1 /* 2 * Isochronous I/O functionality: 3 * - Isochronous DMA context management 4 * - Isochronous bus resource management (channels, bandwidth), client side 5 * 6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 21 */ 22 23 #include <linux/dma-mapping.h> 24 #include <linux/errno.h> 25 #include <linux/firewire.h> 26 #include <linux/firewire-constants.h> 27 #include <linux/kernel.h> 28 #include <linux/mm.h> 29 #include <linux/slab.h> 30 #include <linux/spinlock.h> 31 #include <linux/vmalloc.h> 32 33 #include <asm/byteorder.h> 34 35 #include "core.h" 36 37 /* 38 * Isochronous DMA context management 39 */ 40 41 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card, 42 int page_count, enum dma_data_direction direction) 43 { 44 int i, j; 45 dma_addr_t address; 46 47 buffer->page_count = page_count; 48 buffer->direction = direction; 49 50 buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]), 51 GFP_KERNEL); 52 if (buffer->pages == NULL) 53 goto out; 54 55 for (i = 0; i < buffer->page_count; i++) { 56 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); 57 if (buffer->pages[i] == NULL) 58 goto out_pages; 59 60 address = dma_map_page(card->device, buffer->pages[i], 61 0, PAGE_SIZE, direction); 62 if (dma_mapping_error(card->device, address)) { 63 __free_page(buffer->pages[i]); 64 goto out_pages; 65 } 66 set_page_private(buffer->pages[i], address); 67 } 68 69 return 0; 70 71 out_pages: 72 for (j = 0; j < i; j++) { 73 address = page_private(buffer->pages[j]); 74 dma_unmap_page(card->device, address, 75 PAGE_SIZE, direction); 76 __free_page(buffer->pages[j]); 77 } 78 kfree(buffer->pages); 79 out: 80 buffer->pages = NULL; 81 82 return -ENOMEM; 83 } 84 EXPORT_SYMBOL(fw_iso_buffer_init); 85 86 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma) 87 { 88 unsigned long uaddr; 89 int i, err; 90 91 uaddr = vma->vm_start; 92 for (i = 0; i < buffer->page_count; i++) { 93 err = vm_insert_page(vma, uaddr, buffer->pages[i]); 94 if (err) 95 return err; 96 97 uaddr += PAGE_SIZE; 98 } 99 100 return 0; 101 } 102 103 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, 104 struct fw_card *card) 105 { 106 int i; 107 dma_addr_t address; 108 109 for (i = 0; i < buffer->page_count; i++) { 110 address = page_private(buffer->pages[i]); 111 dma_unmap_page(card->device, address, 112 PAGE_SIZE, buffer->direction); 113 __free_page(buffer->pages[i]); 114 } 115 116 kfree(buffer->pages); 117 buffer->pages = NULL; 118 } 119 EXPORT_SYMBOL(fw_iso_buffer_destroy); 120 121 /* Convert DMA address to offset into virtually contiguous buffer. */ 122 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed) 123 { 124 int i; 125 dma_addr_t address; 126 ssize_t offset; 127 128 for (i = 0; i < buffer->page_count; i++) { 129 address = page_private(buffer->pages[i]); 130 offset = (ssize_t)completed - (ssize_t)address; 131 if (offset > 0 && offset <= PAGE_SIZE) 132 return (i << PAGE_SHIFT) + offset; 133 } 134 135 return 0; 136 } 137 138 struct fw_iso_context *fw_iso_context_create(struct fw_card *card, 139 int type, int channel, int speed, size_t header_size, 140 fw_iso_callback_t callback, void *callback_data) 141 { 142 struct fw_iso_context *ctx; 143 144 ctx = card->driver->allocate_iso_context(card, 145 type, channel, header_size); 146 if (IS_ERR(ctx)) 147 return ctx; 148 149 ctx->card = card; 150 ctx->type = type; 151 ctx->channel = channel; 152 ctx->speed = speed; 153 ctx->header_size = header_size; 154 ctx->callback.sc = callback; 155 ctx->callback_data = callback_data; 156 157 return ctx; 158 } 159 EXPORT_SYMBOL(fw_iso_context_create); 160 161 void fw_iso_context_destroy(struct fw_iso_context *ctx) 162 { 163 ctx->card->driver->free_iso_context(ctx); 164 } 165 EXPORT_SYMBOL(fw_iso_context_destroy); 166 167 int fw_iso_context_start(struct fw_iso_context *ctx, 168 int cycle, int sync, int tags) 169 { 170 return ctx->card->driver->start_iso(ctx, cycle, sync, tags); 171 } 172 EXPORT_SYMBOL(fw_iso_context_start); 173 174 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels) 175 { 176 return ctx->card->driver->set_iso_channels(ctx, channels); 177 } 178 179 int fw_iso_context_queue(struct fw_iso_context *ctx, 180 struct fw_iso_packet *packet, 181 struct fw_iso_buffer *buffer, 182 unsigned long payload) 183 { 184 return ctx->card->driver->queue_iso(ctx, packet, buffer, payload); 185 } 186 EXPORT_SYMBOL(fw_iso_context_queue); 187 188 void fw_iso_context_queue_flush(struct fw_iso_context *ctx) 189 { 190 ctx->card->driver->flush_queue_iso(ctx); 191 } 192 EXPORT_SYMBOL(fw_iso_context_queue_flush); 193 194 int fw_iso_context_stop(struct fw_iso_context *ctx) 195 { 196 return ctx->card->driver->stop_iso(ctx); 197 } 198 EXPORT_SYMBOL(fw_iso_context_stop); 199 200 /* 201 * Isochronous bus resource management (channels, bandwidth), client side 202 */ 203 204 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation, 205 int bandwidth, bool allocate) 206 { 207 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0; 208 __be32 data[2]; 209 210 /* 211 * On a 1394a IRM with low contention, try < 1 is enough. 212 * On a 1394-1995 IRM, we need at least try < 2. 213 * Let's just do try < 5. 214 */ 215 for (try = 0; try < 5; try++) { 216 new = allocate ? old - bandwidth : old + bandwidth; 217 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL) 218 return -EBUSY; 219 220 data[0] = cpu_to_be32(old); 221 data[1] = cpu_to_be32(new); 222 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, 223 irm_id, generation, SCODE_100, 224 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE, 225 data, 8)) { 226 case RCODE_GENERATION: 227 /* A generation change frees all bandwidth. */ 228 return allocate ? -EAGAIN : bandwidth; 229 230 case RCODE_COMPLETE: 231 if (be32_to_cpup(data) == old) 232 return bandwidth; 233 234 old = be32_to_cpup(data); 235 /* Fall through. */ 236 } 237 } 238 239 return -EIO; 240 } 241 242 static int manage_channel(struct fw_card *card, int irm_id, int generation, 243 u32 channels_mask, u64 offset, bool allocate) 244 { 245 __be32 bit, all, old; 246 __be32 data[2]; 247 int channel, ret = -EIO, retry = 5; 248 249 old = all = allocate ? cpu_to_be32(~0) : 0; 250 251 for (channel = 0; channel < 32; channel++) { 252 if (!(channels_mask & 1 << channel)) 253 continue; 254 255 ret = -EBUSY; 256 257 bit = cpu_to_be32(1 << (31 - channel)); 258 if ((old & bit) != (all & bit)) 259 continue; 260 261 data[0] = old; 262 data[1] = old ^ bit; 263 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, 264 irm_id, generation, SCODE_100, 265 offset, data, 8)) { 266 case RCODE_GENERATION: 267 /* A generation change frees all channels. */ 268 return allocate ? -EAGAIN : channel; 269 270 case RCODE_COMPLETE: 271 if (data[0] == old) 272 return channel; 273 274 old = data[0]; 275 276 /* Is the IRM 1394a-2000 compliant? */ 277 if ((data[0] & bit) == (data[1] & bit)) 278 continue; 279 280 /* 1394-1995 IRM, fall through to retry. */ 281 default: 282 if (retry) { 283 retry--; 284 channel--; 285 } else { 286 ret = -EIO; 287 } 288 } 289 } 290 291 return ret; 292 } 293 294 static void deallocate_channel(struct fw_card *card, int irm_id, 295 int generation, int channel) 296 { 297 u32 mask; 298 u64 offset; 299 300 mask = channel < 32 ? 1 << channel : 1 << (channel - 32); 301 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI : 302 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO; 303 304 manage_channel(card, irm_id, generation, mask, offset, false); 305 } 306 307 /** 308 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth 309 * 310 * In parameters: card, generation, channels_mask, bandwidth, allocate 311 * Out parameters: channel, bandwidth 312 * This function blocks (sleeps) during communication with the IRM. 313 * 314 * Allocates or deallocates at most one channel out of channels_mask. 315 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0. 316 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for 317 * channel 0 and LSB for channel 63.) 318 * Allocates or deallocates as many bandwidth allocation units as specified. 319 * 320 * Returns channel < 0 if no channel was allocated or deallocated. 321 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated. 322 * 323 * If generation is stale, deallocations succeed but allocations fail with 324 * channel = -EAGAIN. 325 * 326 * If channel allocation fails, no bandwidth will be allocated either. 327 * If bandwidth allocation fails, no channel will be allocated either. 328 * But deallocations of channel and bandwidth are tried independently 329 * of each other's success. 330 */ 331 void fw_iso_resource_manage(struct fw_card *card, int generation, 332 u64 channels_mask, int *channel, int *bandwidth, 333 bool allocate) 334 { 335 u32 channels_hi = channels_mask; /* channels 31...0 */ 336 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */ 337 int irm_id, ret, c = -EINVAL; 338 339 spin_lock_irq(&card->lock); 340 irm_id = card->irm_node->node_id; 341 spin_unlock_irq(&card->lock); 342 343 if (channels_hi) 344 c = manage_channel(card, irm_id, generation, channels_hi, 345 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI, 346 allocate); 347 if (channels_lo && c < 0) { 348 c = manage_channel(card, irm_id, generation, channels_lo, 349 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO, 350 allocate); 351 if (c >= 0) 352 c += 32; 353 } 354 *channel = c; 355 356 if (allocate && channels_mask != 0 && c < 0) 357 *bandwidth = 0; 358 359 if (*bandwidth == 0) 360 return; 361 362 ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate); 363 if (ret < 0) 364 *bandwidth = 0; 365 366 if (allocate && ret < 0) { 367 if (c >= 0) 368 deallocate_channel(card, irm_id, generation, c); 369 *channel = ret; 370 } 371 } 372 EXPORT_SYMBOL(fw_iso_resource_manage); 373