xref: /linux/drivers/firewire/core-iso.c (revision 4b337c5f245b6587ba844ac7bb13c313a2912f7b)
1 /*
2  * Isochronous I/O functionality:
3  *   - Isochronous DMA context management
4  *   - Isochronous bus resource management (channels, bandwidth), client side
5  *
6  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22 
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/spinlock.h>
30 #include <linux/vmalloc.h>
31 
32 #include <asm/byteorder.h>
33 
34 #include "core.h"
35 
36 /*
37  * Isochronous DMA context management
38  */
39 
40 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
41 		       int page_count, enum dma_data_direction direction)
42 {
43 	int i, j;
44 	dma_addr_t address;
45 
46 	buffer->page_count = page_count;
47 	buffer->direction = direction;
48 
49 	buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
50 				GFP_KERNEL);
51 	if (buffer->pages == NULL)
52 		goto out;
53 
54 	for (i = 0; i < buffer->page_count; i++) {
55 		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
56 		if (buffer->pages[i] == NULL)
57 			goto out_pages;
58 
59 		address = dma_map_page(card->device, buffer->pages[i],
60 				       0, PAGE_SIZE, direction);
61 		if (dma_mapping_error(card->device, address)) {
62 			__free_page(buffer->pages[i]);
63 			goto out_pages;
64 		}
65 		set_page_private(buffer->pages[i], address);
66 	}
67 
68 	return 0;
69 
70  out_pages:
71 	for (j = 0; j < i; j++) {
72 		address = page_private(buffer->pages[j]);
73 		dma_unmap_page(card->device, address,
74 			       PAGE_SIZE, DMA_TO_DEVICE);
75 		__free_page(buffer->pages[j]);
76 	}
77 	kfree(buffer->pages);
78  out:
79 	buffer->pages = NULL;
80 
81 	return -ENOMEM;
82 }
83 
84 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
85 {
86 	unsigned long uaddr;
87 	int i, err;
88 
89 	uaddr = vma->vm_start;
90 	for (i = 0; i < buffer->page_count; i++) {
91 		err = vm_insert_page(vma, uaddr, buffer->pages[i]);
92 		if (err)
93 			return err;
94 
95 		uaddr += PAGE_SIZE;
96 	}
97 
98 	return 0;
99 }
100 
101 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
102 			   struct fw_card *card)
103 {
104 	int i;
105 	dma_addr_t address;
106 
107 	for (i = 0; i < buffer->page_count; i++) {
108 		address = page_private(buffer->pages[i]);
109 		dma_unmap_page(card->device, address,
110 			       PAGE_SIZE, DMA_TO_DEVICE);
111 		__free_page(buffer->pages[i]);
112 	}
113 
114 	kfree(buffer->pages);
115 	buffer->pages = NULL;
116 }
117 
118 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
119 		int type, int channel, int speed, size_t header_size,
120 		fw_iso_callback_t callback, void *callback_data)
121 {
122 	struct fw_iso_context *ctx;
123 
124 	ctx = card->driver->allocate_iso_context(card,
125 						 type, channel, header_size);
126 	if (IS_ERR(ctx))
127 		return ctx;
128 
129 	ctx->card = card;
130 	ctx->type = type;
131 	ctx->channel = channel;
132 	ctx->speed = speed;
133 	ctx->header_size = header_size;
134 	ctx->callback = callback;
135 	ctx->callback_data = callback_data;
136 
137 	return ctx;
138 }
139 
140 void fw_iso_context_destroy(struct fw_iso_context *ctx)
141 {
142 	struct fw_card *card = ctx->card;
143 
144 	card->driver->free_iso_context(ctx);
145 }
146 
147 int fw_iso_context_start(struct fw_iso_context *ctx,
148 			 int cycle, int sync, int tags)
149 {
150 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
151 }
152 
153 int fw_iso_context_queue(struct fw_iso_context *ctx,
154 			 struct fw_iso_packet *packet,
155 			 struct fw_iso_buffer *buffer,
156 			 unsigned long payload)
157 {
158 	struct fw_card *card = ctx->card;
159 
160 	return card->driver->queue_iso(ctx, packet, buffer, payload);
161 }
162 
163 int fw_iso_context_stop(struct fw_iso_context *ctx)
164 {
165 	return ctx->card->driver->stop_iso(ctx);
166 }
167 
168 /*
169  * Isochronous bus resource management (channels, bandwidth), client side
170  */
171 
172 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
173 			    int bandwidth, bool allocate)
174 {
175 	__be32 data[2];
176 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
177 
178 	/*
179 	 * On a 1394a IRM with low contention, try < 1 is enough.
180 	 * On a 1394-1995 IRM, we need at least try < 2.
181 	 * Let's just do try < 5.
182 	 */
183 	for (try = 0; try < 5; try++) {
184 		new = allocate ? old - bandwidth : old + bandwidth;
185 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
186 			break;
187 
188 		data[0] = cpu_to_be32(old);
189 		data[1] = cpu_to_be32(new);
190 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
191 				irm_id, generation, SCODE_100,
192 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
193 				data, sizeof(data))) {
194 		case RCODE_GENERATION:
195 			/* A generation change frees all bandwidth. */
196 			return allocate ? -EAGAIN : bandwidth;
197 
198 		case RCODE_COMPLETE:
199 			if (be32_to_cpup(data) == old)
200 				return bandwidth;
201 
202 			old = be32_to_cpup(data);
203 			/* Fall through. */
204 		}
205 	}
206 
207 	return -EIO;
208 }
209 
210 static int manage_channel(struct fw_card *card, int irm_id, int generation,
211 			  u32 channels_mask, u64 offset, bool allocate)
212 {
213 	__be32 data[2], c, all, old;
214 	int i, retry = 5;
215 
216 	old = all = allocate ? cpu_to_be32(~0) : 0;
217 
218 	for (i = 0; i < 32; i++) {
219 		if (!(channels_mask & 1 << i))
220 			continue;
221 
222 		c = cpu_to_be32(1 << (31 - i));
223 		if ((old & c) != (all & c))
224 			continue;
225 
226 		data[0] = old;
227 		data[1] = old ^ c;
228 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
229 					   irm_id, generation, SCODE_100,
230 					   offset, data, sizeof(data))) {
231 		case RCODE_GENERATION:
232 			/* A generation change frees all channels. */
233 			return allocate ? -EAGAIN : i;
234 
235 		case RCODE_COMPLETE:
236 			if (data[0] == old)
237 				return i;
238 
239 			old = data[0];
240 
241 			/* Is the IRM 1394a-2000 compliant? */
242 			if ((data[0] & c) == (data[1] & c))
243 				continue;
244 
245 			/* 1394-1995 IRM, fall through to retry. */
246 		default:
247 			if (retry--)
248 				i--;
249 		}
250 	}
251 
252 	return -EIO;
253 }
254 
255 static void deallocate_channel(struct fw_card *card, int irm_id,
256 			       int generation, int channel)
257 {
258 	u32 mask;
259 	u64 offset;
260 
261 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
262 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
263 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
264 
265 	manage_channel(card, irm_id, generation, mask, offset, false);
266 }
267 
268 /**
269  * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth
270  *
271  * In parameters: card, generation, channels_mask, bandwidth, allocate
272  * Out parameters: channel, bandwidth
273  * This function blocks (sleeps) during communication with the IRM.
274  *
275  * Allocates or deallocates at most one channel out of channels_mask.
276  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
277  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
278  * channel 0 and LSB for channel 63.)
279  * Allocates or deallocates as many bandwidth allocation units as specified.
280  *
281  * Returns channel < 0 if no channel was allocated or deallocated.
282  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
283  *
284  * If generation is stale, deallocations succeed but allocations fail with
285  * channel = -EAGAIN.
286  *
287  * If channel allocation fails, no bandwidth will be allocated either.
288  * If bandwidth allocation fails, no channel will be allocated either.
289  * But deallocations of channel and bandwidth are tried independently
290  * of each other's success.
291  */
292 void fw_iso_resource_manage(struct fw_card *card, int generation,
293 			    u64 channels_mask, int *channel, int *bandwidth,
294 			    bool allocate)
295 {
296 	u32 channels_hi = channels_mask;	/* channels 31...0 */
297 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
298 	int irm_id, ret, c = -EINVAL;
299 
300 	spin_lock_irq(&card->lock);
301 	irm_id = card->irm_node->node_id;
302 	spin_unlock_irq(&card->lock);
303 
304 	if (channels_hi)
305 		c = manage_channel(card, irm_id, generation, channels_hi,
306 		    CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI, allocate);
307 	if (channels_lo && c < 0) {
308 		c = manage_channel(card, irm_id, generation, channels_lo,
309 		    CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO, allocate);
310 		if (c >= 0)
311 			c += 32;
312 	}
313 	*channel = c;
314 
315 	if (allocate && channels_mask != 0 && c < 0)
316 		*bandwidth = 0;
317 
318 	if (*bandwidth == 0)
319 		return;
320 
321 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
322 	if (ret < 0)
323 		*bandwidth = 0;
324 
325 	if (allocate && ret < 0 && c >= 0) {
326 		deallocate_channel(card, irm_id, generation, c);
327 		*channel = ret;
328 	}
329 }
330