xref: /linux/drivers/firewire/core-iso.c (revision 6ffa9bd6ebce0626e62358dda59effe5758ebfc5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Isochronous I/O functionality:
4  *   - Isochronous DMA context management
5  *   - Isochronous bus resource management (channels, bandwidth), client side
6  *
7  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8  */
9 
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20 
21 #include <asm/byteorder.h>
22 
23 #include "core.h"
24 
25 #include <trace/events/firewire.h>
26 
27 /*
28  * Isochronous DMA context management
29  */
30 
31 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
32 {
33 	int i;
34 
35 	buffer->page_count = 0;
36 	buffer->page_count_mapped = 0;
37 	buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
38 				      GFP_KERNEL);
39 	if (buffer->pages == NULL)
40 		return -ENOMEM;
41 
42 	for (i = 0; i < page_count; i++) {
43 		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
44 		if (buffer->pages[i] == NULL)
45 			break;
46 	}
47 	buffer->page_count = i;
48 	if (i < page_count) {
49 		fw_iso_buffer_destroy(buffer, NULL);
50 		return -ENOMEM;
51 	}
52 
53 	return 0;
54 }
55 
56 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
57 			  enum dma_data_direction direction)
58 {
59 	dma_addr_t address;
60 	int i;
61 
62 	buffer->direction = direction;
63 
64 	for (i = 0; i < buffer->page_count; i++) {
65 		address = dma_map_page(card->device, buffer->pages[i],
66 				       0, PAGE_SIZE, direction);
67 		if (dma_mapping_error(card->device, address))
68 			break;
69 
70 		set_page_private(buffer->pages[i], address);
71 	}
72 	buffer->page_count_mapped = i;
73 	if (i < buffer->page_count)
74 		return -ENOMEM;
75 
76 	return 0;
77 }
78 
79 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
80 		       int page_count, enum dma_data_direction direction)
81 {
82 	int ret;
83 
84 	ret = fw_iso_buffer_alloc(buffer, page_count);
85 	if (ret < 0)
86 		return ret;
87 
88 	ret = fw_iso_buffer_map_dma(buffer, card, direction);
89 	if (ret < 0)
90 		fw_iso_buffer_destroy(buffer, card);
91 
92 	return ret;
93 }
94 EXPORT_SYMBOL(fw_iso_buffer_init);
95 
96 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
97 			   struct fw_card *card)
98 {
99 	int i;
100 	dma_addr_t address;
101 
102 	for (i = 0; i < buffer->page_count_mapped; i++) {
103 		address = page_private(buffer->pages[i]);
104 		dma_unmap_page(card->device, address,
105 			       PAGE_SIZE, buffer->direction);
106 	}
107 	for (i = 0; i < buffer->page_count; i++)
108 		__free_page(buffer->pages[i]);
109 
110 	kfree(buffer->pages);
111 	buffer->pages = NULL;
112 	buffer->page_count = 0;
113 	buffer->page_count_mapped = 0;
114 }
115 EXPORT_SYMBOL(fw_iso_buffer_destroy);
116 
117 /* Convert DMA address to offset into virtually contiguous buffer. */
118 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
119 {
120 	size_t i;
121 	dma_addr_t address;
122 	ssize_t offset;
123 
124 	for (i = 0; i < buffer->page_count; i++) {
125 		address = page_private(buffer->pages[i]);
126 		offset = (ssize_t)completed - (ssize_t)address;
127 		if (offset > 0 && offset <= PAGE_SIZE)
128 			return (i << PAGE_SHIFT) + offset;
129 	}
130 
131 	return 0;
132 }
133 
134 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
135 		int type, int channel, int speed, size_t header_size,
136 		fw_iso_callback_t callback, void *callback_data)
137 {
138 	struct fw_iso_context *ctx;
139 
140 	ctx = card->driver->allocate_iso_context(card,
141 						 type, channel, header_size);
142 	if (IS_ERR(ctx))
143 		return ctx;
144 
145 	ctx->card = card;
146 	ctx->type = type;
147 	ctx->channel = channel;
148 	ctx->speed = speed;
149 	ctx->header_size = header_size;
150 	ctx->callback.sc = callback;
151 	ctx->callback_data = callback_data;
152 
153 	trace_isoc_outbound_allocate(ctx, channel, speed);
154 	trace_isoc_inbound_single_allocate(ctx, channel, header_size);
155 	trace_isoc_inbound_multiple_allocate(ctx);
156 
157 	return ctx;
158 }
159 EXPORT_SYMBOL(fw_iso_context_create);
160 
161 void fw_iso_context_destroy(struct fw_iso_context *ctx)
162 {
163 	trace_isoc_outbound_destroy(ctx);
164 	trace_isoc_inbound_single_destroy(ctx);
165 	trace_isoc_inbound_multiple_destroy(ctx);
166 
167 	ctx->card->driver->free_iso_context(ctx);
168 }
169 EXPORT_SYMBOL(fw_iso_context_destroy);
170 
171 int fw_iso_context_start(struct fw_iso_context *ctx,
172 			 int cycle, int sync, int tags)
173 {
174 	trace_isoc_outbound_start(ctx, cycle);
175 	trace_isoc_inbound_single_start(ctx, cycle, sync, tags);
176 	trace_isoc_inbound_multiple_start(ctx, cycle, sync, tags);
177 
178 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
179 }
180 EXPORT_SYMBOL(fw_iso_context_start);
181 
182 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
183 {
184 	trace_isoc_inbound_multiple_channels(ctx, *channels);
185 
186 	return ctx->card->driver->set_iso_channels(ctx, channels);
187 }
188 
189 int fw_iso_context_queue(struct fw_iso_context *ctx,
190 			 struct fw_iso_packet *packet,
191 			 struct fw_iso_buffer *buffer,
192 			 unsigned long payload)
193 {
194 	trace_isoc_outbound_queue(ctx, payload, packet);
195 	trace_isoc_inbound_single_queue(ctx, payload, packet);
196 	trace_isoc_inbound_multiple_queue(ctx, payload, packet);
197 
198 	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
199 }
200 EXPORT_SYMBOL(fw_iso_context_queue);
201 
202 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
203 {
204 	trace_isoc_outbound_flush(ctx);
205 	trace_isoc_inbound_single_flush(ctx);
206 	trace_isoc_inbound_multiple_flush(ctx);
207 
208 	ctx->card->driver->flush_queue_iso(ctx);
209 }
210 EXPORT_SYMBOL(fw_iso_context_queue_flush);
211 
212 /**
213  * fw_iso_context_flush_completions() - process isochronous context in current process context.
214  * @ctx: the isochronous context
215  *
216  * Process the isochronous context in the current process context. The registered callback function
217  * is called if some packets have been already transferred since the last time. If it is required
218  * to process the context asynchronously, fw_iso_context_schedule_flush_completions() is available
219  * instead.
220  *
221  * Context: Process context. May sleep due to disable_work_sync().
222  */
223 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
224 {
225 	int err;
226 
227 	trace_isoc_outbound_flush_completions(ctx);
228 	trace_isoc_inbound_single_flush_completions(ctx);
229 	trace_isoc_inbound_multiple_flush_completions(ctx);
230 
231 	might_sleep();
232 
233 	// Avoid dead lock due to programming mistake.
234 	if (WARN_ON_ONCE(current_work() == &ctx->work))
235 		return 0;
236 
237 	disable_work_sync(&ctx->work);
238 
239 	err = ctx->card->driver->flush_iso_completions(ctx);
240 
241 	enable_work(&ctx->work);
242 
243 	return err;
244 }
245 EXPORT_SYMBOL(fw_iso_context_flush_completions);
246 
247 int fw_iso_context_stop(struct fw_iso_context *ctx)
248 {
249 	int err;
250 
251 	trace_isoc_outbound_stop(ctx);
252 	trace_isoc_inbound_single_stop(ctx);
253 	trace_isoc_inbound_multiple_stop(ctx);
254 
255 	might_sleep();
256 
257 	// Avoid dead lock due to programming mistake.
258 	if (WARN_ON_ONCE(current_work() == &ctx->work))
259 		return 0;
260 
261 	err = ctx->card->driver->stop_iso(ctx);
262 
263 	cancel_work_sync(&ctx->work);
264 
265 	return err;
266 }
267 EXPORT_SYMBOL(fw_iso_context_stop);
268 
269 /*
270  * Isochronous bus resource management (channels, bandwidth), client side
271  */
272 
273 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
274 			    int bandwidth, bool allocate)
275 {
276 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
277 	__be32 data[2];
278 
279 	/*
280 	 * On a 1394a IRM with low contention, try < 1 is enough.
281 	 * On a 1394-1995 IRM, we need at least try < 2.
282 	 * Let's just do try < 5.
283 	 */
284 	for (try = 0; try < 5; try++) {
285 		new = allocate ? old - bandwidth : old + bandwidth;
286 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
287 			return -EBUSY;
288 
289 		data[0] = cpu_to_be32(old);
290 		data[1] = cpu_to_be32(new);
291 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
292 				irm_id, generation, SCODE_100,
293 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
294 				data, 8)) {
295 		case RCODE_GENERATION:
296 			/* A generation change frees all bandwidth. */
297 			return allocate ? -EAGAIN : bandwidth;
298 
299 		case RCODE_COMPLETE:
300 			if (be32_to_cpup(data) == old)
301 				return bandwidth;
302 
303 			old = be32_to_cpup(data);
304 			/* Fall through. */
305 		}
306 	}
307 
308 	return -EIO;
309 }
310 
311 static int manage_channel(struct fw_card *card, int irm_id, int generation,
312 		u32 channels_mask, u64 offset, bool allocate)
313 {
314 	__be32 bit, all, old;
315 	__be32 data[2];
316 	int channel, ret = -EIO, retry = 5;
317 
318 	old = all = allocate ? cpu_to_be32(~0) : 0;
319 
320 	for (channel = 0; channel < 32; channel++) {
321 		if (!(channels_mask & 1 << channel))
322 			continue;
323 
324 		ret = -EBUSY;
325 
326 		bit = cpu_to_be32(1 << (31 - channel));
327 		if ((old & bit) != (all & bit))
328 			continue;
329 
330 		data[0] = old;
331 		data[1] = old ^ bit;
332 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
333 					   irm_id, generation, SCODE_100,
334 					   offset, data, 8)) {
335 		case RCODE_GENERATION:
336 			/* A generation change frees all channels. */
337 			return allocate ? -EAGAIN : channel;
338 
339 		case RCODE_COMPLETE:
340 			if (data[0] == old)
341 				return channel;
342 
343 			old = data[0];
344 
345 			/* Is the IRM 1394a-2000 compliant? */
346 			if ((data[0] & bit) == (data[1] & bit))
347 				continue;
348 
349 			fallthrough;	/* It's a 1394-1995 IRM, retry */
350 		default:
351 			if (retry) {
352 				retry--;
353 				channel--;
354 			} else {
355 				ret = -EIO;
356 			}
357 		}
358 	}
359 
360 	return ret;
361 }
362 
363 static void deallocate_channel(struct fw_card *card, int irm_id,
364 			       int generation, int channel)
365 {
366 	u32 mask;
367 	u64 offset;
368 
369 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
370 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
371 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
372 
373 	manage_channel(card, irm_id, generation, mask, offset, false);
374 }
375 
376 /**
377  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
378  * @card: card interface for this action
379  * @generation: bus generation
380  * @channels_mask: bitmask for channel allocation
381  * @channel: pointer for returning channel allocation result
382  * @bandwidth: pointer for returning bandwidth allocation result
383  * @allocate: whether to allocate (true) or deallocate (false)
384  *
385  * In parameters: card, generation, channels_mask, bandwidth, allocate
386  * Out parameters: channel, bandwidth
387  *
388  * This function blocks (sleeps) during communication with the IRM.
389  *
390  * Allocates or deallocates at most one channel out of channels_mask.
391  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
392  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
393  * channel 0 and LSB for channel 63.)
394  * Allocates or deallocates as many bandwidth allocation units as specified.
395  *
396  * Returns channel < 0 if no channel was allocated or deallocated.
397  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
398  *
399  * If generation is stale, deallocations succeed but allocations fail with
400  * channel = -EAGAIN.
401  *
402  * If channel allocation fails, no bandwidth will be allocated either.
403  * If bandwidth allocation fails, no channel will be allocated either.
404  * But deallocations of channel and bandwidth are tried independently
405  * of each other's success.
406  */
407 void fw_iso_resource_manage(struct fw_card *card, int generation,
408 			    u64 channels_mask, int *channel, int *bandwidth,
409 			    bool allocate)
410 {
411 	u32 channels_hi = channels_mask;	/* channels 31...0 */
412 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
413 	int irm_id, ret, c = -EINVAL;
414 
415 	scoped_guard(spinlock_irq, &card->lock)
416 		irm_id = card->irm_node->node_id;
417 
418 	if (channels_hi)
419 		c = manage_channel(card, irm_id, generation, channels_hi,
420 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
421 				allocate);
422 	if (channels_lo && c < 0) {
423 		c = manage_channel(card, irm_id, generation, channels_lo,
424 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
425 				allocate);
426 		if (c >= 0)
427 			c += 32;
428 	}
429 	*channel = c;
430 
431 	if (allocate && channels_mask != 0 && c < 0)
432 		*bandwidth = 0;
433 
434 	if (*bandwidth == 0)
435 		return;
436 
437 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
438 	if (ret < 0)
439 		*bandwidth = 0;
440 
441 	if (allocate && ret < 0) {
442 		if (c >= 0)
443 			deallocate_channel(card, irm_id, generation, c);
444 		*channel = ret;
445 	}
446 }
447 EXPORT_SYMBOL(fw_iso_resource_manage);
448