULL ||
616 	    region->start >= region->end ||
617 	    region->end   > 0x0001000000000000ULL ||
618 	    handler->length & 3 ||
619 	    handler->length == 0)
620 		return -EINVAL;
621 
622 	guard(spinlock)(&address_handler_list_lock);
623 
624 	handler->offset = region->start;
625 	while (handler->offset + handler->length <= region->end) {
626 		if (is_in_fcp_region(handler->offset, handler->length))
627 			other = NULL;
628 		else
629 			other = lookup_overlapping_address_handler
630 					(&address_handler_list,
631 					 handler->offset, handler->length);
632 		if (other != NULL) {
633 			handler->offset += other->length;
634 		} else {
635 			init_completion(&handler->done);
636 			kref_init(&handler->kref);
637 			list_add_tail_rcu(&handler->link, &address_handler_list);
638 			ret = 0;
639 			break;
640 		}
641 	}
642 
643 	return ret;
644 }
645 EXPORT_SYMBOL(fw_core_add_address_handler);
646 
647 /**
648  * fw_core_remove_address_handler() - unregister an address handler
649  * @handler: callback
650  *
651  * To be called in process context.
652  *
653  * When fw_core_remove_address_handler() returns, @handler->callback() is
654  * guaranteed to not run on any CPU anymore.
655  */
656 void fw_core_remove_address_handler(struct fw_address_handler *handler)
657 {
658 	scoped_guard(spinlock, &address_handler_list_lock)
659 		list_del_rcu(&handler->link);
660 
661 	synchronize_rcu();
662 
663 	if (!put_address_handler(handler))
664 		wait_for_completion(&handler->done);
665 }
666 EXPORT_SYMBOL(fw_core_remove_address_handler);
667 
668 struct fw_request {
669 	struct kref kref;
670 	struct fw_packet response;
671 	u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
672 	int ack;
673 	u32 timestamp;
674 	u32 length;
675 	u32 data[];
676 };
677 
678 void fw_request_get(struct fw_request *request)
679 {
680 	kref_get(&request->kref);
681 }
682 
683 static void release_request(struct kref *kref)
684 {
685 	struct fw_request *request = container_of(kref, struct fw_request, kref);
686 
687 	kfree(request);
688 }
689 
690 void fw_request_put(struct fw_request *request)
691 {
692 	kref_put(&request->kref, release_request);
693 }
694 
695 static void free_response_callback(struct fw_packet *packet,
696 				   struct fw_card *card, int status)
697 {
698 	struct fw_request *request = container_of(packet, struct fw_request, response);
699 
700 	trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
701 					       packet->speed, status, packet->timestamp);
702 
703 	// Decrease the reference count since not at in-flight.
704 	fw_request_put(request);
705 
706 	// Decrease the reference count to release the object.
707 	fw_request_put(request);
708 }
709 
710 int fw_get_response_length(struct fw_request *r)
711 {
712 	int tcode, ext_tcode, data_length;
713 
714 	tcode = async_header_get_tcode(r->request_header);
715 
716 	switch (tcode) {
717 	case TCODE_WRITE_QUADLET_REQUEST:
718 	case TCODE_WRITE_BLOCK_REQUEST:
719 		return 0;
720 
721 	case TCODE_READ_QUADLET_REQUEST:
722 		return 4;
723 
724 	case TCODE_READ_BLOCK_REQUEST:
725 		data_length = async_header_get_data_length(r->request_header);
726 		return data_length;
727 
728 	case TCODE_LOCK_REQUEST:
729 		ext_tcode = async_header_get_extended_tcode(r->request_header);
730 		data_length = async_header_get_data_length(r->request_header);
731 		switch (ext_tcode) {
732 		case EXTCODE_FETCH_ADD:
733 		case EXTCODE_LITTLE_ADD:
734 			return data_length;
735 		default:
736 			return data_length / 2;
737 		}
738 
739 	default:
740 		WARN(1, "wrong tcode %d\n", tcode);
741 		return 0;
742 	}
743 }
744 
745 void fw_fill_response(struct fw_packet *response, u32 *request_header,
746 		      int rcode, void *payload, size_t length)
747 {
748 	int tcode, tlabel, extended_tcode, source, destination;
749 
750 	tcode = async_header_get_tcode(request_header);
751 	tlabel = async_header_get_tlabel(request_header);
752 	source = async_header_get_destination(request_header); // Exchange.
753 	destination = async_header_get_source(request_header); // Exchange.
754 	extended_tcode = async_header_get_extended_tcode(request_header);
755 
756 	async_header_set_retry(response->header, RETRY_1);
757 	async_header_set_tlabel(response->header, tlabel);
758 	async_header_set_destination(response->header, destination);
759 	async_header_set_source(response->header, source);
760 	async_header_set_rcode(response->header, rcode);
761 	response->header[2] = 0;	// The field is reserved.
762 
763 	switch (tcode) {
764 	case TCODE_WRITE_QUADLET_REQUEST:
765 	case TCODE_WRITE_BLOCK_REQUEST:
766 		async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
767 		response->header_length = 12;
768 		response->payload_length = 0;
769 		break;
770 
771 	case TCODE_READ_QUADLET_REQUEST:
772 		async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
773 		if (payload != NULL)
774 			async_header_set_quadlet_data(response->header, *(u32 *)payload);
775 		else
776 			async_header_set_quadlet_data(response->header, 0);
777 		response->header_length = 16;
778 		response->payload_length = 0;
779 		break;
780 
781 	case TCODE_READ_BLOCK_REQUEST:
782 	case TCODE_LOCK_REQUEST:
783 		async_header_set_tcode(response->header, tcode + 2);
784 		async_header_set_data_length(response->header, length);
785 		async_header_set_extended_tcode(response->header, extended_tcode);
786 		response->header_length = 16;
787 		response->payload = payload;
788 		response->payload_length = length;
789 		break;
790 
791 	default:
792 		WARN(1, "wrong tcode %d\n", tcode);
793 	}
794 
795 	response->payload_mapped = false;
796 }
797 EXPORT_SYMBOL(fw_fill_response);
798 
799 static u32 compute_split_timeout_timestamp(struct fw_card *card,
800 					   u32 request_timestamp)
801 __must_hold(&card->split_timeout.lock)
802 {
803 	unsigned int cycles;
804 	u32 timestamp;
805 
806 	lockdep_assert_held(&card->split_timeout.lock);
807 
808 	cycles = card->split_timeout.cycles;
809 	cycles += request_timestamp & 0x1fff;
810 
811 	timestamp = request_timestamp & ~0x1fff;
812 	timestamp += (cycles / 8000) << 13;
813 	timestamp |= cycles % 8000;
814 
815 	return timestamp;
816 }
817 
818 static struct fw_request *allocate_request(struct fw_card *card,
819 					   struct fw_packet *p)
820 {
821 	struct fw_request *request;
822 	u32 *data, length;
823 	int request_tcode;
824 
825 	request_tcode = async_header_get_tcode(p->header);
826 	switch (request_tcode) {
827 	case TCODE_WRITE_QUADLET_REQUEST:
828 		data = &p->header[3];
829 		length = 4;
830 		break;
831 
832 	case TCODE_WRITE_BLOCK_REQUEST:
833 	case TCODE_LOCK_REQUEST:
834 		data = p->payload;
835 		length = async_header_get_data_length(p->header);
836 		break;
837 
838 	case TCODE_READ_QUADLET_REQUEST:
839 		data = NULL;
840 		length = 4;
841 		break;
842 
843 	case TCODE_READ_BLOCK_REQUEST:
844 		data = NULL;
845 		length = async_header_get_data_length(p->header);
846 		break;
847 
848 	default:
849 		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
850 			 p->header[0], p->header[1], p->header[2]);
851 		return NULL;
852 	}
853 
854 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
855 	if (request == NULL)
856 		return NULL;
857 	kref_init(&request->kref);
858 
859 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
860 	// local destination never runs in any type of IRQ context.
861 	scoped_guard(spinlock_irqsave, &card->split_timeout.lock)
862 		request->response.timestamp = compute_split_timeout_timestamp(card, p->timestamp);
863 
864 	request->response.speed = p->speed;
865 	request->response.generation = p->generation;
866 	request->response.ack = 0;
867 	request->response.callback = free_response_callback;
868 	request->ack = p->ack;
869 	request->timestamp = p->timestamp;
870 	request->length = length;
871 	if (data)
872 		memcpy(request->data, data, length);
873 
874 	memcpy(request->request_header, p->header, sizeof(p->header));
875 
876 	return request;
877 }
878 
879 /**
880  * fw_send_response: - send response packet for asynchronous transaction.
881  * @card:	interface to send the response at.
882  * @request:	firewire request data for the transaction.
883  * @rcode:	response code to send.
884  *
885  * Submit a response packet into the asynchronous response transmission queue. The @request
886  * is going to be released when the transmission successfully finishes later.
887  */
888 void fw_send_response(struct fw_card *card,
889 		      struct fw_request *request, int rcode)
890 {
891 	u32 *data = NULL;
892 	unsigned int data_length = 0;
893 
894 	/* unified transaction or broadcast transaction: don't respond */
895 	if (request->ack != ACK_PENDING ||
896 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
897 		fw_request_put(request);
898 		return;
899 	}
900 
901 	if (rcode == RCODE_COMPLETE) {
902 		data = request->data;
903 		data_length = fw_get_response_length(request);
904 	}
905 
906 	fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
907 
908 	// Increase the reference count so that the object is kept during in-flight.
909 	fw_request_get(request);
910 
911 	trace_async_response_outbound_initiate((uintptr_t)request, card->index,
912 					       request->response.generation, request->response.speed,
913 					       request->response.header, data,
914 					       data ? data_length / 4 : 0);
915 
916 	card->driver->send_response(card, &request->response);
917 }
918 EXPORT_SYMBOL(fw_send_response);
919 
920 /**
921  * fw_get_request_speed() - returns speed at which the @request was received
922  * @request: firewire request data
923  */
924 int fw_get_request_speed(struct fw_request *request)
925 {
926 	return request->response.speed;
927 }
928 EXPORT_SYMBOL(fw_get_request_speed);
929 
930 /**
931  * fw_request_get_timestamp: Get timestamp of the request.
932  * @request: The opaque pointer to request structure.
933  *
934  * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
935  * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
936  * field of isochronous cycle time register.
937  *
938  * Returns: timestamp of the request.
939  */
940 u32 fw_request_get_timestamp(const struct fw_request *request)
941 {
942 	return request->timestamp;
943 }
944 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
945 
946 static void handle_exclusive_region_request(struct fw_card *card,
947 					    struct fw_packet *p,
948 					    struct fw_request *request,
949 					    unsigned long long offset)
950 {
951 	struct fw_address_handler *handler;
952 	int tcode, destination, source;
953 
954 	destination = async_header_get_destination(p->header);
955 	source = async_header_get_source(p->header);
956 	tcode = async_header_get_tcode(p->header);
957 	if (tcode == TCODE_LOCK_REQUEST)
958 		tcode = 0x10 + async_header_get_extended_tcode(p->header);
959 
960 	scoped_guard(rcu) {
961 		handler = lookup_enclosing_address_handler(&address_handler_list, offset,
962 							   request->length);
963 		if (handler)
964 			get_address_handler(handler);
965 	}
966 
967 	if (!handler) {
968 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
969 		return;
970 	}
971 
972 	// Outside the RCU read-side critical section. Without spinlock. With reference count.
973 	handler->address_callback(card, request, tcode, destination, source, p->generation, offset,
974 				  request->data, request->length, handler->callback_data);
975 	put_address_handler(handler);
976 }
977 
978 // To use kmalloc allocator efficiently, this should be power of two.
979 #define BUFFER_ON_KERNEL_STACK_SIZE	4
980 
981 static void handle_fcp_region_request(struct fw_card *card,
982 				      struct fw_packet *p,
983 				      struct fw_request *request,
984 				      unsigned long long offset)
985 {
986 	struct fw_address_handler *buffer_on_kernel_stack[BUFFER_ON_KERNEL_STACK_SIZE];
987 	struct fw_address_handler *handler, **handlers;
988 	int tcode, destination, source, i, count, buffer_size;
989 
990 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
991 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
992 	    request->length > 0x200) {
993 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
994 
995 		return;
996 	}
997 
998 	tcode = async_header_get_tcode(p->header);
999 	destination = async_header_get_destination(p->header);
1000 	source = async_header_get_source(p->header);
1001 
1002 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
1003 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
1004 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1005 
1006 		return;
1007 	}
1008 
1009 	count = 0;
1010 	handlers = buffer_on_kernel_stack;
1011 	buffer_size = ARRAY_SIZE(buffer_on_kernel_stack);
1012 	scoped_guard(rcu) {
1013 		list_for_each_entry_rcu(handler, &address_handler_list, link) {
1014 			if (is_enclosing_handler(handler, offset, request->length)) {
1015 				if (count >= buffer_size) {
1016 					int next_size = buffer_size * 2;
1017 					struct fw_address_handler **buffer_on_kernel_heap;
1018 
1019 					if (handlers == buffer_on_kernel_stack)
1020 						buffer_on_kernel_heap = NULL;
1021 					else
1022 						buffer_on_kernel_heap = handlers;
1023 
1024 					buffer_on_kernel_heap =
1025 						krealloc_array(buffer_on_kernel_heap, next_size,
1026 							sizeof(*buffer_on_kernel_heap), GFP_ATOMIC);
1027 					// FCP is used for purposes unrelated to significant system
1028 					// resources (e.g. storage or networking), so allocation
1029 					// failures are not considered so critical.
1030 					if (!buffer_on_kernel_heap)
1031 						break;
1032 
1033 					if (handlers == buffer_on_kernel_stack) {
1034 						memcpy(buffer_on_kernel_heap, buffer_on_kernel_stack,
1035 						       sizeof(buffer_on_kernel_stack));
1036 					}
1037 
1038 					handlers = buffer_on_kernel_heap;
1039 					buffer_size = next_size;
1040 				}
1041 				get_address_handler(handler);
1042 				handlers[count++] = handler;
1043 			}
1044 		}
1045 	}
1046 
1047 	for (i = 0; i < count; ++i) {
1048 		handler = handlers[i];
1049 		handler->address_callback(card, request, tcode, destination, source,
1050 					  p->generation, offset, request->data,
1051 					  request->length, handler->callback_data);
1052 		put_address_handler(handler);
1053 	}
1054 
1055 	if (handlers != buffer_on_kernel_stack)
1056 		kfree(handlers);
1057 
1058 	fw_send_response(card, request, RCODE_COMPLETE);
1059 }
1060 
1061 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
1062 {
1063 	struct fw_request *request;
1064 	unsigned long long offset;
1065 	unsigned int tcode;
1066 
1067 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
1068 		return;
1069 
1070 	tcode = async_header_get_tcode(p->header);
1071 	if (tcode_is_link_internal(tcode)) {
1072 		trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
1073 					 p->header[1], p->header[2]);
1074 		fw_cdev_handle_phy_packet(card, p);
1075 		return;
1076 	}
1077 
1078 	request = allocate_request(card, p);
1079 	if (request == NULL) {
1080 		/* FIXME: send statically allocated busy packet. */
1081 		return;
1082 	}
1083 
1084 	trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
1085 				    p->ack, p->timestamp, p->header, request->data,
1086 				    tcode_is_read_request(tcode) ? 0 : request->length / 4);
1087 
1088 	offset = async_header_get_offset(p->header);
1089 
1090 	if (!is_in_fcp_region(offset, request->length))
1091 		handle_exclusive_region_request(card, p, request, offset);
1092 	else
1093 		handle_fcp_region_request(card, p, request, offset);
1094 
1095 }
1096 EXPORT_SYMBOL(fw_core_handle_request);
1097 
1098 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1099 {
1100 	struct fw_transaction *t = NULL, *iter;
1101 	u32 *data;
1102 	size_t data_length;
1103 	int tcode, tlabel, source, rcode;
1104 
1105 	tcode = async_header_get_tcode(p->header);
1106 	tlabel = async_header_get_tlabel(p->header);
1107 	source = async_header_get_source(p->header);
1108 	rcode = async_header_get_rcode(p->header);
1109 
1110 	// FIXME: sanity check packet, is length correct, does tcodes
1111 	// and addresses match to the transaction request queried later.
1112 	//
1113 	// For the tracepoints event, let us decode the header here against the concern.
1114 
1115 	switch (tcode) {
1116 	case TCODE_READ_QUADLET_RESPONSE:
1117 		data = (u32 *) &p->header[3];
1118 		data_length = 4;
1119 		break;
1120 
1121 	case TCODE_WRITE_RESPONSE:
1122 		data = NULL;
1123 		data_length = 0;
1124 		break;
1125 
1126 	case TCODE_READ_BLOCK_RESPONSE:
1127 	case TCODE_LOCK_RESPONSE:
1128 		data = p->payload;
1129 		data_length = async_header_get_data_length(p->header);
1130 		break;
1131 
1132 	default:
1133 		/* Should never happen, this is just to shut up gcc. */
1134 		data = NULL;
1135 		data_length = 0;
1136 		break;
1137 	}
1138 
1139 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
1140 	// local destination never runs in any type of IRQ context.
1141 	scoped_guard(spinlock_irqsave, &card->transactions.lock) {
1142 		list_for_each_entry(iter, &card->transactions.list, link) {
1143 			if (iter->node_id == source && iter->tlabel == tlabel) {
1144 				if (try_cancel_split_timeout(iter)) {
1145 					list_del_init(&iter->link);
1146 					card->transactions.tlabel_mask &= ~(1ULL << iter->tlabel);
1147 					t = iter;
1148 				}
1149 				break;
1150 			}
1151 		}
1152 	}
1153 
1154 	trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1155 				     p->timestamp, p->header, data, data_length / 4);
1156 
1157 	if (!t) {
1158 		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1159 			  source, tlabel);
1160 		return;
1161 	}
1162 
1163 	/*
1164 	 * The response handler may be executed while the request handler
1165 	 * is still pending.  Cancel the request handler.
1166 	 */
1167 	card->driver->cancel_packet(card, &t->packet);
1168 
1169 	if (!t->with_tstamp) {
1170 		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1171 	} else {
1172 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1173 					data_length, t->callback_data);
1174 	}
1175 }
1176 EXPORT_SYMBOL(fw_core_handle_response);
1177 
1178 /**
1179  * fw_rcode_string - convert a firewire result code to an error description
1180  * @rcode: the result code
1181  */
1182 const char *fw_rcode_string(int rcode)
1183 {
1184 	static const char *const names[] = {
1185 		[RCODE_COMPLETE]       = "no error",
1186 		[RCODE_CONFLICT_ERROR] = "conflict error",
1187 		[RCODE_DATA_ERROR]     = "data error",
1188 		[RCODE_TYPE_ERROR]     = "type error",
1189 		[RCODE_ADDRESS_ERROR]  = "address error",
1190 		[RCODE_SEND_ERROR]     = "send error",
1191 		[RCODE_CANCELLED]      = "timeout",
1192 		[RCODE_BUSY]           = "busy",
1193 		[RCODE_GENERATION]     = "bus reset",
1194 		[RCODE_NO_ACK]         = "no ack",
1195 	};
1196 
1197 	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1198 		return names[rcode];
1199 	else
1200 		return "unknown";
1201 }
1202 EXPORT_SYMBOL(fw_rcode_string);
1203 
1204 static const struct fw_address_region topology_map_region =
1205 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1206 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1207 
1208 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1209 		int tcode, int destination, int source, int generation,
1210 		unsigned long long offset, void *payload, size_t length,
1211 		void *callback_data)
1212 {
1213 	int start;
1214 
1215 	if (!tcode_is_read_request(tcode)) {
1216 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1217 		return;
1218 	}
1219 
1220 	if ((offset & 3) > 0 || (length & 3) > 0) {
1221 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1222 		return;
1223 	}
1224 
1225 	start = (offset - topology_map_region.start) / 4;
1226 
1227 	// NOTE: This can be without irqsave when we can guarantee that fw_send_request() for local
1228 	// destination never runs in any type of IRQ context.
1229 	scoped_guard(spinlock_irqsave, &card->topology_map.lock)
1230 		memcpy(payload, &card->topology_map.buffer[start], length);
1231 
1232 	fw_send_response(card, request, RCODE_COMPLETE);
1233 }
1234 
1235 static struct fw_address_handler topology_map = {
1236 	.length			= 0x400,
1237 	.address_callback	= handle_topology_map,
1238 };
1239 
1240 static const struct fw_address_region registers_region =
1241 	{ .start = CSR_REGISTER_BASE,
1242 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1243 
1244 static void update_split_timeout(struct fw_card *card)
1245 __must_hold(&card->split_timeout.lock)
1246 {
1247 	unsigned int cycles;
1248 
1249 	cycles = card->split_timeout.hi * 8000 + (card->split_timeout.lo >> 19);
1250 
1251 	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1252 	cycles = clamp(cycles, 800u, 3u * 8000u);
1253 
1254 	card->split_timeout.cycles = cycles;
1255 	card->split_timeout.jiffies = isoc_cycles_to_jiffies(cycles);
1256 }
1257 
1258 static void handle_registers(struct fw_card *card, struct fw_request *request,
1259 		int tcode, int destination, int source, int generation,
1260 		unsigned long long offset, void *payload, size_t length,
1261 		void *callback_data)
1262 {
1263 	int reg = offset & ~CSR_REGISTER_BASE;
1264 	__be32 *data = payload;
1265 	int rcode = RCODE_COMPLETE;
1266 
1267 	switch (reg) {
1268 	case CSR_PRIORITY_BUDGET:
1269 		if (!card->priority_budget_implemented) {
1270 			rcode = RCODE_ADDRESS_ERROR;
1271 			break;
1272 		}
1273 		fallthrough;
1274 
1275 	case CSR_NODE_IDS:
1276 		/*
1277 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1278 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1279 		 */
1280 		fallthrough;
1281 
1282 	case CSR_STATE_CLEAR:
1283 	case CSR_STATE_SET:
1284 	case CSR_CYCLE_TIME:
1285 	case CSR_BUS_TIME:
1286 	case CSR_BUSY_TIMEOUT:
1287 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1288 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1289 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1290 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1291 		else
1292 			rcode = RCODE_TYPE_ERROR;
1293 		break;
1294 
1295 	case CSR_RESET_START:
1296 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1297 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1298 						CSR_STATE_BIT_ABDICATE);
1299 		else
1300 			rcode = RCODE_TYPE_ERROR;
1301 		break;
1302 
1303 	case CSR_SPLIT_TIMEOUT_HI:
1304 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1305 			*data = cpu_to_be32(card->split_timeout.hi);
1306 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1307 			// NOTE: This can be without irqsave when we can guarantee that
1308 			// __fw_send_request() for local destination never runs in any type of IRQ
1309 			// context.
1310 			scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
1311 				card->split_timeout.hi = be32_to_cpu(*data) & 7;
1312 				update_split_timeout(card);
1313 			}
1314 		} else {
1315 			rcode = RCODE_TYPE_ERROR;
1316 		}
1317 		break;
1318 
1319 	case CSR_SPLIT_TIMEOUT_LO:
1320 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1321 			*data = cpu_to_be32(card->split_timeout.lo);
1322 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1323 			// NOTE: This can be without irqsave when we can guarantee that
1324 			// __fw_send_request() for local destination never runs in any type of IRQ
1325 			// context.
1326 			scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
1327 				card->split_timeout.lo = be32_to_cpu(*data) & 0xfff80000;
1328 				update_split_timeout(card);
1329 			}
1330 		} else {
1331 			rcode = RCODE_TYPE_ERROR;
1332 		}
1333 		break;
1334 
1335 	case CSR_MAINT_UTILITY:
1336 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1337 			*data = card->maint_utility_register;
1338 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1339 			card->maint_utility_register = *data;
1340 		else
1341 			rcode = RCODE_TYPE_ERROR;
1342 		break;
1343 
1344 	case CSR_BROADCAST_CHANNEL:
1345 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1346 			*data = cpu_to_be32(card->broadcast_channel);
1347 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1348 			card->broadcast_channel =
1349 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1350 			    BROADCAST_CHANNEL_INITIAL;
1351 		else
1352 			rcode = RCODE_TYPE_ERROR;
1353 		break;
1354 
1355 	case CSR_BUS_MANAGER_ID:
1356 	case CSR_BANDWIDTH_AVAILABLE:
1357 	case CSR_CHANNELS_AVAILABLE_HI:
1358 	case CSR_CHANNELS_AVAILABLE_LO:
1359 		/*
1360 		 * FIXME: these are handled by the OHCI hardware and
1361 		 * the stack never sees these request. If we add
1362 		 * support for a new type of controller that doesn't
1363 		 * handle this in hardware we need to deal with these
1364 		 * transactions.
1365 		 */
1366 		BUG();
1367 		break;
1368 
1369 	default:
1370 		rcode = RCODE_ADDRESS_ERROR;
1371 		break;
1372 	}
1373 
1374 	fw_send_response(card, request, rcode);
1375 }
1376 
1377 static struct fw_address_handler registers = {
1378 	.length			= 0x400,
1379 	.address_callback	= handle_registers,
1380 };
1381 
1382 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1383 		int tcode, int destination, int source, int generation,
1384 		unsigned long long offset, void *payload, size_t length,
1385 		void *callback_data)
1386 {
1387 	/*
1388 	 * This catches requests not handled by the physical DMA unit,
1389 	 * i.e., wrong transaction types or unauthorized source nodes.
1390 	 */
1391 	fw_send_response(card, request, RCODE_TYPE_ERROR);
1392 }
1393 
1394 static struct fw_address_handler low_memory = {
1395 	.length			= FW_MAX_PHYSICAL_RANGE,
1396 	.address_callback	= handle_low_memory,
1397 };
1398 
1399 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1400 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1401 MODULE_LICENSE("GPL");
1402 
1403 static const u32 vendor_textual_descriptor[] = {
1404 	/* textual descriptor leaf () */
1405 	0x00060000,
1406 	0x00000000,
1407 	0x00000000,
1408 	0x4c696e75,		/* L i n u */
1409 	0x78204669,		/* x   F i */
1410 	0x72657769,		/* r e w i */
1411 	0x72650000,		/* r e     */
1412 };
1413 
1414 static const u32 model_textual_descriptor[] = {
1415 	/* model descriptor leaf () */
1416 	0x00030000,
1417 	0x00000000,
1418 	0x00000000,
1419 	0x4a756a75,		/* J u j u */
1420 };
1421 
1422 static struct fw_descriptor vendor_id_descriptor = {
1423 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1424 	.immediate = 0x03001f11,
1425 	.key = 0x81000000,
1426 	.data = vendor_textual_descriptor,
1427 };
1428 
1429 static struct fw_descriptor model_id_descriptor = {
1430 	.length = ARRAY_SIZE(model_textual_descriptor),
1431 	.immediate = 0x17023901,
1432 	.key = 0x81000000,
1433 	.data = model_textual_descriptor,
1434 };
1435 
1436 static int __init fw_core_init(void)
1437 {
1438 	int ret;
1439 
1440 	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1441 	if (!fw_workqueue)
1442 		return -ENOMEM;
1443 
1444 	ret = bus_register(&fw_bus_type);
1445 	if (ret < 0) {
1446 		destroy_workqueue(fw_workqueue);
1447 		return ret;
1448 	}
1449 
1450 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1451 	if (fw_cdev_major < 0) {
1452 		bus_unregister(&fw_bus_type);
1453 		destroy_workqueue(fw_workqueue);
1454 		return fw_cdev_major;
1455 	}
1456 
1457 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1458 	fw_core_add_address_handler(&registers, &registers_region);
1459 	fw_core_add_address_handler(&low_memory, &low_memory_region);
1460 	fw_core_add_descriptor(&vendor_id_descriptor);
1461 	fw_core_add_descriptor(&model_id_descriptor);
1462 
1463 	return 0;
1464 }
1465 
1466 static void __exit fw_core_cleanup(void)
1467 {
1468 	unregister_chrdev(fw_cdev_major, "firewire");
1469 	bus_unregister(&fw_bus_type);
1470 	destroy_workqueue(fw_workqueue);
1471 	xa_destroy(&fw_device_xa);
1472 }
1473 
1474 module_init(fw_core_init);
1475 module_exit(fw_core_cleanup);
1476