xref: /linux/drivers/firewire/core-iso.c (revision f877f1d81b2ffcac341ff62ae076d7ad5ba83f46)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Isochronous I/O functionality:
4  *   - Isochronous DMA context management
5  *   - Isochronous bus resource management (channels, bandwidth), client side
6  *
7  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8  */
9 
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20 
21 #include <asm/byteorder.h>
22 
23 #include "core.h"
24 
25 #include <trace/events/firewire.h>
26 
27 /*
28  * Isochronous DMA context management
29  */
30 
31 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
32 {
33 	int i;
34 
35 	buffer->page_count = 0;
36 	buffer->page_count_mapped = 0;
37 	buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
38 				      GFP_KERNEL);
39 	if (buffer->pages == NULL)
40 		return -ENOMEM;
41 
42 	for (i = 0; i < page_count; i++) {
43 		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
44 		if (buffer->pages[i] == NULL)
45 			break;
46 	}
47 	buffer->page_count = i;
48 	if (i < page_count) {
49 		fw_iso_buffer_destroy(buffer, NULL);
50 		return -ENOMEM;
51 	}
52 
53 	return 0;
54 }
55 
56 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
57 			  enum dma_data_direction direction)
58 {
59 	dma_addr_t address;
60 	int i;
61 
62 	buffer->direction = direction;
63 
64 	for (i = 0; i < buffer->page_count; i++) {
65 		address = dma_map_page(card->device, buffer->pages[i],
66 				       0, PAGE_SIZE, direction);
67 		if (dma_mapping_error(card->device, address))
68 			break;
69 
70 		set_page_private(buffer->pages[i], address);
71 	}
72 	buffer->page_count_mapped = i;
73 	if (i < buffer->page_count)
74 		return -ENOMEM;
75 
76 	return 0;
77 }
78 
79 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
80 		       int page_count, enum dma_data_direction direction)
81 {
82 	int ret;
83 
84 	ret = fw_iso_buffer_alloc(buffer, page_count);
85 	if (ret < 0)
86 		return ret;
87 
88 	ret = fw_iso_buffer_map_dma(buffer, card, direction);
89 	if (ret < 0)
90 		fw_iso_buffer_destroy(buffer, card);
91 
92 	return ret;
93 }
94 EXPORT_SYMBOL(fw_iso_buffer_init);
95 
96 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
97 			   struct fw_card *card)
98 {
99 	int i;
100 	dma_addr_t address;
101 
102 	for (i = 0; i < buffer->page_count_mapped; i++) {
103 		address = page_private(buffer->pages[i]);
104 		dma_unmap_page(card->device, address,
105 			       PAGE_SIZE, buffer->direction);
106 	}
107 	for (i = 0; i < buffer->page_count; i++)
108 		__free_page(buffer->pages[i]);
109 
110 	kfree(buffer->pages);
111 	buffer->pages = NULL;
112 	buffer->page_count = 0;
113 	buffer->page_count_mapped = 0;
114 }
115 EXPORT_SYMBOL(fw_iso_buffer_destroy);
116 
117 /* Convert DMA address to offset into virtually contiguous buffer. */
118 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
119 {
120 	size_t i;
121 	dma_addr_t address;
122 	ssize_t offset;
123 
124 	for (i = 0; i < buffer->page_count; i++) {
125 		address = page_private(buffer->pages[i]);
126 		offset = (ssize_t)completed - (ssize_t)address;
127 		if (offset > 0 && offset <= PAGE_SIZE)
128 			return (i << PAGE_SHIFT) + offset;
129 	}
130 
131 	return 0;
132 }
133 
134 static void flush_completions_work(struct work_struct *work)
135 {
136 	struct fw_iso_context *ctx = container_of(work, struct fw_iso_context, work);
137 
138 	fw_iso_context_flush_completions(ctx);
139 }
140 
141 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
142 		int type, int channel, int speed, size_t header_size,
143 		fw_iso_callback_t callback, void *callback_data)
144 {
145 	struct fw_iso_context *ctx;
146 
147 	ctx = card->driver->allocate_iso_context(card,
148 						 type, channel, header_size);
149 	if (IS_ERR(ctx))
150 		return ctx;
151 
152 	ctx->card = card;
153 	ctx->type = type;
154 	ctx->channel = channel;
155 	ctx->speed = speed;
156 	ctx->header_size = header_size;
157 	ctx->callback.sc = callback;
158 	ctx->callback_data = callback_data;
159 	INIT_WORK(&ctx->work, flush_completions_work);
160 	mutex_init(&ctx->flushing_completions_mutex);
161 
162 	trace_isoc_outbound_allocate(ctx, channel, speed);
163 	trace_isoc_inbound_single_allocate(ctx, channel, header_size);
164 	trace_isoc_inbound_multiple_allocate(ctx);
165 
166 	return ctx;
167 }
168 EXPORT_SYMBOL(fw_iso_context_create);
169 
170 void fw_iso_context_destroy(struct fw_iso_context *ctx)
171 {
172 	trace_isoc_outbound_destroy(ctx);
173 	trace_isoc_inbound_single_destroy(ctx);
174 	trace_isoc_inbound_multiple_destroy(ctx);
175 
176 	ctx->card->driver->free_iso_context(ctx);
177 
178 	mutex_destroy(&ctx->flushing_completions_mutex);
179 }
180 EXPORT_SYMBOL(fw_iso_context_destroy);
181 
182 int fw_iso_context_start(struct fw_iso_context *ctx,
183 			 int cycle, int sync, int tags)
184 {
185 	trace_isoc_outbound_start(ctx, cycle);
186 	trace_isoc_inbound_single_start(ctx, cycle, sync, tags);
187 	trace_isoc_inbound_multiple_start(ctx, cycle, sync, tags);
188 
189 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
190 }
191 EXPORT_SYMBOL(fw_iso_context_start);
192 
193 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
194 {
195 	trace_isoc_inbound_multiple_channels(ctx, *channels);
196 
197 	return ctx->card->driver->set_iso_channels(ctx, channels);
198 }
199 
200 int fw_iso_context_queue(struct fw_iso_context *ctx,
201 			 struct fw_iso_packet *packet,
202 			 struct fw_iso_buffer *buffer,
203 			 unsigned long payload)
204 {
205 	trace_isoc_outbound_queue(ctx, payload, packet);
206 	trace_isoc_inbound_single_queue(ctx, payload, packet);
207 	trace_isoc_inbound_multiple_queue(ctx, payload, packet);
208 
209 	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
210 }
211 EXPORT_SYMBOL(fw_iso_context_queue);
212 
213 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
214 {
215 	trace_isoc_outbound_flush(ctx);
216 	trace_isoc_inbound_single_flush(ctx);
217 	trace_isoc_inbound_multiple_flush(ctx);
218 
219 	ctx->card->driver->flush_queue_iso(ctx);
220 }
221 EXPORT_SYMBOL(fw_iso_context_queue_flush);
222 
223 /**
224  * fw_iso_context_flush_completions() - process isochronous context in current process context.
225  * @ctx: the isochronous context
226  *
227  * Process the isochronous context in the current process context. The registered callback function
228  * is called if some packets have been already transferred since the last time. If it is required
229  * to process the context asynchronously, fw_iso_context_schedule_flush_completions() is available
230  * instead.
231  *
232  * Context: Process context due to mutex_trylock().
233  */
234 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
235 {
236 	trace_isoc_outbound_flush_completions(ctx);
237 	trace_isoc_inbound_single_flush_completions(ctx);
238 	trace_isoc_inbound_multiple_flush_completions(ctx);
239 
240 	scoped_cond_guard(mutex_try, /* nothing to do */, &ctx->flushing_completions_mutex) {
241 		return ctx->card->driver->flush_iso_completions(ctx);
242 	}
243 
244 	return 0;
245 }
246 EXPORT_SYMBOL(fw_iso_context_flush_completions);
247 
248 int fw_iso_context_stop(struct fw_iso_context *ctx)
249 {
250 	int err;
251 
252 	trace_isoc_outbound_stop(ctx);
253 	trace_isoc_inbound_single_stop(ctx);
254 	trace_isoc_inbound_multiple_stop(ctx);
255 
256 	might_sleep();
257 
258 	// Avoid dead lock due to programming mistake.
259 	if (WARN_ON_ONCE(current_work() == &ctx->work))
260 		return 0;
261 
262 	err = ctx->card->driver->stop_iso(ctx);
263 
264 	cancel_work_sync(&ctx->work);
265 
266 	return err;
267 }
268 EXPORT_SYMBOL(fw_iso_context_stop);
269 
270 /*
271  * Isochronous bus resource management (channels, bandwidth), client side
272  */
273 
274 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
275 			    int bandwidth, bool allocate)
276 {
277 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
278 	__be32 data[2];
279 
280 	/*
281 	 * On a 1394a IRM with low contention, try < 1 is enough.
282 	 * On a 1394-1995 IRM, we need at least try < 2.
283 	 * Let's just do try < 5.
284 	 */
285 	for (try = 0; try < 5; try++) {
286 		new = allocate ? old - bandwidth : old + bandwidth;
287 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
288 			return -EBUSY;
289 
290 		data[0] = cpu_to_be32(old);
291 		data[1] = cpu_to_be32(new);
292 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
293 				irm_id, generation, SCODE_100,
294 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
295 				data, 8)) {
296 		case RCODE_GENERATION:
297 			/* A generation change frees all bandwidth. */
298 			return allocate ? -EAGAIN : bandwidth;
299 
300 		case RCODE_COMPLETE:
301 			if (be32_to_cpup(data) == old)
302 				return bandwidth;
303 
304 			old = be32_to_cpup(data);
305 			/* Fall through. */
306 		}
307 	}
308 
309 	return -EIO;
310 }
311 
312 static int manage_channel(struct fw_card *card, int irm_id, int generation,
313 		u32 channels_mask, u64 offset, bool allocate)
314 {
315 	__be32 bit, all, old;
316 	__be32 data[2];
317 	int channel, ret = -EIO, retry = 5;
318 
319 	old = all = allocate ? cpu_to_be32(~0) : 0;
320 
321 	for (channel = 0; channel < 32; channel++) {
322 		if (!(channels_mask & 1 << channel))
323 			continue;
324 
325 		ret = -EBUSY;
326 
327 		bit = cpu_to_be32(1 << (31 - channel));
328 		if ((old & bit) != (all & bit))
329 			continue;
330 
331 		data[0] = old;
332 		data[1] = old ^ bit;
333 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
334 					   irm_id, generation, SCODE_100,
335 					   offset, data, 8)) {
336 		case RCODE_GENERATION:
337 			/* A generation change frees all channels. */
338 			return allocate ? -EAGAIN : channel;
339 
340 		case RCODE_COMPLETE:
341 			if (data[0] == old)
342 				return channel;
343 
344 			old = data[0];
345 
346 			/* Is the IRM 1394a-2000 compliant? */
347 			if ((data[0] & bit) == (data[1] & bit))
348 				continue;
349 
350 			fallthrough;	/* It's a 1394-1995 IRM, retry */
351 		default:
352 			if (retry) {
353 				retry--;
354 				channel--;
355 			} else {
356 				ret = -EIO;
357 			}
358 		}
359 	}
360 
361 	return ret;
362 }
363 
364 static void deallocate_channel(struct fw_card *card, int irm_id,
365 			       int generation, int channel)
366 {
367 	u32 mask;
368 	u64 offset;
369 
370 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
371 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
372 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
373 
374 	manage_channel(card, irm_id, generation, mask, offset, false);
375 }
376 
377 /**
378  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
379  * @card: card interface for this action
380  * @generation: bus generation
381  * @channels_mask: bitmask for channel allocation
382  * @channel: pointer for returning channel allocation result
383  * @bandwidth: pointer for returning bandwidth allocation result
384  * @allocate: whether to allocate (true) or deallocate (false)
385  *
386  * In parameters: card, generation, channels_mask, bandwidth, allocate
387  * Out parameters: channel, bandwidth
388  *
389  * This function blocks (sleeps) during communication with the IRM.
390  *
391  * Allocates or deallocates at most one channel out of channels_mask.
392  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
393  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
394  * channel 0 and LSB for channel 63.)
395  * Allocates or deallocates as many bandwidth allocation units as specified.
396  *
397  * Returns channel < 0 if no channel was allocated or deallocated.
398  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
399  *
400  * If generation is stale, deallocations succeed but allocations fail with
401  * channel = -EAGAIN.
402  *
403  * If channel allocation fails, no bandwidth will be allocated either.
404  * If bandwidth allocation fails, no channel will be allocated either.
405  * But deallocations of channel and bandwidth are tried independently
406  * of each other's success.
407  */
408 void fw_iso_resource_manage(struct fw_card *card, int generation,
409 			    u64 channels_mask, int *channel, int *bandwidth,
410 			    bool allocate)
411 {
412 	u32 channels_hi = channels_mask;	/* channels 31...0 */
413 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
414 	int irm_id, ret, c = -EINVAL;
415 
416 	scoped_guard(spinlock_irq, &card->lock)
417 		irm_id = card->irm_node->node_id;
418 
419 	if (channels_hi)
420 		c = manage_channel(card, irm_id, generation, channels_hi,
421 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
422 				allocate);
423 	if (channels_lo && c < 0) {
424 		c = manage_channel(card, irm_id, generation, channels_lo,
425 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
426 				allocate);
427 		if (c >= 0)
428 			c += 32;
429 	}
430 	*channel = c;
431 
432 	if (allocate && channels_mask != 0 && c < 0)
433 		*bandwidth = 0;
434 
435 	if (*bandwidth == 0)
436 		return;
437 
438 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
439 	if (ret < 0)
440 		*bandwidth = 0;
441 
442 	if (allocate && ret < 0) {
443 		if (c >= 0)
444 			deallocate_channel(card, irm_id, generation, c);
445 		*channel = ret;
446 	}
447 }
448 EXPORT_SYMBOL(fw_iso_resource_manage);
449