xref: /linux/drivers/firewire/core-iso.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Isochronous I/O functionality:
3  *   - Isochronous DMA context management
4  *   - Isochronous bus resource management (channels, bandwidth), client side
5  *
6  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22 
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/vmalloc.h>
32 #include <linux/export.h>
33 
34 #include <asm/byteorder.h>
35 
36 #include "core.h"
37 
38 /*
39  * Isochronous DMA context management
40  */
41 
42 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
43 {
44 	int i;
45 
46 	buffer->page_count = 0;
47 	buffer->page_count_mapped = 0;
48 	buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
49 				GFP_KERNEL);
50 	if (buffer->pages == NULL)
51 		return -ENOMEM;
52 
53 	for (i = 0; i < page_count; i++) {
54 		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
55 		if (buffer->pages[i] == NULL)
56 			break;
57 	}
58 	buffer->page_count = i;
59 	if (i < page_count) {
60 		fw_iso_buffer_destroy(buffer, NULL);
61 		return -ENOMEM;
62 	}
63 
64 	return 0;
65 }
66 
67 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
68 			  enum dma_data_direction direction)
69 {
70 	dma_addr_t address;
71 	int i;
72 
73 	buffer->direction = direction;
74 
75 	for (i = 0; i < buffer->page_count; i++) {
76 		address = dma_map_page(card->device, buffer->pages[i],
77 				       0, PAGE_SIZE, direction);
78 		if (dma_mapping_error(card->device, address))
79 			break;
80 
81 		set_page_private(buffer->pages[i], address);
82 	}
83 	buffer->page_count_mapped = i;
84 	if (i < buffer->page_count)
85 		return -ENOMEM;
86 
87 	return 0;
88 }
89 
90 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
91 		       int page_count, enum dma_data_direction direction)
92 {
93 	int ret;
94 
95 	ret = fw_iso_buffer_alloc(buffer, page_count);
96 	if (ret < 0)
97 		return ret;
98 
99 	ret = fw_iso_buffer_map_dma(buffer, card, direction);
100 	if (ret < 0)
101 		fw_iso_buffer_destroy(buffer, card);
102 
103 	return ret;
104 }
105 EXPORT_SYMBOL(fw_iso_buffer_init);
106 
107 int fw_iso_buffer_map_vma(struct fw_iso_buffer *buffer,
108 			  struct vm_area_struct *vma)
109 {
110 	unsigned long uaddr;
111 	int i, err;
112 
113 	uaddr = vma->vm_start;
114 	for (i = 0; i < buffer->page_count; i++) {
115 		err = vm_insert_page(vma, uaddr, buffer->pages[i]);
116 		if (err)
117 			return err;
118 
119 		uaddr += PAGE_SIZE;
120 	}
121 
122 	return 0;
123 }
124 
125 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
126 			   struct fw_card *card)
127 {
128 	int i;
129 	dma_addr_t address;
130 
131 	for (i = 0; i < buffer->page_count_mapped; i++) {
132 		address = page_private(buffer->pages[i]);
133 		dma_unmap_page(card->device, address,
134 			       PAGE_SIZE, buffer->direction);
135 	}
136 	for (i = 0; i < buffer->page_count; i++)
137 		__free_page(buffer->pages[i]);
138 
139 	kfree(buffer->pages);
140 	buffer->pages = NULL;
141 	buffer->page_count = 0;
142 	buffer->page_count_mapped = 0;
143 }
144 EXPORT_SYMBOL(fw_iso_buffer_destroy);
145 
146 /* Convert DMA address to offset into virtually contiguous buffer. */
147 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
148 {
149 	size_t i;
150 	dma_addr_t address;
151 	ssize_t offset;
152 
153 	for (i = 0; i < buffer->page_count; i++) {
154 		address = page_private(buffer->pages[i]);
155 		offset = (ssize_t)completed - (ssize_t)address;
156 		if (offset > 0 && offset <= PAGE_SIZE)
157 			return (i << PAGE_SHIFT) + offset;
158 	}
159 
160 	return 0;
161 }
162 
163 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
164 		int type, int channel, int speed, size_t header_size,
165 		fw_iso_callback_t callback, void *callback_data)
166 {
167 	struct fw_iso_context *ctx;
168 
169 	ctx = card->driver->allocate_iso_context(card,
170 						 type, channel, header_size);
171 	if (IS_ERR(ctx))
172 		return ctx;
173 
174 	ctx->card = card;
175 	ctx->type = type;
176 	ctx->channel = channel;
177 	ctx->speed = speed;
178 	ctx->header_size = header_size;
179 	ctx->callback.sc = callback;
180 	ctx->callback_data = callback_data;
181 
182 	return ctx;
183 }
184 EXPORT_SYMBOL(fw_iso_context_create);
185 
186 void fw_iso_context_destroy(struct fw_iso_context *ctx)
187 {
188 	ctx->card->driver->free_iso_context(ctx);
189 }
190 EXPORT_SYMBOL(fw_iso_context_destroy);
191 
192 int fw_iso_context_start(struct fw_iso_context *ctx,
193 			 int cycle, int sync, int tags)
194 {
195 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
196 }
197 EXPORT_SYMBOL(fw_iso_context_start);
198 
199 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
200 {
201 	return ctx->card->driver->set_iso_channels(ctx, channels);
202 }
203 
204 int fw_iso_context_queue(struct fw_iso_context *ctx,
205 			 struct fw_iso_packet *packet,
206 			 struct fw_iso_buffer *buffer,
207 			 unsigned long payload)
208 {
209 	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
210 }
211 EXPORT_SYMBOL(fw_iso_context_queue);
212 
213 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
214 {
215 	ctx->card->driver->flush_queue_iso(ctx);
216 }
217 EXPORT_SYMBOL(fw_iso_context_queue_flush);
218 
219 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
220 {
221 	return ctx->card->driver->flush_iso_completions(ctx);
222 }
223 EXPORT_SYMBOL(fw_iso_context_flush_completions);
224 
225 int fw_iso_context_stop(struct fw_iso_context *ctx)
226 {
227 	return ctx->card->driver->stop_iso(ctx);
228 }
229 EXPORT_SYMBOL(fw_iso_context_stop);
230 
231 /*
232  * Isochronous bus resource management (channels, bandwidth), client side
233  */
234 
235 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
236 			    int bandwidth, bool allocate)
237 {
238 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
239 	__be32 data[2];
240 
241 	/*
242 	 * On a 1394a IRM with low contention, try < 1 is enough.
243 	 * On a 1394-1995 IRM, we need at least try < 2.
244 	 * Let's just do try < 5.
245 	 */
246 	for (try = 0; try < 5; try++) {
247 		new = allocate ? old - bandwidth : old + bandwidth;
248 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
249 			return -EBUSY;
250 
251 		data[0] = cpu_to_be32(old);
252 		data[1] = cpu_to_be32(new);
253 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
254 				irm_id, generation, SCODE_100,
255 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
256 				data, 8)) {
257 		case RCODE_GENERATION:
258 			/* A generation change frees all bandwidth. */
259 			return allocate ? -EAGAIN : bandwidth;
260 
261 		case RCODE_COMPLETE:
262 			if (be32_to_cpup(data) == old)
263 				return bandwidth;
264 
265 			old = be32_to_cpup(data);
266 			/* Fall through. */
267 		}
268 	}
269 
270 	return -EIO;
271 }
272 
273 static int manage_channel(struct fw_card *card, int irm_id, int generation,
274 		u32 channels_mask, u64 offset, bool allocate)
275 {
276 	__be32 bit, all, old;
277 	__be32 data[2];
278 	int channel, ret = -EIO, retry = 5;
279 
280 	old = all = allocate ? cpu_to_be32(~0) : 0;
281 
282 	for (channel = 0; channel < 32; channel++) {
283 		if (!(channels_mask & 1 << channel))
284 			continue;
285 
286 		ret = -EBUSY;
287 
288 		bit = cpu_to_be32(1 << (31 - channel));
289 		if ((old & bit) != (all & bit))
290 			continue;
291 
292 		data[0] = old;
293 		data[1] = old ^ bit;
294 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
295 					   irm_id, generation, SCODE_100,
296 					   offset, data, 8)) {
297 		case RCODE_GENERATION:
298 			/* A generation change frees all channels. */
299 			return allocate ? -EAGAIN : channel;
300 
301 		case RCODE_COMPLETE:
302 			if (data[0] == old)
303 				return channel;
304 
305 			old = data[0];
306 
307 			/* Is the IRM 1394a-2000 compliant? */
308 			if ((data[0] & bit) == (data[1] & bit))
309 				continue;
310 
311 			/* 1394-1995 IRM, fall through to retry. */
312 		default:
313 			if (retry) {
314 				retry--;
315 				channel--;
316 			} else {
317 				ret = -EIO;
318 			}
319 		}
320 	}
321 
322 	return ret;
323 }
324 
325 static void deallocate_channel(struct fw_card *card, int irm_id,
326 			       int generation, int channel)
327 {
328 	u32 mask;
329 	u64 offset;
330 
331 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
332 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
333 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
334 
335 	manage_channel(card, irm_id, generation, mask, offset, false);
336 }
337 
338 /**
339  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
340  *
341  * In parameters: card, generation, channels_mask, bandwidth, allocate
342  * Out parameters: channel, bandwidth
343  * This function blocks (sleeps) during communication with the IRM.
344  *
345  * Allocates or deallocates at most one channel out of channels_mask.
346  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
347  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
348  * channel 0 and LSB for channel 63.)
349  * Allocates or deallocates as many bandwidth allocation units as specified.
350  *
351  * Returns channel < 0 if no channel was allocated or deallocated.
352  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
353  *
354  * If generation is stale, deallocations succeed but allocations fail with
355  * channel = -EAGAIN.
356  *
357  * If channel allocation fails, no bandwidth will be allocated either.
358  * If bandwidth allocation fails, no channel will be allocated either.
359  * But deallocations of channel and bandwidth are tried independently
360  * of each other's success.
361  */
362 void fw_iso_resource_manage(struct fw_card *card, int generation,
363 			    u64 channels_mask, int *channel, int *bandwidth,
364 			    bool allocate)
365 {
366 	u32 channels_hi = channels_mask;	/* channels 31...0 */
367 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
368 	int irm_id, ret, c = -EINVAL;
369 
370 	spin_lock_irq(&card->lock);
371 	irm_id = card->irm_node->node_id;
372 	spin_unlock_irq(&card->lock);
373 
374 	if (channels_hi)
375 		c = manage_channel(card, irm_id, generation, channels_hi,
376 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
377 				allocate);
378 	if (channels_lo && c < 0) {
379 		c = manage_channel(card, irm_id, generation, channels_lo,
380 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
381 				allocate);
382 		if (c >= 0)
383 			c += 32;
384 	}
385 	*channel = c;
386 
387 	if (allocate && channels_mask != 0 && c < 0)
388 		*bandwidth = 0;
389 
390 	if (*bandwidth == 0)
391 		return;
392 
393 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
394 	if (ret < 0)
395 		*bandwidth = 0;
396 
397 	if (allocate && ret < 0) {
398 		if (c >= 0)
399 			deallocate_channel(card, irm_id, generation, c);
400 		*channel = ret;
401 	}
402 }
403 EXPORT_SYMBOL(fw_iso_resource_manage);
404