xref: /linux/drivers/firewire/core-iso.c (revision 37a93dd5c49b5fda807fd204edf2547c3493319c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Isochronous I/O functionality:
4  *   - Isochronous DMA context management
5  *   - Isochronous bus resource management (channels, bandwidth), client side
6  *
7  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8  */
9 
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20 
21 #include <asm/byteorder.h>
22 
23 #include "core.h"
24 
25 #include <trace/events/firewire.h>
26 
27 /*
28  * Isochronous DMA context management
29  */
30 
31 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
32 {
33 	struct page **page_array __free(kfree) = kcalloc(page_count, sizeof(page_array[0]), GFP_KERNEL);
34 
35 	if (!page_array)
36 		return -ENOMEM;
37 
38 	// Retrieve noncontiguous pages. The descriptors for 1394 OHCI isochronous DMA contexts
39 	// have a set of address and length per each, while the reason to use pages is the
40 	// convenience to map them into virtual address space of user process.
41 	unsigned long nr_populated = alloc_pages_bulk(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO,
42 						      page_count, page_array);
43 	if (nr_populated != page_count) {
44 		// Assuming the above call fills page_array sequentially from the beginning.
45 		release_pages(page_array, nr_populated);
46 		return -ENOMEM;
47 	}
48 
49 	buffer->page_count = page_count;
50 	buffer->pages = no_free_ptr(page_array);
51 
52 	return 0;
53 }
54 
55 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
56 			  enum dma_data_direction direction)
57 {
58 	dma_addr_t *dma_addrs __free(kfree) = kcalloc(buffer->page_count, sizeof(dma_addrs[0]),
59 						      GFP_KERNEL);
60 	int i;
61 
62 	if (!dma_addrs)
63 		return -ENOMEM;
64 
65 	// Retrieve DMA mapping addresses for the pages. They are not contiguous. Maintain the cache
66 	// coherency for the pages by hand.
67 	for (i = 0; i < buffer->page_count; i++) {
68 		// The dma_map_phys() with a physical address per page is available here, instead.
69 		dma_addr_t dma_addr = dma_map_page(card->device, buffer->pages[i], 0, PAGE_SIZE,
70 						   direction);
71 		if (dma_mapping_error(card->device, dma_addr))
72 			break;
73 
74 		dma_addrs[i] = dma_addr;
75 	}
76 	if (i < buffer->page_count) {
77 		while (i-- > 0)
78 			dma_unmap_page(card->device, dma_addrs[i], PAGE_SIZE, buffer->direction);
79 		return -ENOMEM;
80 	}
81 
82 	buffer->direction = direction;
83 	buffer->dma_addrs = no_free_ptr(dma_addrs);
84 
85 	return 0;
86 }
87 
88 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
89 		       int page_count, enum dma_data_direction direction)
90 {
91 	int ret;
92 
93 	ret = fw_iso_buffer_alloc(buffer, page_count);
94 	if (ret < 0)
95 		return ret;
96 
97 	ret = fw_iso_buffer_map_dma(buffer, card, direction);
98 	if (ret < 0)
99 		fw_iso_buffer_destroy(buffer, card);
100 
101 	return ret;
102 }
103 EXPORT_SYMBOL(fw_iso_buffer_init);
104 
105 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
106 			   struct fw_card *card)
107 {
108 	if (buffer->dma_addrs) {
109 		for (int i = 0; i < buffer->page_count; ++i) {
110 			dma_addr_t dma_addr = buffer->dma_addrs[i];
111 			dma_unmap_page(card->device, dma_addr, PAGE_SIZE, buffer->direction);
112 		}
113 		kfree(buffer->dma_addrs);
114 		buffer->dma_addrs = NULL;
115 	}
116 
117 	if (buffer->pages) {
118 		release_pages(buffer->pages, buffer->page_count);
119 		kfree(buffer->pages);
120 		buffer->pages = NULL;
121 	}
122 
123 	buffer->page_count = 0;
124 }
125 EXPORT_SYMBOL(fw_iso_buffer_destroy);
126 
127 /* Convert DMA address to offset into virtually contiguous buffer. */
128 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
129 {
130 	for (int i = 0; i < buffer->page_count; i++) {
131 		dma_addr_t dma_addr = buffer->dma_addrs[i];
132 		ssize_t offset = (ssize_t)completed - (ssize_t)dma_addr;
133 		if (offset > 0 && offset <= PAGE_SIZE)
134 			return (i << PAGE_SHIFT) + offset;
135 	}
136 
137 	return 0;
138 }
139 
140 struct fw_iso_context *__fw_iso_context_create(struct fw_card *card, int type, int channel,
141 		int speed, size_t header_size, size_t header_storage_size,
142 		union fw_iso_callback callback, void *callback_data)
143 {
144 	struct fw_iso_context *ctx;
145 
146 	ctx = card->driver->allocate_iso_context(card, type, channel, header_size,
147 						 header_storage_size);
148 	if (IS_ERR(ctx))
149 		return ctx;
150 
151 	ctx->card = card;
152 	ctx->type = type;
153 	ctx->channel = channel;
154 	ctx->speed = speed;
155 	ctx->flags = 0;
156 	ctx->header_size = header_size;
157 	ctx->header_storage_size = header_storage_size;
158 	ctx->callback = callback;
159 	ctx->callback_data = callback_data;
160 
161 	trace_isoc_outbound_allocate(ctx, channel, speed);
162 	trace_isoc_inbound_single_allocate(ctx, channel, header_size);
163 	trace_isoc_inbound_multiple_allocate(ctx);
164 
165 	return ctx;
166 }
167 EXPORT_SYMBOL(__fw_iso_context_create);
168 
169 void fw_iso_context_destroy(struct fw_iso_context *ctx)
170 {
171 	trace_isoc_outbound_destroy(ctx);
172 	trace_isoc_inbound_single_destroy(ctx);
173 	trace_isoc_inbound_multiple_destroy(ctx);
174 
175 	ctx->card->driver->free_iso_context(ctx);
176 }
177 EXPORT_SYMBOL(fw_iso_context_destroy);
178 
179 int fw_iso_context_start(struct fw_iso_context *ctx,
180 			 int cycle, int sync, int tags)
181 {
182 	trace_isoc_outbound_start(ctx, cycle);
183 	trace_isoc_inbound_single_start(ctx, cycle, sync, tags);
184 	trace_isoc_inbound_multiple_start(ctx, cycle, sync, tags);
185 
186 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
187 }
188 EXPORT_SYMBOL(fw_iso_context_start);
189 
190 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
191 {
192 	trace_isoc_inbound_multiple_channels(ctx, *channels);
193 
194 	return ctx->card->driver->set_iso_channels(ctx, channels);
195 }
196 
197 int fw_iso_context_queue(struct fw_iso_context *ctx,
198 			 struct fw_iso_packet *packet,
199 			 struct fw_iso_buffer *buffer,
200 			 unsigned long payload)
201 {
202 	trace_isoc_outbound_queue(ctx, payload, packet);
203 	trace_isoc_inbound_single_queue(ctx, payload, packet);
204 	trace_isoc_inbound_multiple_queue(ctx, payload, packet);
205 
206 	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
207 }
208 EXPORT_SYMBOL(fw_iso_context_queue);
209 
210 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
211 {
212 	trace_isoc_outbound_flush(ctx);
213 	trace_isoc_inbound_single_flush(ctx);
214 	trace_isoc_inbound_multiple_flush(ctx);
215 
216 	ctx->card->driver->flush_queue_iso(ctx);
217 }
218 EXPORT_SYMBOL(fw_iso_context_queue_flush);
219 
220 /**
221  * fw_iso_context_flush_completions() - process isochronous context in current process context.
222  * @ctx: the isochronous context
223  *
224  * Process the isochronous context in the current process context. The registered callback function
225  * is called when a queued packet buffer with the interrupt flag is completed, either after
226  * transmission in the IT context or after being filled in the IR context. Additionally, the
227  * callback function is also called for the packet buffer completed at last. Furthermore, the
228  * callback function is called as well when the header buffer in the context becomes full. If it is
229  * required to process the context asynchronously, fw_iso_context_schedule_flush_completions() is
230  * available instead.
231  *
232  * Context: Process context. May sleep due to disable_work_sync().
233  */
234 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
235 {
236 	int err;
237 
238 	trace_isoc_outbound_flush_completions(ctx);
239 	trace_isoc_inbound_single_flush_completions(ctx);
240 	trace_isoc_inbound_multiple_flush_completions(ctx);
241 
242 	might_sleep();
243 
244 	// Avoid dead lock due to programming mistake.
245 	if (WARN_ON_ONCE(current_work() == &ctx->work))
246 		return 0;
247 
248 	disable_work_sync(&ctx->work);
249 
250 	err = ctx->card->driver->flush_iso_completions(ctx);
251 
252 	enable_work(&ctx->work);
253 
254 	return err;
255 }
256 EXPORT_SYMBOL(fw_iso_context_flush_completions);
257 
258 int fw_iso_context_stop(struct fw_iso_context *ctx)
259 {
260 	int err;
261 
262 	trace_isoc_outbound_stop(ctx);
263 	trace_isoc_inbound_single_stop(ctx);
264 	trace_isoc_inbound_multiple_stop(ctx);
265 
266 	might_sleep();
267 
268 	// Avoid dead lock due to programming mistake.
269 	if (WARN_ON_ONCE(current_work() == &ctx->work))
270 		return 0;
271 
272 	err = ctx->card->driver->stop_iso(ctx);
273 
274 	cancel_work_sync(&ctx->work);
275 
276 	return err;
277 }
278 EXPORT_SYMBOL(fw_iso_context_stop);
279 
280 /*
281  * Isochronous bus resource management (channels, bandwidth), client side
282  */
283 
284 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
285 			    int bandwidth, bool allocate)
286 {
287 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
288 	__be32 data[2];
289 
290 	/*
291 	 * On a 1394a IRM with low contention, try < 1 is enough.
292 	 * On a 1394-1995 IRM, we need at least try < 2.
293 	 * Let's just do try < 5.
294 	 */
295 	for (try = 0; try < 5; try++) {
296 		new = allocate ? old - bandwidth : old + bandwidth;
297 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
298 			return -EBUSY;
299 
300 		data[0] = cpu_to_be32(old);
301 		data[1] = cpu_to_be32(new);
302 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
303 				irm_id, generation, SCODE_100,
304 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
305 				data, 8)) {
306 		case RCODE_GENERATION:
307 			/* A generation change frees all bandwidth. */
308 			return allocate ? -EAGAIN : bandwidth;
309 
310 		case RCODE_COMPLETE:
311 			if (be32_to_cpup(data) == old)
312 				return bandwidth;
313 
314 			old = be32_to_cpup(data);
315 			/* Fall through. */
316 		}
317 	}
318 
319 	return -EIO;
320 }
321 
322 static int manage_channel(struct fw_card *card, int irm_id, int generation,
323 		u32 channels_mask, u64 offset, bool allocate)
324 {
325 	__be32 bit, all, old;
326 	__be32 data[2];
327 	int channel, ret = -EIO, retry = 5;
328 
329 	old = all = allocate ? cpu_to_be32(~0) : 0;
330 
331 	for (channel = 0; channel < 32; channel++) {
332 		if (!(channels_mask & 1 << channel))
333 			continue;
334 
335 		ret = -EBUSY;
336 
337 		bit = cpu_to_be32(1 << (31 - channel));
338 		if ((old & bit) != (all & bit))
339 			continue;
340 
341 		data[0] = old;
342 		data[1] = old ^ bit;
343 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
344 					   irm_id, generation, SCODE_100,
345 					   offset, data, 8)) {
346 		case RCODE_GENERATION:
347 			/* A generation change frees all channels. */
348 			return allocate ? -EAGAIN : channel;
349 
350 		case RCODE_COMPLETE:
351 			if (data[0] == old)
352 				return channel;
353 
354 			old = data[0];
355 
356 			/* Is the IRM 1394a-2000 compliant? */
357 			if ((data[0] & bit) == (data[1] & bit))
358 				continue;
359 
360 			fallthrough;	/* It's a 1394-1995 IRM, retry */
361 		default:
362 			if (retry) {
363 				retry--;
364 				channel--;
365 			} else {
366 				ret = -EIO;
367 			}
368 		}
369 	}
370 
371 	return ret;
372 }
373 
374 static void deallocate_channel(struct fw_card *card, int irm_id,
375 			       int generation, int channel)
376 {
377 	u32 mask;
378 	u64 offset;
379 
380 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
381 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
382 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
383 
384 	manage_channel(card, irm_id, generation, mask, offset, false);
385 }
386 
387 /**
388  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
389  * @card: card interface for this action
390  * @generation: bus generation
391  * @channels_mask: bitmask for channel allocation
392  * @channel: pointer for returning channel allocation result
393  * @bandwidth: pointer for returning bandwidth allocation result
394  * @allocate: whether to allocate (true) or deallocate (false)
395  *
396  * In parameters: card, generation, channels_mask, bandwidth, allocate
397  * Out parameters: channel, bandwidth
398  *
399  * This function blocks (sleeps) during communication with the IRM.
400  *
401  * Allocates or deallocates at most one channel out of channels_mask.
402  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
403  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
404  * channel 0 and LSB for channel 63.)
405  * Allocates or deallocates as many bandwidth allocation units as specified.
406  *
407  * Returns channel < 0 if no channel was allocated or deallocated.
408  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
409  *
410  * If generation is stale, deallocations succeed but allocations fail with
411  * channel = -EAGAIN.
412  *
413  * If channel allocation fails, no bandwidth will be allocated either.
414  * If bandwidth allocation fails, no channel will be allocated either.
415  * But deallocations of channel and bandwidth are tried independently
416  * of each other's success.
417  */
418 void fw_iso_resource_manage(struct fw_card *card, int generation,
419 			    u64 channels_mask, int *channel, int *bandwidth,
420 			    bool allocate)
421 {
422 	u32 channels_hi = channels_mask;	/* channels 31...0 */
423 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
424 	int irm_id, ret, c = -EINVAL;
425 
426 	scoped_guard(spinlock_irq, &card->lock)
427 		irm_id = card->irm_node->node_id;
428 
429 	if (channels_hi)
430 		c = manage_channel(card, irm_id, generation, channels_hi,
431 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
432 				allocate);
433 	if (channels_lo && c < 0) {
434 		c = manage_channel(card, irm_id, generation, channels_lo,
435 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
436 				allocate);
437 		if (c >= 0)
438 			c += 32;
439 	}
440 	*channel = c;
441 
442 	if (allocate && channels_mask != 0 && c < 0)
443 		*bandwidth = 0;
444 
445 	if (*bandwidth == 0)
446 		return;
447 
448 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
449 	if (ret < 0)
450 		*bandwidth = 0;
451 
452 	if (allocate && ret < 0) {
453 		if (c >= 0)
454 			deallocate_channel(card, irm_id, generation, c);
455 		*channel = ret;
456 	}
457 }
458 EXPORT_SYMBOL(fw_iso_resource_manage);
459