1 /* 2 * Isochronous I/O functionality: 3 * - Isochronous DMA context management 4 * - Isochronous bus resource management (channels, bandwidth), client side 5 * 6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 21 */ 22 23 #include <linux/dma-mapping.h> 24 #include <linux/errno.h> 25 #include <linux/firewire.h> 26 #include <linux/firewire-constants.h> 27 #include <linux/kernel.h> 28 #include <linux/mm.h> 29 #include <linux/slab.h> 30 #include <linux/spinlock.h> 31 #include <linux/vmalloc.h> 32 33 #include <asm/byteorder.h> 34 35 #include "core.h" 36 37 /* 38 * Isochronous DMA context management 39 */ 40 41 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card, 42 int page_count, enum dma_data_direction direction) 43 { 44 int i, j; 45 dma_addr_t address; 46 47 buffer->page_count = page_count; 48 buffer->direction = direction; 49 50 buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]), 51 GFP_KERNEL); 52 if (buffer->pages == NULL) 53 goto out; 54 55 for (i = 0; i < buffer->page_count; i++) { 56 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); 57 if (buffer->pages[i] == NULL) 58 goto out_pages; 59 60 address = dma_map_page(card->device, buffer->pages[i], 61 0, PAGE_SIZE, direction); 62 if (dma_mapping_error(card->device, address)) { 63 __free_page(buffer->pages[i]); 64 goto out_pages; 65 } 66 set_page_private(buffer->pages[i], address); 67 } 68 69 return 0; 70 71 out_pages: 72 for (j = 0; j < i; j++) { 73 address = page_private(buffer->pages[j]); 74 dma_unmap_page(card->device, address, 75 PAGE_SIZE, direction); 76 __free_page(buffer->pages[j]); 77 } 78 kfree(buffer->pages); 79 out: 80 buffer->pages = NULL; 81 82 return -ENOMEM; 83 } 84 EXPORT_SYMBOL(fw_iso_buffer_init); 85 86 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma) 87 { 88 unsigned long uaddr; 89 int i, err; 90 91 uaddr = vma->vm_start; 92 for (i = 0; i < buffer->page_count; i++) { 93 err = vm_insert_page(vma, uaddr, buffer->pages[i]); 94 if (err) 95 return err; 96 97 uaddr += PAGE_SIZE; 98 } 99 100 return 0; 101 } 102 103 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, 104 struct fw_card *card) 105 { 106 int i; 107 dma_addr_t address; 108 109 for (i = 0; i < buffer->page_count; i++) { 110 address = page_private(buffer->pages[i]); 111 dma_unmap_page(card->device, address, 112 PAGE_SIZE, buffer->direction); 113 __free_page(buffer->pages[i]); 114 } 115 116 kfree(buffer->pages); 117 buffer->pages = NULL; 118 } 119 EXPORT_SYMBOL(fw_iso_buffer_destroy); 120 121 /* Convert DMA address to offset into virtually contiguous buffer. */ 122 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed) 123 { 124 int i; 125 dma_addr_t address; 126 ssize_t offset; 127 128 for (i = 0; i < buffer->page_count; i++) { 129 address = page_private(buffer->pages[i]); 130 offset = (ssize_t)completed - (ssize_t)address; 131 if (offset > 0 && offset <= PAGE_SIZE) 132 return (i << PAGE_SHIFT) + offset; 133 } 134 135 return 0; 136 } 137 138 struct fw_iso_context *fw_iso_context_create(struct fw_card *card, 139 int type, int channel, int speed, size_t header_size, 140 fw_iso_callback_t callback, void *callback_data) 141 { 142 struct fw_iso_context *ctx; 143 144 ctx = card->driver->allocate_iso_context(card, 145 type, channel, header_size); 146 if (IS_ERR(ctx)) 147 return ctx; 148 149 ctx->card = card; 150 ctx->type = type; 151 ctx->channel = channel; 152 ctx->speed = speed; 153 ctx->header_size = header_size; 154 ctx->callback.sc = callback; 155 ctx->callback_data = callback_data; 156 157 return ctx; 158 } 159 EXPORT_SYMBOL(fw_iso_context_create); 160 161 void fw_iso_context_destroy(struct fw_iso_context *ctx) 162 { 163 ctx->card->driver->free_iso_context(ctx); 164 } 165 EXPORT_SYMBOL(fw_iso_context_destroy); 166 167 int fw_iso_context_start(struct fw_iso_context *ctx, 168 int cycle, int sync, int tags) 169 { 170 return ctx->card->driver->start_iso(ctx, cycle, sync, tags); 171 } 172 EXPORT_SYMBOL(fw_iso_context_start); 173 174 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels) 175 { 176 return ctx->card->driver->set_iso_channels(ctx, channels); 177 } 178 179 int fw_iso_context_queue(struct fw_iso_context *ctx, 180 struct fw_iso_packet *packet, 181 struct fw_iso_buffer *buffer, 182 unsigned long payload) 183 { 184 return ctx->card->driver->queue_iso(ctx, packet, buffer, payload); 185 } 186 EXPORT_SYMBOL(fw_iso_context_queue); 187 188 int fw_iso_context_stop(struct fw_iso_context *ctx) 189 { 190 return ctx->card->driver->stop_iso(ctx); 191 } 192 EXPORT_SYMBOL(fw_iso_context_stop); 193 194 /* 195 * Isochronous bus resource management (channels, bandwidth), client side 196 */ 197 198 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation, 199 int bandwidth, bool allocate, __be32 data[2]) 200 { 201 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0; 202 203 /* 204 * On a 1394a IRM with low contention, try < 1 is enough. 205 * On a 1394-1995 IRM, we need at least try < 2. 206 * Let's just do try < 5. 207 */ 208 for (try = 0; try < 5; try++) { 209 new = allocate ? old - bandwidth : old + bandwidth; 210 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL) 211 return -EBUSY; 212 213 data[0] = cpu_to_be32(old); 214 data[1] = cpu_to_be32(new); 215 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, 216 irm_id, generation, SCODE_100, 217 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE, 218 data, 8)) { 219 case RCODE_GENERATION: 220 /* A generation change frees all bandwidth. */ 221 return allocate ? -EAGAIN : bandwidth; 222 223 case RCODE_COMPLETE: 224 if (be32_to_cpup(data) == old) 225 return bandwidth; 226 227 old = be32_to_cpup(data); 228 /* Fall through. */ 229 } 230 } 231 232 return -EIO; 233 } 234 235 static int manage_channel(struct fw_card *card, int irm_id, int generation, 236 u32 channels_mask, u64 offset, bool allocate, __be32 data[2]) 237 { 238 __be32 bit, all, old; 239 int channel, ret = -EIO, retry = 5; 240 241 old = all = allocate ? cpu_to_be32(~0) : 0; 242 243 for (channel = 0; channel < 32; channel++) { 244 if (!(channels_mask & 1 << channel)) 245 continue; 246 247 ret = -EBUSY; 248 249 bit = cpu_to_be32(1 << (31 - channel)); 250 if ((old & bit) != (all & bit)) 251 continue; 252 253 data[0] = old; 254 data[1] = old ^ bit; 255 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, 256 irm_id, generation, SCODE_100, 257 offset, data, 8)) { 258 case RCODE_GENERATION: 259 /* A generation change frees all channels. */ 260 return allocate ? -EAGAIN : channel; 261 262 case RCODE_COMPLETE: 263 if (data[0] == old) 264 return channel; 265 266 old = data[0]; 267 268 /* Is the IRM 1394a-2000 compliant? */ 269 if ((data[0] & bit) == (data[1] & bit)) 270 continue; 271 272 /* 1394-1995 IRM, fall through to retry. */ 273 default: 274 if (retry) { 275 retry--; 276 channel--; 277 } else { 278 ret = -EIO; 279 } 280 } 281 } 282 283 return ret; 284 } 285 286 static void deallocate_channel(struct fw_card *card, int irm_id, 287 int generation, int channel, __be32 buffer[2]) 288 { 289 u32 mask; 290 u64 offset; 291 292 mask = channel < 32 ? 1 << channel : 1 << (channel - 32); 293 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI : 294 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO; 295 296 manage_channel(card, irm_id, generation, mask, offset, false, buffer); 297 } 298 299 /** 300 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth 301 * 302 * In parameters: card, generation, channels_mask, bandwidth, allocate 303 * Out parameters: channel, bandwidth 304 * This function blocks (sleeps) during communication with the IRM. 305 * 306 * Allocates or deallocates at most one channel out of channels_mask. 307 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0. 308 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for 309 * channel 0 and LSB for channel 63.) 310 * Allocates or deallocates as many bandwidth allocation units as specified. 311 * 312 * Returns channel < 0 if no channel was allocated or deallocated. 313 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated. 314 * 315 * If generation is stale, deallocations succeed but allocations fail with 316 * channel = -EAGAIN. 317 * 318 * If channel allocation fails, no bandwidth will be allocated either. 319 * If bandwidth allocation fails, no channel will be allocated either. 320 * But deallocations of channel and bandwidth are tried independently 321 * of each other's success. 322 */ 323 void fw_iso_resource_manage(struct fw_card *card, int generation, 324 u64 channels_mask, int *channel, int *bandwidth, 325 bool allocate, __be32 buffer[2]) 326 { 327 u32 channels_hi = channels_mask; /* channels 31...0 */ 328 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */ 329 int irm_id, ret, c = -EINVAL; 330 331 spin_lock_irq(&card->lock); 332 irm_id = card->irm_node->node_id; 333 spin_unlock_irq(&card->lock); 334 335 if (channels_hi) 336 c = manage_channel(card, irm_id, generation, channels_hi, 337 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI, 338 allocate, buffer); 339 if (channels_lo && c < 0) { 340 c = manage_channel(card, irm_id, generation, channels_lo, 341 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO, 342 allocate, buffer); 343 if (c >= 0) 344 c += 32; 345 } 346 *channel = c; 347 348 if (allocate && channels_mask != 0 && c < 0) 349 *bandwidth = 0; 350 351 if (*bandwidth == 0) 352 return; 353 354 ret = manage_bandwidth(card, irm_id, generation, *bandwidth, 355 allocate, buffer); 356 if (ret < 0) 357 *bandwidth = 0; 358 359 if (allocate && ret < 0) { 360 if (c >= 0) 361 deallocate_channel(card, irm_id, generation, c, buffer); 362 *channel = ret; 363 } 364 } 365 EXPORT_SYMBOL(fw_iso_resource_manage); 366