xref: /linux/drivers/firewire/core-device.c (revision f5c31bcf604db54470868f3118a60dc4a9ba8813)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Device probing and sysfs code.
4  *
5  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/idr.h>
16 #include <linux/jiffies.h>
17 #include <linux/kobject.h>
18 #include <linux/list.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/random.h>
23 #include <linux/rwsem.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/string.h>
27 #include <linux/workqueue.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/byteorder.h>
31 
32 #include "core.h"
33 
34 #define ROOT_DIR_OFFSET	5
35 
36 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
37 {
38 	ci->p = p + 1;
39 	ci->end = ci->p + (p[0] >> 16);
40 }
41 EXPORT_SYMBOL(fw_csr_iterator_init);
42 
43 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
44 {
45 	*key = *ci->p >> 24;
46 	*value = *ci->p & 0xffffff;
47 
48 	return ci->p++ < ci->end;
49 }
50 EXPORT_SYMBOL(fw_csr_iterator_next);
51 
52 static const u32 *search_directory(const u32 *directory, int search_key)
53 {
54 	struct fw_csr_iterator ci;
55 	int key, value;
56 
57 	search_key |= CSR_DIRECTORY;
58 
59 	fw_csr_iterator_init(&ci, directory);
60 	while (fw_csr_iterator_next(&ci, &key, &value)) {
61 		if (key == search_key)
62 			return ci.p - 1 + value;
63 	}
64 
65 	return NULL;
66 }
67 
68 static const u32 *search_leaf(const u32 *directory, int search_key)
69 {
70 	struct fw_csr_iterator ci;
71 	int last_key = 0, key, value;
72 
73 	fw_csr_iterator_init(&ci, directory);
74 	while (fw_csr_iterator_next(&ci, &key, &value)) {
75 		if (last_key == search_key &&
76 		    key == (CSR_DESCRIPTOR | CSR_LEAF))
77 			return ci.p - 1 + value;
78 
79 		last_key = key;
80 	}
81 
82 	return NULL;
83 }
84 
85 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
86 {
87 	unsigned int quadlets, i;
88 	char c;
89 
90 	if (!size || !buf)
91 		return -EINVAL;
92 
93 	quadlets = min(block[0] >> 16, 256U);
94 	if (quadlets < 2)
95 		return -ENODATA;
96 
97 	if (block[1] != 0 || block[2] != 0)
98 		/* unknown language/character set */
99 		return -ENODATA;
100 
101 	block += 3;
102 	quadlets -= 2;
103 	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
104 		c = block[i / 4] >> (24 - 8 * (i % 4));
105 		if (c == '\0')
106 			break;
107 		buf[i] = c;
108 	}
109 	buf[i] = '\0';
110 
111 	return i;
112 }
113 
114 /**
115  * fw_csr_string() - reads a string from the configuration ROM
116  * @directory:	e.g. root directory or unit directory
117  * @key:	the key of the preceding directory entry
118  * @buf:	where to put the string
119  * @size:	size of @buf, in bytes
120  *
121  * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
122  * @key. The string is zero-terminated. An overlong string is silently truncated such that it
123  * and the zero byte fit into @size.
124  *
125  * Returns strlen(buf) or a negative error code.
126  */
127 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
128 {
129 	const u32 *leaf = search_leaf(directory, key);
130 	if (!leaf)
131 		return -ENOENT;
132 
133 	return textual_leaf_to_string(leaf, buf, size);
134 }
135 EXPORT_SYMBOL(fw_csr_string);
136 
137 static void get_ids(const u32 *directory, int *id)
138 {
139 	struct fw_csr_iterator ci;
140 	int key, value;
141 
142 	fw_csr_iterator_init(&ci, directory);
143 	while (fw_csr_iterator_next(&ci, &key, &value)) {
144 		switch (key) {
145 		case CSR_VENDOR:	id[0] = value; break;
146 		case CSR_MODEL:		id[1] = value; break;
147 		case CSR_SPECIFIER_ID:	id[2] = value; break;
148 		case CSR_VERSION:	id[3] = value; break;
149 		}
150 	}
151 }
152 
153 static void get_modalias_ids(const struct fw_unit *unit, int *id)
154 {
155 	const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET];
156 	const u32 *directories[] = {NULL, NULL, NULL};
157 	const u32 *vendor_directory;
158 	int i;
159 
160 	directories[0] = root_directory;
161 
162 	// Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C
163 	// Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'.
164 	vendor_directory = search_directory(root_directory, CSR_VENDOR);
165 	if (!vendor_directory) {
166 		directories[1] = unit->directory;
167 	} else {
168 		directories[1] = vendor_directory;
169 		directories[2] = unit->directory;
170 	}
171 
172 	for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i)
173 		get_ids(directories[i], id);
174 }
175 
176 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
177 {
178 	int match = 0;
179 
180 	if (id[0] == id_table->vendor_id)
181 		match |= IEEE1394_MATCH_VENDOR_ID;
182 	if (id[1] == id_table->model_id)
183 		match |= IEEE1394_MATCH_MODEL_ID;
184 	if (id[2] == id_table->specifier_id)
185 		match |= IEEE1394_MATCH_SPECIFIER_ID;
186 	if (id[3] == id_table->version)
187 		match |= IEEE1394_MATCH_VERSION;
188 
189 	return (match & id_table->match_flags) == id_table->match_flags;
190 }
191 
192 static const struct ieee1394_device_id *unit_match(struct device *dev,
193 						   struct device_driver *drv)
194 {
195 	const struct ieee1394_device_id *id_table =
196 			container_of(drv, struct fw_driver, driver)->id_table;
197 	int id[] = {0, 0, 0, 0};
198 
199 	get_modalias_ids(fw_unit(dev), id);
200 
201 	for (; id_table->match_flags != 0; id_table++)
202 		if (match_ids(id_table, id))
203 			return id_table;
204 
205 	return NULL;
206 }
207 
208 static bool is_fw_unit(const struct device *dev);
209 
210 static int fw_unit_match(struct device *dev, struct device_driver *drv)
211 {
212 	/* We only allow binding to fw_units. */
213 	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
214 }
215 
216 static int fw_unit_probe(struct device *dev)
217 {
218 	struct fw_driver *driver =
219 			container_of(dev->driver, struct fw_driver, driver);
220 
221 	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
222 }
223 
224 static void fw_unit_remove(struct device *dev)
225 {
226 	struct fw_driver *driver =
227 			container_of(dev->driver, struct fw_driver, driver);
228 
229 	driver->remove(fw_unit(dev));
230 }
231 
232 static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size)
233 {
234 	int id[] = {0, 0, 0, 0};
235 
236 	get_modalias_ids(unit, id);
237 
238 	return snprintf(buffer, buffer_size,
239 			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
240 			id[0], id[1], id[2], id[3]);
241 }
242 
243 static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env)
244 {
245 	const struct fw_unit *unit = fw_unit(dev);
246 	char modalias[64];
247 
248 	get_modalias(unit, modalias, sizeof(modalias));
249 
250 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
251 		return -ENOMEM;
252 
253 	return 0;
254 }
255 
256 const struct bus_type fw_bus_type = {
257 	.name = "firewire",
258 	.match = fw_unit_match,
259 	.probe = fw_unit_probe,
260 	.remove = fw_unit_remove,
261 };
262 EXPORT_SYMBOL(fw_bus_type);
263 
264 int fw_device_enable_phys_dma(struct fw_device *device)
265 {
266 	int generation = device->generation;
267 
268 	/* device->node_id, accessed below, must not be older than generation */
269 	smp_rmb();
270 
271 	return device->card->driver->enable_phys_dma(device->card,
272 						     device->node_id,
273 						     generation);
274 }
275 EXPORT_SYMBOL(fw_device_enable_phys_dma);
276 
277 struct config_rom_attribute {
278 	struct device_attribute attr;
279 	u32 key;
280 };
281 
282 static ssize_t show_immediate(struct device *dev,
283 			      struct device_attribute *dattr, char *buf)
284 {
285 	struct config_rom_attribute *attr =
286 		container_of(dattr, struct config_rom_attribute, attr);
287 	struct fw_csr_iterator ci;
288 	const u32 *directories[] = {NULL, NULL};
289 	int i, value = -1;
290 
291 	down_read(&fw_device_rwsem);
292 
293 	if (is_fw_unit(dev)) {
294 		directories[0] = fw_unit(dev)->directory;
295 	} else {
296 		const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
297 		const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
298 
299 		if (!vendor_directory) {
300 			directories[0] = root_directory;
301 		} else {
302 			// Legacy layout of configuration ROM described in Annex 1 of
303 			// 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading
304 			// Association, TA Document 1999027)'.
305 			directories[0] = vendor_directory;
306 			directories[1] = root_directory;
307 		}
308 	}
309 
310 	for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
311 		int key, val;
312 
313 		fw_csr_iterator_init(&ci, directories[i]);
314 		while (fw_csr_iterator_next(&ci, &key, &val)) {
315 			if (attr->key == key)
316 				value = val;
317 		}
318 	}
319 
320 	up_read(&fw_device_rwsem);
321 
322 	if (value < 0)
323 		return -ENOENT;
324 
325 	return snprintf(buf, buf ? PAGE_SIZE : 0, "0x%06x\n", value);
326 }
327 
328 #define IMMEDIATE_ATTR(name, key)				\
329 	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
330 
331 static ssize_t show_text_leaf(struct device *dev,
332 			      struct device_attribute *dattr, char *buf)
333 {
334 	struct config_rom_attribute *attr =
335 		container_of(dattr, struct config_rom_attribute, attr);
336 	const u32 *directories[] = {NULL, NULL};
337 	size_t bufsize;
338 	char dummy_buf[2];
339 	int i, ret = -ENOENT;
340 
341 	down_read(&fw_device_rwsem);
342 
343 	if (is_fw_unit(dev)) {
344 		directories[0] = fw_unit(dev)->directory;
345 	} else {
346 		const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
347 		const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
348 
349 		if (!vendor_directory) {
350 			directories[0] = root_directory;
351 		} else {
352 			// Legacy layout of configuration ROM described in Annex 1 of
353 			// 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394
354 			// Trading Association, TA Document 1999027)'.
355 			directories[0] = root_directory;
356 			directories[1] = vendor_directory;
357 		}
358 	}
359 
360 	if (buf) {
361 		bufsize = PAGE_SIZE - 1;
362 	} else {
363 		buf = dummy_buf;
364 		bufsize = 1;
365 	}
366 
367 	for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
368 		int result = fw_csr_string(directories[i], attr->key, buf, bufsize);
369 		// Detected.
370 		if (result >= 0) {
371 			ret = result;
372 		} else if (i == 0 && attr->key == CSR_VENDOR) {
373 			// Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry
374 			// in the root directory follows to the directory entry for vendor ID
375 			// instead of the immediate value for vendor ID.
376 			result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf,
377 					       bufsize);
378 			if (result >= 0)
379 				ret = result;
380 		}
381 	}
382 
383 	if (ret >= 0) {
384 		/* Strip trailing whitespace and add newline. */
385 		while (ret > 0 && isspace(buf[ret - 1]))
386 			ret--;
387 		strcpy(buf + ret, "\n");
388 		ret++;
389 	}
390 
391 	up_read(&fw_device_rwsem);
392 
393 	return ret;
394 }
395 
396 #define TEXT_LEAF_ATTR(name, key)				\
397 	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
398 
399 static struct config_rom_attribute config_rom_attributes[] = {
400 	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
401 	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
402 	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
403 	IMMEDIATE_ATTR(version, CSR_VERSION),
404 	IMMEDIATE_ATTR(model, CSR_MODEL),
405 	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
406 	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
407 	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
408 };
409 
410 static void init_fw_attribute_group(struct device *dev,
411 				    struct device_attribute *attrs,
412 				    struct fw_attribute_group *group)
413 {
414 	struct device_attribute *attr;
415 	int i, j;
416 
417 	for (j = 0; attrs[j].attr.name != NULL; j++)
418 		group->attrs[j] = &attrs[j].attr;
419 
420 	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
421 		attr = &config_rom_attributes[i].attr;
422 		if (attr->show(dev, attr, NULL) < 0)
423 			continue;
424 		group->attrs[j++] = &attr->attr;
425 	}
426 
427 	group->attrs[j] = NULL;
428 	group->groups[0] = &group->group;
429 	group->groups[1] = NULL;
430 	group->group.attrs = group->attrs;
431 	dev->groups = (const struct attribute_group **) group->groups;
432 }
433 
434 static ssize_t modalias_show(struct device *dev,
435 			     struct device_attribute *attr, char *buf)
436 {
437 	struct fw_unit *unit = fw_unit(dev);
438 	int length;
439 
440 	length = get_modalias(unit, buf, PAGE_SIZE);
441 	strcpy(buf + length, "\n");
442 
443 	return length + 1;
444 }
445 
446 static ssize_t rom_index_show(struct device *dev,
447 			      struct device_attribute *attr, char *buf)
448 {
449 	struct fw_device *device = fw_device(dev->parent);
450 	struct fw_unit *unit = fw_unit(dev);
451 
452 	return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom);
453 }
454 
455 static struct device_attribute fw_unit_attributes[] = {
456 	__ATTR_RO(modalias),
457 	__ATTR_RO(rom_index),
458 	__ATTR_NULL,
459 };
460 
461 static ssize_t config_rom_show(struct device *dev,
462 			       struct device_attribute *attr, char *buf)
463 {
464 	struct fw_device *device = fw_device(dev);
465 	size_t length;
466 
467 	down_read(&fw_device_rwsem);
468 	length = device->config_rom_length * 4;
469 	memcpy(buf, device->config_rom, length);
470 	up_read(&fw_device_rwsem);
471 
472 	return length;
473 }
474 
475 static ssize_t guid_show(struct device *dev,
476 			 struct device_attribute *attr, char *buf)
477 {
478 	struct fw_device *device = fw_device(dev);
479 	int ret;
480 
481 	down_read(&fw_device_rwsem);
482 	ret = sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]);
483 	up_read(&fw_device_rwsem);
484 
485 	return ret;
486 }
487 
488 static ssize_t is_local_show(struct device *dev,
489 			     struct device_attribute *attr, char *buf)
490 {
491 	struct fw_device *device = fw_device(dev);
492 
493 	return sprintf(buf, "%u\n", device->is_local);
494 }
495 
496 static int units_sprintf(char *buf, const u32 *directory)
497 {
498 	struct fw_csr_iterator ci;
499 	int key, value;
500 	int specifier_id = 0;
501 	int version = 0;
502 
503 	fw_csr_iterator_init(&ci, directory);
504 	while (fw_csr_iterator_next(&ci, &key, &value)) {
505 		switch (key) {
506 		case CSR_SPECIFIER_ID:
507 			specifier_id = value;
508 			break;
509 		case CSR_VERSION:
510 			version = value;
511 			break;
512 		}
513 	}
514 
515 	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
516 }
517 
518 static ssize_t units_show(struct device *dev,
519 			  struct device_attribute *attr, char *buf)
520 {
521 	struct fw_device *device = fw_device(dev);
522 	struct fw_csr_iterator ci;
523 	int key, value, i = 0;
524 
525 	down_read(&fw_device_rwsem);
526 	fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
527 	while (fw_csr_iterator_next(&ci, &key, &value)) {
528 		if (key != (CSR_UNIT | CSR_DIRECTORY))
529 			continue;
530 		i += units_sprintf(&buf[i], ci.p + value - 1);
531 		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
532 			break;
533 	}
534 	up_read(&fw_device_rwsem);
535 
536 	if (i)
537 		buf[i - 1] = '\n';
538 
539 	return i;
540 }
541 
542 static struct device_attribute fw_device_attributes[] = {
543 	__ATTR_RO(config_rom),
544 	__ATTR_RO(guid),
545 	__ATTR_RO(is_local),
546 	__ATTR_RO(units),
547 	__ATTR_NULL,
548 };
549 
550 static int read_rom(struct fw_device *device,
551 		    int generation, int index, u32 *data)
552 {
553 	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
554 	int i, rcode;
555 
556 	/* device->node_id, accessed below, must not be older than generation */
557 	smp_rmb();
558 
559 	for (i = 10; i < 100; i += 10) {
560 		rcode = fw_run_transaction(device->card,
561 				TCODE_READ_QUADLET_REQUEST, device->node_id,
562 				generation, device->max_speed, offset, data, 4);
563 		if (rcode != RCODE_BUSY)
564 			break;
565 		msleep(i);
566 	}
567 	be32_to_cpus(data);
568 
569 	return rcode;
570 }
571 
572 #define MAX_CONFIG_ROM_SIZE 256
573 
574 /*
575  * Read the bus info block, perform a speed probe, and read all of the rest of
576  * the config ROM.  We do all this with a cached bus generation.  If the bus
577  * generation changes under us, read_config_rom will fail and get retried.
578  * It's better to start all over in this case because the node from which we
579  * are reading the ROM may have changed the ROM during the reset.
580  * Returns either a result code or a negative error code.
581  */
582 static int read_config_rom(struct fw_device *device, int generation)
583 {
584 	struct fw_card *card = device->card;
585 	const u32 *old_rom, *new_rom;
586 	u32 *rom, *stack;
587 	u32 sp, key;
588 	int i, end, length, ret;
589 
590 	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
591 		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
592 	if (rom == NULL)
593 		return -ENOMEM;
594 
595 	stack = &rom[MAX_CONFIG_ROM_SIZE];
596 	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
597 
598 	device->max_speed = SCODE_100;
599 
600 	/* First read the bus info block. */
601 	for (i = 0; i < 5; i++) {
602 		ret = read_rom(device, generation, i, &rom[i]);
603 		if (ret != RCODE_COMPLETE)
604 			goto out;
605 		/*
606 		 * As per IEEE1212 7.2, during initialization, devices can
607 		 * reply with a 0 for the first quadlet of the config
608 		 * rom to indicate that they are booting (for example,
609 		 * if the firmware is on the disk of a external
610 		 * harddisk).  In that case we just fail, and the
611 		 * retry mechanism will try again later.
612 		 */
613 		if (i == 0 && rom[i] == 0) {
614 			ret = RCODE_BUSY;
615 			goto out;
616 		}
617 	}
618 
619 	device->max_speed = device->node->max_speed;
620 
621 	/*
622 	 * Determine the speed of
623 	 *   - devices with link speed less than PHY speed,
624 	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
625 	 *   - all devices if there are 1394b repeaters.
626 	 * Note, we cannot use the bus info block's link_spd as starting point
627 	 * because some buggy firmwares set it lower than necessary and because
628 	 * 1394-1995 nodes do not have the field.
629 	 */
630 	if ((rom[2] & 0x7) < device->max_speed ||
631 	    device->max_speed == SCODE_BETA ||
632 	    card->beta_repeaters_present) {
633 		u32 dummy;
634 
635 		/* for S1600 and S3200 */
636 		if (device->max_speed == SCODE_BETA)
637 			device->max_speed = card->link_speed;
638 
639 		while (device->max_speed > SCODE_100) {
640 			if (read_rom(device, generation, 0, &dummy) ==
641 			    RCODE_COMPLETE)
642 				break;
643 			device->max_speed--;
644 		}
645 	}
646 
647 	/*
648 	 * Now parse the config rom.  The config rom is a recursive
649 	 * directory structure so we parse it using a stack of
650 	 * references to the blocks that make up the structure.  We
651 	 * push a reference to the root directory on the stack to
652 	 * start things off.
653 	 */
654 	length = i;
655 	sp = 0;
656 	stack[sp++] = 0xc0000005;
657 	while (sp > 0) {
658 		/*
659 		 * Pop the next block reference of the stack.  The
660 		 * lower 24 bits is the offset into the config rom,
661 		 * the upper 8 bits are the type of the reference the
662 		 * block.
663 		 */
664 		key = stack[--sp];
665 		i = key & 0xffffff;
666 		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
667 			ret = -ENXIO;
668 			goto out;
669 		}
670 
671 		/* Read header quadlet for the block to get the length. */
672 		ret = read_rom(device, generation, i, &rom[i]);
673 		if (ret != RCODE_COMPLETE)
674 			goto out;
675 		end = i + (rom[i] >> 16) + 1;
676 		if (end > MAX_CONFIG_ROM_SIZE) {
677 			/*
678 			 * This block extends outside the config ROM which is
679 			 * a firmware bug.  Ignore this whole block, i.e.
680 			 * simply set a fake block length of 0.
681 			 */
682 			fw_err(card, "skipped invalid ROM block %x at %llx\n",
683 			       rom[i],
684 			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
685 			rom[i] = 0;
686 			end = i;
687 		}
688 		i++;
689 
690 		/*
691 		 * Now read in the block.  If this is a directory
692 		 * block, check the entries as we read them to see if
693 		 * it references another block, and push it in that case.
694 		 */
695 		for (; i < end; i++) {
696 			ret = read_rom(device, generation, i, &rom[i]);
697 			if (ret != RCODE_COMPLETE)
698 				goto out;
699 
700 			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
701 				continue;
702 			/*
703 			 * Offset points outside the ROM.  May be a firmware
704 			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
705 			 * 7.7.18).  Simply overwrite this pointer here by a
706 			 * fake immediate entry so that later iterators over
707 			 * the ROM don't have to check offsets all the time.
708 			 */
709 			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
710 				fw_err(card,
711 				       "skipped unsupported ROM entry %x at %llx\n",
712 				       rom[i],
713 				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
714 				rom[i] = 0;
715 				continue;
716 			}
717 			stack[sp++] = i + rom[i];
718 		}
719 		if (length < i)
720 			length = i;
721 	}
722 
723 	old_rom = device->config_rom;
724 	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
725 	if (new_rom == NULL) {
726 		ret = -ENOMEM;
727 		goto out;
728 	}
729 
730 	down_write(&fw_device_rwsem);
731 	device->config_rom = new_rom;
732 	device->config_rom_length = length;
733 	up_write(&fw_device_rwsem);
734 
735 	kfree(old_rom);
736 	ret = RCODE_COMPLETE;
737 	device->max_rec	= rom[2] >> 12 & 0xf;
738 	device->cmc	= rom[2] >> 30 & 1;
739 	device->irmc	= rom[2] >> 31 & 1;
740  out:
741 	kfree(rom);
742 
743 	return ret;
744 }
745 
746 static void fw_unit_release(struct device *dev)
747 {
748 	struct fw_unit *unit = fw_unit(dev);
749 
750 	fw_device_put(fw_parent_device(unit));
751 	kfree(unit);
752 }
753 
754 static struct device_type fw_unit_type = {
755 	.uevent		= fw_unit_uevent,
756 	.release	= fw_unit_release,
757 };
758 
759 static bool is_fw_unit(const struct device *dev)
760 {
761 	return dev->type == &fw_unit_type;
762 }
763 
764 static void create_units(struct fw_device *device)
765 {
766 	struct fw_csr_iterator ci;
767 	struct fw_unit *unit;
768 	int key, value, i;
769 
770 	i = 0;
771 	fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
772 	while (fw_csr_iterator_next(&ci, &key, &value)) {
773 		if (key != (CSR_UNIT | CSR_DIRECTORY))
774 			continue;
775 
776 		/*
777 		 * Get the address of the unit directory and try to
778 		 * match the drivers id_tables against it.
779 		 */
780 		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
781 		if (unit == NULL)
782 			continue;
783 
784 		unit->directory = ci.p + value - 1;
785 		unit->device.bus = &fw_bus_type;
786 		unit->device.type = &fw_unit_type;
787 		unit->device.parent = &device->device;
788 		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
789 
790 		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
791 				ARRAY_SIZE(fw_unit_attributes) +
792 				ARRAY_SIZE(config_rom_attributes));
793 		init_fw_attribute_group(&unit->device,
794 					fw_unit_attributes,
795 					&unit->attribute_group);
796 
797 		fw_device_get(device);
798 		if (device_register(&unit->device) < 0) {
799 			put_device(&unit->device);
800 			continue;
801 		}
802 	}
803 }
804 
805 static int shutdown_unit(struct device *device, void *data)
806 {
807 	device_unregister(device);
808 
809 	return 0;
810 }
811 
812 /*
813  * fw_device_rwsem acts as dual purpose mutex:
814  *   - serializes accesses to fw_device_idr,
815  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
816  *     fw_unit.directory, unless those accesses happen at safe occasions
817  */
818 DECLARE_RWSEM(fw_device_rwsem);
819 
820 DEFINE_IDR(fw_device_idr);
821 int fw_cdev_major;
822 
823 struct fw_device *fw_device_get_by_devt(dev_t devt)
824 {
825 	struct fw_device *device;
826 
827 	down_read(&fw_device_rwsem);
828 	device = idr_find(&fw_device_idr, MINOR(devt));
829 	if (device)
830 		fw_device_get(device);
831 	up_read(&fw_device_rwsem);
832 
833 	return device;
834 }
835 
836 struct workqueue_struct *fw_workqueue;
837 EXPORT_SYMBOL(fw_workqueue);
838 
839 static void fw_schedule_device_work(struct fw_device *device,
840 				    unsigned long delay)
841 {
842 	queue_delayed_work(fw_workqueue, &device->work, delay);
843 }
844 
845 /*
846  * These defines control the retry behavior for reading the config
847  * rom.  It shouldn't be necessary to tweak these; if the device
848  * doesn't respond to a config rom read within 10 seconds, it's not
849  * going to respond at all.  As for the initial delay, a lot of
850  * devices will be able to respond within half a second after bus
851  * reset.  On the other hand, it's not really worth being more
852  * aggressive than that, since it scales pretty well; if 10 devices
853  * are plugged in, they're all getting read within one second.
854  */
855 
856 #define MAX_RETRIES	10
857 #define RETRY_DELAY	(3 * HZ)
858 #define INITIAL_DELAY	(HZ / 2)
859 #define SHUTDOWN_DELAY	(2 * HZ)
860 
861 static void fw_device_shutdown(struct work_struct *work)
862 {
863 	struct fw_device *device =
864 		container_of(work, struct fw_device, work.work);
865 	int minor = MINOR(device->device.devt);
866 
867 	if (time_before64(get_jiffies_64(),
868 			  device->card->reset_jiffies + SHUTDOWN_DELAY)
869 	    && !list_empty(&device->card->link)) {
870 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
871 		return;
872 	}
873 
874 	if (atomic_cmpxchg(&device->state,
875 			   FW_DEVICE_GONE,
876 			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
877 		return;
878 
879 	fw_device_cdev_remove(device);
880 	device_for_each_child(&device->device, NULL, shutdown_unit);
881 	device_unregister(&device->device);
882 
883 	down_write(&fw_device_rwsem);
884 	idr_remove(&fw_device_idr, minor);
885 	up_write(&fw_device_rwsem);
886 
887 	fw_device_put(device);
888 }
889 
890 static void fw_device_release(struct device *dev)
891 {
892 	struct fw_device *device = fw_device(dev);
893 	struct fw_card *card = device->card;
894 	unsigned long flags;
895 
896 	/*
897 	 * Take the card lock so we don't set this to NULL while a
898 	 * FW_NODE_UPDATED callback is being handled or while the
899 	 * bus manager work looks at this node.
900 	 */
901 	spin_lock_irqsave(&card->lock, flags);
902 	device->node->data = NULL;
903 	spin_unlock_irqrestore(&card->lock, flags);
904 
905 	fw_node_put(device->node);
906 	kfree(device->config_rom);
907 	kfree(device);
908 	fw_card_put(card);
909 }
910 
911 static struct device_type fw_device_type = {
912 	.release = fw_device_release,
913 };
914 
915 static bool is_fw_device(const struct device *dev)
916 {
917 	return dev->type == &fw_device_type;
918 }
919 
920 static int update_unit(struct device *dev, void *data)
921 {
922 	struct fw_unit *unit = fw_unit(dev);
923 	struct fw_driver *driver = (struct fw_driver *)dev->driver;
924 
925 	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
926 		device_lock(dev);
927 		driver->update(unit);
928 		device_unlock(dev);
929 	}
930 
931 	return 0;
932 }
933 
934 static void fw_device_update(struct work_struct *work)
935 {
936 	struct fw_device *device =
937 		container_of(work, struct fw_device, work.work);
938 
939 	fw_device_cdev_update(device);
940 	device_for_each_child(&device->device, NULL, update_unit);
941 }
942 
943 /*
944  * If a device was pending for deletion because its node went away but its
945  * bus info block and root directory header matches that of a newly discovered
946  * device, revive the existing fw_device.
947  * The newly allocated fw_device becomes obsolete instead.
948  */
949 static int lookup_existing_device(struct device *dev, void *data)
950 {
951 	struct fw_device *old = fw_device(dev);
952 	struct fw_device *new = data;
953 	struct fw_card *card = new->card;
954 	int match = 0;
955 
956 	if (!is_fw_device(dev))
957 		return 0;
958 
959 	down_read(&fw_device_rwsem); /* serialize config_rom access */
960 	spin_lock_irq(&card->lock);  /* serialize node access */
961 
962 	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
963 	    atomic_cmpxchg(&old->state,
964 			   FW_DEVICE_GONE,
965 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
966 		struct fw_node *current_node = new->node;
967 		struct fw_node *obsolete_node = old->node;
968 
969 		new->node = obsolete_node;
970 		new->node->data = new;
971 		old->node = current_node;
972 		old->node->data = old;
973 
974 		old->max_speed = new->max_speed;
975 		old->node_id = current_node->node_id;
976 		smp_wmb();  /* update node_id before generation */
977 		old->generation = card->generation;
978 		old->config_rom_retries = 0;
979 		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
980 
981 		old->workfn = fw_device_update;
982 		fw_schedule_device_work(old, 0);
983 
984 		if (current_node == card->root_node)
985 			fw_schedule_bm_work(card, 0);
986 
987 		match = 1;
988 	}
989 
990 	spin_unlock_irq(&card->lock);
991 	up_read(&fw_device_rwsem);
992 
993 	return match;
994 }
995 
996 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
997 
998 static void set_broadcast_channel(struct fw_device *device, int generation)
999 {
1000 	struct fw_card *card = device->card;
1001 	__be32 data;
1002 	int rcode;
1003 
1004 	if (!card->broadcast_channel_allocated)
1005 		return;
1006 
1007 	/*
1008 	 * The Broadcast_Channel Valid bit is required by nodes which want to
1009 	 * transmit on this channel.  Such transmissions are practically
1010 	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
1011 	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
1012 	 * to narrow down to which nodes we send Broadcast_Channel updates.
1013 	 */
1014 	if (!device->irmc || device->max_rec < 8)
1015 		return;
1016 
1017 	/*
1018 	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
1019 	 * Perform a read test first.
1020 	 */
1021 	if (device->bc_implemented == BC_UNKNOWN) {
1022 		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
1023 				device->node_id, generation, device->max_speed,
1024 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
1025 				&data, 4);
1026 		switch (rcode) {
1027 		case RCODE_COMPLETE:
1028 			if (data & cpu_to_be32(1 << 31)) {
1029 				device->bc_implemented = BC_IMPLEMENTED;
1030 				break;
1031 			}
1032 			fallthrough;	/* to case address error */
1033 		case RCODE_ADDRESS_ERROR:
1034 			device->bc_implemented = BC_UNIMPLEMENTED;
1035 		}
1036 	}
1037 
1038 	if (device->bc_implemented == BC_IMPLEMENTED) {
1039 		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
1040 				   BROADCAST_CHANNEL_VALID);
1041 		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
1042 				device->node_id, generation, device->max_speed,
1043 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
1044 				&data, 4);
1045 	}
1046 }
1047 
1048 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
1049 {
1050 	if (is_fw_device(dev))
1051 		set_broadcast_channel(fw_device(dev), (long)gen);
1052 
1053 	return 0;
1054 }
1055 
1056 static void fw_device_init(struct work_struct *work)
1057 {
1058 	struct fw_device *device =
1059 		container_of(work, struct fw_device, work.work);
1060 	struct fw_card *card = device->card;
1061 	struct device *revived_dev;
1062 	int minor, ret;
1063 
1064 	/*
1065 	 * All failure paths here set node->data to NULL, so that we
1066 	 * don't try to do device_for_each_child() on a kfree()'d
1067 	 * device.
1068 	 */
1069 
1070 	ret = read_config_rom(device, device->generation);
1071 	if (ret != RCODE_COMPLETE) {
1072 		if (device->config_rom_retries < MAX_RETRIES &&
1073 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1074 			device->config_rom_retries++;
1075 			fw_schedule_device_work(device, RETRY_DELAY);
1076 		} else {
1077 			if (device->node->link_on)
1078 				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1079 					  device->node_id,
1080 					  fw_rcode_string(ret));
1081 			if (device->node == card->root_node)
1082 				fw_schedule_bm_work(card, 0);
1083 			fw_device_release(&device->device);
1084 		}
1085 		return;
1086 	}
1087 
1088 	revived_dev = device_find_child(card->device,
1089 					device, lookup_existing_device);
1090 	if (revived_dev) {
1091 		put_device(revived_dev);
1092 		fw_device_release(&device->device);
1093 
1094 		return;
1095 	}
1096 
1097 	device_initialize(&device->device);
1098 
1099 	fw_device_get(device);
1100 	down_write(&fw_device_rwsem);
1101 	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1102 			GFP_KERNEL);
1103 	up_write(&fw_device_rwsem);
1104 
1105 	if (minor < 0)
1106 		goto error;
1107 
1108 	device->device.bus = &fw_bus_type;
1109 	device->device.type = &fw_device_type;
1110 	device->device.parent = card->device;
1111 	device->device.devt = MKDEV(fw_cdev_major, minor);
1112 	dev_set_name(&device->device, "fw%d", minor);
1113 
1114 	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1115 			ARRAY_SIZE(fw_device_attributes) +
1116 			ARRAY_SIZE(config_rom_attributes));
1117 	init_fw_attribute_group(&device->device,
1118 				fw_device_attributes,
1119 				&device->attribute_group);
1120 
1121 	if (device_add(&device->device)) {
1122 		fw_err(card, "failed to add device\n");
1123 		goto error_with_cdev;
1124 	}
1125 
1126 	create_units(device);
1127 
1128 	/*
1129 	 * Transition the device to running state.  If it got pulled
1130 	 * out from under us while we did the initialization work, we
1131 	 * have to shut down the device again here.  Normally, though,
1132 	 * fw_node_event will be responsible for shutting it down when
1133 	 * necessary.  We have to use the atomic cmpxchg here to avoid
1134 	 * racing with the FW_NODE_DESTROYED case in
1135 	 * fw_node_event().
1136 	 */
1137 	if (atomic_cmpxchg(&device->state,
1138 			   FW_DEVICE_INITIALIZING,
1139 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1140 		device->workfn = fw_device_shutdown;
1141 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1142 	} else {
1143 		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1144 			  dev_name(&device->device),
1145 			  device->config_rom[3], device->config_rom[4],
1146 			  1 << device->max_speed);
1147 		device->config_rom_retries = 0;
1148 
1149 		set_broadcast_channel(device, device->generation);
1150 
1151 		add_device_randomness(&device->config_rom[3], 8);
1152 	}
1153 
1154 	/*
1155 	 * Reschedule the IRM work if we just finished reading the
1156 	 * root node config rom.  If this races with a bus reset we
1157 	 * just end up running the IRM work a couple of extra times -
1158 	 * pretty harmless.
1159 	 */
1160 	if (device->node == card->root_node)
1161 		fw_schedule_bm_work(card, 0);
1162 
1163 	return;
1164 
1165  error_with_cdev:
1166 	down_write(&fw_device_rwsem);
1167 	idr_remove(&fw_device_idr, minor);
1168 	up_write(&fw_device_rwsem);
1169  error:
1170 	fw_device_put(device);		/* fw_device_idr's reference */
1171 
1172 	put_device(&device->device);	/* our reference */
1173 }
1174 
1175 /* Reread and compare bus info block and header of root directory */
1176 static int reread_config_rom(struct fw_device *device, int generation,
1177 			     bool *changed)
1178 {
1179 	u32 q;
1180 	int i, rcode;
1181 
1182 	for (i = 0; i < 6; i++) {
1183 		rcode = read_rom(device, generation, i, &q);
1184 		if (rcode != RCODE_COMPLETE)
1185 			return rcode;
1186 
1187 		if (i == 0 && q == 0)
1188 			/* inaccessible (see read_config_rom); retry later */
1189 			return RCODE_BUSY;
1190 
1191 		if (q != device->config_rom[i]) {
1192 			*changed = true;
1193 			return RCODE_COMPLETE;
1194 		}
1195 	}
1196 
1197 	*changed = false;
1198 	return RCODE_COMPLETE;
1199 }
1200 
1201 static void fw_device_refresh(struct work_struct *work)
1202 {
1203 	struct fw_device *device =
1204 		container_of(work, struct fw_device, work.work);
1205 	struct fw_card *card = device->card;
1206 	int ret, node_id = device->node_id;
1207 	bool changed;
1208 
1209 	ret = reread_config_rom(device, device->generation, &changed);
1210 	if (ret != RCODE_COMPLETE)
1211 		goto failed_config_rom;
1212 
1213 	if (!changed) {
1214 		if (atomic_cmpxchg(&device->state,
1215 				   FW_DEVICE_INITIALIZING,
1216 				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1217 			goto gone;
1218 
1219 		fw_device_update(work);
1220 		device->config_rom_retries = 0;
1221 		goto out;
1222 	}
1223 
1224 	/*
1225 	 * Something changed.  We keep things simple and don't investigate
1226 	 * further.  We just destroy all previous units and create new ones.
1227 	 */
1228 	device_for_each_child(&device->device, NULL, shutdown_unit);
1229 
1230 	ret = read_config_rom(device, device->generation);
1231 	if (ret != RCODE_COMPLETE)
1232 		goto failed_config_rom;
1233 
1234 	fw_device_cdev_update(device);
1235 	create_units(device);
1236 
1237 	/* Userspace may want to re-read attributes. */
1238 	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1239 
1240 	if (atomic_cmpxchg(&device->state,
1241 			   FW_DEVICE_INITIALIZING,
1242 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1243 		goto gone;
1244 
1245 	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1246 	device->config_rom_retries = 0;
1247 	goto out;
1248 
1249  failed_config_rom:
1250 	if (device->config_rom_retries < MAX_RETRIES &&
1251 	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1252 		device->config_rom_retries++;
1253 		fw_schedule_device_work(device, RETRY_DELAY);
1254 		return;
1255 	}
1256 
1257 	fw_notice(card, "giving up on refresh of device %s: %s\n",
1258 		  dev_name(&device->device), fw_rcode_string(ret));
1259  gone:
1260 	atomic_set(&device->state, FW_DEVICE_GONE);
1261 	device->workfn = fw_device_shutdown;
1262 	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1263  out:
1264 	if (node_id == card->root_node->node_id)
1265 		fw_schedule_bm_work(card, 0);
1266 }
1267 
1268 static void fw_device_workfn(struct work_struct *work)
1269 {
1270 	struct fw_device *device = container_of(to_delayed_work(work),
1271 						struct fw_device, work);
1272 	device->workfn(work);
1273 }
1274 
1275 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1276 {
1277 	struct fw_device *device;
1278 
1279 	switch (event) {
1280 	case FW_NODE_CREATED:
1281 		/*
1282 		 * Attempt to scan the node, regardless whether its self ID has
1283 		 * the L (link active) flag set or not.  Some broken devices
1284 		 * send L=0 but have an up-and-running link; others send L=1
1285 		 * without actually having a link.
1286 		 */
1287  create:
1288 		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1289 		if (device == NULL)
1290 			break;
1291 
1292 		/*
1293 		 * Do minimal initialization of the device here, the
1294 		 * rest will happen in fw_device_init().
1295 		 *
1296 		 * Attention:  A lot of things, even fw_device_get(),
1297 		 * cannot be done before fw_device_init() finished!
1298 		 * You can basically just check device->state and
1299 		 * schedule work until then, but only while holding
1300 		 * card->lock.
1301 		 */
1302 		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1303 		device->card = fw_card_get(card);
1304 		device->node = fw_node_get(node);
1305 		device->node_id = node->node_id;
1306 		device->generation = card->generation;
1307 		device->is_local = node == card->local_node;
1308 		mutex_init(&device->client_list_mutex);
1309 		INIT_LIST_HEAD(&device->client_list);
1310 
1311 		/*
1312 		 * Set the node data to point back to this device so
1313 		 * FW_NODE_UPDATED callbacks can update the node_id
1314 		 * and generation for the device.
1315 		 */
1316 		node->data = device;
1317 
1318 		/*
1319 		 * Many devices are slow to respond after bus resets,
1320 		 * especially if they are bus powered and go through
1321 		 * power-up after getting plugged in.  We schedule the
1322 		 * first config rom scan half a second after bus reset.
1323 		 */
1324 		device->workfn = fw_device_init;
1325 		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1326 		fw_schedule_device_work(device, INITIAL_DELAY);
1327 		break;
1328 
1329 	case FW_NODE_INITIATED_RESET:
1330 	case FW_NODE_LINK_ON:
1331 		device = node->data;
1332 		if (device == NULL)
1333 			goto create;
1334 
1335 		device->node_id = node->node_id;
1336 		smp_wmb();  /* update node_id before generation */
1337 		device->generation = card->generation;
1338 		if (atomic_cmpxchg(&device->state,
1339 			    FW_DEVICE_RUNNING,
1340 			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1341 			device->workfn = fw_device_refresh;
1342 			fw_schedule_device_work(device,
1343 				device->is_local ? 0 : INITIAL_DELAY);
1344 		}
1345 		break;
1346 
1347 	case FW_NODE_UPDATED:
1348 		device = node->data;
1349 		if (device == NULL)
1350 			break;
1351 
1352 		device->node_id = node->node_id;
1353 		smp_wmb();  /* update node_id before generation */
1354 		device->generation = card->generation;
1355 		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1356 			device->workfn = fw_device_update;
1357 			fw_schedule_device_work(device, 0);
1358 		}
1359 		break;
1360 
1361 	case FW_NODE_DESTROYED:
1362 	case FW_NODE_LINK_OFF:
1363 		if (!node->data)
1364 			break;
1365 
1366 		/*
1367 		 * Destroy the device associated with the node.  There
1368 		 * are two cases here: either the device is fully
1369 		 * initialized (FW_DEVICE_RUNNING) or we're in the
1370 		 * process of reading its config rom
1371 		 * (FW_DEVICE_INITIALIZING).  If it is fully
1372 		 * initialized we can reuse device->work to schedule a
1373 		 * full fw_device_shutdown().  If not, there's work
1374 		 * scheduled to read it's config rom, and we just put
1375 		 * the device in shutdown state to have that code fail
1376 		 * to create the device.
1377 		 */
1378 		device = node->data;
1379 		if (atomic_xchg(&device->state,
1380 				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1381 			device->workfn = fw_device_shutdown;
1382 			fw_schedule_device_work(device,
1383 				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1384 		}
1385 		break;
1386 	}
1387 }
1388 
1389 #ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST
1390 #include "device-attribute-test.c"
1391 #endif
1392