xref: /linux/drivers/firewire/core-iso.c (revision 94bd217e2d683719ab21a4ac117d8a1b91cbedc9)
1 /*
2  * Isochronous I/O functionality:
3  *   - Isochronous DMA context management
4  *   - Isochronous bus resource management (channels, bandwidth), client side
5  *
6  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22 
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/vmalloc.h>
32 
33 #include <asm/byteorder.h>
34 
35 #include "core.h"
36 
37 /*
38  * Isochronous DMA context management
39  */
40 
41 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
42 		       int page_count, enum dma_data_direction direction)
43 {
44 	int i, j;
45 	dma_addr_t address;
46 
47 	buffer->page_count = page_count;
48 	buffer->direction = direction;
49 
50 	buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
51 				GFP_KERNEL);
52 	if (buffer->pages == NULL)
53 		goto out;
54 
55 	for (i = 0; i < buffer->page_count; i++) {
56 		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
57 		if (buffer->pages[i] == NULL)
58 			goto out_pages;
59 
60 		address = dma_map_page(card->device, buffer->pages[i],
61 				       0, PAGE_SIZE, direction);
62 		if (dma_mapping_error(card->device, address)) {
63 			__free_page(buffer->pages[i]);
64 			goto out_pages;
65 		}
66 		set_page_private(buffer->pages[i], address);
67 	}
68 
69 	return 0;
70 
71  out_pages:
72 	for (j = 0; j < i; j++) {
73 		address = page_private(buffer->pages[j]);
74 		dma_unmap_page(card->device, address,
75 			       PAGE_SIZE, direction);
76 		__free_page(buffer->pages[j]);
77 	}
78 	kfree(buffer->pages);
79  out:
80 	buffer->pages = NULL;
81 
82 	return -ENOMEM;
83 }
84 EXPORT_SYMBOL(fw_iso_buffer_init);
85 
86 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
87 {
88 	unsigned long uaddr;
89 	int i, err;
90 
91 	uaddr = vma->vm_start;
92 	for (i = 0; i < buffer->page_count; i++) {
93 		err = vm_insert_page(vma, uaddr, buffer->pages[i]);
94 		if (err)
95 			return err;
96 
97 		uaddr += PAGE_SIZE;
98 	}
99 
100 	return 0;
101 }
102 
103 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
104 			   struct fw_card *card)
105 {
106 	int i;
107 	dma_addr_t address;
108 
109 	for (i = 0; i < buffer->page_count; i++) {
110 		address = page_private(buffer->pages[i]);
111 		dma_unmap_page(card->device, address,
112 			       PAGE_SIZE, buffer->direction);
113 		__free_page(buffer->pages[i]);
114 	}
115 
116 	kfree(buffer->pages);
117 	buffer->pages = NULL;
118 }
119 EXPORT_SYMBOL(fw_iso_buffer_destroy);
120 
121 /* Convert DMA address to offset into virtually contiguous buffer. */
122 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
123 {
124 	int i;
125 	dma_addr_t address;
126 	ssize_t offset;
127 
128 	for (i = 0; i < buffer->page_count; i++) {
129 		address = page_private(buffer->pages[i]);
130 		offset = (ssize_t)completed - (ssize_t)address;
131 		if (offset > 0 && offset <= PAGE_SIZE)
132 			return (i << PAGE_SHIFT) + offset;
133 	}
134 
135 	return 0;
136 }
137 
138 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
139 		int type, int channel, int speed, size_t header_size,
140 		fw_iso_callback_t callback, void *callback_data)
141 {
142 	struct fw_iso_context *ctx;
143 
144 	ctx = card->driver->allocate_iso_context(card,
145 						 type, channel, header_size);
146 	if (IS_ERR(ctx))
147 		return ctx;
148 
149 	ctx->card = card;
150 	ctx->type = type;
151 	ctx->channel = channel;
152 	ctx->speed = speed;
153 	ctx->header_size = header_size;
154 	ctx->callback.sc = callback;
155 	ctx->callback_data = callback_data;
156 
157 	return ctx;
158 }
159 EXPORT_SYMBOL(fw_iso_context_create);
160 
161 void fw_iso_context_destroy(struct fw_iso_context *ctx)
162 {
163 	ctx->card->driver->free_iso_context(ctx);
164 }
165 EXPORT_SYMBOL(fw_iso_context_destroy);
166 
167 int fw_iso_context_start(struct fw_iso_context *ctx,
168 			 int cycle, int sync, int tags)
169 {
170 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
171 }
172 EXPORT_SYMBOL(fw_iso_context_start);
173 
174 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
175 {
176 	return ctx->card->driver->set_iso_channels(ctx, channels);
177 }
178 
179 int fw_iso_context_queue(struct fw_iso_context *ctx,
180 			 struct fw_iso_packet *packet,
181 			 struct fw_iso_buffer *buffer,
182 			 unsigned long payload)
183 {
184 	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
185 }
186 EXPORT_SYMBOL(fw_iso_context_queue);
187 
188 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
189 {
190 	ctx->card->driver->flush_queue_iso(ctx);
191 }
192 EXPORT_SYMBOL(fw_iso_context_queue_flush);
193 
194 int fw_iso_context_stop(struct fw_iso_context *ctx)
195 {
196 	return ctx->card->driver->stop_iso(ctx);
197 }
198 EXPORT_SYMBOL(fw_iso_context_stop);
199 
200 /*
201  * Isochronous bus resource management (channels, bandwidth), client side
202  */
203 
204 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
205 			    int bandwidth, bool allocate)
206 {
207 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
208 	__be32 data[2];
209 
210 	/*
211 	 * On a 1394a IRM with low contention, try < 1 is enough.
212 	 * On a 1394-1995 IRM, we need at least try < 2.
213 	 * Let's just do try < 5.
214 	 */
215 	for (try = 0; try < 5; try++) {
216 		new = allocate ? old - bandwidth : old + bandwidth;
217 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
218 			return -EBUSY;
219 
220 		data[0] = cpu_to_be32(old);
221 		data[1] = cpu_to_be32(new);
222 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
223 				irm_id, generation, SCODE_100,
224 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
225 				data, 8)) {
226 		case RCODE_GENERATION:
227 			/* A generation change frees all bandwidth. */
228 			return allocate ? -EAGAIN : bandwidth;
229 
230 		case RCODE_COMPLETE:
231 			if (be32_to_cpup(data) == old)
232 				return bandwidth;
233 
234 			old = be32_to_cpup(data);
235 			/* Fall through. */
236 		}
237 	}
238 
239 	return -EIO;
240 }
241 
242 static int manage_channel(struct fw_card *card, int irm_id, int generation,
243 		u32 channels_mask, u64 offset, bool allocate)
244 {
245 	__be32 bit, all, old;
246 	__be32 data[2];
247 	int channel, ret = -EIO, retry = 5;
248 
249 	old = all = allocate ? cpu_to_be32(~0) : 0;
250 
251 	for (channel = 0; channel < 32; channel++) {
252 		if (!(channels_mask & 1 << channel))
253 			continue;
254 
255 		ret = -EBUSY;
256 
257 		bit = cpu_to_be32(1 << (31 - channel));
258 		if ((old & bit) != (all & bit))
259 			continue;
260 
261 		data[0] = old;
262 		data[1] = old ^ bit;
263 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
264 					   irm_id, generation, SCODE_100,
265 					   offset, data, 8)) {
266 		case RCODE_GENERATION:
267 			/* A generation change frees all channels. */
268 			return allocate ? -EAGAIN : channel;
269 
270 		case RCODE_COMPLETE:
271 			if (data[0] == old)
272 				return channel;
273 
274 			old = data[0];
275 
276 			/* Is the IRM 1394a-2000 compliant? */
277 			if ((data[0] & bit) == (data[1] & bit))
278 				continue;
279 
280 			/* 1394-1995 IRM, fall through to retry. */
281 		default:
282 			if (retry) {
283 				retry--;
284 				channel--;
285 			} else {
286 				ret = -EIO;
287 			}
288 		}
289 	}
290 
291 	return ret;
292 }
293 
294 static void deallocate_channel(struct fw_card *card, int irm_id,
295 			       int generation, int channel)
296 {
297 	u32 mask;
298 	u64 offset;
299 
300 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
301 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
302 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
303 
304 	manage_channel(card, irm_id, generation, mask, offset, false);
305 }
306 
307 /**
308  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
309  *
310  * In parameters: card, generation, channels_mask, bandwidth, allocate
311  * Out parameters: channel, bandwidth
312  * This function blocks (sleeps) during communication with the IRM.
313  *
314  * Allocates or deallocates at most one channel out of channels_mask.
315  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
316  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
317  * channel 0 and LSB for channel 63.)
318  * Allocates or deallocates as many bandwidth allocation units as specified.
319  *
320  * Returns channel < 0 if no channel was allocated or deallocated.
321  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
322  *
323  * If generation is stale, deallocations succeed but allocations fail with
324  * channel = -EAGAIN.
325  *
326  * If channel allocation fails, no bandwidth will be allocated either.
327  * If bandwidth allocation fails, no channel will be allocated either.
328  * But deallocations of channel and bandwidth are tried independently
329  * of each other's success.
330  */
331 void fw_iso_resource_manage(struct fw_card *card, int generation,
332 			    u64 channels_mask, int *channel, int *bandwidth,
333 			    bool allocate)
334 {
335 	u32 channels_hi = channels_mask;	/* channels 31...0 */
336 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
337 	int irm_id, ret, c = -EINVAL;
338 
339 	spin_lock_irq(&card->lock);
340 	irm_id = card->irm_node->node_id;
341 	spin_unlock_irq(&card->lock);
342 
343 	if (channels_hi)
344 		c = manage_channel(card, irm_id, generation, channels_hi,
345 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
346 				allocate);
347 	if (channels_lo && c < 0) {
348 		c = manage_channel(card, irm_id, generation, channels_lo,
349 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
350 				allocate);
351 		if (c >= 0)
352 			c += 32;
353 	}
354 	*channel = c;
355 
356 	if (allocate && channels_mask != 0 && c < 0)
357 		*bandwidth = 0;
358 
359 	if (*bandwidth == 0)
360 		return;
361 
362 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
363 	if (ret < 0)
364 		*bandwidth = 0;
365 
366 	if (allocate && ret < 0) {
367 		if (c >= 0)
368 			deallocate_channel(card, irm_id, generation, c);
369 		*channel = ret;
370 	}
371 }
372 EXPORT_SYMBOL(fw_iso_resource_manage);
373