xref: /linux/drivers/firewire/core-iso.c (revision 89713ce5518eda6b370c7a17edbcab4f97a39f68)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Isochronous I/O functionality:
4  *   - Isochronous DMA context management
5  *   - Isochronous bus resource management (channels, bandwidth), client side
6  *
7  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8  */
9 
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20 
21 #include <asm/byteorder.h>
22 
23 #include "core.h"
24 
25 #include <trace/events/firewire.h>
26 
27 /*
28  * Isochronous DMA context management
29  */
30 
31 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
32 {
33 	int i;
34 
35 	buffer->page_count = 0;
36 	buffer->page_count_mapped = 0;
37 	buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
38 				      GFP_KERNEL);
39 	if (buffer->pages == NULL)
40 		return -ENOMEM;
41 
42 	for (i = 0; i < page_count; i++) {
43 		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
44 		if (buffer->pages[i] == NULL)
45 			break;
46 	}
47 	buffer->page_count = i;
48 	if (i < page_count) {
49 		fw_iso_buffer_destroy(buffer, NULL);
50 		return -ENOMEM;
51 	}
52 
53 	return 0;
54 }
55 
56 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
57 			  enum dma_data_direction direction)
58 {
59 	dma_addr_t address;
60 	int i;
61 
62 	buffer->direction = direction;
63 
64 	for (i = 0; i < buffer->page_count; i++) {
65 		address = dma_map_page(card->device, buffer->pages[i],
66 				       0, PAGE_SIZE, direction);
67 		if (dma_mapping_error(card->device, address))
68 			break;
69 
70 		set_page_private(buffer->pages[i], address);
71 	}
72 	buffer->page_count_mapped = i;
73 	if (i < buffer->page_count)
74 		return -ENOMEM;
75 
76 	return 0;
77 }
78 
79 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
80 		       int page_count, enum dma_data_direction direction)
81 {
82 	int ret;
83 
84 	ret = fw_iso_buffer_alloc(buffer, page_count);
85 	if (ret < 0)
86 		return ret;
87 
88 	ret = fw_iso_buffer_map_dma(buffer, card, direction);
89 	if (ret < 0)
90 		fw_iso_buffer_destroy(buffer, card);
91 
92 	return ret;
93 }
94 EXPORT_SYMBOL(fw_iso_buffer_init);
95 
96 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
97 			   struct fw_card *card)
98 {
99 	int i;
100 	dma_addr_t address;
101 
102 	for (i = 0; i < buffer->page_count_mapped; i++) {
103 		address = page_private(buffer->pages[i]);
104 		dma_unmap_page(card->device, address,
105 			       PAGE_SIZE, buffer->direction);
106 	}
107 	for (i = 0; i < buffer->page_count; i++)
108 		__free_page(buffer->pages[i]);
109 
110 	kfree(buffer->pages);
111 	buffer->pages = NULL;
112 	buffer->page_count = 0;
113 	buffer->page_count_mapped = 0;
114 }
115 EXPORT_SYMBOL(fw_iso_buffer_destroy);
116 
117 /* Convert DMA address to offset into virtually contiguous buffer. */
118 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
119 {
120 	size_t i;
121 	dma_addr_t address;
122 	ssize_t offset;
123 
124 	for (i = 0; i < buffer->page_count; i++) {
125 		address = page_private(buffer->pages[i]);
126 		offset = (ssize_t)completed - (ssize_t)address;
127 		if (offset > 0 && offset <= PAGE_SIZE)
128 			return (i << PAGE_SHIFT) + offset;
129 	}
130 
131 	return 0;
132 }
133 
134 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
135 		int type, int channel, int speed, size_t header_size,
136 		fw_iso_callback_t callback, void *callback_data)
137 {
138 	struct fw_iso_context *ctx;
139 
140 	ctx = card->driver->allocate_iso_context(card,
141 						 type, channel, header_size);
142 	if (IS_ERR(ctx))
143 		return ctx;
144 
145 	ctx->card = card;
146 	ctx->type = type;
147 	ctx->channel = channel;
148 	ctx->speed = speed;
149 	ctx->header_size = header_size;
150 	ctx->callback.sc = callback;
151 	ctx->callback_data = callback_data;
152 
153 	trace_isoc_outbound_allocate(ctx, channel, speed);
154 	trace_isoc_inbound_single_allocate(ctx, channel, header_size);
155 	trace_isoc_inbound_multiple_allocate(ctx);
156 
157 	return ctx;
158 }
159 EXPORT_SYMBOL(fw_iso_context_create);
160 
161 void fw_iso_context_destroy(struct fw_iso_context *ctx)
162 {
163 	trace_isoc_outbound_destroy(ctx);
164 	trace_isoc_inbound_single_destroy(ctx);
165 	trace_isoc_inbound_multiple_destroy(ctx);
166 
167 	ctx->card->driver->free_iso_context(ctx);
168 }
169 EXPORT_SYMBOL(fw_iso_context_destroy);
170 
171 int fw_iso_context_start(struct fw_iso_context *ctx,
172 			 int cycle, int sync, int tags)
173 {
174 	trace_isoc_outbound_start(ctx, cycle);
175 	trace_isoc_inbound_single_start(ctx, cycle, sync, tags);
176 	trace_isoc_inbound_multiple_start(ctx, cycle, sync, tags);
177 
178 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
179 }
180 EXPORT_SYMBOL(fw_iso_context_start);
181 
182 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
183 {
184 	trace_isoc_inbound_multiple_channels(ctx, *channels);
185 
186 	return ctx->card->driver->set_iso_channels(ctx, channels);
187 }
188 
189 int fw_iso_context_queue(struct fw_iso_context *ctx,
190 			 struct fw_iso_packet *packet,
191 			 struct fw_iso_buffer *buffer,
192 			 unsigned long payload)
193 {
194 	trace_isoc_outbound_queue(ctx, payload, packet);
195 	trace_isoc_inbound_single_queue(ctx, payload, packet);
196 	trace_isoc_inbound_multiple_queue(ctx, payload, packet);
197 
198 	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
199 }
200 EXPORT_SYMBOL(fw_iso_context_queue);
201 
202 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
203 {
204 	trace_isoc_outbound_flush(ctx);
205 	trace_isoc_inbound_single_flush(ctx);
206 	trace_isoc_inbound_multiple_flush(ctx);
207 
208 	ctx->card->driver->flush_queue_iso(ctx);
209 }
210 EXPORT_SYMBOL(fw_iso_context_queue_flush);
211 
212 /**
213  * fw_iso_context_flush_completions() - process isochronous context in current process context.
214  * @ctx: the isochronous context
215  *
216  * Process the isochronous context in the current process context. The registered callback function
217  * is called when a queued packet buffer with the interrupt flag is completed, either after
218  * transmission in the IT context or after being filled in the IR context. Additionally, the
219  * callback function is also called for the packet buffer completed at last. Furthermore, the
220  * callback function is called as well when the header buffer in the context becomes full. If it is
221  * required to process the context asynchronously, fw_iso_context_schedule_flush_completions() is
222  * available instead.
223  *
224  * Context: Process context. May sleep due to disable_work_sync().
225  */
226 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
227 {
228 	int err;
229 
230 	trace_isoc_outbound_flush_completions(ctx);
231 	trace_isoc_inbound_single_flush_completions(ctx);
232 	trace_isoc_inbound_multiple_flush_completions(ctx);
233 
234 	might_sleep();
235 
236 	// Avoid dead lock due to programming mistake.
237 	if (WARN_ON_ONCE(current_work() == &ctx->work))
238 		return 0;
239 
240 	disable_work_sync(&ctx->work);
241 
242 	err = ctx->card->driver->flush_iso_completions(ctx);
243 
244 	enable_work(&ctx->work);
245 
246 	return err;
247 }
248 EXPORT_SYMBOL(fw_iso_context_flush_completions);
249 
250 int fw_iso_context_stop(struct fw_iso_context *ctx)
251 {
252 	int err;
253 
254 	trace_isoc_outbound_stop(ctx);
255 	trace_isoc_inbound_single_stop(ctx);
256 	trace_isoc_inbound_multiple_stop(ctx);
257 
258 	might_sleep();
259 
260 	// Avoid dead lock due to programming mistake.
261 	if (WARN_ON_ONCE(current_work() == &ctx->work))
262 		return 0;
263 
264 	err = ctx->card->driver->stop_iso(ctx);
265 
266 	cancel_work_sync(&ctx->work);
267 
268 	return err;
269 }
270 EXPORT_SYMBOL(fw_iso_context_stop);
271 
272 /*
273  * Isochronous bus resource management (channels, bandwidth), client side
274  */
275 
276 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
277 			    int bandwidth, bool allocate)
278 {
279 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
280 	__be32 data[2];
281 
282 	/*
283 	 * On a 1394a IRM with low contention, try < 1 is enough.
284 	 * On a 1394-1995 IRM, we need at least try < 2.
285 	 * Let's just do try < 5.
286 	 */
287 	for (try = 0; try < 5; try++) {
288 		new = allocate ? old - bandwidth : old + bandwidth;
289 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
290 			return -EBUSY;
291 
292 		data[0] = cpu_to_be32(old);
293 		data[1] = cpu_to_be32(new);
294 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
295 				irm_id, generation, SCODE_100,
296 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
297 				data, 8)) {
298 		case RCODE_GENERATION:
299 			/* A generation change frees all bandwidth. */
300 			return allocate ? -EAGAIN : bandwidth;
301 
302 		case RCODE_COMPLETE:
303 			if (be32_to_cpup(data) == old)
304 				return bandwidth;
305 
306 			old = be32_to_cpup(data);
307 			/* Fall through. */
308 		}
309 	}
310 
311 	return -EIO;
312 }
313 
314 static int manage_channel(struct fw_card *card, int irm_id, int generation,
315 		u32 channels_mask, u64 offset, bool allocate)
316 {
317 	__be32 bit, all, old;
318 	__be32 data[2];
319 	int channel, ret = -EIO, retry = 5;
320 
321 	old = all = allocate ? cpu_to_be32(~0) : 0;
322 
323 	for (channel = 0; channel < 32; channel++) {
324 		if (!(channels_mask & 1 << channel))
325 			continue;
326 
327 		ret = -EBUSY;
328 
329 		bit = cpu_to_be32(1 << (31 - channel));
330 		if ((old & bit) != (all & bit))
331 			continue;
332 
333 		data[0] = old;
334 		data[1] = old ^ bit;
335 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
336 					   irm_id, generation, SCODE_100,
337 					   offset, data, 8)) {
338 		case RCODE_GENERATION:
339 			/* A generation change frees all channels. */
340 			return allocate ? -EAGAIN : channel;
341 
342 		case RCODE_COMPLETE:
343 			if (data[0] == old)
344 				return channel;
345 
346 			old = data[0];
347 
348 			/* Is the IRM 1394a-2000 compliant? */
349 			if ((data[0] & bit) == (data[1] & bit))
350 				continue;
351 
352 			fallthrough;	/* It's a 1394-1995 IRM, retry */
353 		default:
354 			if (retry) {
355 				retry--;
356 				channel--;
357 			} else {
358 				ret = -EIO;
359 			}
360 		}
361 	}
362 
363 	return ret;
364 }
365 
366 static void deallocate_channel(struct fw_card *card, int irm_id,
367 			       int generation, int channel)
368 {
369 	u32 mask;
370 	u64 offset;
371 
372 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
373 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
374 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
375 
376 	manage_channel(card, irm_id, generation, mask, offset, false);
377 }
378 
379 /**
380  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
381  * @card: card interface for this action
382  * @generation: bus generation
383  * @channels_mask: bitmask for channel allocation
384  * @channel: pointer for returning channel allocation result
385  * @bandwidth: pointer for returning bandwidth allocation result
386  * @allocate: whether to allocate (true) or deallocate (false)
387  *
388  * In parameters: card, generation, channels_mask, bandwidth, allocate
389  * Out parameters: channel, bandwidth
390  *
391  * This function blocks (sleeps) during communication with the IRM.
392  *
393  * Allocates or deallocates at most one channel out of channels_mask.
394  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
395  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
396  * channel 0 and LSB for channel 63.)
397  * Allocates or deallocates as many bandwidth allocation units as specified.
398  *
399  * Returns channel < 0 if no channel was allocated or deallocated.
400  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
401  *
402  * If generation is stale, deallocations succeed but allocations fail with
403  * channel = -EAGAIN.
404  *
405  * If channel allocation fails, no bandwidth will be allocated either.
406  * If bandwidth allocation fails, no channel will be allocated either.
407  * But deallocations of channel and bandwidth are tried independently
408  * of each other's success.
409  */
410 void fw_iso_resource_manage(struct fw_card *card, int generation,
411 			    u64 channels_mask, int *channel, int *bandwidth,
412 			    bool allocate)
413 {
414 	u32 channels_hi = channels_mask;	/* channels 31...0 */
415 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
416 	int irm_id, ret, c = -EINVAL;
417 
418 	scoped_guard(spinlock_irq, &card->lock)
419 		irm_id = card->irm_node->node_id;
420 
421 	if (channels_hi)
422 		c = manage_channel(card, irm_id, generation, channels_hi,
423 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
424 				allocate);
425 	if (channels_lo && c < 0) {
426 		c = manage_channel(card, irm_id, generation, channels_lo,
427 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
428 				allocate);
429 		if (c >= 0)
430 			c += 32;
431 	}
432 	*channel = c;
433 
434 	if (allocate && channels_mask != 0 && c < 0)
435 		*bandwidth = 0;
436 
437 	if (*bandwidth == 0)
438 		return;
439 
440 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
441 	if (ret < 0)
442 		*bandwidth = 0;
443 
444 	if (allocate && ret < 0) {
445 		if (c >= 0)
446 			deallocate_channel(card, irm_id, generation, c);
447 		*channel = ret;
448 	}
449 }
450 EXPORT_SYMBOL(fw_iso_resource_manage);
451