1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device probing and sysfs code. 4 * 5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/firewire.h> 14 #include <linux/firewire-constants.h> 15 #include <linux/idr.h> 16 #include <linux/jiffies.h> 17 #include <linux/kobject.h> 18 #include <linux/list.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/random.h> 23 #include <linux/rwsem.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 #include <linux/string.h> 27 #include <linux/workqueue.h> 28 29 #include <linux/atomic.h> 30 #include <asm/byteorder.h> 31 32 #include "core.h" 33 34 #define ROOT_DIR_OFFSET 5 35 36 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 37 { 38 ci->p = p + 1; 39 ci->end = ci->p + (p[0] >> 16); 40 } 41 EXPORT_SYMBOL(fw_csr_iterator_init); 42 43 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 44 { 45 *key = *ci->p >> 24; 46 *value = *ci->p & 0xffffff; 47 48 return ci->p++ < ci->end; 49 } 50 EXPORT_SYMBOL(fw_csr_iterator_next); 51 52 static const u32 *search_directory(const u32 *directory, int search_key) 53 { 54 struct fw_csr_iterator ci; 55 int key, value; 56 57 search_key |= CSR_DIRECTORY; 58 59 fw_csr_iterator_init(&ci, directory); 60 while (fw_csr_iterator_next(&ci, &key, &value)) { 61 if (key == search_key) 62 return ci.p - 1 + value; 63 } 64 65 return NULL; 66 } 67 68 static const u32 *search_leaf(const u32 *directory, int search_key) 69 { 70 struct fw_csr_iterator ci; 71 int last_key = 0, key, value; 72 73 fw_csr_iterator_init(&ci, directory); 74 while (fw_csr_iterator_next(&ci, &key, &value)) { 75 if (last_key == search_key && 76 key == (CSR_DESCRIPTOR | CSR_LEAF)) 77 return ci.p - 1 + value; 78 79 last_key = key; 80 } 81 82 return NULL; 83 } 84 85 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 86 { 87 unsigned int quadlets, i; 88 char c; 89 90 if (!size || !buf) 91 return -EINVAL; 92 93 quadlets = min(block[0] >> 16, 256U); 94 if (quadlets < 2) 95 return -ENODATA; 96 97 if (block[1] != 0 || block[2] != 0) 98 /* unknown language/character set */ 99 return -ENODATA; 100 101 block += 3; 102 quadlets -= 2; 103 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 104 c = block[i / 4] >> (24 - 8 * (i % 4)); 105 if (c == '\0') 106 break; 107 buf[i] = c; 108 } 109 buf[i] = '\0'; 110 111 return i; 112 } 113 114 /** 115 * fw_csr_string() - reads a string from the configuration ROM 116 * @directory: e.g. root directory or unit directory 117 * @key: the key of the preceding directory entry 118 * @buf: where to put the string 119 * @size: size of @buf, in bytes 120 * 121 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the 122 * @key. The string is zero-terminated. An overlong string is silently truncated such that it 123 * and the zero byte fit into @size. 124 * 125 * Returns strlen(buf) or a negative error code. 126 */ 127 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 128 { 129 const u32 *leaf = search_leaf(directory, key); 130 if (!leaf) 131 return -ENOENT; 132 133 return textual_leaf_to_string(leaf, buf, size); 134 } 135 EXPORT_SYMBOL(fw_csr_string); 136 137 static void get_ids(const u32 *directory, int *id) 138 { 139 struct fw_csr_iterator ci; 140 int key, value; 141 142 fw_csr_iterator_init(&ci, directory); 143 while (fw_csr_iterator_next(&ci, &key, &value)) { 144 switch (key) { 145 case CSR_VENDOR: id[0] = value; break; 146 case CSR_MODEL: id[1] = value; break; 147 case CSR_SPECIFIER_ID: id[2] = value; break; 148 case CSR_VERSION: id[3] = value; break; 149 } 150 } 151 } 152 153 static void get_modalias_ids(const struct fw_unit *unit, int *id) 154 { 155 const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET]; 156 const u32 *directories[] = {NULL, NULL, NULL}; 157 const u32 *vendor_directory; 158 int i; 159 160 directories[0] = root_directory; 161 162 // Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C 163 // Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'. 164 vendor_directory = search_directory(root_directory, CSR_VENDOR); 165 if (!vendor_directory) { 166 directories[1] = unit->directory; 167 } else { 168 directories[1] = vendor_directory; 169 directories[2] = unit->directory; 170 } 171 172 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) 173 get_ids(directories[i], id); 174 } 175 176 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 177 { 178 int match = 0; 179 180 if (id[0] == id_table->vendor_id) 181 match |= IEEE1394_MATCH_VENDOR_ID; 182 if (id[1] == id_table->model_id) 183 match |= IEEE1394_MATCH_MODEL_ID; 184 if (id[2] == id_table->specifier_id) 185 match |= IEEE1394_MATCH_SPECIFIER_ID; 186 if (id[3] == id_table->version) 187 match |= IEEE1394_MATCH_VERSION; 188 189 return (match & id_table->match_flags) == id_table->match_flags; 190 } 191 192 static const struct ieee1394_device_id *unit_match(struct device *dev, 193 struct device_driver *drv) 194 { 195 const struct ieee1394_device_id *id_table = 196 container_of(drv, struct fw_driver, driver)->id_table; 197 int id[] = {0, 0, 0, 0}; 198 199 get_modalias_ids(fw_unit(dev), id); 200 201 for (; id_table->match_flags != 0; id_table++) 202 if (match_ids(id_table, id)) 203 return id_table; 204 205 return NULL; 206 } 207 208 static bool is_fw_unit(const struct device *dev); 209 210 static int fw_unit_match(struct device *dev, struct device_driver *drv) 211 { 212 /* We only allow binding to fw_units. */ 213 return is_fw_unit(dev) && unit_match(dev, drv) != NULL; 214 } 215 216 static int fw_unit_probe(struct device *dev) 217 { 218 struct fw_driver *driver = 219 container_of(dev->driver, struct fw_driver, driver); 220 221 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver)); 222 } 223 224 static void fw_unit_remove(struct device *dev) 225 { 226 struct fw_driver *driver = 227 container_of(dev->driver, struct fw_driver, driver); 228 229 driver->remove(fw_unit(dev)); 230 } 231 232 static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size) 233 { 234 int id[] = {0, 0, 0, 0}; 235 236 get_modalias_ids(unit, id); 237 238 return snprintf(buffer, buffer_size, 239 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 240 id[0], id[1], id[2], id[3]); 241 } 242 243 static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env) 244 { 245 const struct fw_unit *unit = fw_unit(dev); 246 char modalias[64]; 247 248 get_modalias(unit, modalias, sizeof(modalias)); 249 250 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 251 return -ENOMEM; 252 253 return 0; 254 } 255 256 const struct bus_type fw_bus_type = { 257 .name = "firewire", 258 .match = fw_unit_match, 259 .probe = fw_unit_probe, 260 .remove = fw_unit_remove, 261 }; 262 EXPORT_SYMBOL(fw_bus_type); 263 264 int fw_device_enable_phys_dma(struct fw_device *device) 265 { 266 int generation = device->generation; 267 268 /* device->node_id, accessed below, must not be older than generation */ 269 smp_rmb(); 270 271 return device->card->driver->enable_phys_dma(device->card, 272 device->node_id, 273 generation); 274 } 275 EXPORT_SYMBOL(fw_device_enable_phys_dma); 276 277 struct config_rom_attribute { 278 struct device_attribute attr; 279 u32 key; 280 }; 281 282 static ssize_t show_immediate(struct device *dev, 283 struct device_attribute *dattr, char *buf) 284 { 285 struct config_rom_attribute *attr = 286 container_of(dattr, struct config_rom_attribute, attr); 287 struct fw_csr_iterator ci; 288 const u32 *directories[] = {NULL, NULL}; 289 int i, value = -1; 290 291 down_read(&fw_device_rwsem); 292 293 if (is_fw_unit(dev)) { 294 directories[0] = fw_unit(dev)->directory; 295 } else { 296 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET; 297 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR); 298 299 if (!vendor_directory) { 300 directories[0] = root_directory; 301 } else { 302 // Legacy layout of configuration ROM described in Annex 1 of 303 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading 304 // Association, TA Document 1999027)'. 305 directories[0] = vendor_directory; 306 directories[1] = root_directory; 307 } 308 } 309 310 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) { 311 int key, val; 312 313 fw_csr_iterator_init(&ci, directories[i]); 314 while (fw_csr_iterator_next(&ci, &key, &val)) { 315 if (attr->key == key) 316 value = val; 317 } 318 } 319 320 up_read(&fw_device_rwsem); 321 322 if (value < 0) 323 return -ENOENT; 324 325 return sysfs_emit(buf, "0x%06x\n", value); 326 } 327 328 #define IMMEDIATE_ATTR(name, key) \ 329 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 330 331 static ssize_t show_text_leaf(struct device *dev, 332 struct device_attribute *dattr, char *buf) 333 { 334 struct config_rom_attribute *attr = 335 container_of(dattr, struct config_rom_attribute, attr); 336 const u32 *directories[] = {NULL, NULL}; 337 int i, ret = -ENOENT; 338 339 down_read(&fw_device_rwsem); 340 341 if (is_fw_unit(dev)) { 342 directories[0] = fw_unit(dev)->directory; 343 } else { 344 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET; 345 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR); 346 347 if (!vendor_directory) { 348 directories[0] = root_directory; 349 } else { 350 // Legacy layout of configuration ROM described in Annex 1 of 351 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 352 // Trading Association, TA Document 1999027)'. 353 directories[0] = root_directory; 354 directories[1] = vendor_directory; 355 } 356 } 357 358 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) { 359 int result = fw_csr_string(directories[i], attr->key, buf, 360 PAGE_SIZE - 1); 361 // Detected. 362 if (result >= 0) { 363 ret = result; 364 } else if (i == 0 && attr->key == CSR_VENDOR) { 365 // Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry 366 // in the root directory follows to the directory entry for vendor ID 367 // instead of the immediate value for vendor ID. 368 result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf, 369 PAGE_SIZE - 1); 370 if (result >= 0) 371 ret = result; 372 } 373 } 374 375 if (ret >= 0) { 376 /* Strip trailing whitespace and add newline. */ 377 while (ret > 0 && isspace(buf[ret - 1])) 378 ret--; 379 strcpy(buf + ret, "\n"); 380 ret++; 381 } 382 383 up_read(&fw_device_rwsem); 384 385 return ret; 386 } 387 388 #define TEXT_LEAF_ATTR(name, key) \ 389 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 390 391 static struct config_rom_attribute config_rom_attributes[] = { 392 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 393 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 394 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 395 IMMEDIATE_ATTR(version, CSR_VERSION), 396 IMMEDIATE_ATTR(model, CSR_MODEL), 397 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 398 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 399 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 400 }; 401 402 static void init_fw_attribute_group(struct device *dev, 403 struct device_attribute *attrs, 404 struct fw_attribute_group *group) 405 { 406 struct device_attribute *attr; 407 int i, j; 408 409 for (j = 0; attrs[j].attr.name != NULL; j++) 410 group->attrs[j] = &attrs[j].attr; 411 412 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 413 attr = &config_rom_attributes[i].attr; 414 if (attr->show(dev, attr, NULL) < 0) 415 continue; 416 group->attrs[j++] = &attr->attr; 417 } 418 419 group->attrs[j] = NULL; 420 group->groups[0] = &group->group; 421 group->groups[1] = NULL; 422 group->group.attrs = group->attrs; 423 dev->groups = (const struct attribute_group **) group->groups; 424 } 425 426 static ssize_t modalias_show(struct device *dev, 427 struct device_attribute *attr, char *buf) 428 { 429 struct fw_unit *unit = fw_unit(dev); 430 int length; 431 432 length = get_modalias(unit, buf, PAGE_SIZE); 433 strcpy(buf + length, "\n"); 434 435 return length + 1; 436 } 437 438 static ssize_t rom_index_show(struct device *dev, 439 struct device_attribute *attr, char *buf) 440 { 441 struct fw_device *device = fw_device(dev->parent); 442 struct fw_unit *unit = fw_unit(dev); 443 444 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom); 445 } 446 447 static struct device_attribute fw_unit_attributes[] = { 448 __ATTR_RO(modalias), 449 __ATTR_RO(rom_index), 450 __ATTR_NULL, 451 }; 452 453 static ssize_t config_rom_show(struct device *dev, 454 struct device_attribute *attr, char *buf) 455 { 456 struct fw_device *device = fw_device(dev); 457 size_t length; 458 459 down_read(&fw_device_rwsem); 460 length = device->config_rom_length * 4; 461 memcpy(buf, device->config_rom, length); 462 up_read(&fw_device_rwsem); 463 464 return length; 465 } 466 467 static ssize_t guid_show(struct device *dev, 468 struct device_attribute *attr, char *buf) 469 { 470 struct fw_device *device = fw_device(dev); 471 int ret; 472 473 down_read(&fw_device_rwsem); 474 ret = sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]); 475 up_read(&fw_device_rwsem); 476 477 return ret; 478 } 479 480 static ssize_t is_local_show(struct device *dev, 481 struct device_attribute *attr, char *buf) 482 { 483 struct fw_device *device = fw_device(dev); 484 485 return sysfs_emit(buf, "%u\n", device->is_local); 486 } 487 488 static int units_sprintf(char *buf, const u32 *directory) 489 { 490 struct fw_csr_iterator ci; 491 int key, value; 492 int specifier_id = 0; 493 int version = 0; 494 495 fw_csr_iterator_init(&ci, directory); 496 while (fw_csr_iterator_next(&ci, &key, &value)) { 497 switch (key) { 498 case CSR_SPECIFIER_ID: 499 specifier_id = value; 500 break; 501 case CSR_VERSION: 502 version = value; 503 break; 504 } 505 } 506 507 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 508 } 509 510 static ssize_t units_show(struct device *dev, 511 struct device_attribute *attr, char *buf) 512 { 513 struct fw_device *device = fw_device(dev); 514 struct fw_csr_iterator ci; 515 int key, value, i = 0; 516 517 down_read(&fw_device_rwsem); 518 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]); 519 while (fw_csr_iterator_next(&ci, &key, &value)) { 520 if (key != (CSR_UNIT | CSR_DIRECTORY)) 521 continue; 522 i += units_sprintf(&buf[i], ci.p + value - 1); 523 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 524 break; 525 } 526 up_read(&fw_device_rwsem); 527 528 if (i) 529 buf[i - 1] = '\n'; 530 531 return i; 532 } 533 534 static struct device_attribute fw_device_attributes[] = { 535 __ATTR_RO(config_rom), 536 __ATTR_RO(guid), 537 __ATTR_RO(is_local), 538 __ATTR_RO(units), 539 __ATTR_NULL, 540 }; 541 542 static int read_rom(struct fw_device *device, 543 int generation, int index, u32 *data) 544 { 545 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; 546 int i, rcode; 547 548 /* device->node_id, accessed below, must not be older than generation */ 549 smp_rmb(); 550 551 for (i = 10; i < 100; i += 10) { 552 rcode = fw_run_transaction(device->card, 553 TCODE_READ_QUADLET_REQUEST, device->node_id, 554 generation, device->max_speed, offset, data, 4); 555 if (rcode != RCODE_BUSY) 556 break; 557 msleep(i); 558 } 559 be32_to_cpus(data); 560 561 return rcode; 562 } 563 564 #define MAX_CONFIG_ROM_SIZE 256 565 566 /* 567 * Read the bus info block, perform a speed probe, and read all of the rest of 568 * the config ROM. We do all this with a cached bus generation. If the bus 569 * generation changes under us, read_config_rom will fail and get retried. 570 * It's better to start all over in this case because the node from which we 571 * are reading the ROM may have changed the ROM during the reset. 572 * Returns either a result code or a negative error code. 573 */ 574 static int read_config_rom(struct fw_device *device, int generation) 575 { 576 struct fw_card *card = device->card; 577 const u32 *old_rom, *new_rom; 578 u32 *rom, *stack; 579 u32 sp, key; 580 int i, end, length, ret; 581 582 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 583 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 584 if (rom == NULL) 585 return -ENOMEM; 586 587 stack = &rom[MAX_CONFIG_ROM_SIZE]; 588 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 589 590 device->max_speed = SCODE_100; 591 592 /* First read the bus info block. */ 593 for (i = 0; i < 5; i++) { 594 ret = read_rom(device, generation, i, &rom[i]); 595 if (ret != RCODE_COMPLETE) 596 goto out; 597 /* 598 * As per IEEE1212 7.2, during initialization, devices can 599 * reply with a 0 for the first quadlet of the config 600 * rom to indicate that they are booting (for example, 601 * if the firmware is on the disk of a external 602 * harddisk). In that case we just fail, and the 603 * retry mechanism will try again later. 604 */ 605 if (i == 0 && rom[i] == 0) { 606 ret = RCODE_BUSY; 607 goto out; 608 } 609 } 610 611 device->max_speed = device->node->max_speed; 612 613 /* 614 * Determine the speed of 615 * - devices with link speed less than PHY speed, 616 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 617 * - all devices if there are 1394b repeaters. 618 * Note, we cannot use the bus info block's link_spd as starting point 619 * because some buggy firmwares set it lower than necessary and because 620 * 1394-1995 nodes do not have the field. 621 */ 622 if ((rom[2] & 0x7) < device->max_speed || 623 device->max_speed == SCODE_BETA || 624 card->beta_repeaters_present) { 625 u32 dummy; 626 627 /* for S1600 and S3200 */ 628 if (device->max_speed == SCODE_BETA) 629 device->max_speed = card->link_speed; 630 631 while (device->max_speed > SCODE_100) { 632 if (read_rom(device, generation, 0, &dummy) == 633 RCODE_COMPLETE) 634 break; 635 device->max_speed--; 636 } 637 } 638 639 /* 640 * Now parse the config rom. The config rom is a recursive 641 * directory structure so we parse it using a stack of 642 * references to the blocks that make up the structure. We 643 * push a reference to the root directory on the stack to 644 * start things off. 645 */ 646 length = i; 647 sp = 0; 648 stack[sp++] = 0xc0000005; 649 while (sp > 0) { 650 /* 651 * Pop the next block reference of the stack. The 652 * lower 24 bits is the offset into the config rom, 653 * the upper 8 bits are the type of the reference the 654 * block. 655 */ 656 key = stack[--sp]; 657 i = key & 0xffffff; 658 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { 659 ret = -ENXIO; 660 goto out; 661 } 662 663 /* Read header quadlet for the block to get the length. */ 664 ret = read_rom(device, generation, i, &rom[i]); 665 if (ret != RCODE_COMPLETE) 666 goto out; 667 end = i + (rom[i] >> 16) + 1; 668 if (end > MAX_CONFIG_ROM_SIZE) { 669 /* 670 * This block extends outside the config ROM which is 671 * a firmware bug. Ignore this whole block, i.e. 672 * simply set a fake block length of 0. 673 */ 674 fw_err(card, "skipped invalid ROM block %x at %llx\n", 675 rom[i], 676 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 677 rom[i] = 0; 678 end = i; 679 } 680 i++; 681 682 /* 683 * Now read in the block. If this is a directory 684 * block, check the entries as we read them to see if 685 * it references another block, and push it in that case. 686 */ 687 for (; i < end; i++) { 688 ret = read_rom(device, generation, i, &rom[i]); 689 if (ret != RCODE_COMPLETE) 690 goto out; 691 692 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 693 continue; 694 /* 695 * Offset points outside the ROM. May be a firmware 696 * bug or an Extended ROM entry (IEEE 1212-2001 clause 697 * 7.7.18). Simply overwrite this pointer here by a 698 * fake immediate entry so that later iterators over 699 * the ROM don't have to check offsets all the time. 700 */ 701 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 702 fw_err(card, 703 "skipped unsupported ROM entry %x at %llx\n", 704 rom[i], 705 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 706 rom[i] = 0; 707 continue; 708 } 709 stack[sp++] = i + rom[i]; 710 } 711 if (length < i) 712 length = i; 713 } 714 715 old_rom = device->config_rom; 716 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 717 if (new_rom == NULL) { 718 ret = -ENOMEM; 719 goto out; 720 } 721 722 down_write(&fw_device_rwsem); 723 device->config_rom = new_rom; 724 device->config_rom_length = length; 725 up_write(&fw_device_rwsem); 726 727 kfree(old_rom); 728 ret = RCODE_COMPLETE; 729 device->max_rec = rom[2] >> 12 & 0xf; 730 device->cmc = rom[2] >> 30 & 1; 731 device->irmc = rom[2] >> 31 & 1; 732 out: 733 kfree(rom); 734 735 return ret; 736 } 737 738 static void fw_unit_release(struct device *dev) 739 { 740 struct fw_unit *unit = fw_unit(dev); 741 742 fw_device_put(fw_parent_device(unit)); 743 kfree(unit); 744 } 745 746 static struct device_type fw_unit_type = { 747 .uevent = fw_unit_uevent, 748 .release = fw_unit_release, 749 }; 750 751 static bool is_fw_unit(const struct device *dev) 752 { 753 return dev->type == &fw_unit_type; 754 } 755 756 static void create_units(struct fw_device *device) 757 { 758 struct fw_csr_iterator ci; 759 struct fw_unit *unit; 760 int key, value, i; 761 762 i = 0; 763 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]); 764 while (fw_csr_iterator_next(&ci, &key, &value)) { 765 if (key != (CSR_UNIT | CSR_DIRECTORY)) 766 continue; 767 768 /* 769 * Get the address of the unit directory and try to 770 * match the drivers id_tables against it. 771 */ 772 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 773 if (unit == NULL) 774 continue; 775 776 unit->directory = ci.p + value - 1; 777 unit->device.bus = &fw_bus_type; 778 unit->device.type = &fw_unit_type; 779 unit->device.parent = &device->device; 780 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 781 782 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 783 ARRAY_SIZE(fw_unit_attributes) + 784 ARRAY_SIZE(config_rom_attributes)); 785 init_fw_attribute_group(&unit->device, 786 fw_unit_attributes, 787 &unit->attribute_group); 788 789 fw_device_get(device); 790 if (device_register(&unit->device) < 0) { 791 put_device(&unit->device); 792 continue; 793 } 794 } 795 } 796 797 static int shutdown_unit(struct device *device, void *data) 798 { 799 device_unregister(device); 800 801 return 0; 802 } 803 804 /* 805 * fw_device_rwsem acts as dual purpose mutex: 806 * - serializes accesses to fw_device_idr, 807 * - serializes accesses to fw_device.config_rom/.config_rom_length and 808 * fw_unit.directory, unless those accesses happen at safe occasions 809 */ 810 DECLARE_RWSEM(fw_device_rwsem); 811 812 DEFINE_IDR(fw_device_idr); 813 int fw_cdev_major; 814 815 struct fw_device *fw_device_get_by_devt(dev_t devt) 816 { 817 struct fw_device *device; 818 819 down_read(&fw_device_rwsem); 820 device = idr_find(&fw_device_idr, MINOR(devt)); 821 if (device) 822 fw_device_get(device); 823 up_read(&fw_device_rwsem); 824 825 return device; 826 } 827 828 struct workqueue_struct *fw_workqueue; 829 EXPORT_SYMBOL(fw_workqueue); 830 831 static void fw_schedule_device_work(struct fw_device *device, 832 unsigned long delay) 833 { 834 queue_delayed_work(fw_workqueue, &device->work, delay); 835 } 836 837 /* 838 * These defines control the retry behavior for reading the config 839 * rom. It shouldn't be necessary to tweak these; if the device 840 * doesn't respond to a config rom read within 10 seconds, it's not 841 * going to respond at all. As for the initial delay, a lot of 842 * devices will be able to respond within half a second after bus 843 * reset. On the other hand, it's not really worth being more 844 * aggressive than that, since it scales pretty well; if 10 devices 845 * are plugged in, they're all getting read within one second. 846 */ 847 848 #define MAX_RETRIES 10 849 #define RETRY_DELAY (3 * HZ) 850 #define INITIAL_DELAY (HZ / 2) 851 #define SHUTDOWN_DELAY (2 * HZ) 852 853 static void fw_device_shutdown(struct work_struct *work) 854 { 855 struct fw_device *device = 856 container_of(work, struct fw_device, work.work); 857 int minor = MINOR(device->device.devt); 858 859 if (time_before64(get_jiffies_64(), 860 device->card->reset_jiffies + SHUTDOWN_DELAY) 861 && !list_empty(&device->card->link)) { 862 fw_schedule_device_work(device, SHUTDOWN_DELAY); 863 return; 864 } 865 866 if (atomic_cmpxchg(&device->state, 867 FW_DEVICE_GONE, 868 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 869 return; 870 871 fw_device_cdev_remove(device); 872 device_for_each_child(&device->device, NULL, shutdown_unit); 873 device_unregister(&device->device); 874 875 down_write(&fw_device_rwsem); 876 idr_remove(&fw_device_idr, minor); 877 up_write(&fw_device_rwsem); 878 879 fw_device_put(device); 880 } 881 882 static void fw_device_release(struct device *dev) 883 { 884 struct fw_device *device = fw_device(dev); 885 struct fw_card *card = device->card; 886 unsigned long flags; 887 888 /* 889 * Take the card lock so we don't set this to NULL while a 890 * FW_NODE_UPDATED callback is being handled or while the 891 * bus manager work looks at this node. 892 */ 893 spin_lock_irqsave(&card->lock, flags); 894 device->node->data = NULL; 895 spin_unlock_irqrestore(&card->lock, flags); 896 897 fw_node_put(device->node); 898 kfree(device->config_rom); 899 kfree(device); 900 fw_card_put(card); 901 } 902 903 static struct device_type fw_device_type = { 904 .release = fw_device_release, 905 }; 906 907 static bool is_fw_device(const struct device *dev) 908 { 909 return dev->type == &fw_device_type; 910 } 911 912 static int update_unit(struct device *dev, void *data) 913 { 914 struct fw_unit *unit = fw_unit(dev); 915 struct fw_driver *driver = (struct fw_driver *)dev->driver; 916 917 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 918 device_lock(dev); 919 driver->update(unit); 920 device_unlock(dev); 921 } 922 923 return 0; 924 } 925 926 static void fw_device_update(struct work_struct *work) 927 { 928 struct fw_device *device = 929 container_of(work, struct fw_device, work.work); 930 931 fw_device_cdev_update(device); 932 device_for_each_child(&device->device, NULL, update_unit); 933 } 934 935 /* 936 * If a device was pending for deletion because its node went away but its 937 * bus info block and root directory header matches that of a newly discovered 938 * device, revive the existing fw_device. 939 * The newly allocated fw_device becomes obsolete instead. 940 */ 941 static int lookup_existing_device(struct device *dev, void *data) 942 { 943 struct fw_device *old = fw_device(dev); 944 struct fw_device *new = data; 945 struct fw_card *card = new->card; 946 int match = 0; 947 948 if (!is_fw_device(dev)) 949 return 0; 950 951 down_read(&fw_device_rwsem); /* serialize config_rom access */ 952 spin_lock_irq(&card->lock); /* serialize node access */ 953 954 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 955 atomic_cmpxchg(&old->state, 956 FW_DEVICE_GONE, 957 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 958 struct fw_node *current_node = new->node; 959 struct fw_node *obsolete_node = old->node; 960 961 new->node = obsolete_node; 962 new->node->data = new; 963 old->node = current_node; 964 old->node->data = old; 965 966 old->max_speed = new->max_speed; 967 old->node_id = current_node->node_id; 968 smp_wmb(); /* update node_id before generation */ 969 old->generation = card->generation; 970 old->config_rom_retries = 0; 971 fw_notice(card, "rediscovered device %s\n", dev_name(dev)); 972 973 old->workfn = fw_device_update; 974 fw_schedule_device_work(old, 0); 975 976 if (current_node == card->root_node) 977 fw_schedule_bm_work(card, 0); 978 979 match = 1; 980 } 981 982 spin_unlock_irq(&card->lock); 983 up_read(&fw_device_rwsem); 984 985 return match; 986 } 987 988 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 989 990 static void set_broadcast_channel(struct fw_device *device, int generation) 991 { 992 struct fw_card *card = device->card; 993 __be32 data; 994 int rcode; 995 996 if (!card->broadcast_channel_allocated) 997 return; 998 999 /* 1000 * The Broadcast_Channel Valid bit is required by nodes which want to 1001 * transmit on this channel. Such transmissions are practically 1002 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 1003 * to be IRM capable and have a max_rec of 8 or more. We use this fact 1004 * to narrow down to which nodes we send Broadcast_Channel updates. 1005 */ 1006 if (!device->irmc || device->max_rec < 8) 1007 return; 1008 1009 /* 1010 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 1011 * Perform a read test first. 1012 */ 1013 if (device->bc_implemented == BC_UNKNOWN) { 1014 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 1015 device->node_id, generation, device->max_speed, 1016 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 1017 &data, 4); 1018 switch (rcode) { 1019 case RCODE_COMPLETE: 1020 if (data & cpu_to_be32(1 << 31)) { 1021 device->bc_implemented = BC_IMPLEMENTED; 1022 break; 1023 } 1024 fallthrough; /* to case address error */ 1025 case RCODE_ADDRESS_ERROR: 1026 device->bc_implemented = BC_UNIMPLEMENTED; 1027 } 1028 } 1029 1030 if (device->bc_implemented == BC_IMPLEMENTED) { 1031 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 1032 BROADCAST_CHANNEL_VALID); 1033 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 1034 device->node_id, generation, device->max_speed, 1035 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 1036 &data, 4); 1037 } 1038 } 1039 1040 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 1041 { 1042 if (is_fw_device(dev)) 1043 set_broadcast_channel(fw_device(dev), (long)gen); 1044 1045 return 0; 1046 } 1047 1048 static void fw_device_init(struct work_struct *work) 1049 { 1050 struct fw_device *device = 1051 container_of(work, struct fw_device, work.work); 1052 struct fw_card *card = device->card; 1053 struct device *revived_dev; 1054 int minor, ret; 1055 1056 /* 1057 * All failure paths here set node->data to NULL, so that we 1058 * don't try to do device_for_each_child() on a kfree()'d 1059 * device. 1060 */ 1061 1062 ret = read_config_rom(device, device->generation); 1063 if (ret != RCODE_COMPLETE) { 1064 if (device->config_rom_retries < MAX_RETRIES && 1065 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1066 device->config_rom_retries++; 1067 fw_schedule_device_work(device, RETRY_DELAY); 1068 } else { 1069 if (device->node->link_on) 1070 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", 1071 device->node_id, 1072 fw_rcode_string(ret)); 1073 if (device->node == card->root_node) 1074 fw_schedule_bm_work(card, 0); 1075 fw_device_release(&device->device); 1076 } 1077 return; 1078 } 1079 1080 revived_dev = device_find_child(card->device, 1081 device, lookup_existing_device); 1082 if (revived_dev) { 1083 put_device(revived_dev); 1084 fw_device_release(&device->device); 1085 1086 return; 1087 } 1088 1089 device_initialize(&device->device); 1090 1091 fw_device_get(device); 1092 down_write(&fw_device_rwsem); 1093 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS, 1094 GFP_KERNEL); 1095 up_write(&fw_device_rwsem); 1096 1097 if (minor < 0) 1098 goto error; 1099 1100 device->device.bus = &fw_bus_type; 1101 device->device.type = &fw_device_type; 1102 device->device.parent = card->device; 1103 device->device.devt = MKDEV(fw_cdev_major, minor); 1104 dev_set_name(&device->device, "fw%d", minor); 1105 1106 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1107 ARRAY_SIZE(fw_device_attributes) + 1108 ARRAY_SIZE(config_rom_attributes)); 1109 init_fw_attribute_group(&device->device, 1110 fw_device_attributes, 1111 &device->attribute_group); 1112 1113 if (device_add(&device->device)) { 1114 fw_err(card, "failed to add device\n"); 1115 goto error_with_cdev; 1116 } 1117 1118 create_units(device); 1119 1120 /* 1121 * Transition the device to running state. If it got pulled 1122 * out from under us while we did the initialization work, we 1123 * have to shut down the device again here. Normally, though, 1124 * fw_node_event will be responsible for shutting it down when 1125 * necessary. We have to use the atomic cmpxchg here to avoid 1126 * racing with the FW_NODE_DESTROYED case in 1127 * fw_node_event(). 1128 */ 1129 if (atomic_cmpxchg(&device->state, 1130 FW_DEVICE_INITIALIZING, 1131 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1132 device->workfn = fw_device_shutdown; 1133 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1134 } else { 1135 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", 1136 dev_name(&device->device), 1137 device->config_rom[3], device->config_rom[4], 1138 1 << device->max_speed); 1139 device->config_rom_retries = 0; 1140 1141 set_broadcast_channel(device, device->generation); 1142 1143 add_device_randomness(&device->config_rom[3], 8); 1144 } 1145 1146 /* 1147 * Reschedule the IRM work if we just finished reading the 1148 * root node config rom. If this races with a bus reset we 1149 * just end up running the IRM work a couple of extra times - 1150 * pretty harmless. 1151 */ 1152 if (device->node == card->root_node) 1153 fw_schedule_bm_work(card, 0); 1154 1155 return; 1156 1157 error_with_cdev: 1158 down_write(&fw_device_rwsem); 1159 idr_remove(&fw_device_idr, minor); 1160 up_write(&fw_device_rwsem); 1161 error: 1162 fw_device_put(device); /* fw_device_idr's reference */ 1163 1164 put_device(&device->device); /* our reference */ 1165 } 1166 1167 /* Reread and compare bus info block and header of root directory */ 1168 static int reread_config_rom(struct fw_device *device, int generation, 1169 bool *changed) 1170 { 1171 u32 q; 1172 int i, rcode; 1173 1174 for (i = 0; i < 6; i++) { 1175 rcode = read_rom(device, generation, i, &q); 1176 if (rcode != RCODE_COMPLETE) 1177 return rcode; 1178 1179 if (i == 0 && q == 0) 1180 /* inaccessible (see read_config_rom); retry later */ 1181 return RCODE_BUSY; 1182 1183 if (q != device->config_rom[i]) { 1184 *changed = true; 1185 return RCODE_COMPLETE; 1186 } 1187 } 1188 1189 *changed = false; 1190 return RCODE_COMPLETE; 1191 } 1192 1193 static void fw_device_refresh(struct work_struct *work) 1194 { 1195 struct fw_device *device = 1196 container_of(work, struct fw_device, work.work); 1197 struct fw_card *card = device->card; 1198 int ret, node_id = device->node_id; 1199 bool changed; 1200 1201 ret = reread_config_rom(device, device->generation, &changed); 1202 if (ret != RCODE_COMPLETE) 1203 goto failed_config_rom; 1204 1205 if (!changed) { 1206 if (atomic_cmpxchg(&device->state, 1207 FW_DEVICE_INITIALIZING, 1208 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1209 goto gone; 1210 1211 fw_device_update(work); 1212 device->config_rom_retries = 0; 1213 goto out; 1214 } 1215 1216 /* 1217 * Something changed. We keep things simple and don't investigate 1218 * further. We just destroy all previous units and create new ones. 1219 */ 1220 device_for_each_child(&device->device, NULL, shutdown_unit); 1221 1222 ret = read_config_rom(device, device->generation); 1223 if (ret != RCODE_COMPLETE) 1224 goto failed_config_rom; 1225 1226 fw_device_cdev_update(device); 1227 create_units(device); 1228 1229 /* Userspace may want to re-read attributes. */ 1230 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1231 1232 if (atomic_cmpxchg(&device->state, 1233 FW_DEVICE_INITIALIZING, 1234 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1235 goto gone; 1236 1237 fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); 1238 device->config_rom_retries = 0; 1239 goto out; 1240 1241 failed_config_rom: 1242 if (device->config_rom_retries < MAX_RETRIES && 1243 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1244 device->config_rom_retries++; 1245 fw_schedule_device_work(device, RETRY_DELAY); 1246 return; 1247 } 1248 1249 fw_notice(card, "giving up on refresh of device %s: %s\n", 1250 dev_name(&device->device), fw_rcode_string(ret)); 1251 gone: 1252 atomic_set(&device->state, FW_DEVICE_GONE); 1253 device->workfn = fw_device_shutdown; 1254 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1255 out: 1256 if (node_id == card->root_node->node_id) 1257 fw_schedule_bm_work(card, 0); 1258 } 1259 1260 static void fw_device_workfn(struct work_struct *work) 1261 { 1262 struct fw_device *device = container_of(to_delayed_work(work), 1263 struct fw_device, work); 1264 device->workfn(work); 1265 } 1266 1267 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1268 { 1269 struct fw_device *device; 1270 1271 switch (event) { 1272 case FW_NODE_CREATED: 1273 /* 1274 * Attempt to scan the node, regardless whether its self ID has 1275 * the L (link active) flag set or not. Some broken devices 1276 * send L=0 but have an up-and-running link; others send L=1 1277 * without actually having a link. 1278 */ 1279 create: 1280 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1281 if (device == NULL) 1282 break; 1283 1284 /* 1285 * Do minimal initialization of the device here, the 1286 * rest will happen in fw_device_init(). 1287 * 1288 * Attention: A lot of things, even fw_device_get(), 1289 * cannot be done before fw_device_init() finished! 1290 * You can basically just check device->state and 1291 * schedule work until then, but only while holding 1292 * card->lock. 1293 */ 1294 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1295 device->card = fw_card_get(card); 1296 device->node = fw_node_get(node); 1297 device->node_id = node->node_id; 1298 device->generation = card->generation; 1299 device->is_local = node == card->local_node; 1300 mutex_init(&device->client_list_mutex); 1301 INIT_LIST_HEAD(&device->client_list); 1302 1303 /* 1304 * Set the node data to point back to this device so 1305 * FW_NODE_UPDATED callbacks can update the node_id 1306 * and generation for the device. 1307 */ 1308 node->data = device; 1309 1310 /* 1311 * Many devices are slow to respond after bus resets, 1312 * especially if they are bus powered and go through 1313 * power-up after getting plugged in. We schedule the 1314 * first config rom scan half a second after bus reset. 1315 */ 1316 device->workfn = fw_device_init; 1317 INIT_DELAYED_WORK(&device->work, fw_device_workfn); 1318 fw_schedule_device_work(device, INITIAL_DELAY); 1319 break; 1320 1321 case FW_NODE_INITIATED_RESET: 1322 case FW_NODE_LINK_ON: 1323 device = node->data; 1324 if (device == NULL) 1325 goto create; 1326 1327 device->node_id = node->node_id; 1328 smp_wmb(); /* update node_id before generation */ 1329 device->generation = card->generation; 1330 if (atomic_cmpxchg(&device->state, 1331 FW_DEVICE_RUNNING, 1332 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1333 device->workfn = fw_device_refresh; 1334 fw_schedule_device_work(device, 1335 device->is_local ? 0 : INITIAL_DELAY); 1336 } 1337 break; 1338 1339 case FW_NODE_UPDATED: 1340 device = node->data; 1341 if (device == NULL) 1342 break; 1343 1344 device->node_id = node->node_id; 1345 smp_wmb(); /* update node_id before generation */ 1346 device->generation = card->generation; 1347 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1348 device->workfn = fw_device_update; 1349 fw_schedule_device_work(device, 0); 1350 } 1351 break; 1352 1353 case FW_NODE_DESTROYED: 1354 case FW_NODE_LINK_OFF: 1355 if (!node->data) 1356 break; 1357 1358 /* 1359 * Destroy the device associated with the node. There 1360 * are two cases here: either the device is fully 1361 * initialized (FW_DEVICE_RUNNING) or we're in the 1362 * process of reading its config rom 1363 * (FW_DEVICE_INITIALIZING). If it is fully 1364 * initialized we can reuse device->work to schedule a 1365 * full fw_device_shutdown(). If not, there's work 1366 * scheduled to read it's config rom, and we just put 1367 * the device in shutdown state to have that code fail 1368 * to create the device. 1369 */ 1370 device = node->data; 1371 if (atomic_xchg(&device->state, 1372 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1373 device->workfn = fw_device_shutdown; 1374 fw_schedule_device_work(device, 1375 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1376 } 1377 break; 1378 } 1379 } 1380 1381 #ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST 1382 #include "device-attribute-test.c" 1383 #endif 1384