1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device probing and sysfs code. 4 * 5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/firewire.h> 14 #include <linux/firewire-constants.h> 15 #include <linux/idr.h> 16 #include <linux/jiffies.h> 17 #include <linux/kobject.h> 18 #include <linux/list.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/random.h> 23 #include <linux/rwsem.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 #include <linux/string.h> 27 #include <linux/workqueue.h> 28 29 #include <linux/atomic.h> 30 #include <asm/byteorder.h> 31 32 #include "core.h" 33 34 #define ROOT_DIR_OFFSET 5 35 36 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 37 { 38 ci->p = p + 1; 39 ci->end = ci->p + (p[0] >> 16); 40 } 41 EXPORT_SYMBOL(fw_csr_iterator_init); 42 43 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 44 { 45 *key = *ci->p >> 24; 46 *value = *ci->p & 0xffffff; 47 48 return ci->p++ < ci->end; 49 } 50 EXPORT_SYMBOL(fw_csr_iterator_next); 51 52 static const u32 *search_directory(const u32 *directory, int search_key) 53 { 54 struct fw_csr_iterator ci; 55 int key, value; 56 57 search_key |= CSR_DIRECTORY; 58 59 fw_csr_iterator_init(&ci, directory); 60 while (fw_csr_iterator_next(&ci, &key, &value)) { 61 if (key == search_key) 62 return ci.p - 1 + value; 63 } 64 65 return NULL; 66 } 67 68 static const u32 *search_leaf(const u32 *directory, int search_key) 69 { 70 struct fw_csr_iterator ci; 71 int last_key = 0, key, value; 72 73 fw_csr_iterator_init(&ci, directory); 74 while (fw_csr_iterator_next(&ci, &key, &value)) { 75 if (last_key == search_key && 76 key == (CSR_DESCRIPTOR | CSR_LEAF)) 77 return ci.p - 1 + value; 78 79 last_key = key; 80 } 81 82 return NULL; 83 } 84 85 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 86 { 87 unsigned int quadlets, i; 88 char c; 89 90 if (!size || !buf) 91 return -EINVAL; 92 93 quadlets = min(block[0] >> 16, 256U); 94 if (quadlets < 2) 95 return -ENODATA; 96 97 if (block[1] != 0 || block[2] != 0) 98 /* unknown language/character set */ 99 return -ENODATA; 100 101 block += 3; 102 quadlets -= 2; 103 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 104 c = block[i / 4] >> (24 - 8 * (i % 4)); 105 if (c == '\0') 106 break; 107 buf[i] = c; 108 } 109 buf[i] = '\0'; 110 111 return i; 112 } 113 114 /** 115 * fw_csr_string() - reads a string from the configuration ROM 116 * @directory: e.g. root directory or unit directory 117 * @key: the key of the preceding directory entry 118 * @buf: where to put the string 119 * @size: size of @buf, in bytes 120 * 121 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the 122 * @key. The string is zero-terminated. An overlong string is silently truncated such that it 123 * and the zero byte fit into @size. 124 * 125 * Returns strlen(buf) or a negative error code. 126 */ 127 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 128 { 129 const u32 *leaf = search_leaf(directory, key); 130 if (!leaf) 131 return -ENOENT; 132 133 return textual_leaf_to_string(leaf, buf, size); 134 } 135 EXPORT_SYMBOL(fw_csr_string); 136 137 static void get_ids(const u32 *directory, int *id) 138 { 139 struct fw_csr_iterator ci; 140 int key, value; 141 142 fw_csr_iterator_init(&ci, directory); 143 while (fw_csr_iterator_next(&ci, &key, &value)) { 144 switch (key) { 145 case CSR_VENDOR: id[0] = value; break; 146 case CSR_MODEL: id[1] = value; break; 147 case CSR_SPECIFIER_ID: id[2] = value; break; 148 case CSR_VERSION: id[3] = value; break; 149 } 150 } 151 } 152 153 static void get_modalias_ids(const struct fw_unit *unit, int *id) 154 { 155 const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET]; 156 const u32 *directories[] = {NULL, NULL, NULL}; 157 const u32 *vendor_directory; 158 int i; 159 160 directories[0] = root_directory; 161 162 // Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C 163 // Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'. 164 vendor_directory = search_directory(root_directory, CSR_VENDOR); 165 if (!vendor_directory) { 166 directories[1] = unit->directory; 167 } else { 168 directories[1] = vendor_directory; 169 directories[2] = unit->directory; 170 } 171 172 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) 173 get_ids(directories[i], id); 174 } 175 176 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 177 { 178 int match = 0; 179 180 if (id[0] == id_table->vendor_id) 181 match |= IEEE1394_MATCH_VENDOR_ID; 182 if (id[1] == id_table->model_id) 183 match |= IEEE1394_MATCH_MODEL_ID; 184 if (id[2] == id_table->specifier_id) 185 match |= IEEE1394_MATCH_SPECIFIER_ID; 186 if (id[3] == id_table->version) 187 match |= IEEE1394_MATCH_VERSION; 188 189 return (match & id_table->match_flags) == id_table->match_flags; 190 } 191 192 static const struct ieee1394_device_id *unit_match(struct device *dev, 193 struct device_driver *drv) 194 { 195 const struct ieee1394_device_id *id_table = 196 container_of(drv, struct fw_driver, driver)->id_table; 197 int id[] = {0, 0, 0, 0}; 198 199 get_modalias_ids(fw_unit(dev), id); 200 201 for (; id_table->match_flags != 0; id_table++) 202 if (match_ids(id_table, id)) 203 return id_table; 204 205 return NULL; 206 } 207 208 static bool is_fw_unit(const struct device *dev); 209 210 static int fw_unit_match(struct device *dev, struct device_driver *drv) 211 { 212 /* We only allow binding to fw_units. */ 213 return is_fw_unit(dev) && unit_match(dev, drv) != NULL; 214 } 215 216 static int fw_unit_probe(struct device *dev) 217 { 218 struct fw_driver *driver = 219 container_of(dev->driver, struct fw_driver, driver); 220 221 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver)); 222 } 223 224 static void fw_unit_remove(struct device *dev) 225 { 226 struct fw_driver *driver = 227 container_of(dev->driver, struct fw_driver, driver); 228 229 driver->remove(fw_unit(dev)); 230 } 231 232 static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size) 233 { 234 int id[] = {0, 0, 0, 0}; 235 236 get_modalias_ids(unit, id); 237 238 return snprintf(buffer, buffer_size, 239 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 240 id[0], id[1], id[2], id[3]); 241 } 242 243 static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env) 244 { 245 const struct fw_unit *unit = fw_unit(dev); 246 char modalias[64]; 247 248 get_modalias(unit, modalias, sizeof(modalias)); 249 250 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 251 return -ENOMEM; 252 253 return 0; 254 } 255 256 const struct bus_type fw_bus_type = { 257 .name = "firewire", 258 .match = fw_unit_match, 259 .probe = fw_unit_probe, 260 .remove = fw_unit_remove, 261 }; 262 EXPORT_SYMBOL(fw_bus_type); 263 264 int fw_device_enable_phys_dma(struct fw_device *device) 265 { 266 int generation = device->generation; 267 268 /* device->node_id, accessed below, must not be older than generation */ 269 smp_rmb(); 270 271 return device->card->driver->enable_phys_dma(device->card, 272 device->node_id, 273 generation); 274 } 275 EXPORT_SYMBOL(fw_device_enable_phys_dma); 276 277 struct config_rom_attribute { 278 struct device_attribute attr; 279 u32 key; 280 }; 281 282 static ssize_t show_immediate(struct device *dev, 283 struct device_attribute *dattr, char *buf) 284 { 285 struct config_rom_attribute *attr = 286 container_of(dattr, struct config_rom_attribute, attr); 287 struct fw_csr_iterator ci; 288 const u32 *directories[] = {NULL, NULL}; 289 int i, value = -1; 290 291 down_read(&fw_device_rwsem); 292 293 if (is_fw_unit(dev)) { 294 directories[0] = fw_unit(dev)->directory; 295 } else { 296 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET; 297 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR); 298 299 if (!vendor_directory) { 300 directories[0] = root_directory; 301 } else { 302 // Legacy layout of configuration ROM described in Annex 1 of 303 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading 304 // Association, TA Document 1999027)'. 305 directories[0] = vendor_directory; 306 directories[1] = root_directory; 307 } 308 } 309 310 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) { 311 int key, val; 312 313 fw_csr_iterator_init(&ci, directories[i]); 314 while (fw_csr_iterator_next(&ci, &key, &val)) { 315 if (attr->key == key) 316 value = val; 317 } 318 } 319 320 up_read(&fw_device_rwsem); 321 322 if (value < 0) 323 return -ENOENT; 324 325 return snprintf(buf, buf ? PAGE_SIZE : 0, "0x%06x\n", value); 326 } 327 328 #define IMMEDIATE_ATTR(name, key) \ 329 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 330 331 static ssize_t show_text_leaf(struct device *dev, 332 struct device_attribute *dattr, char *buf) 333 { 334 struct config_rom_attribute *attr = 335 container_of(dattr, struct config_rom_attribute, attr); 336 const u32 *directories[] = {NULL, NULL}; 337 size_t bufsize; 338 char dummy_buf[2]; 339 int i, ret = -ENOENT; 340 341 down_read(&fw_device_rwsem); 342 343 if (is_fw_unit(dev)) { 344 directories[0] = fw_unit(dev)->directory; 345 } else { 346 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET; 347 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR); 348 349 if (!vendor_directory) { 350 directories[0] = root_directory; 351 } else { 352 // Legacy layout of configuration ROM described in Annex 1 of 353 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 354 // Trading Association, TA Document 1999027)'. 355 directories[0] = root_directory; 356 directories[1] = vendor_directory; 357 } 358 } 359 360 if (buf) { 361 bufsize = PAGE_SIZE - 1; 362 } else { 363 buf = dummy_buf; 364 bufsize = 1; 365 } 366 367 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) { 368 int result = fw_csr_string(directories[i], attr->key, buf, bufsize); 369 // Detected. 370 if (result >= 0) { 371 ret = result; 372 } else if (i == 0 && attr->key == CSR_VENDOR) { 373 // Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry 374 // in the root directory follows to the directory entry for vendor ID 375 // instead of the immediate value for vendor ID. 376 result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf, 377 bufsize); 378 if (result >= 0) 379 ret = result; 380 } 381 } 382 383 if (ret >= 0) { 384 /* Strip trailing whitespace and add newline. */ 385 while (ret > 0 && isspace(buf[ret - 1])) 386 ret--; 387 strcpy(buf + ret, "\n"); 388 ret++; 389 } 390 391 up_read(&fw_device_rwsem); 392 393 return ret; 394 } 395 396 #define TEXT_LEAF_ATTR(name, key) \ 397 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 398 399 static struct config_rom_attribute config_rom_attributes[] = { 400 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 401 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 402 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 403 IMMEDIATE_ATTR(version, CSR_VERSION), 404 IMMEDIATE_ATTR(model, CSR_MODEL), 405 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 406 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 407 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 408 }; 409 410 static void init_fw_attribute_group(struct device *dev, 411 struct device_attribute *attrs, 412 struct fw_attribute_group *group) 413 { 414 struct device_attribute *attr; 415 int i, j; 416 417 for (j = 0; attrs[j].attr.name != NULL; j++) 418 group->attrs[j] = &attrs[j].attr; 419 420 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 421 attr = &config_rom_attributes[i].attr; 422 if (attr->show(dev, attr, NULL) < 0) 423 continue; 424 group->attrs[j++] = &attr->attr; 425 } 426 427 group->attrs[j] = NULL; 428 group->groups[0] = &group->group; 429 group->groups[1] = NULL; 430 group->group.attrs = group->attrs; 431 dev->groups = (const struct attribute_group **) group->groups; 432 } 433 434 static ssize_t modalias_show(struct device *dev, 435 struct device_attribute *attr, char *buf) 436 { 437 struct fw_unit *unit = fw_unit(dev); 438 int length; 439 440 length = get_modalias(unit, buf, PAGE_SIZE); 441 strcpy(buf + length, "\n"); 442 443 return length + 1; 444 } 445 446 static ssize_t rom_index_show(struct device *dev, 447 struct device_attribute *attr, char *buf) 448 { 449 struct fw_device *device = fw_device(dev->parent); 450 struct fw_unit *unit = fw_unit(dev); 451 452 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom); 453 } 454 455 static struct device_attribute fw_unit_attributes[] = { 456 __ATTR_RO(modalias), 457 __ATTR_RO(rom_index), 458 __ATTR_NULL, 459 }; 460 461 static ssize_t config_rom_show(struct device *dev, 462 struct device_attribute *attr, char *buf) 463 { 464 struct fw_device *device = fw_device(dev); 465 size_t length; 466 467 down_read(&fw_device_rwsem); 468 length = device->config_rom_length * 4; 469 memcpy(buf, device->config_rom, length); 470 up_read(&fw_device_rwsem); 471 472 return length; 473 } 474 475 static ssize_t guid_show(struct device *dev, 476 struct device_attribute *attr, char *buf) 477 { 478 struct fw_device *device = fw_device(dev); 479 int ret; 480 481 down_read(&fw_device_rwsem); 482 ret = sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]); 483 up_read(&fw_device_rwsem); 484 485 return ret; 486 } 487 488 static ssize_t is_local_show(struct device *dev, 489 struct device_attribute *attr, char *buf) 490 { 491 struct fw_device *device = fw_device(dev); 492 493 return sprintf(buf, "%u\n", device->is_local); 494 } 495 496 static int units_sprintf(char *buf, const u32 *directory) 497 { 498 struct fw_csr_iterator ci; 499 int key, value; 500 int specifier_id = 0; 501 int version = 0; 502 503 fw_csr_iterator_init(&ci, directory); 504 while (fw_csr_iterator_next(&ci, &key, &value)) { 505 switch (key) { 506 case CSR_SPECIFIER_ID: 507 specifier_id = value; 508 break; 509 case CSR_VERSION: 510 version = value; 511 break; 512 } 513 } 514 515 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 516 } 517 518 static ssize_t units_show(struct device *dev, 519 struct device_attribute *attr, char *buf) 520 { 521 struct fw_device *device = fw_device(dev); 522 struct fw_csr_iterator ci; 523 int key, value, i = 0; 524 525 down_read(&fw_device_rwsem); 526 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]); 527 while (fw_csr_iterator_next(&ci, &key, &value)) { 528 if (key != (CSR_UNIT | CSR_DIRECTORY)) 529 continue; 530 i += units_sprintf(&buf[i], ci.p + value - 1); 531 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 532 break; 533 } 534 up_read(&fw_device_rwsem); 535 536 if (i) 537 buf[i - 1] = '\n'; 538 539 return i; 540 } 541 542 static struct device_attribute fw_device_attributes[] = { 543 __ATTR_RO(config_rom), 544 __ATTR_RO(guid), 545 __ATTR_RO(is_local), 546 __ATTR_RO(units), 547 __ATTR_NULL, 548 }; 549 550 static int read_rom(struct fw_device *device, 551 int generation, int index, u32 *data) 552 { 553 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; 554 int i, rcode; 555 556 /* device->node_id, accessed below, must not be older than generation */ 557 smp_rmb(); 558 559 for (i = 10; i < 100; i += 10) { 560 rcode = fw_run_transaction(device->card, 561 TCODE_READ_QUADLET_REQUEST, device->node_id, 562 generation, device->max_speed, offset, data, 4); 563 if (rcode != RCODE_BUSY) 564 break; 565 msleep(i); 566 } 567 be32_to_cpus(data); 568 569 return rcode; 570 } 571 572 #define MAX_CONFIG_ROM_SIZE 256 573 574 /* 575 * Read the bus info block, perform a speed probe, and read all of the rest of 576 * the config ROM. We do all this with a cached bus generation. If the bus 577 * generation changes under us, read_config_rom will fail and get retried. 578 * It's better to start all over in this case because the node from which we 579 * are reading the ROM may have changed the ROM during the reset. 580 * Returns either a result code or a negative error code. 581 */ 582 static int read_config_rom(struct fw_device *device, int generation) 583 { 584 struct fw_card *card = device->card; 585 const u32 *old_rom, *new_rom; 586 u32 *rom, *stack; 587 u32 sp, key; 588 int i, end, length, ret; 589 590 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 591 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 592 if (rom == NULL) 593 return -ENOMEM; 594 595 stack = &rom[MAX_CONFIG_ROM_SIZE]; 596 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 597 598 device->max_speed = SCODE_100; 599 600 /* First read the bus info block. */ 601 for (i = 0; i < 5; i++) { 602 ret = read_rom(device, generation, i, &rom[i]); 603 if (ret != RCODE_COMPLETE) 604 goto out; 605 /* 606 * As per IEEE1212 7.2, during initialization, devices can 607 * reply with a 0 for the first quadlet of the config 608 * rom to indicate that they are booting (for example, 609 * if the firmware is on the disk of a external 610 * harddisk). In that case we just fail, and the 611 * retry mechanism will try again later. 612 */ 613 if (i == 0 && rom[i] == 0) { 614 ret = RCODE_BUSY; 615 goto out; 616 } 617 } 618 619 device->max_speed = device->node->max_speed; 620 621 /* 622 * Determine the speed of 623 * - devices with link speed less than PHY speed, 624 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 625 * - all devices if there are 1394b repeaters. 626 * Note, we cannot use the bus info block's link_spd as starting point 627 * because some buggy firmwares set it lower than necessary and because 628 * 1394-1995 nodes do not have the field. 629 */ 630 if ((rom[2] & 0x7) < device->max_speed || 631 device->max_speed == SCODE_BETA || 632 card->beta_repeaters_present) { 633 u32 dummy; 634 635 /* for S1600 and S3200 */ 636 if (device->max_speed == SCODE_BETA) 637 device->max_speed = card->link_speed; 638 639 while (device->max_speed > SCODE_100) { 640 if (read_rom(device, generation, 0, &dummy) == 641 RCODE_COMPLETE) 642 break; 643 device->max_speed--; 644 } 645 } 646 647 /* 648 * Now parse the config rom. The config rom is a recursive 649 * directory structure so we parse it using a stack of 650 * references to the blocks that make up the structure. We 651 * push a reference to the root directory on the stack to 652 * start things off. 653 */ 654 length = i; 655 sp = 0; 656 stack[sp++] = 0xc0000005; 657 while (sp > 0) { 658 /* 659 * Pop the next block reference of the stack. The 660 * lower 24 bits is the offset into the config rom, 661 * the upper 8 bits are the type of the reference the 662 * block. 663 */ 664 key = stack[--sp]; 665 i = key & 0xffffff; 666 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { 667 ret = -ENXIO; 668 goto out; 669 } 670 671 /* Read header quadlet for the block to get the length. */ 672 ret = read_rom(device, generation, i, &rom[i]); 673 if (ret != RCODE_COMPLETE) 674 goto out; 675 end = i + (rom[i] >> 16) + 1; 676 if (end > MAX_CONFIG_ROM_SIZE) { 677 /* 678 * This block extends outside the config ROM which is 679 * a firmware bug. Ignore this whole block, i.e. 680 * simply set a fake block length of 0. 681 */ 682 fw_err(card, "skipped invalid ROM block %x at %llx\n", 683 rom[i], 684 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 685 rom[i] = 0; 686 end = i; 687 } 688 i++; 689 690 /* 691 * Now read in the block. If this is a directory 692 * block, check the entries as we read them to see if 693 * it references another block, and push it in that case. 694 */ 695 for (; i < end; i++) { 696 ret = read_rom(device, generation, i, &rom[i]); 697 if (ret != RCODE_COMPLETE) 698 goto out; 699 700 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 701 continue; 702 /* 703 * Offset points outside the ROM. May be a firmware 704 * bug or an Extended ROM entry (IEEE 1212-2001 clause 705 * 7.7.18). Simply overwrite this pointer here by a 706 * fake immediate entry so that later iterators over 707 * the ROM don't have to check offsets all the time. 708 */ 709 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 710 fw_err(card, 711 "skipped unsupported ROM entry %x at %llx\n", 712 rom[i], 713 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 714 rom[i] = 0; 715 continue; 716 } 717 stack[sp++] = i + rom[i]; 718 } 719 if (length < i) 720 length = i; 721 } 722 723 old_rom = device->config_rom; 724 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 725 if (new_rom == NULL) { 726 ret = -ENOMEM; 727 goto out; 728 } 729 730 down_write(&fw_device_rwsem); 731 device->config_rom = new_rom; 732 device->config_rom_length = length; 733 up_write(&fw_device_rwsem); 734 735 kfree(old_rom); 736 ret = RCODE_COMPLETE; 737 device->max_rec = rom[2] >> 12 & 0xf; 738 device->cmc = rom[2] >> 30 & 1; 739 device->irmc = rom[2] >> 31 & 1; 740 out: 741 kfree(rom); 742 743 return ret; 744 } 745 746 static void fw_unit_release(struct device *dev) 747 { 748 struct fw_unit *unit = fw_unit(dev); 749 750 fw_device_put(fw_parent_device(unit)); 751 kfree(unit); 752 } 753 754 static struct device_type fw_unit_type = { 755 .uevent = fw_unit_uevent, 756 .release = fw_unit_release, 757 }; 758 759 static bool is_fw_unit(const struct device *dev) 760 { 761 return dev->type == &fw_unit_type; 762 } 763 764 static void create_units(struct fw_device *device) 765 { 766 struct fw_csr_iterator ci; 767 struct fw_unit *unit; 768 int key, value, i; 769 770 i = 0; 771 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]); 772 while (fw_csr_iterator_next(&ci, &key, &value)) { 773 if (key != (CSR_UNIT | CSR_DIRECTORY)) 774 continue; 775 776 /* 777 * Get the address of the unit directory and try to 778 * match the drivers id_tables against it. 779 */ 780 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 781 if (unit == NULL) 782 continue; 783 784 unit->directory = ci.p + value - 1; 785 unit->device.bus = &fw_bus_type; 786 unit->device.type = &fw_unit_type; 787 unit->device.parent = &device->device; 788 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 789 790 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 791 ARRAY_SIZE(fw_unit_attributes) + 792 ARRAY_SIZE(config_rom_attributes)); 793 init_fw_attribute_group(&unit->device, 794 fw_unit_attributes, 795 &unit->attribute_group); 796 797 fw_device_get(device); 798 if (device_register(&unit->device) < 0) { 799 put_device(&unit->device); 800 continue; 801 } 802 } 803 } 804 805 static int shutdown_unit(struct device *device, void *data) 806 { 807 device_unregister(device); 808 809 return 0; 810 } 811 812 /* 813 * fw_device_rwsem acts as dual purpose mutex: 814 * - serializes accesses to fw_device_idr, 815 * - serializes accesses to fw_device.config_rom/.config_rom_length and 816 * fw_unit.directory, unless those accesses happen at safe occasions 817 */ 818 DECLARE_RWSEM(fw_device_rwsem); 819 820 DEFINE_IDR(fw_device_idr); 821 int fw_cdev_major; 822 823 struct fw_device *fw_device_get_by_devt(dev_t devt) 824 { 825 struct fw_device *device; 826 827 down_read(&fw_device_rwsem); 828 device = idr_find(&fw_device_idr, MINOR(devt)); 829 if (device) 830 fw_device_get(device); 831 up_read(&fw_device_rwsem); 832 833 return device; 834 } 835 836 struct workqueue_struct *fw_workqueue; 837 EXPORT_SYMBOL(fw_workqueue); 838 839 static void fw_schedule_device_work(struct fw_device *device, 840 unsigned long delay) 841 { 842 queue_delayed_work(fw_workqueue, &device->work, delay); 843 } 844 845 /* 846 * These defines control the retry behavior for reading the config 847 * rom. It shouldn't be necessary to tweak these; if the device 848 * doesn't respond to a config rom read within 10 seconds, it's not 849 * going to respond at all. As for the initial delay, a lot of 850 * devices will be able to respond within half a second after bus 851 * reset. On the other hand, it's not really worth being more 852 * aggressive than that, since it scales pretty well; if 10 devices 853 * are plugged in, they're all getting read within one second. 854 */ 855 856 #define MAX_RETRIES 10 857 #define RETRY_DELAY (3 * HZ) 858 #define INITIAL_DELAY (HZ / 2) 859 #define SHUTDOWN_DELAY (2 * HZ) 860 861 static void fw_device_shutdown(struct work_struct *work) 862 { 863 struct fw_device *device = 864 container_of(work, struct fw_device, work.work); 865 int minor = MINOR(device->device.devt); 866 867 if (time_before64(get_jiffies_64(), 868 device->card->reset_jiffies + SHUTDOWN_DELAY) 869 && !list_empty(&device->card->link)) { 870 fw_schedule_device_work(device, SHUTDOWN_DELAY); 871 return; 872 } 873 874 if (atomic_cmpxchg(&device->state, 875 FW_DEVICE_GONE, 876 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 877 return; 878 879 fw_device_cdev_remove(device); 880 device_for_each_child(&device->device, NULL, shutdown_unit); 881 device_unregister(&device->device); 882 883 down_write(&fw_device_rwsem); 884 idr_remove(&fw_device_idr, minor); 885 up_write(&fw_device_rwsem); 886 887 fw_device_put(device); 888 } 889 890 static void fw_device_release(struct device *dev) 891 { 892 struct fw_device *device = fw_device(dev); 893 struct fw_card *card = device->card; 894 unsigned long flags; 895 896 /* 897 * Take the card lock so we don't set this to NULL while a 898 * FW_NODE_UPDATED callback is being handled or while the 899 * bus manager work looks at this node. 900 */ 901 spin_lock_irqsave(&card->lock, flags); 902 device->node->data = NULL; 903 spin_unlock_irqrestore(&card->lock, flags); 904 905 fw_node_put(device->node); 906 kfree(device->config_rom); 907 kfree(device); 908 fw_card_put(card); 909 } 910 911 static struct device_type fw_device_type = { 912 .release = fw_device_release, 913 }; 914 915 static bool is_fw_device(const struct device *dev) 916 { 917 return dev->type == &fw_device_type; 918 } 919 920 static int update_unit(struct device *dev, void *data) 921 { 922 struct fw_unit *unit = fw_unit(dev); 923 struct fw_driver *driver = (struct fw_driver *)dev->driver; 924 925 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 926 device_lock(dev); 927 driver->update(unit); 928 device_unlock(dev); 929 } 930 931 return 0; 932 } 933 934 static void fw_device_update(struct work_struct *work) 935 { 936 struct fw_device *device = 937 container_of(work, struct fw_device, work.work); 938 939 fw_device_cdev_update(device); 940 device_for_each_child(&device->device, NULL, update_unit); 941 } 942 943 /* 944 * If a device was pending for deletion because its node went away but its 945 * bus info block and root directory header matches that of a newly discovered 946 * device, revive the existing fw_device. 947 * The newly allocated fw_device becomes obsolete instead. 948 */ 949 static int lookup_existing_device(struct device *dev, void *data) 950 { 951 struct fw_device *old = fw_device(dev); 952 struct fw_device *new = data; 953 struct fw_card *card = new->card; 954 int match = 0; 955 956 if (!is_fw_device(dev)) 957 return 0; 958 959 down_read(&fw_device_rwsem); /* serialize config_rom access */ 960 spin_lock_irq(&card->lock); /* serialize node access */ 961 962 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 963 atomic_cmpxchg(&old->state, 964 FW_DEVICE_GONE, 965 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 966 struct fw_node *current_node = new->node; 967 struct fw_node *obsolete_node = old->node; 968 969 new->node = obsolete_node; 970 new->node->data = new; 971 old->node = current_node; 972 old->node->data = old; 973 974 old->max_speed = new->max_speed; 975 old->node_id = current_node->node_id; 976 smp_wmb(); /* update node_id before generation */ 977 old->generation = card->generation; 978 old->config_rom_retries = 0; 979 fw_notice(card, "rediscovered device %s\n", dev_name(dev)); 980 981 old->workfn = fw_device_update; 982 fw_schedule_device_work(old, 0); 983 984 if (current_node == card->root_node) 985 fw_schedule_bm_work(card, 0); 986 987 match = 1; 988 } 989 990 spin_unlock_irq(&card->lock); 991 up_read(&fw_device_rwsem); 992 993 return match; 994 } 995 996 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 997 998 static void set_broadcast_channel(struct fw_device *device, int generation) 999 { 1000 struct fw_card *card = device->card; 1001 __be32 data; 1002 int rcode; 1003 1004 if (!card->broadcast_channel_allocated) 1005 return; 1006 1007 /* 1008 * The Broadcast_Channel Valid bit is required by nodes which want to 1009 * transmit on this channel. Such transmissions are practically 1010 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 1011 * to be IRM capable and have a max_rec of 8 or more. We use this fact 1012 * to narrow down to which nodes we send Broadcast_Channel updates. 1013 */ 1014 if (!device->irmc || device->max_rec < 8) 1015 return; 1016 1017 /* 1018 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 1019 * Perform a read test first. 1020 */ 1021 if (device->bc_implemented == BC_UNKNOWN) { 1022 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 1023 device->node_id, generation, device->max_speed, 1024 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 1025 &data, 4); 1026 switch (rcode) { 1027 case RCODE_COMPLETE: 1028 if (data & cpu_to_be32(1 << 31)) { 1029 device->bc_implemented = BC_IMPLEMENTED; 1030 break; 1031 } 1032 fallthrough; /* to case address error */ 1033 case RCODE_ADDRESS_ERROR: 1034 device->bc_implemented = BC_UNIMPLEMENTED; 1035 } 1036 } 1037 1038 if (device->bc_implemented == BC_IMPLEMENTED) { 1039 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 1040 BROADCAST_CHANNEL_VALID); 1041 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 1042 device->node_id, generation, device->max_speed, 1043 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 1044 &data, 4); 1045 } 1046 } 1047 1048 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 1049 { 1050 if (is_fw_device(dev)) 1051 set_broadcast_channel(fw_device(dev), (long)gen); 1052 1053 return 0; 1054 } 1055 1056 static void fw_device_init(struct work_struct *work) 1057 { 1058 struct fw_device *device = 1059 container_of(work, struct fw_device, work.work); 1060 struct fw_card *card = device->card; 1061 struct device *revived_dev; 1062 int minor, ret; 1063 1064 /* 1065 * All failure paths here set node->data to NULL, so that we 1066 * don't try to do device_for_each_child() on a kfree()'d 1067 * device. 1068 */ 1069 1070 ret = read_config_rom(device, device->generation); 1071 if (ret != RCODE_COMPLETE) { 1072 if (device->config_rom_retries < MAX_RETRIES && 1073 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1074 device->config_rom_retries++; 1075 fw_schedule_device_work(device, RETRY_DELAY); 1076 } else { 1077 if (device->node->link_on) 1078 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", 1079 device->node_id, 1080 fw_rcode_string(ret)); 1081 if (device->node == card->root_node) 1082 fw_schedule_bm_work(card, 0); 1083 fw_device_release(&device->device); 1084 } 1085 return; 1086 } 1087 1088 revived_dev = device_find_child(card->device, 1089 device, lookup_existing_device); 1090 if (revived_dev) { 1091 put_device(revived_dev); 1092 fw_device_release(&device->device); 1093 1094 return; 1095 } 1096 1097 device_initialize(&device->device); 1098 1099 fw_device_get(device); 1100 down_write(&fw_device_rwsem); 1101 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS, 1102 GFP_KERNEL); 1103 up_write(&fw_device_rwsem); 1104 1105 if (minor < 0) 1106 goto error; 1107 1108 device->device.bus = &fw_bus_type; 1109 device->device.type = &fw_device_type; 1110 device->device.parent = card->device; 1111 device->device.devt = MKDEV(fw_cdev_major, minor); 1112 dev_set_name(&device->device, "fw%d", minor); 1113 1114 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1115 ARRAY_SIZE(fw_device_attributes) + 1116 ARRAY_SIZE(config_rom_attributes)); 1117 init_fw_attribute_group(&device->device, 1118 fw_device_attributes, 1119 &device->attribute_group); 1120 1121 if (device_add(&device->device)) { 1122 fw_err(card, "failed to add device\n"); 1123 goto error_with_cdev; 1124 } 1125 1126 create_units(device); 1127 1128 /* 1129 * Transition the device to running state. If it got pulled 1130 * out from under us while we did the initialization work, we 1131 * have to shut down the device again here. Normally, though, 1132 * fw_node_event will be responsible for shutting it down when 1133 * necessary. We have to use the atomic cmpxchg here to avoid 1134 * racing with the FW_NODE_DESTROYED case in 1135 * fw_node_event(). 1136 */ 1137 if (atomic_cmpxchg(&device->state, 1138 FW_DEVICE_INITIALIZING, 1139 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1140 device->workfn = fw_device_shutdown; 1141 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1142 } else { 1143 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", 1144 dev_name(&device->device), 1145 device->config_rom[3], device->config_rom[4], 1146 1 << device->max_speed); 1147 device->config_rom_retries = 0; 1148 1149 set_broadcast_channel(device, device->generation); 1150 1151 add_device_randomness(&device->config_rom[3], 8); 1152 } 1153 1154 /* 1155 * Reschedule the IRM work if we just finished reading the 1156 * root node config rom. If this races with a bus reset we 1157 * just end up running the IRM work a couple of extra times - 1158 * pretty harmless. 1159 */ 1160 if (device->node == card->root_node) 1161 fw_schedule_bm_work(card, 0); 1162 1163 return; 1164 1165 error_with_cdev: 1166 down_write(&fw_device_rwsem); 1167 idr_remove(&fw_device_idr, minor); 1168 up_write(&fw_device_rwsem); 1169 error: 1170 fw_device_put(device); /* fw_device_idr's reference */ 1171 1172 put_device(&device->device); /* our reference */ 1173 } 1174 1175 /* Reread and compare bus info block and header of root directory */ 1176 static int reread_config_rom(struct fw_device *device, int generation, 1177 bool *changed) 1178 { 1179 u32 q; 1180 int i, rcode; 1181 1182 for (i = 0; i < 6; i++) { 1183 rcode = read_rom(device, generation, i, &q); 1184 if (rcode != RCODE_COMPLETE) 1185 return rcode; 1186 1187 if (i == 0 && q == 0) 1188 /* inaccessible (see read_config_rom); retry later */ 1189 return RCODE_BUSY; 1190 1191 if (q != device->config_rom[i]) { 1192 *changed = true; 1193 return RCODE_COMPLETE; 1194 } 1195 } 1196 1197 *changed = false; 1198 return RCODE_COMPLETE; 1199 } 1200 1201 static void fw_device_refresh(struct work_struct *work) 1202 { 1203 struct fw_device *device = 1204 container_of(work, struct fw_device, work.work); 1205 struct fw_card *card = device->card; 1206 int ret, node_id = device->node_id; 1207 bool changed; 1208 1209 ret = reread_config_rom(device, device->generation, &changed); 1210 if (ret != RCODE_COMPLETE) 1211 goto failed_config_rom; 1212 1213 if (!changed) { 1214 if (atomic_cmpxchg(&device->state, 1215 FW_DEVICE_INITIALIZING, 1216 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1217 goto gone; 1218 1219 fw_device_update(work); 1220 device->config_rom_retries = 0; 1221 goto out; 1222 } 1223 1224 /* 1225 * Something changed. We keep things simple and don't investigate 1226 * further. We just destroy all previous units and create new ones. 1227 */ 1228 device_for_each_child(&device->device, NULL, shutdown_unit); 1229 1230 ret = read_config_rom(device, device->generation); 1231 if (ret != RCODE_COMPLETE) 1232 goto failed_config_rom; 1233 1234 fw_device_cdev_update(device); 1235 create_units(device); 1236 1237 /* Userspace may want to re-read attributes. */ 1238 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1239 1240 if (atomic_cmpxchg(&device->state, 1241 FW_DEVICE_INITIALIZING, 1242 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1243 goto gone; 1244 1245 fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); 1246 device->config_rom_retries = 0; 1247 goto out; 1248 1249 failed_config_rom: 1250 if (device->config_rom_retries < MAX_RETRIES && 1251 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1252 device->config_rom_retries++; 1253 fw_schedule_device_work(device, RETRY_DELAY); 1254 return; 1255 } 1256 1257 fw_notice(card, "giving up on refresh of device %s: %s\n", 1258 dev_name(&device->device), fw_rcode_string(ret)); 1259 gone: 1260 atomic_set(&device->state, FW_DEVICE_GONE); 1261 device->workfn = fw_device_shutdown; 1262 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1263 out: 1264 if (node_id == card->root_node->node_id) 1265 fw_schedule_bm_work(card, 0); 1266 } 1267 1268 static void fw_device_workfn(struct work_struct *work) 1269 { 1270 struct fw_device *device = container_of(to_delayed_work(work), 1271 struct fw_device, work); 1272 device->workfn(work); 1273 } 1274 1275 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1276 { 1277 struct fw_device *device; 1278 1279 switch (event) { 1280 case FW_NODE_CREATED: 1281 /* 1282 * Attempt to scan the node, regardless whether its self ID has 1283 * the L (link active) flag set or not. Some broken devices 1284 * send L=0 but have an up-and-running link; others send L=1 1285 * without actually having a link. 1286 */ 1287 create: 1288 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1289 if (device == NULL) 1290 break; 1291 1292 /* 1293 * Do minimal initialization of the device here, the 1294 * rest will happen in fw_device_init(). 1295 * 1296 * Attention: A lot of things, even fw_device_get(), 1297 * cannot be done before fw_device_init() finished! 1298 * You can basically just check device->state and 1299 * schedule work until then, but only while holding 1300 * card->lock. 1301 */ 1302 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1303 device->card = fw_card_get(card); 1304 device->node = fw_node_get(node); 1305 device->node_id = node->node_id; 1306 device->generation = card->generation; 1307 device->is_local = node == card->local_node; 1308 mutex_init(&device->client_list_mutex); 1309 INIT_LIST_HEAD(&device->client_list); 1310 1311 /* 1312 * Set the node data to point back to this device so 1313 * FW_NODE_UPDATED callbacks can update the node_id 1314 * and generation for the device. 1315 */ 1316 node->data = device; 1317 1318 /* 1319 * Many devices are slow to respond after bus resets, 1320 * especially if they are bus powered and go through 1321 * power-up after getting plugged in. We schedule the 1322 * first config rom scan half a second after bus reset. 1323 */ 1324 device->workfn = fw_device_init; 1325 INIT_DELAYED_WORK(&device->work, fw_device_workfn); 1326 fw_schedule_device_work(device, INITIAL_DELAY); 1327 break; 1328 1329 case FW_NODE_INITIATED_RESET: 1330 case FW_NODE_LINK_ON: 1331 device = node->data; 1332 if (device == NULL) 1333 goto create; 1334 1335 device->node_id = node->node_id; 1336 smp_wmb(); /* update node_id before generation */ 1337 device->generation = card->generation; 1338 if (atomic_cmpxchg(&device->state, 1339 FW_DEVICE_RUNNING, 1340 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1341 device->workfn = fw_device_refresh; 1342 fw_schedule_device_work(device, 1343 device->is_local ? 0 : INITIAL_DELAY); 1344 } 1345 break; 1346 1347 case FW_NODE_UPDATED: 1348 device = node->data; 1349 if (device == NULL) 1350 break; 1351 1352 device->node_id = node->node_id; 1353 smp_wmb(); /* update node_id before generation */ 1354 device->generation = card->generation; 1355 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1356 device->workfn = fw_device_update; 1357 fw_schedule_device_work(device, 0); 1358 } 1359 break; 1360 1361 case FW_NODE_DESTROYED: 1362 case FW_NODE_LINK_OFF: 1363 if (!node->data) 1364 break; 1365 1366 /* 1367 * Destroy the device associated with the node. There 1368 * are two cases here: either the device is fully 1369 * initialized (FW_DEVICE_RUNNING) or we're in the 1370 * process of reading its config rom 1371 * (FW_DEVICE_INITIALIZING). If it is fully 1372 * initialized we can reuse device->work to schedule a 1373 * full fw_device_shutdown(). If not, there's work 1374 * scheduled to read it's config rom, and we just put 1375 * the device in shutdown state to have that code fail 1376 * to create the device. 1377 */ 1378 device = node->data; 1379 if (atomic_xchg(&device->state, 1380 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1381 device->workfn = fw_device_shutdown; 1382 fw_schedule_device_work(device, 1383 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1384 } 1385 break; 1386 } 1387 } 1388 1389 #ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST 1390 #include "device-attribute-test.c" 1391 #endif 1392