xref: /linux/drivers/firewire/core-iso.c (revision ffee72d4681c8777918268a96aef42bdeb6c367b)
1 /*
2  * Isochronous I/O functionality:
3  *   - Isochronous DMA context management
4  *   - Isochronous bus resource management (channels, bandwidth), client side
5  *
6  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22 
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/vmalloc.h>
32 
33 #include <asm/byteorder.h>
34 
35 #include "core.h"
36 
37 /*
38  * Isochronous DMA context management
39  */
40 
41 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
42 		       int page_count, enum dma_data_direction direction)
43 {
44 	int i, j;
45 	dma_addr_t address;
46 
47 	buffer->page_count = page_count;
48 	buffer->direction = direction;
49 
50 	buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
51 				GFP_KERNEL);
52 	if (buffer->pages == NULL)
53 		goto out;
54 
55 	for (i = 0; i < buffer->page_count; i++) {
56 		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
57 		if (buffer->pages[i] == NULL)
58 			goto out_pages;
59 
60 		address = dma_map_page(card->device, buffer->pages[i],
61 				       0, PAGE_SIZE, direction);
62 		if (dma_mapping_error(card->device, address)) {
63 			__free_page(buffer->pages[i]);
64 			goto out_pages;
65 		}
66 		set_page_private(buffer->pages[i], address);
67 	}
68 
69 	return 0;
70 
71  out_pages:
72 	for (j = 0; j < i; j++) {
73 		address = page_private(buffer->pages[j]);
74 		dma_unmap_page(card->device, address,
75 			       PAGE_SIZE, direction);
76 		__free_page(buffer->pages[j]);
77 	}
78 	kfree(buffer->pages);
79  out:
80 	buffer->pages = NULL;
81 
82 	return -ENOMEM;
83 }
84 EXPORT_SYMBOL(fw_iso_buffer_init);
85 
86 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
87 {
88 	unsigned long uaddr;
89 	int i, err;
90 
91 	uaddr = vma->vm_start;
92 	for (i = 0; i < buffer->page_count; i++) {
93 		err = vm_insert_page(vma, uaddr, buffer->pages[i]);
94 		if (err)
95 			return err;
96 
97 		uaddr += PAGE_SIZE;
98 	}
99 
100 	return 0;
101 }
102 
103 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
104 			   struct fw_card *card)
105 {
106 	int i;
107 	dma_addr_t address;
108 
109 	for (i = 0; i < buffer->page_count; i++) {
110 		address = page_private(buffer->pages[i]);
111 		dma_unmap_page(card->device, address,
112 			       PAGE_SIZE, buffer->direction);
113 		__free_page(buffer->pages[i]);
114 	}
115 
116 	kfree(buffer->pages);
117 	buffer->pages = NULL;
118 }
119 EXPORT_SYMBOL(fw_iso_buffer_destroy);
120 
121 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
122 		int type, int channel, int speed, size_t header_size,
123 		fw_iso_callback_t callback, void *callback_data)
124 {
125 	struct fw_iso_context *ctx;
126 
127 	ctx = card->driver->allocate_iso_context(card,
128 						 type, channel, header_size);
129 	if (IS_ERR(ctx))
130 		return ctx;
131 
132 	ctx->card = card;
133 	ctx->type = type;
134 	ctx->channel = channel;
135 	ctx->speed = speed;
136 	ctx->header_size = header_size;
137 	ctx->callback = callback;
138 	ctx->callback_data = callback_data;
139 
140 	return ctx;
141 }
142 EXPORT_SYMBOL(fw_iso_context_create);
143 
144 void fw_iso_context_destroy(struct fw_iso_context *ctx)
145 {
146 	struct fw_card *card = ctx->card;
147 
148 	card->driver->free_iso_context(ctx);
149 }
150 EXPORT_SYMBOL(fw_iso_context_destroy);
151 
152 int fw_iso_context_start(struct fw_iso_context *ctx,
153 			 int cycle, int sync, int tags)
154 {
155 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
156 }
157 EXPORT_SYMBOL(fw_iso_context_start);
158 
159 int fw_iso_context_queue(struct fw_iso_context *ctx,
160 			 struct fw_iso_packet *packet,
161 			 struct fw_iso_buffer *buffer,
162 			 unsigned long payload)
163 {
164 	struct fw_card *card = ctx->card;
165 
166 	return card->driver->queue_iso(ctx, packet, buffer, payload);
167 }
168 EXPORT_SYMBOL(fw_iso_context_queue);
169 
170 int fw_iso_context_stop(struct fw_iso_context *ctx)
171 {
172 	return ctx->card->driver->stop_iso(ctx);
173 }
174 EXPORT_SYMBOL(fw_iso_context_stop);
175 
176 /*
177  * Isochronous bus resource management (channels, bandwidth), client side
178  */
179 
180 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
181 			    int bandwidth, bool allocate, __be32 data[2])
182 {
183 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
184 
185 	/*
186 	 * On a 1394a IRM with low contention, try < 1 is enough.
187 	 * On a 1394-1995 IRM, we need at least try < 2.
188 	 * Let's just do try < 5.
189 	 */
190 	for (try = 0; try < 5; try++) {
191 		new = allocate ? old - bandwidth : old + bandwidth;
192 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
193 			return -EBUSY;
194 
195 		data[0] = cpu_to_be32(old);
196 		data[1] = cpu_to_be32(new);
197 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
198 				irm_id, generation, SCODE_100,
199 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
200 				data, 8)) {
201 		case RCODE_GENERATION:
202 			/* A generation change frees all bandwidth. */
203 			return allocate ? -EAGAIN : bandwidth;
204 
205 		case RCODE_COMPLETE:
206 			if (be32_to_cpup(data) == old)
207 				return bandwidth;
208 
209 			old = be32_to_cpup(data);
210 			/* Fall through. */
211 		}
212 	}
213 
214 	return -EIO;
215 }
216 
217 static int manage_channel(struct fw_card *card, int irm_id, int generation,
218 		u32 channels_mask, u64 offset, bool allocate, __be32 data[2])
219 {
220 	__be32 c, all, old;
221 	int i, ret = -EIO, retry = 5;
222 
223 	old = all = allocate ? cpu_to_be32(~0) : 0;
224 
225 	for (i = 0; i < 32; i++) {
226 		if (!(channels_mask & 1 << i))
227 			continue;
228 
229 		ret = -EBUSY;
230 
231 		c = cpu_to_be32(1 << (31 - i));
232 		if ((old & c) != (all & c))
233 			continue;
234 
235 		data[0] = old;
236 		data[1] = old ^ c;
237 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
238 					   irm_id, generation, SCODE_100,
239 					   offset, data, 8)) {
240 		case RCODE_GENERATION:
241 			/* A generation change frees all channels. */
242 			return allocate ? -EAGAIN : i;
243 
244 		case RCODE_COMPLETE:
245 			if (data[0] == old)
246 				return i;
247 
248 			old = data[0];
249 
250 			/* Is the IRM 1394a-2000 compliant? */
251 			if ((data[0] & c) == (data[1] & c))
252 				continue;
253 
254 			/* 1394-1995 IRM, fall through to retry. */
255 		default:
256 			if (retry) {
257 				retry--;
258 				i--;
259 			} else {
260 				ret = -EIO;
261 			}
262 		}
263 	}
264 
265 	return ret;
266 }
267 
268 static void deallocate_channel(struct fw_card *card, int irm_id,
269 			       int generation, int channel, __be32 buffer[2])
270 {
271 	u32 mask;
272 	u64 offset;
273 
274 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
275 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
276 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
277 
278 	manage_channel(card, irm_id, generation, mask, offset, false, buffer);
279 }
280 
281 /**
282  * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth
283  *
284  * In parameters: card, generation, channels_mask, bandwidth, allocate
285  * Out parameters: channel, bandwidth
286  * This function blocks (sleeps) during communication with the IRM.
287  *
288  * Allocates or deallocates at most one channel out of channels_mask.
289  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
290  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
291  * channel 0 and LSB for channel 63.)
292  * Allocates or deallocates as many bandwidth allocation units as specified.
293  *
294  * Returns channel < 0 if no channel was allocated or deallocated.
295  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
296  *
297  * If generation is stale, deallocations succeed but allocations fail with
298  * channel = -EAGAIN.
299  *
300  * If channel allocation fails, no bandwidth will be allocated either.
301  * If bandwidth allocation fails, no channel will be allocated either.
302  * But deallocations of channel and bandwidth are tried independently
303  * of each other's success.
304  */
305 void fw_iso_resource_manage(struct fw_card *card, int generation,
306 			    u64 channels_mask, int *channel, int *bandwidth,
307 			    bool allocate, __be32 buffer[2])
308 {
309 	u32 channels_hi = channels_mask;	/* channels 31...0 */
310 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
311 	int irm_id, ret, c = -EINVAL;
312 
313 	spin_lock_irq(&card->lock);
314 	irm_id = card->irm_node->node_id;
315 	spin_unlock_irq(&card->lock);
316 
317 	if (channels_hi)
318 		c = manage_channel(card, irm_id, generation, channels_hi,
319 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
320 				allocate, buffer);
321 	if (channels_lo && c < 0) {
322 		c = manage_channel(card, irm_id, generation, channels_lo,
323 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
324 				allocate, buffer);
325 		if (c >= 0)
326 			c += 32;
327 	}
328 	*channel = c;
329 
330 	if (allocate && channels_mask != 0 && c < 0)
331 		*bandwidth = 0;
332 
333 	if (*bandwidth == 0)
334 		return;
335 
336 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth,
337 			       allocate, buffer);
338 	if (ret < 0)
339 		*bandwidth = 0;
340 
341 	if (allocate && ret < 0) {
342 		if (c >= 0)
343 			deallocate_channel(card, irm_id, generation, c, buffer);
344 		*channel = ret;
345 	}
346 }
347